e1000e: fix IPMI traffic
[linux-2.6-block.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
bc7f75fa
AK
47
48#include "e1000.h"
49
6f92a6a7 50#define DRV_VERSION "0.3.3.3-k6"
bc7f75fa
AK
51char e1000e_driver_name[] = "e1000e";
52const char e1000e_driver_version[] = DRV_VERSION;
53
54static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
4662e82b 58 [board_82574] = &e1000_82574_info,
bc7f75fa
AK
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
f4187b56 62 [board_ich10lan] = &e1000_ich10_info,
bc7f75fa
AK
63};
64
65#ifdef DEBUG
66/**
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
69 **/
70char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
71{
589c085f 72 return hw->adapter->netdev->name;
bc7f75fa
AK
73}
74#endif
75
76/**
77 * e1000_desc_unused - calculate if we have unused descriptors
78 **/
79static int e1000_desc_unused(struct e1000_ring *ring)
80{
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
83
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85}
86
87/**
ad68076e 88 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
93 **/
94static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
96 struct sk_buff *skb,
a39fe742 97 u8 status, __le16 vlan)
bc7f75fa
AK
98{
99 skb->protocol = eth_type_trans(skb, netdev);
100
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
38b22195 103 le16_to_cpu(vlan));
bc7f75fa
AK
104 else
105 netif_receive_skb(skb);
106
107 netdev->last_rx = jiffies;
108}
109
110/**
111 * e1000_rx_checksum - Receive Checksum Offload for 82543
112 * @adapter: board private structure
113 * @status_err: receive descriptor status and error fields
114 * @csum: receive descriptor csum field
115 * @sk_buff: socket buffer with received data
116 **/
117static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118 u32 csum, struct sk_buff *skb)
119{
120 u16 status = (u16)status_err;
121 u8 errors = (u8)(status_err >> 24);
122 skb->ip_summed = CHECKSUM_NONE;
123
124 /* Ignore Checksum bit is set */
125 if (status & E1000_RXD_STAT_IXSM)
126 return;
127 /* TCP/UDP checksum error bit is set */
128 if (errors & E1000_RXD_ERR_TCPE) {
129 /* let the stack verify checksum errors */
130 adapter->hw_csum_err++;
131 return;
132 }
133
134 /* TCP/UDP Checksum has not been calculated */
135 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 return;
137
138 /* It must be a TCP or UDP packet with a valid checksum */
139 if (status & E1000_RXD_STAT_TCPCS) {
140 /* TCP checksum is good */
141 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 } else {
ad68076e
BA
143 /*
144 * IP fragment with UDP payload
145 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
146 * and then put the value in host order for further stack use.
147 */
a39fe742
AV
148 __sum16 sum = (__force __sum16)htons(csum);
149 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
150 skb->ip_summed = CHECKSUM_COMPLETE;
151 }
152 adapter->hw_csum_good++;
153}
154
155/**
156 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157 * @adapter: address of board private structure
158 **/
159static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 int cleaned_count)
161{
162 struct net_device *netdev = adapter->netdev;
163 struct pci_dev *pdev = adapter->pdev;
164 struct e1000_ring *rx_ring = adapter->rx_ring;
165 struct e1000_rx_desc *rx_desc;
166 struct e1000_buffer *buffer_info;
167 struct sk_buff *skb;
168 unsigned int i;
169 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
170
171 i = rx_ring->next_to_use;
172 buffer_info = &rx_ring->buffer_info[i];
173
174 while (cleaned_count--) {
175 skb = buffer_info->skb;
176 if (skb) {
177 skb_trim(skb, 0);
178 goto map_skb;
179 }
180
181 skb = netdev_alloc_skb(netdev, bufsz);
182 if (!skb) {
183 /* Better luck next round */
184 adapter->alloc_rx_buff_failed++;
185 break;
186 }
187
ad68076e
BA
188 /*
189 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
190 * this will result in a 16 byte aligned IP header after
191 * the 14 byte MAC header is removed
192 */
193 skb_reserve(skb, NET_IP_ALIGN);
194
195 buffer_info->skb = skb;
196map_skb:
197 buffer_info->dma = pci_map_single(pdev, skb->data,
198 adapter->rx_buffer_len,
199 PCI_DMA_FROMDEVICE);
8d8bb39b 200 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
201 dev_err(&pdev->dev, "RX DMA map failed\n");
202 adapter->rx_dma_failed++;
203 break;
204 }
205
206 rx_desc = E1000_RX_DESC(*rx_ring, i);
207 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208
209 i++;
210 if (i == rx_ring->count)
211 i = 0;
212 buffer_info = &rx_ring->buffer_info[i];
213 }
214
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
217 if (i-- == 0)
218 i = (rx_ring->count - 1);
219
ad68076e
BA
220 /*
221 * Force memory writes to complete before letting h/w
bc7f75fa
AK
222 * know there are new descriptors to fetch. (Only
223 * applicable for weak-ordered memory model archs,
ad68076e
BA
224 * such as IA-64).
225 */
bc7f75fa
AK
226 wmb();
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
228 }
229}
230
231/**
232 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233 * @adapter: address of board private structure
234 **/
235static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 int cleaned_count)
237{
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_rx_desc_packet_split *rx_desc;
241 struct e1000_ring *rx_ring = adapter->rx_ring;
242 struct e1000_buffer *buffer_info;
243 struct e1000_ps_page *ps_page;
244 struct sk_buff *skb;
245 unsigned int i, j;
246
247 i = rx_ring->next_to_use;
248 buffer_info = &rx_ring->buffer_info[i];
249
250 while (cleaned_count--) {
251 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
252
253 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
254 ps_page = &buffer_info->ps_pages[j];
255 if (j >= adapter->rx_ps_pages) {
256 /* all unused desc entries get hw null ptr */
a39fe742 257 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
258 continue;
259 }
260 if (!ps_page->page) {
261 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 262 if (!ps_page->page) {
47f44e40
AK
263 adapter->alloc_rx_buff_failed++;
264 goto no_buffers;
265 }
266 ps_page->dma = pci_map_page(pdev,
267 ps_page->page,
268 0, PAGE_SIZE,
269 PCI_DMA_FROMDEVICE);
8d8bb39b 270 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
47f44e40
AK
271 dev_err(&adapter->pdev->dev,
272 "RX DMA page map failed\n");
273 adapter->rx_dma_failed++;
274 goto no_buffers;
bc7f75fa 275 }
bc7f75fa 276 }
47f44e40
AK
277 /*
278 * Refresh the desc even if buffer_addrs
279 * didn't change because each write-back
280 * erases this info.
281 */
282 rx_desc->read.buffer_addr[j+1] =
283 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
284 }
285
286 skb = netdev_alloc_skb(netdev,
287 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288
289 if (!skb) {
290 adapter->alloc_rx_buff_failed++;
291 break;
292 }
293
ad68076e
BA
294 /*
295 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
296 * this will result in a 16 byte aligned IP header after
297 * the 14 byte MAC header is removed
298 */
299 skb_reserve(skb, NET_IP_ALIGN);
300
301 buffer_info->skb = skb;
302 buffer_info->dma = pci_map_single(pdev, skb->data,
303 adapter->rx_ps_bsize0,
304 PCI_DMA_FROMDEVICE);
8d8bb39b 305 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
306 dev_err(&pdev->dev, "RX DMA map failed\n");
307 adapter->rx_dma_failed++;
308 /* cleanup skb */
309 dev_kfree_skb_any(skb);
310 buffer_info->skb = NULL;
311 break;
312 }
313
314 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315
316 i++;
317 if (i == rx_ring->count)
318 i = 0;
319 buffer_info = &rx_ring->buffer_info[i];
320 }
321
322no_buffers:
323 if (rx_ring->next_to_use != i) {
324 rx_ring->next_to_use = i;
325
326 if (!(i--))
327 i = (rx_ring->count - 1);
328
ad68076e
BA
329 /*
330 * Force memory writes to complete before letting h/w
bc7f75fa
AK
331 * know there are new descriptors to fetch. (Only
332 * applicable for weak-ordered memory model archs,
ad68076e
BA
333 * such as IA-64).
334 */
bc7f75fa 335 wmb();
ad68076e
BA
336 /*
337 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
338 * descriptors are 32 bytes...so we increment tail
339 * twice as much.
340 */
341 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
342 }
343}
344
97ac8cae
BA
345/**
346 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347 * @adapter: address of board private structure
348 * @rx_ring: pointer to receive ring structure
349 * @cleaned_count: number of buffers to allocate this pass
350 **/
351
352static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
353 int cleaned_count)
354{
355 struct net_device *netdev = adapter->netdev;
356 struct pci_dev *pdev = adapter->pdev;
357 struct e1000_rx_desc *rx_desc;
358 struct e1000_ring *rx_ring = adapter->rx_ring;
359 struct e1000_buffer *buffer_info;
360 struct sk_buff *skb;
361 unsigned int i;
362 unsigned int bufsz = 256 -
363 16 /* for skb_reserve */ -
364 NET_IP_ALIGN;
365
366 i = rx_ring->next_to_use;
367 buffer_info = &rx_ring->buffer_info[i];
368
369 while (cleaned_count--) {
370 skb = buffer_info->skb;
371 if (skb) {
372 skb_trim(skb, 0);
373 goto check_page;
374 }
375
376 skb = netdev_alloc_skb(netdev, bufsz);
377 if (unlikely(!skb)) {
378 /* Better luck next round */
379 adapter->alloc_rx_buff_failed++;
380 break;
381 }
382
383 /* Make buffer alignment 2 beyond a 16 byte boundary
384 * this will result in a 16 byte aligned IP header after
385 * the 14 byte MAC header is removed
386 */
387 skb_reserve(skb, NET_IP_ALIGN);
388
389 buffer_info->skb = skb;
390check_page:
391 /* allocate a new page if necessary */
392 if (!buffer_info->page) {
393 buffer_info->page = alloc_page(GFP_ATOMIC);
394 if (unlikely(!buffer_info->page)) {
395 adapter->alloc_rx_buff_failed++;
396 break;
397 }
398 }
399
400 if (!buffer_info->dma)
401 buffer_info->dma = pci_map_page(pdev,
402 buffer_info->page, 0,
403 PAGE_SIZE,
404 PCI_DMA_FROMDEVICE);
405
406 rx_desc = E1000_RX_DESC(*rx_ring, i);
407 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
408
409 if (unlikely(++i == rx_ring->count))
410 i = 0;
411 buffer_info = &rx_ring->buffer_info[i];
412 }
413
414 if (likely(rx_ring->next_to_use != i)) {
415 rx_ring->next_to_use = i;
416 if (unlikely(i-- == 0))
417 i = (rx_ring->count - 1);
418
419 /* Force memory writes to complete before letting h/w
420 * know there are new descriptors to fetch. (Only
421 * applicable for weak-ordered memory model archs,
422 * such as IA-64). */
423 wmb();
424 writel(i, adapter->hw.hw_addr + rx_ring->tail);
425 }
426}
427
bc7f75fa
AK
428/**
429 * e1000_clean_rx_irq - Send received data up the network stack; legacy
430 * @adapter: board private structure
431 *
432 * the return value indicates whether actual cleaning was done, there
433 * is no guarantee that everything was cleaned
434 **/
435static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
436 int *work_done, int work_to_do)
437{
438 struct net_device *netdev = adapter->netdev;
439 struct pci_dev *pdev = adapter->pdev;
440 struct e1000_ring *rx_ring = adapter->rx_ring;
441 struct e1000_rx_desc *rx_desc, *next_rxd;
442 struct e1000_buffer *buffer_info, *next_buffer;
443 u32 length;
444 unsigned int i;
445 int cleaned_count = 0;
446 bool cleaned = 0;
447 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
448
449 i = rx_ring->next_to_clean;
450 rx_desc = E1000_RX_DESC(*rx_ring, i);
451 buffer_info = &rx_ring->buffer_info[i];
452
453 while (rx_desc->status & E1000_RXD_STAT_DD) {
454 struct sk_buff *skb;
455 u8 status;
456
457 if (*work_done >= work_to_do)
458 break;
459 (*work_done)++;
460
461 status = rx_desc->status;
462 skb = buffer_info->skb;
463 buffer_info->skb = NULL;
464
465 prefetch(skb->data - NET_IP_ALIGN);
466
467 i++;
468 if (i == rx_ring->count)
469 i = 0;
470 next_rxd = E1000_RX_DESC(*rx_ring, i);
471 prefetch(next_rxd);
472
473 next_buffer = &rx_ring->buffer_info[i];
474
475 cleaned = 1;
476 cleaned_count++;
477 pci_unmap_single(pdev,
478 buffer_info->dma,
479 adapter->rx_buffer_len,
480 PCI_DMA_FROMDEVICE);
481 buffer_info->dma = 0;
482
483 length = le16_to_cpu(rx_desc->length);
484
485 /* !EOP means multiple descriptors were used to store a single
486 * packet, also make sure the frame isn't just CRC only */
487 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
488 /* All receives must fit into a single buffer */
44defeb3
JK
489 e_dbg("%s: Receive packet consumed multiple buffers\n",
490 netdev->name);
bc7f75fa
AK
491 /* recycle */
492 buffer_info->skb = skb;
493 goto next_desc;
494 }
495
496 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
497 /* recycle */
498 buffer_info->skb = skb;
499 goto next_desc;
500 }
501
eb7c3adb
JK
502 /* adjust length to remove Ethernet CRC */
503 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
504 length -= 4;
505
bc7f75fa
AK
506 total_rx_bytes += length;
507 total_rx_packets++;
508
ad68076e
BA
509 /*
510 * code added for copybreak, this should improve
bc7f75fa 511 * performance for small packets with large amounts
ad68076e
BA
512 * of reassembly being done in the stack
513 */
bc7f75fa
AK
514 if (length < copybreak) {
515 struct sk_buff *new_skb =
516 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
517 if (new_skb) {
518 skb_reserve(new_skb, NET_IP_ALIGN);
808ff676
BA
519 skb_copy_to_linear_data_offset(new_skb,
520 -NET_IP_ALIGN,
521 (skb->data -
522 NET_IP_ALIGN),
523 (length +
524 NET_IP_ALIGN));
bc7f75fa
AK
525 /* save the skb in buffer_info as good */
526 buffer_info->skb = skb;
527 skb = new_skb;
528 }
529 /* else just continue with the old one */
530 }
531 /* end copybreak code */
532 skb_put(skb, length);
533
534 /* Receive Checksum Offload */
535 e1000_rx_checksum(adapter,
536 (u32)(status) |
537 ((u32)(rx_desc->errors) << 24),
538 le16_to_cpu(rx_desc->csum), skb);
539
540 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
541
542next_desc:
543 rx_desc->status = 0;
544
545 /* return some buffers to hardware, one at a time is too slow */
546 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
547 adapter->alloc_rx_buf(adapter, cleaned_count);
548 cleaned_count = 0;
549 }
550
551 /* use prefetched values */
552 rx_desc = next_rxd;
553 buffer_info = next_buffer;
554 }
555 rx_ring->next_to_clean = i;
556
557 cleaned_count = e1000_desc_unused(rx_ring);
558 if (cleaned_count)
559 adapter->alloc_rx_buf(adapter, cleaned_count);
560
bc7f75fa 561 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 562 adapter->total_rx_packets += total_rx_packets;
41988692 563 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 564 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
565 return cleaned;
566}
567
bc7f75fa
AK
568static void e1000_put_txbuf(struct e1000_adapter *adapter,
569 struct e1000_buffer *buffer_info)
570{
571 if (buffer_info->dma) {
572 pci_unmap_page(adapter->pdev, buffer_info->dma,
573 buffer_info->length, PCI_DMA_TODEVICE);
574 buffer_info->dma = 0;
575 }
576 if (buffer_info->skb) {
577 dev_kfree_skb_any(buffer_info->skb);
578 buffer_info->skb = NULL;
579 }
580}
581
582static void e1000_print_tx_hang(struct e1000_adapter *adapter)
583{
584 struct e1000_ring *tx_ring = adapter->tx_ring;
585 unsigned int i = tx_ring->next_to_clean;
586 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
587 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
588
589 /* detected Tx unit hang */
44defeb3
JK
590 e_err("Detected Tx Unit Hang:\n"
591 " TDH <%x>\n"
592 " TDT <%x>\n"
593 " next_to_use <%x>\n"
594 " next_to_clean <%x>\n"
595 "buffer_info[next_to_clean]:\n"
596 " time_stamp <%lx>\n"
597 " next_to_watch <%x>\n"
598 " jiffies <%lx>\n"
599 " next_to_watch.status <%x>\n",
600 readl(adapter->hw.hw_addr + tx_ring->head),
601 readl(adapter->hw.hw_addr + tx_ring->tail),
602 tx_ring->next_to_use,
603 tx_ring->next_to_clean,
604 tx_ring->buffer_info[eop].time_stamp,
605 eop,
606 jiffies,
607 eop_desc->upper.fields.status);
bc7f75fa
AK
608}
609
610/**
611 * e1000_clean_tx_irq - Reclaim resources after transmit completes
612 * @adapter: board private structure
613 *
614 * the return value indicates whether actual cleaning was done, there
615 * is no guarantee that everything was cleaned
616 **/
617static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
618{
619 struct net_device *netdev = adapter->netdev;
620 struct e1000_hw *hw = &adapter->hw;
621 struct e1000_ring *tx_ring = adapter->tx_ring;
622 struct e1000_tx_desc *tx_desc, *eop_desc;
623 struct e1000_buffer *buffer_info;
624 unsigned int i, eop;
625 unsigned int count = 0;
626 bool cleaned = 0;
627 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
628
629 i = tx_ring->next_to_clean;
630 eop = tx_ring->buffer_info[i].next_to_watch;
631 eop_desc = E1000_TX_DESC(*tx_ring, eop);
632
633 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
634 for (cleaned = 0; !cleaned; ) {
635 tx_desc = E1000_TX_DESC(*tx_ring, i);
636 buffer_info = &tx_ring->buffer_info[i];
637 cleaned = (i == eop);
638
639 if (cleaned) {
640 struct sk_buff *skb = buffer_info->skb;
641 unsigned int segs, bytecount;
642 segs = skb_shinfo(skb)->gso_segs ?: 1;
643 /* multiply data chunks by size of headers */
644 bytecount = ((segs - 1) * skb_headlen(skb)) +
645 skb->len;
646 total_tx_packets += segs;
647 total_tx_bytes += bytecount;
648 }
649
650 e1000_put_txbuf(adapter, buffer_info);
651 tx_desc->upper.data = 0;
652
653 i++;
654 if (i == tx_ring->count)
655 i = 0;
656 }
657
658 eop = tx_ring->buffer_info[i].next_to_watch;
659 eop_desc = E1000_TX_DESC(*tx_ring, eop);
660#define E1000_TX_WEIGHT 64
661 /* weight of a sort for tx, to avoid endless transmit cleanup */
662 if (count++ == E1000_TX_WEIGHT)
663 break;
664 }
665
666 tx_ring->next_to_clean = i;
667
668#define TX_WAKE_THRESHOLD 32
669 if (cleaned && netif_carrier_ok(netdev) &&
670 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
671 /* Make sure that anybody stopping the queue after this
672 * sees the new next_to_clean.
673 */
674 smp_mb();
675
676 if (netif_queue_stopped(netdev) &&
677 !(test_bit(__E1000_DOWN, &adapter->state))) {
678 netif_wake_queue(netdev);
679 ++adapter->restart_queue;
680 }
681 }
682
683 if (adapter->detect_tx_hung) {
ad68076e
BA
684 /*
685 * Detect a transmit hang in hardware, this serializes the
686 * check with the clearing of time_stamp and movement of i
687 */
bc7f75fa
AK
688 adapter->detect_tx_hung = 0;
689 if (tx_ring->buffer_info[eop].dma &&
690 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
691 + (adapter->tx_timeout_factor * HZ))
ad68076e 692 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
693 e1000_print_tx_hang(adapter);
694 netif_stop_queue(netdev);
695 }
696 }
697 adapter->total_tx_bytes += total_tx_bytes;
698 adapter->total_tx_packets += total_tx_packets;
41988692 699 adapter->net_stats.tx_bytes += total_tx_bytes;
7c25769f 700 adapter->net_stats.tx_packets += total_tx_packets;
bc7f75fa
AK
701 return cleaned;
702}
703
bc7f75fa
AK
704/**
705 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
706 * @adapter: board private structure
707 *
708 * the return value indicates whether actual cleaning was done, there
709 * is no guarantee that everything was cleaned
710 **/
711static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
712 int *work_done, int work_to_do)
713{
714 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
715 struct net_device *netdev = adapter->netdev;
716 struct pci_dev *pdev = adapter->pdev;
717 struct e1000_ring *rx_ring = adapter->rx_ring;
718 struct e1000_buffer *buffer_info, *next_buffer;
719 struct e1000_ps_page *ps_page;
720 struct sk_buff *skb;
721 unsigned int i, j;
722 u32 length, staterr;
723 int cleaned_count = 0;
724 bool cleaned = 0;
725 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
726
727 i = rx_ring->next_to_clean;
728 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
729 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
730 buffer_info = &rx_ring->buffer_info[i];
731
732 while (staterr & E1000_RXD_STAT_DD) {
733 if (*work_done >= work_to_do)
734 break;
735 (*work_done)++;
736 skb = buffer_info->skb;
737
738 /* in the packet split case this is header only */
739 prefetch(skb->data - NET_IP_ALIGN);
740
741 i++;
742 if (i == rx_ring->count)
743 i = 0;
744 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
745 prefetch(next_rxd);
746
747 next_buffer = &rx_ring->buffer_info[i];
748
749 cleaned = 1;
750 cleaned_count++;
751 pci_unmap_single(pdev, buffer_info->dma,
752 adapter->rx_ps_bsize0,
753 PCI_DMA_FROMDEVICE);
754 buffer_info->dma = 0;
755
756 if (!(staterr & E1000_RXD_STAT_EOP)) {
44defeb3
JK
757 e_dbg("%s: Packet Split buffers didn't pick up the "
758 "full packet\n", netdev->name);
bc7f75fa
AK
759 dev_kfree_skb_irq(skb);
760 goto next_desc;
761 }
762
763 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
764 dev_kfree_skb_irq(skb);
765 goto next_desc;
766 }
767
768 length = le16_to_cpu(rx_desc->wb.middle.length0);
769
770 if (!length) {
44defeb3
JK
771 e_dbg("%s: Last part of the packet spanning multiple "
772 "descriptors\n", netdev->name);
bc7f75fa
AK
773 dev_kfree_skb_irq(skb);
774 goto next_desc;
775 }
776
777 /* Good Receive */
778 skb_put(skb, length);
779
780 {
ad68076e
BA
781 /*
782 * this looks ugly, but it seems compiler issues make it
783 * more efficient than reusing j
784 */
bc7f75fa
AK
785 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
786
ad68076e
BA
787 /*
788 * page alloc/put takes too long and effects small packet
789 * throughput, so unsplit small packets and save the alloc/put
790 * only valid in softirq (napi) context to call kmap_*
791 */
bc7f75fa
AK
792 if (l1 && (l1 <= copybreak) &&
793 ((length + l1) <= adapter->rx_ps_bsize0)) {
794 u8 *vaddr;
795
47f44e40 796 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 797
ad68076e
BA
798 /*
799 * there is no documentation about how to call
bc7f75fa 800 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
801 * very long
802 */
bc7f75fa
AK
803 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
804 PAGE_SIZE, PCI_DMA_FROMDEVICE);
805 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
806 memcpy(skb_tail_pointer(skb), vaddr, l1);
807 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
808 pci_dma_sync_single_for_device(pdev, ps_page->dma,
809 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 810
eb7c3adb
JK
811 /* remove the CRC */
812 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
813 l1 -= 4;
814
bc7f75fa
AK
815 skb_put(skb, l1);
816 goto copydone;
817 } /* if */
818 }
819
820 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
821 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
822 if (!length)
823 break;
824
47f44e40 825 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
826 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
827 PCI_DMA_FROMDEVICE);
828 ps_page->dma = 0;
829 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
830 ps_page->page = NULL;
831 skb->len += length;
832 skb->data_len += length;
833 skb->truesize += length;
834 }
835
eb7c3adb
JK
836 /* strip the ethernet crc, problem is we're using pages now so
837 * this whole operation can get a little cpu intensive
838 */
839 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
840 pskb_trim(skb, skb->len - 4);
841
bc7f75fa
AK
842copydone:
843 total_rx_bytes += skb->len;
844 total_rx_packets++;
845
846 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
847 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
848
849 if (rx_desc->wb.upper.header_status &
850 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
851 adapter->rx_hdr_split++;
852
853 e1000_receive_skb(adapter, netdev, skb,
854 staterr, rx_desc->wb.middle.vlan);
855
856next_desc:
857 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
858 buffer_info->skb = NULL;
859
860 /* return some buffers to hardware, one at a time is too slow */
861 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
862 adapter->alloc_rx_buf(adapter, cleaned_count);
863 cleaned_count = 0;
864 }
865
866 /* use prefetched values */
867 rx_desc = next_rxd;
868 buffer_info = next_buffer;
869
870 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
871 }
872 rx_ring->next_to_clean = i;
873
874 cleaned_count = e1000_desc_unused(rx_ring);
875 if (cleaned_count)
876 adapter->alloc_rx_buf(adapter, cleaned_count);
877
bc7f75fa 878 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 879 adapter->total_rx_packets += total_rx_packets;
41988692 880 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 881 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
882 return cleaned;
883}
884
97ac8cae
BA
885/**
886 * e1000_consume_page - helper function
887 **/
888static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
889 u16 length)
890{
891 bi->page = NULL;
892 skb->len += length;
893 skb->data_len += length;
894 skb->truesize += length;
895}
896
897/**
898 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
899 * @adapter: board private structure
900 *
901 * the return value indicates whether actual cleaning was done, there
902 * is no guarantee that everything was cleaned
903 **/
904
905static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
906 int *work_done, int work_to_do)
907{
908 struct net_device *netdev = adapter->netdev;
909 struct pci_dev *pdev = adapter->pdev;
910 struct e1000_ring *rx_ring = adapter->rx_ring;
911 struct e1000_rx_desc *rx_desc, *next_rxd;
912 struct e1000_buffer *buffer_info, *next_buffer;
913 u32 length;
914 unsigned int i;
915 int cleaned_count = 0;
916 bool cleaned = false;
917 unsigned int total_rx_bytes=0, total_rx_packets=0;
918
919 i = rx_ring->next_to_clean;
920 rx_desc = E1000_RX_DESC(*rx_ring, i);
921 buffer_info = &rx_ring->buffer_info[i];
922
923 while (rx_desc->status & E1000_RXD_STAT_DD) {
924 struct sk_buff *skb;
925 u8 status;
926
927 if (*work_done >= work_to_do)
928 break;
929 (*work_done)++;
930
931 status = rx_desc->status;
932 skb = buffer_info->skb;
933 buffer_info->skb = NULL;
934
935 ++i;
936 if (i == rx_ring->count)
937 i = 0;
938 next_rxd = E1000_RX_DESC(*rx_ring, i);
939 prefetch(next_rxd);
940
941 next_buffer = &rx_ring->buffer_info[i];
942
943 cleaned = true;
944 cleaned_count++;
945 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
946 PCI_DMA_FROMDEVICE);
947 buffer_info->dma = 0;
948
949 length = le16_to_cpu(rx_desc->length);
950
951 /* errors is only valid for DD + EOP descriptors */
952 if (unlikely((status & E1000_RXD_STAT_EOP) &&
953 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
954 /* recycle both page and skb */
955 buffer_info->skb = skb;
956 /* an error means any chain goes out the window
957 * too */
958 if (rx_ring->rx_skb_top)
959 dev_kfree_skb(rx_ring->rx_skb_top);
960 rx_ring->rx_skb_top = NULL;
961 goto next_desc;
962 }
963
964#define rxtop rx_ring->rx_skb_top
965 if (!(status & E1000_RXD_STAT_EOP)) {
966 /* this descriptor is only the beginning (or middle) */
967 if (!rxtop) {
968 /* this is the beginning of a chain */
969 rxtop = skb;
970 skb_fill_page_desc(rxtop, 0, buffer_info->page,
971 0, length);
972 } else {
973 /* this is the middle of a chain */
974 skb_fill_page_desc(rxtop,
975 skb_shinfo(rxtop)->nr_frags,
976 buffer_info->page, 0, length);
977 /* re-use the skb, only consumed the page */
978 buffer_info->skb = skb;
979 }
980 e1000_consume_page(buffer_info, rxtop, length);
981 goto next_desc;
982 } else {
983 if (rxtop) {
984 /* end of the chain */
985 skb_fill_page_desc(rxtop,
986 skb_shinfo(rxtop)->nr_frags,
987 buffer_info->page, 0, length);
988 /* re-use the current skb, we only consumed the
989 * page */
990 buffer_info->skb = skb;
991 skb = rxtop;
992 rxtop = NULL;
993 e1000_consume_page(buffer_info, skb, length);
994 } else {
995 /* no chain, got EOP, this buf is the packet
996 * copybreak to save the put_page/alloc_page */
997 if (length <= copybreak &&
998 skb_tailroom(skb) >= length) {
999 u8 *vaddr;
1000 vaddr = kmap_atomic(buffer_info->page,
1001 KM_SKB_DATA_SOFTIRQ);
1002 memcpy(skb_tail_pointer(skb), vaddr,
1003 length);
1004 kunmap_atomic(vaddr,
1005 KM_SKB_DATA_SOFTIRQ);
1006 /* re-use the page, so don't erase
1007 * buffer_info->page */
1008 skb_put(skb, length);
1009 } else {
1010 skb_fill_page_desc(skb, 0,
1011 buffer_info->page, 0,
1012 length);
1013 e1000_consume_page(buffer_info, skb,
1014 length);
1015 }
1016 }
1017 }
1018
1019 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1020 e1000_rx_checksum(adapter,
1021 (u32)(status) |
1022 ((u32)(rx_desc->errors) << 24),
1023 le16_to_cpu(rx_desc->csum), skb);
1024
1025 /* probably a little skewed due to removing CRC */
1026 total_rx_bytes += skb->len;
1027 total_rx_packets++;
1028
1029 /* eth type trans needs skb->data to point to something */
1030 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1031 e_err("pskb_may_pull failed.\n");
97ac8cae
BA
1032 dev_kfree_skb(skb);
1033 goto next_desc;
1034 }
1035
1036 e1000_receive_skb(adapter, netdev, skb, status,
1037 rx_desc->special);
1038
1039next_desc:
1040 rx_desc->status = 0;
1041
1042 /* return some buffers to hardware, one at a time is too slow */
1043 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1044 adapter->alloc_rx_buf(adapter, cleaned_count);
1045 cleaned_count = 0;
1046 }
1047
1048 /* use prefetched values */
1049 rx_desc = next_rxd;
1050 buffer_info = next_buffer;
1051 }
1052 rx_ring->next_to_clean = i;
1053
1054 cleaned_count = e1000_desc_unused(rx_ring);
1055 if (cleaned_count)
1056 adapter->alloc_rx_buf(adapter, cleaned_count);
1057
1058 adapter->total_rx_bytes += total_rx_bytes;
1059 adapter->total_rx_packets += total_rx_packets;
1060 adapter->net_stats.rx_bytes += total_rx_bytes;
1061 adapter->net_stats.rx_packets += total_rx_packets;
1062 return cleaned;
1063}
1064
bc7f75fa
AK
1065/**
1066 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1067 * @adapter: board private structure
1068 **/
1069static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1070{
1071 struct e1000_ring *rx_ring = adapter->rx_ring;
1072 struct e1000_buffer *buffer_info;
1073 struct e1000_ps_page *ps_page;
1074 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1075 unsigned int i, j;
1076
1077 /* Free all the Rx ring sk_buffs */
1078 for (i = 0; i < rx_ring->count; i++) {
1079 buffer_info = &rx_ring->buffer_info[i];
1080 if (buffer_info->dma) {
1081 if (adapter->clean_rx == e1000_clean_rx_irq)
1082 pci_unmap_single(pdev, buffer_info->dma,
1083 adapter->rx_buffer_len,
1084 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1085 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1086 pci_unmap_page(pdev, buffer_info->dma,
1087 PAGE_SIZE,
1088 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1089 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1090 pci_unmap_single(pdev, buffer_info->dma,
1091 adapter->rx_ps_bsize0,
1092 PCI_DMA_FROMDEVICE);
1093 buffer_info->dma = 0;
1094 }
1095
97ac8cae
BA
1096 if (buffer_info->page) {
1097 put_page(buffer_info->page);
1098 buffer_info->page = NULL;
1099 }
1100
bc7f75fa
AK
1101 if (buffer_info->skb) {
1102 dev_kfree_skb(buffer_info->skb);
1103 buffer_info->skb = NULL;
1104 }
1105
1106 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1107 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1108 if (!ps_page->page)
1109 break;
1110 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1111 PCI_DMA_FROMDEVICE);
1112 ps_page->dma = 0;
1113 put_page(ps_page->page);
1114 ps_page->page = NULL;
1115 }
1116 }
1117
1118 /* there also may be some cached data from a chained receive */
1119 if (rx_ring->rx_skb_top) {
1120 dev_kfree_skb(rx_ring->rx_skb_top);
1121 rx_ring->rx_skb_top = NULL;
1122 }
1123
bc7f75fa
AK
1124 /* Zero out the descriptor ring */
1125 memset(rx_ring->desc, 0, rx_ring->size);
1126
1127 rx_ring->next_to_clean = 0;
1128 rx_ring->next_to_use = 0;
1129
1130 writel(0, adapter->hw.hw_addr + rx_ring->head);
1131 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1132}
1133
a8f88ff5
JB
1134static void e1000e_downshift_workaround(struct work_struct *work)
1135{
1136 struct e1000_adapter *adapter = container_of(work,
1137 struct e1000_adapter, downshift_task);
1138
1139 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1140}
1141
bc7f75fa
AK
1142/**
1143 * e1000_intr_msi - Interrupt Handler
1144 * @irq: interrupt number
1145 * @data: pointer to a network interface device structure
1146 **/
1147static irqreturn_t e1000_intr_msi(int irq, void *data)
1148{
1149 struct net_device *netdev = data;
1150 struct e1000_adapter *adapter = netdev_priv(netdev);
1151 struct e1000_hw *hw = &adapter->hw;
1152 u32 icr = er32(ICR);
1153
ad68076e
BA
1154 /*
1155 * read ICR disables interrupts using IAM
1156 */
bc7f75fa
AK
1157
1158 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1159 hw->mac.get_link_status = 1;
ad68076e
BA
1160 /*
1161 * ICH8 workaround-- Call gig speed drop workaround on cable
1162 * disconnect (LSC) before accessing any PHY registers
1163 */
bc7f75fa
AK
1164 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1165 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1166 schedule_work(&adapter->downshift_task);
bc7f75fa 1167
ad68076e
BA
1168 /*
1169 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1170 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1171 * adapter in watchdog
1172 */
bc7f75fa
AK
1173 if (netif_carrier_ok(netdev) &&
1174 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1175 /* disable receives */
1176 u32 rctl = er32(RCTL);
1177 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1178 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1179 }
1180 /* guard against interrupt when we're going down */
1181 if (!test_bit(__E1000_DOWN, &adapter->state))
1182 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1183 }
1184
1185 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1186 adapter->total_tx_bytes = 0;
1187 adapter->total_tx_packets = 0;
1188 adapter->total_rx_bytes = 0;
1189 adapter->total_rx_packets = 0;
1190 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1191 }
1192
1193 return IRQ_HANDLED;
1194}
1195
1196/**
1197 * e1000_intr - Interrupt Handler
1198 * @irq: interrupt number
1199 * @data: pointer to a network interface device structure
1200 **/
1201static irqreturn_t e1000_intr(int irq, void *data)
1202{
1203 struct net_device *netdev = data;
1204 struct e1000_adapter *adapter = netdev_priv(netdev);
1205 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1206 u32 rctl, icr = er32(ICR);
4662e82b 1207
bc7f75fa
AK
1208 if (!icr)
1209 return IRQ_NONE; /* Not our interrupt */
1210
ad68076e
BA
1211 /*
1212 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1213 * not set, then the adapter didn't send an interrupt
1214 */
bc7f75fa
AK
1215 if (!(icr & E1000_ICR_INT_ASSERTED))
1216 return IRQ_NONE;
1217
ad68076e
BA
1218 /*
1219 * Interrupt Auto-Mask...upon reading ICR,
1220 * interrupts are masked. No need for the
1221 * IMC write
1222 */
bc7f75fa
AK
1223
1224 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1225 hw->mac.get_link_status = 1;
ad68076e
BA
1226 /*
1227 * ICH8 workaround-- Call gig speed drop workaround on cable
1228 * disconnect (LSC) before accessing any PHY registers
1229 */
bc7f75fa
AK
1230 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1231 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1232 schedule_work(&adapter->downshift_task);
bc7f75fa 1233
ad68076e
BA
1234 /*
1235 * 80003ES2LAN workaround--
bc7f75fa
AK
1236 * For packet buffer work-around on link down event;
1237 * disable receives here in the ISR and
1238 * reset adapter in watchdog
1239 */
1240 if (netif_carrier_ok(netdev) &&
1241 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1242 /* disable receives */
1243 rctl = er32(RCTL);
1244 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1245 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1246 }
1247 /* guard against interrupt when we're going down */
1248 if (!test_bit(__E1000_DOWN, &adapter->state))
1249 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1250 }
1251
1252 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1253 adapter->total_tx_bytes = 0;
1254 adapter->total_tx_packets = 0;
1255 adapter->total_rx_bytes = 0;
1256 adapter->total_rx_packets = 0;
1257 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1258 }
1259
1260 return IRQ_HANDLED;
1261}
1262
4662e82b
BA
1263static irqreturn_t e1000_msix_other(int irq, void *data)
1264{
1265 struct net_device *netdev = data;
1266 struct e1000_adapter *adapter = netdev_priv(netdev);
1267 struct e1000_hw *hw = &adapter->hw;
1268 u32 icr = er32(ICR);
1269
1270 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1271 ew32(IMS, E1000_IMS_OTHER);
1272 return IRQ_NONE;
1273 }
1274
1275 if (icr & adapter->eiac_mask)
1276 ew32(ICS, (icr & adapter->eiac_mask));
1277
1278 if (icr & E1000_ICR_OTHER) {
1279 if (!(icr & E1000_ICR_LSC))
1280 goto no_link_interrupt;
1281 hw->mac.get_link_status = 1;
1282 /* guard against interrupt when we're going down */
1283 if (!test_bit(__E1000_DOWN, &adapter->state))
1284 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1285 }
1286
1287no_link_interrupt:
1288 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1289
1290 return IRQ_HANDLED;
1291}
1292
1293
1294static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1295{
1296 struct net_device *netdev = data;
1297 struct e1000_adapter *adapter = netdev_priv(netdev);
1298 struct e1000_hw *hw = &adapter->hw;
1299 struct e1000_ring *tx_ring = adapter->tx_ring;
1300
1301
1302 adapter->total_tx_bytes = 0;
1303 adapter->total_tx_packets = 0;
1304
1305 if (!e1000_clean_tx_irq(adapter))
1306 /* Ring was not completely cleaned, so fire another interrupt */
1307 ew32(ICS, tx_ring->ims_val);
1308
1309 return IRQ_HANDLED;
1310}
1311
1312static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1313{
1314 struct net_device *netdev = data;
1315 struct e1000_adapter *adapter = netdev_priv(netdev);
1316
1317 /* Write the ITR value calculated at the end of the
1318 * previous interrupt.
1319 */
1320 if (adapter->rx_ring->set_itr) {
1321 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1322 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1323 adapter->rx_ring->set_itr = 0;
1324 }
1325
1326 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1327 adapter->total_rx_bytes = 0;
1328 adapter->total_rx_packets = 0;
1329 __netif_rx_schedule(netdev, &adapter->napi);
1330 }
1331 return IRQ_HANDLED;
1332}
1333
1334/**
1335 * e1000_configure_msix - Configure MSI-X hardware
1336 *
1337 * e1000_configure_msix sets up the hardware to properly
1338 * generate MSI-X interrupts.
1339 **/
1340static void e1000_configure_msix(struct e1000_adapter *adapter)
1341{
1342 struct e1000_hw *hw = &adapter->hw;
1343 struct e1000_ring *rx_ring = adapter->rx_ring;
1344 struct e1000_ring *tx_ring = adapter->tx_ring;
1345 int vector = 0;
1346 u32 ctrl_ext, ivar = 0;
1347
1348 adapter->eiac_mask = 0;
1349
1350 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1351 if (hw->mac.type == e1000_82574) {
1352 u32 rfctl = er32(RFCTL);
1353 rfctl |= E1000_RFCTL_ACK_DIS;
1354 ew32(RFCTL, rfctl);
1355 }
1356
1357#define E1000_IVAR_INT_ALLOC_VALID 0x8
1358 /* Configure Rx vector */
1359 rx_ring->ims_val = E1000_IMS_RXQ0;
1360 adapter->eiac_mask |= rx_ring->ims_val;
1361 if (rx_ring->itr_val)
1362 writel(1000000000 / (rx_ring->itr_val * 256),
1363 hw->hw_addr + rx_ring->itr_register);
1364 else
1365 writel(1, hw->hw_addr + rx_ring->itr_register);
1366 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1367
1368 /* Configure Tx vector */
1369 tx_ring->ims_val = E1000_IMS_TXQ0;
1370 vector++;
1371 if (tx_ring->itr_val)
1372 writel(1000000000 / (tx_ring->itr_val * 256),
1373 hw->hw_addr + tx_ring->itr_register);
1374 else
1375 writel(1, hw->hw_addr + tx_ring->itr_register);
1376 adapter->eiac_mask |= tx_ring->ims_val;
1377 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1378
1379 /* set vector for Other Causes, e.g. link changes */
1380 vector++;
1381 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1382 if (rx_ring->itr_val)
1383 writel(1000000000 / (rx_ring->itr_val * 256),
1384 hw->hw_addr + E1000_EITR_82574(vector));
1385 else
1386 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1387
1388 /* Cause Tx interrupts on every write back */
1389 ivar |= (1 << 31);
1390
1391 ew32(IVAR, ivar);
1392
1393 /* enable MSI-X PBA support */
1394 ctrl_ext = er32(CTRL_EXT);
1395 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1396
1397 /* Auto-Mask Other interrupts upon ICR read */
1398#define E1000_EIAC_MASK_82574 0x01F00000
1399 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1400 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1401 ew32(CTRL_EXT, ctrl_ext);
1402 e1e_flush();
1403}
1404
1405void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1406{
1407 if (adapter->msix_entries) {
1408 pci_disable_msix(adapter->pdev);
1409 kfree(adapter->msix_entries);
1410 adapter->msix_entries = NULL;
1411 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1412 pci_disable_msi(adapter->pdev);
1413 adapter->flags &= ~FLAG_MSI_ENABLED;
1414 }
1415
1416 return;
1417}
1418
1419/**
1420 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1421 *
1422 * Attempt to configure interrupts using the best available
1423 * capabilities of the hardware and kernel.
1424 **/
1425void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1426{
1427 int err;
1428 int numvecs, i;
1429
1430
1431 switch (adapter->int_mode) {
1432 case E1000E_INT_MODE_MSIX:
1433 if (adapter->flags & FLAG_HAS_MSIX) {
1434 numvecs = 3; /* RxQ0, TxQ0 and other */
1435 adapter->msix_entries = kcalloc(numvecs,
1436 sizeof(struct msix_entry),
1437 GFP_KERNEL);
1438 if (adapter->msix_entries) {
1439 for (i = 0; i < numvecs; i++)
1440 adapter->msix_entries[i].entry = i;
1441
1442 err = pci_enable_msix(adapter->pdev,
1443 adapter->msix_entries,
1444 numvecs);
1445 if (err == 0)
1446 return;
1447 }
1448 /* MSI-X failed, so fall through and try MSI */
1449 e_err("Failed to initialize MSI-X interrupts. "
1450 "Falling back to MSI interrupts.\n");
1451 e1000e_reset_interrupt_capability(adapter);
1452 }
1453 adapter->int_mode = E1000E_INT_MODE_MSI;
1454 /* Fall through */
1455 case E1000E_INT_MODE_MSI:
1456 if (!pci_enable_msi(adapter->pdev)) {
1457 adapter->flags |= FLAG_MSI_ENABLED;
1458 } else {
1459 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1460 e_err("Failed to initialize MSI interrupts. Falling "
1461 "back to legacy interrupts.\n");
1462 }
1463 /* Fall through */
1464 case E1000E_INT_MODE_LEGACY:
1465 /* Don't do anything; this is the system default */
1466 break;
1467 }
1468
1469 return;
1470}
1471
1472/**
1473 * e1000_request_msix - Initialize MSI-X interrupts
1474 *
1475 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1476 * kernel.
1477 **/
1478static int e1000_request_msix(struct e1000_adapter *adapter)
1479{
1480 struct net_device *netdev = adapter->netdev;
1481 int err = 0, vector = 0;
1482
1483 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1484 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1485 else
1486 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1487 err = request_irq(adapter->msix_entries[vector].vector,
1488 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1489 netdev);
1490 if (err)
1491 goto out;
1492 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1493 adapter->rx_ring->itr_val = adapter->itr;
1494 vector++;
1495
1496 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1497 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1498 else
1499 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1500 err = request_irq(adapter->msix_entries[vector].vector,
1501 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1502 netdev);
1503 if (err)
1504 goto out;
1505 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1506 adapter->tx_ring->itr_val = adapter->itr;
1507 vector++;
1508
1509 err = request_irq(adapter->msix_entries[vector].vector,
1510 &e1000_msix_other, 0, netdev->name, netdev);
1511 if (err)
1512 goto out;
1513
1514 e1000_configure_msix(adapter);
1515 return 0;
1516out:
1517 return err;
1518}
1519
f8d59f78
BA
1520/**
1521 * e1000_request_irq - initialize interrupts
1522 *
1523 * Attempts to configure interrupts using the best available
1524 * capabilities of the hardware and kernel.
1525 **/
bc7f75fa
AK
1526static int e1000_request_irq(struct e1000_adapter *adapter)
1527{
1528 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1529 int err;
1530
4662e82b
BA
1531 if (adapter->msix_entries) {
1532 err = e1000_request_msix(adapter);
1533 if (!err)
1534 return err;
1535 /* fall back to MSI */
1536 e1000e_reset_interrupt_capability(adapter);
1537 adapter->int_mode = E1000E_INT_MODE_MSI;
1538 e1000e_set_interrupt_capability(adapter);
bc7f75fa 1539 }
4662e82b
BA
1540 if (adapter->flags & FLAG_MSI_ENABLED) {
1541 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1542 netdev->name, netdev);
1543 if (!err)
1544 return err;
bc7f75fa 1545
4662e82b
BA
1546 /* fall back to legacy interrupt */
1547 e1000e_reset_interrupt_capability(adapter);
1548 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
1549 }
1550
4662e82b
BA
1551 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1552 netdev->name, netdev);
1553 if (err)
1554 e_err("Unable to allocate interrupt, Error: %d\n", err);
1555
bc7f75fa
AK
1556 return err;
1557}
1558
1559static void e1000_free_irq(struct e1000_adapter *adapter)
1560{
1561 struct net_device *netdev = adapter->netdev;
1562
4662e82b
BA
1563 if (adapter->msix_entries) {
1564 int vector = 0;
1565
1566 free_irq(adapter->msix_entries[vector].vector, netdev);
1567 vector++;
1568
1569 free_irq(adapter->msix_entries[vector].vector, netdev);
1570 vector++;
1571
1572 /* Other Causes interrupt vector */
1573 free_irq(adapter->msix_entries[vector].vector, netdev);
1574 return;
bc7f75fa 1575 }
4662e82b
BA
1576
1577 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
1578}
1579
1580/**
1581 * e1000_irq_disable - Mask off interrupt generation on the NIC
1582 **/
1583static void e1000_irq_disable(struct e1000_adapter *adapter)
1584{
1585 struct e1000_hw *hw = &adapter->hw;
1586
bc7f75fa 1587 ew32(IMC, ~0);
4662e82b
BA
1588 if (adapter->msix_entries)
1589 ew32(EIAC_82574, 0);
bc7f75fa
AK
1590 e1e_flush();
1591 synchronize_irq(adapter->pdev->irq);
1592}
1593
1594/**
1595 * e1000_irq_enable - Enable default interrupt generation settings
1596 **/
1597static void e1000_irq_enable(struct e1000_adapter *adapter)
1598{
1599 struct e1000_hw *hw = &adapter->hw;
1600
4662e82b
BA
1601 if (adapter->msix_entries) {
1602 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1603 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1604 } else {
1605 ew32(IMS, IMS_ENABLE_MASK);
1606 }
74ef9c39 1607 e1e_flush();
bc7f75fa
AK
1608}
1609
1610/**
1611 * e1000_get_hw_control - get control of the h/w from f/w
1612 * @adapter: address of board private structure
1613 *
489815ce 1614 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1615 * For ASF and Pass Through versions of f/w this means that
1616 * the driver is loaded. For AMT version (only with 82573)
1617 * of the f/w this means that the network i/f is open.
1618 **/
1619static void e1000_get_hw_control(struct e1000_adapter *adapter)
1620{
1621 struct e1000_hw *hw = &adapter->hw;
1622 u32 ctrl_ext;
1623 u32 swsm;
1624
1625 /* Let firmware know the driver has taken over */
1626 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1627 swsm = er32(SWSM);
1628 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1629 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1630 ctrl_ext = er32(CTRL_EXT);
ad68076e 1631 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1632 }
1633}
1634
1635/**
1636 * e1000_release_hw_control - release control of the h/w to f/w
1637 * @adapter: address of board private structure
1638 *
489815ce 1639 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1640 * For ASF and Pass Through versions of f/w this means that the
1641 * driver is no longer loaded. For AMT version (only with 82573) i
1642 * of the f/w this means that the network i/f is closed.
1643 *
1644 **/
1645static void e1000_release_hw_control(struct e1000_adapter *adapter)
1646{
1647 struct e1000_hw *hw = &adapter->hw;
1648 u32 ctrl_ext;
1649 u32 swsm;
1650
1651 /* Let firmware taken over control of h/w */
1652 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1653 swsm = er32(SWSM);
1654 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1655 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1656 ctrl_ext = er32(CTRL_EXT);
ad68076e 1657 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1658 }
1659}
1660
bc7f75fa
AK
1661/**
1662 * @e1000_alloc_ring - allocate memory for a ring structure
1663 **/
1664static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1665 struct e1000_ring *ring)
1666{
1667 struct pci_dev *pdev = adapter->pdev;
1668
1669 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1670 GFP_KERNEL);
1671 if (!ring->desc)
1672 return -ENOMEM;
1673
1674 return 0;
1675}
1676
1677/**
1678 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1679 * @adapter: board private structure
1680 *
1681 * Return 0 on success, negative on failure
1682 **/
1683int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1684{
1685 struct e1000_ring *tx_ring = adapter->tx_ring;
1686 int err = -ENOMEM, size;
1687
1688 size = sizeof(struct e1000_buffer) * tx_ring->count;
1689 tx_ring->buffer_info = vmalloc(size);
1690 if (!tx_ring->buffer_info)
1691 goto err;
1692 memset(tx_ring->buffer_info, 0, size);
1693
1694 /* round up to nearest 4K */
1695 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1696 tx_ring->size = ALIGN(tx_ring->size, 4096);
1697
1698 err = e1000_alloc_ring_dma(adapter, tx_ring);
1699 if (err)
1700 goto err;
1701
1702 tx_ring->next_to_use = 0;
1703 tx_ring->next_to_clean = 0;
1704 spin_lock_init(&adapter->tx_queue_lock);
1705
1706 return 0;
1707err:
1708 vfree(tx_ring->buffer_info);
44defeb3 1709 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1710 return err;
1711}
1712
1713/**
1714 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1715 * @adapter: board private structure
1716 *
1717 * Returns 0 on success, negative on failure
1718 **/
1719int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1720{
1721 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1722 struct e1000_buffer *buffer_info;
1723 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1724
1725 size = sizeof(struct e1000_buffer) * rx_ring->count;
1726 rx_ring->buffer_info = vmalloc(size);
1727 if (!rx_ring->buffer_info)
1728 goto err;
1729 memset(rx_ring->buffer_info, 0, size);
1730
47f44e40
AK
1731 for (i = 0; i < rx_ring->count; i++) {
1732 buffer_info = &rx_ring->buffer_info[i];
1733 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1734 sizeof(struct e1000_ps_page),
1735 GFP_KERNEL);
1736 if (!buffer_info->ps_pages)
1737 goto err_pages;
1738 }
bc7f75fa
AK
1739
1740 desc_len = sizeof(union e1000_rx_desc_packet_split);
1741
1742 /* Round up to nearest 4K */
1743 rx_ring->size = rx_ring->count * desc_len;
1744 rx_ring->size = ALIGN(rx_ring->size, 4096);
1745
1746 err = e1000_alloc_ring_dma(adapter, rx_ring);
1747 if (err)
47f44e40 1748 goto err_pages;
bc7f75fa
AK
1749
1750 rx_ring->next_to_clean = 0;
1751 rx_ring->next_to_use = 0;
1752 rx_ring->rx_skb_top = NULL;
1753
1754 return 0;
47f44e40
AK
1755
1756err_pages:
1757 for (i = 0; i < rx_ring->count; i++) {
1758 buffer_info = &rx_ring->buffer_info[i];
1759 kfree(buffer_info->ps_pages);
1760 }
bc7f75fa
AK
1761err:
1762 vfree(rx_ring->buffer_info);
44defeb3 1763 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1764 return err;
1765}
1766
1767/**
1768 * e1000_clean_tx_ring - Free Tx Buffers
1769 * @adapter: board private structure
1770 **/
1771static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1772{
1773 struct e1000_ring *tx_ring = adapter->tx_ring;
1774 struct e1000_buffer *buffer_info;
1775 unsigned long size;
1776 unsigned int i;
1777
1778 for (i = 0; i < tx_ring->count; i++) {
1779 buffer_info = &tx_ring->buffer_info[i];
1780 e1000_put_txbuf(adapter, buffer_info);
1781 }
1782
1783 size = sizeof(struct e1000_buffer) * tx_ring->count;
1784 memset(tx_ring->buffer_info, 0, size);
1785
1786 memset(tx_ring->desc, 0, tx_ring->size);
1787
1788 tx_ring->next_to_use = 0;
1789 tx_ring->next_to_clean = 0;
1790
1791 writel(0, adapter->hw.hw_addr + tx_ring->head);
1792 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1793}
1794
1795/**
1796 * e1000e_free_tx_resources - Free Tx Resources per Queue
1797 * @adapter: board private structure
1798 *
1799 * Free all transmit software resources
1800 **/
1801void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1802{
1803 struct pci_dev *pdev = adapter->pdev;
1804 struct e1000_ring *tx_ring = adapter->tx_ring;
1805
1806 e1000_clean_tx_ring(adapter);
1807
1808 vfree(tx_ring->buffer_info);
1809 tx_ring->buffer_info = NULL;
1810
1811 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1812 tx_ring->dma);
1813 tx_ring->desc = NULL;
1814}
1815
1816/**
1817 * e1000e_free_rx_resources - Free Rx Resources
1818 * @adapter: board private structure
1819 *
1820 * Free all receive software resources
1821 **/
1822
1823void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1824{
1825 struct pci_dev *pdev = adapter->pdev;
1826 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1827 int i;
bc7f75fa
AK
1828
1829 e1000_clean_rx_ring(adapter);
1830
47f44e40
AK
1831 for (i = 0; i < rx_ring->count; i++) {
1832 kfree(rx_ring->buffer_info[i].ps_pages);
1833 }
1834
bc7f75fa
AK
1835 vfree(rx_ring->buffer_info);
1836 rx_ring->buffer_info = NULL;
1837
bc7f75fa
AK
1838 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1839 rx_ring->dma);
1840 rx_ring->desc = NULL;
1841}
1842
1843/**
1844 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1845 * @adapter: pointer to adapter
1846 * @itr_setting: current adapter->itr
1847 * @packets: the number of packets during this measurement interval
1848 * @bytes: the number of bytes during this measurement interval
1849 *
bc7f75fa
AK
1850 * Stores a new ITR value based on packets and byte
1851 * counts during the last interrupt. The advantage of per interrupt
1852 * computation is faster updates and more accurate ITR for the current
1853 * traffic pattern. Constants in this function were computed
1854 * based on theoretical maximum wire speed and thresholds were set based
1855 * on testing data as well as attempting to minimize response time
4662e82b
BA
1856 * while increasing bulk throughput. This functionality is controlled
1857 * by the InterruptThrottleRate module parameter.
bc7f75fa
AK
1858 **/
1859static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1860 u16 itr_setting, int packets,
1861 int bytes)
1862{
1863 unsigned int retval = itr_setting;
1864
1865 if (packets == 0)
1866 goto update_itr_done;
1867
1868 switch (itr_setting) {
1869 case lowest_latency:
1870 /* handle TSO and jumbo frames */
1871 if (bytes/packets > 8000)
1872 retval = bulk_latency;
1873 else if ((packets < 5) && (bytes > 512)) {
1874 retval = low_latency;
1875 }
1876 break;
1877 case low_latency: /* 50 usec aka 20000 ints/s */
1878 if (bytes > 10000) {
1879 /* this if handles the TSO accounting */
1880 if (bytes/packets > 8000) {
1881 retval = bulk_latency;
1882 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1883 retval = bulk_latency;
1884 } else if ((packets > 35)) {
1885 retval = lowest_latency;
1886 }
1887 } else if (bytes/packets > 2000) {
1888 retval = bulk_latency;
1889 } else if (packets <= 2 && bytes < 512) {
1890 retval = lowest_latency;
1891 }
1892 break;
1893 case bulk_latency: /* 250 usec aka 4000 ints/s */
1894 if (bytes > 25000) {
1895 if (packets > 35) {
1896 retval = low_latency;
1897 }
1898 } else if (bytes < 6000) {
1899 retval = low_latency;
1900 }
1901 break;
1902 }
1903
1904update_itr_done:
1905 return retval;
1906}
1907
1908static void e1000_set_itr(struct e1000_adapter *adapter)
1909{
1910 struct e1000_hw *hw = &adapter->hw;
1911 u16 current_itr;
1912 u32 new_itr = adapter->itr;
1913
1914 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1915 if (adapter->link_speed != SPEED_1000) {
1916 current_itr = 0;
1917 new_itr = 4000;
1918 goto set_itr_now;
1919 }
1920
1921 adapter->tx_itr = e1000_update_itr(adapter,
1922 adapter->tx_itr,
1923 adapter->total_tx_packets,
1924 adapter->total_tx_bytes);
1925 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1926 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1927 adapter->tx_itr = low_latency;
1928
1929 adapter->rx_itr = e1000_update_itr(adapter,
1930 adapter->rx_itr,
1931 adapter->total_rx_packets,
1932 adapter->total_rx_bytes);
1933 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1934 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1935 adapter->rx_itr = low_latency;
1936
1937 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1938
1939 switch (current_itr) {
1940 /* counts and packets in update_itr are dependent on these numbers */
1941 case lowest_latency:
1942 new_itr = 70000;
1943 break;
1944 case low_latency:
1945 new_itr = 20000; /* aka hwitr = ~200 */
1946 break;
1947 case bulk_latency:
1948 new_itr = 4000;
1949 break;
1950 default:
1951 break;
1952 }
1953
1954set_itr_now:
1955 if (new_itr != adapter->itr) {
ad68076e
BA
1956 /*
1957 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1958 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1959 * increasing
1960 */
bc7f75fa
AK
1961 new_itr = new_itr > adapter->itr ?
1962 min(adapter->itr + (new_itr >> 2), new_itr) :
1963 new_itr;
1964 adapter->itr = new_itr;
4662e82b
BA
1965 adapter->rx_ring->itr_val = new_itr;
1966 if (adapter->msix_entries)
1967 adapter->rx_ring->set_itr = 1;
1968 else
1969 ew32(ITR, 1000000000 / (new_itr * 256));
bc7f75fa
AK
1970 }
1971}
1972
4662e82b
BA
1973/**
1974 * e1000_alloc_queues - Allocate memory for all rings
1975 * @adapter: board private structure to initialize
1976 **/
1977static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1978{
1979 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1980 if (!adapter->tx_ring)
1981 goto err;
1982
1983 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1984 if (!adapter->rx_ring)
1985 goto err;
1986
1987 return 0;
1988err:
1989 e_err("Unable to allocate memory for queues\n");
1990 kfree(adapter->rx_ring);
1991 kfree(adapter->tx_ring);
1992 return -ENOMEM;
1993}
1994
bc7f75fa
AK
1995/**
1996 * e1000_clean - NAPI Rx polling callback
ad68076e 1997 * @napi: struct associated with this polling callback
489815ce 1998 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
1999 **/
2000static int e1000_clean(struct napi_struct *napi, int budget)
2001{
2002 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4662e82b 2003 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2004 struct net_device *poll_dev = adapter->netdev;
d2c7ddd6 2005 int tx_cleaned = 0, work_done = 0;
bc7f75fa
AK
2006
2007 /* Must NOT use netdev_priv macro here. */
2008 adapter = poll_dev->priv;
2009
4662e82b
BA
2010 if (adapter->msix_entries &&
2011 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2012 goto clean_rx;
2013
ad68076e
BA
2014 /*
2015 * e1000_clean is called per-cpu. This lock protects
bc7f75fa
AK
2016 * tx_ring from being cleaned by multiple cpus
2017 * simultaneously. A failure obtaining the lock means
ad68076e
BA
2018 * tx_ring is currently being cleaned anyway.
2019 */
bc7f75fa 2020 if (spin_trylock(&adapter->tx_queue_lock)) {
d2c7ddd6 2021 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa
AK
2022 spin_unlock(&adapter->tx_queue_lock);
2023 }
2024
4662e82b 2025clean_rx:
bc7f75fa 2026 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6
DM
2027
2028 if (tx_cleaned)
2029 work_done = budget;
bc7f75fa 2030
53e52c72
DM
2031 /* If budget not fully consumed, exit the polling mode */
2032 if (work_done < budget) {
bc7f75fa
AK
2033 if (adapter->itr_setting & 3)
2034 e1000_set_itr(adapter);
2035 netif_rx_complete(poll_dev, napi);
4662e82b
BA
2036 if (adapter->msix_entries)
2037 ew32(IMS, adapter->rx_ring->ims_val);
2038 else
2039 e1000_irq_enable(adapter);
bc7f75fa
AK
2040 }
2041
2042 return work_done;
2043}
2044
2045static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2046{
2047 struct e1000_adapter *adapter = netdev_priv(netdev);
2048 struct e1000_hw *hw = &adapter->hw;
2049 u32 vfta, index;
2050
2051 /* don't update vlan cookie if already programmed */
2052 if ((adapter->hw.mng_cookie.status &
2053 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2054 (vid == adapter->mng_vlan_id))
2055 return;
2056 /* add VID to filter table */
2057 index = (vid >> 5) & 0x7F;
2058 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2059 vfta |= (1 << (vid & 0x1F));
2060 e1000e_write_vfta(hw, index, vfta);
2061}
2062
2063static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2064{
2065 struct e1000_adapter *adapter = netdev_priv(netdev);
2066 struct e1000_hw *hw = &adapter->hw;
2067 u32 vfta, index;
2068
74ef9c39
JB
2069 if (!test_bit(__E1000_DOWN, &adapter->state))
2070 e1000_irq_disable(adapter);
bc7f75fa 2071 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
2072
2073 if (!test_bit(__E1000_DOWN, &adapter->state))
2074 e1000_irq_enable(adapter);
bc7f75fa
AK
2075
2076 if ((adapter->hw.mng_cookie.status &
2077 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2078 (vid == adapter->mng_vlan_id)) {
2079 /* release control to f/w */
2080 e1000_release_hw_control(adapter);
2081 return;
2082 }
2083
2084 /* remove VID from filter table */
2085 index = (vid >> 5) & 0x7F;
2086 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2087 vfta &= ~(1 << (vid & 0x1F));
2088 e1000e_write_vfta(hw, index, vfta);
2089}
2090
2091static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2092{
2093 struct net_device *netdev = adapter->netdev;
2094 u16 vid = adapter->hw.mng_cookie.vlan_id;
2095 u16 old_vid = adapter->mng_vlan_id;
2096
2097 if (!adapter->vlgrp)
2098 return;
2099
2100 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2101 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2102 if (adapter->hw.mng_cookie.status &
2103 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2104 e1000_vlan_rx_add_vid(netdev, vid);
2105 adapter->mng_vlan_id = vid;
2106 }
2107
2108 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2109 (vid != old_vid) &&
2110 !vlan_group_get_device(adapter->vlgrp, old_vid))
2111 e1000_vlan_rx_kill_vid(netdev, old_vid);
2112 } else {
2113 adapter->mng_vlan_id = vid;
2114 }
2115}
2116
2117
2118static void e1000_vlan_rx_register(struct net_device *netdev,
2119 struct vlan_group *grp)
2120{
2121 struct e1000_adapter *adapter = netdev_priv(netdev);
2122 struct e1000_hw *hw = &adapter->hw;
2123 u32 ctrl, rctl;
2124
74ef9c39
JB
2125 if (!test_bit(__E1000_DOWN, &adapter->state))
2126 e1000_irq_disable(adapter);
bc7f75fa
AK
2127 adapter->vlgrp = grp;
2128
2129 if (grp) {
2130 /* enable VLAN tag insert/strip */
2131 ctrl = er32(CTRL);
2132 ctrl |= E1000_CTRL_VME;
2133 ew32(CTRL, ctrl);
2134
2135 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2136 /* enable VLAN receive filtering */
2137 rctl = er32(RCTL);
bc7f75fa
AK
2138 rctl &= ~E1000_RCTL_CFIEN;
2139 ew32(RCTL, rctl);
2140 e1000_update_mng_vlan(adapter);
2141 }
2142 } else {
2143 /* disable VLAN tag insert/strip */
2144 ctrl = er32(CTRL);
2145 ctrl &= ~E1000_CTRL_VME;
2146 ew32(CTRL, ctrl);
2147
2148 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
bc7f75fa
AK
2149 if (adapter->mng_vlan_id !=
2150 (u16)E1000_MNG_VLAN_NONE) {
2151 e1000_vlan_rx_kill_vid(netdev,
2152 adapter->mng_vlan_id);
2153 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2154 }
2155 }
2156 }
2157
74ef9c39
JB
2158 if (!test_bit(__E1000_DOWN, &adapter->state))
2159 e1000_irq_enable(adapter);
bc7f75fa
AK
2160}
2161
2162static void e1000_restore_vlan(struct e1000_adapter *adapter)
2163{
2164 u16 vid;
2165
2166 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2167
2168 if (!adapter->vlgrp)
2169 return;
2170
2171 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2172 if (!vlan_group_get_device(adapter->vlgrp, vid))
2173 continue;
2174 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2175 }
2176}
2177
2178static void e1000_init_manageability(struct e1000_adapter *adapter)
2179{
2180 struct e1000_hw *hw = &adapter->hw;
2181 u32 manc, manc2h;
2182
2183 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2184 return;
2185
2186 manc = er32(MANC);
2187
ad68076e
BA
2188 /*
2189 * enable receiving management packets to the host. this will probably
bc7f75fa 2190 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2191 * the packets will be handled on SMBUS
2192 */
bc7f75fa
AK
2193 manc |= E1000_MANC_EN_MNG2HOST;
2194 manc2h = er32(MANC2H);
2195#define E1000_MNG2HOST_PORT_623 (1 << 5)
2196#define E1000_MNG2HOST_PORT_664 (1 << 6)
2197 manc2h |= E1000_MNG2HOST_PORT_623;
2198 manc2h |= E1000_MNG2HOST_PORT_664;
2199 ew32(MANC2H, manc2h);
2200 ew32(MANC, manc);
2201}
2202
2203/**
2204 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2205 * @adapter: board private structure
2206 *
2207 * Configure the Tx unit of the MAC after a reset.
2208 **/
2209static void e1000_configure_tx(struct e1000_adapter *adapter)
2210{
2211 struct e1000_hw *hw = &adapter->hw;
2212 struct e1000_ring *tx_ring = adapter->tx_ring;
2213 u64 tdba;
2214 u32 tdlen, tctl, tipg, tarc;
2215 u32 ipgr1, ipgr2;
2216
2217 /* Setup the HW Tx Head and Tail descriptor pointers */
2218 tdba = tx_ring->dma;
2219 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2220 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2221 ew32(TDBAH, (tdba >> 32));
2222 ew32(TDLEN, tdlen);
2223 ew32(TDH, 0);
2224 ew32(TDT, 0);
2225 tx_ring->head = E1000_TDH;
2226 tx_ring->tail = E1000_TDT;
2227
2228 /* Set the default values for the Tx Inter Packet Gap timer */
2229 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2230 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2231 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2232
2233 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2234 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2235
2236 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2237 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2238 ew32(TIPG, tipg);
2239
2240 /* Set the Tx Interrupt Delay register */
2241 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2242 /* Tx irq moderation */
bc7f75fa
AK
2243 ew32(TADV, adapter->tx_abs_int_delay);
2244
2245 /* Program the Transmit Control Register */
2246 tctl = er32(TCTL);
2247 tctl &= ~E1000_TCTL_CT;
2248 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2249 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2250
2251 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2252 tarc = er32(TARC(0));
ad68076e
BA
2253 /*
2254 * set the speed mode bit, we'll clear it if we're not at
2255 * gigabit link later
2256 */
bc7f75fa
AK
2257#define SPEED_MODE_BIT (1 << 21)
2258 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2259 ew32(TARC(0), tarc);
bc7f75fa
AK
2260 }
2261
2262 /* errata: program both queues to unweighted RR */
2263 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2264 tarc = er32(TARC(0));
bc7f75fa 2265 tarc |= 1;
e9ec2c0f
JK
2266 ew32(TARC(0), tarc);
2267 tarc = er32(TARC(1));
bc7f75fa 2268 tarc |= 1;
e9ec2c0f 2269 ew32(TARC(1), tarc);
bc7f75fa
AK
2270 }
2271
2272 e1000e_config_collision_dist(hw);
2273
2274 /* Setup Transmit Descriptor Settings for eop descriptor */
2275 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2276
2277 /* only set IDE if we are delaying interrupts using the timers */
2278 if (adapter->tx_int_delay)
2279 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2280
2281 /* enable Report Status bit */
2282 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2283
2284 ew32(TCTL, tctl);
2285
2286 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2287}
2288
2289/**
2290 * e1000_setup_rctl - configure the receive control registers
2291 * @adapter: Board private structure
2292 **/
2293#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2294 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2295static void e1000_setup_rctl(struct e1000_adapter *adapter)
2296{
2297 struct e1000_hw *hw = &adapter->hw;
2298 u32 rctl, rfctl;
2299 u32 psrctl = 0;
2300 u32 pages = 0;
2301
2302 /* Program MC offset vector base */
2303 rctl = er32(RCTL);
2304 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2305 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2306 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2307 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2308
2309 /* Do not Store bad packets */
2310 rctl &= ~E1000_RCTL_SBP;
2311
2312 /* Enable Long Packet receive */
2313 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2314 rctl &= ~E1000_RCTL_LPE;
2315 else
2316 rctl |= E1000_RCTL_LPE;
2317
eb7c3adb
JK
2318 /* Some systems expect that the CRC is included in SMBUS traffic. The
2319 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2320 * host memory when this is enabled
2321 */
2322 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2323 rctl |= E1000_RCTL_SECRC;
5918bd88 2324
bc7f75fa
AK
2325 /* Setup buffer sizes */
2326 rctl &= ~E1000_RCTL_SZ_4096;
2327 rctl |= E1000_RCTL_BSEX;
2328 switch (adapter->rx_buffer_len) {
2329 case 256:
2330 rctl |= E1000_RCTL_SZ_256;
2331 rctl &= ~E1000_RCTL_BSEX;
2332 break;
2333 case 512:
2334 rctl |= E1000_RCTL_SZ_512;
2335 rctl &= ~E1000_RCTL_BSEX;
2336 break;
2337 case 1024:
2338 rctl |= E1000_RCTL_SZ_1024;
2339 rctl &= ~E1000_RCTL_BSEX;
2340 break;
2341 case 2048:
2342 default:
2343 rctl |= E1000_RCTL_SZ_2048;
2344 rctl &= ~E1000_RCTL_BSEX;
2345 break;
2346 case 4096:
2347 rctl |= E1000_RCTL_SZ_4096;
2348 break;
2349 case 8192:
2350 rctl |= E1000_RCTL_SZ_8192;
2351 break;
2352 case 16384:
2353 rctl |= E1000_RCTL_SZ_16384;
2354 break;
2355 }
2356
2357 /*
2358 * 82571 and greater support packet-split where the protocol
2359 * header is placed in skb->data and the packet data is
2360 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2361 * In the case of a non-split, skb->data is linearly filled,
2362 * followed by the page buffers. Therefore, skb->data is
2363 * sized to hold the largest protocol header.
2364 *
2365 * allocations using alloc_page take too long for regular MTU
2366 * so only enable packet split for jumbo frames
2367 *
2368 * Using pages when the page size is greater than 16k wastes
2369 * a lot of memory, since we allocate 3 pages at all times
2370 * per packet.
2371 */
bc7f75fa 2372 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2373 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2374 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2375 adapter->rx_ps_pages = pages;
97ac8cae
BA
2376 else
2377 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2378
2379 if (adapter->rx_ps_pages) {
2380 /* Configure extra packet-split registers */
2381 rfctl = er32(RFCTL);
2382 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2383 /*
2384 * disable packet split support for IPv6 extension headers,
2385 * because some malformed IPv6 headers can hang the Rx
2386 */
bc7f75fa
AK
2387 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2388 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2389
2390 ew32(RFCTL, rfctl);
2391
140a7480
AK
2392 /* Enable Packet split descriptors */
2393 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2394
2395 psrctl |= adapter->rx_ps_bsize0 >>
2396 E1000_PSRCTL_BSIZE0_SHIFT;
2397
2398 switch (adapter->rx_ps_pages) {
2399 case 3:
2400 psrctl |= PAGE_SIZE <<
2401 E1000_PSRCTL_BSIZE3_SHIFT;
2402 case 2:
2403 psrctl |= PAGE_SIZE <<
2404 E1000_PSRCTL_BSIZE2_SHIFT;
2405 case 1:
2406 psrctl |= PAGE_SIZE >>
2407 E1000_PSRCTL_BSIZE1_SHIFT;
2408 break;
2409 }
2410
2411 ew32(PSRCTL, psrctl);
2412 }
2413
2414 ew32(RCTL, rctl);
318a94d6
JK
2415 /* just started the receive unit, no need to restart */
2416 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2417}
2418
2419/**
2420 * e1000_configure_rx - Configure Receive Unit after Reset
2421 * @adapter: board private structure
2422 *
2423 * Configure the Rx unit of the MAC after a reset.
2424 **/
2425static void e1000_configure_rx(struct e1000_adapter *adapter)
2426{
2427 struct e1000_hw *hw = &adapter->hw;
2428 struct e1000_ring *rx_ring = adapter->rx_ring;
2429 u64 rdba;
2430 u32 rdlen, rctl, rxcsum, ctrl_ext;
2431
2432 if (adapter->rx_ps_pages) {
2433 /* this is a 32 byte descriptor */
2434 rdlen = rx_ring->count *
2435 sizeof(union e1000_rx_desc_packet_split);
2436 adapter->clean_rx = e1000_clean_rx_irq_ps;
2437 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2438 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2439 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2440 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2441 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2442 } else {
97ac8cae 2443 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2444 adapter->clean_rx = e1000_clean_rx_irq;
2445 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2446 }
2447
2448 /* disable receives while setting up the descriptors */
2449 rctl = er32(RCTL);
2450 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2451 e1e_flush();
2452 msleep(10);
2453
2454 /* set the Receive Delay Timer Register */
2455 ew32(RDTR, adapter->rx_int_delay);
2456
2457 /* irq moderation */
2458 ew32(RADV, adapter->rx_abs_int_delay);
2459 if (adapter->itr_setting != 0)
ad68076e 2460 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2461
2462 ctrl_ext = er32(CTRL_EXT);
2463 /* Reset delay timers after every interrupt */
2464 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2465 /* Auto-Mask interrupts upon ICR access */
2466 ctrl_ext |= E1000_CTRL_EXT_IAME;
2467 ew32(IAM, 0xffffffff);
2468 ew32(CTRL_EXT, ctrl_ext);
2469 e1e_flush();
2470
ad68076e
BA
2471 /*
2472 * Setup the HW Rx Head and Tail Descriptor Pointers and
2473 * the Base and Length of the Rx Descriptor Ring
2474 */
bc7f75fa
AK
2475 rdba = rx_ring->dma;
2476 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2477 ew32(RDBAH, (rdba >> 32));
2478 ew32(RDLEN, rdlen);
2479 ew32(RDH, 0);
2480 ew32(RDT, 0);
2481 rx_ring->head = E1000_RDH;
2482 rx_ring->tail = E1000_RDT;
2483
2484 /* Enable Receive Checksum Offload for TCP and UDP */
2485 rxcsum = er32(RXCSUM);
2486 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2487 rxcsum |= E1000_RXCSUM_TUOFL;
2488
ad68076e
BA
2489 /*
2490 * IPv4 payload checksum for UDP fragments must be
2491 * used in conjunction with packet-split.
2492 */
bc7f75fa
AK
2493 if (adapter->rx_ps_pages)
2494 rxcsum |= E1000_RXCSUM_IPPCSE;
2495 } else {
2496 rxcsum &= ~E1000_RXCSUM_TUOFL;
2497 /* no need to clear IPPCSE as it defaults to 0 */
2498 }
2499 ew32(RXCSUM, rxcsum);
2500
ad68076e
BA
2501 /*
2502 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2503 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2504 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2505 */
bc7f75fa 2506 if ((adapter->flags & FLAG_HAS_ERT) &&
97ac8cae
BA
2507 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2508 u32 rxdctl = er32(RXDCTL(0));
2509 ew32(RXDCTL(0), rxdctl | 0x3);
2510 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2511 /*
2512 * With jumbo frames and early-receive enabled, excessive
2513 * C4->C2 latencies result in dropped transactions.
2514 */
2515 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2516 e1000e_driver_name, 55);
2517 } else {
2518 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2519 e1000e_driver_name,
2520 PM_QOS_DEFAULT_VALUE);
2521 }
bc7f75fa
AK
2522
2523 /* Enable Receives */
2524 ew32(RCTL, rctl);
2525}
2526
2527/**
e2de3eb6 2528 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2529 * @hw: pointer to the HW structure
2530 * @mc_addr_list: array of multicast addresses to program
2531 * @mc_addr_count: number of multicast addresses to program
2532 * @rar_used_count: the first RAR register free to program
2533 * @rar_count: total number of supported Receive Address Registers
2534 *
2535 * Updates the Receive Address Registers and Multicast Table Array.
2536 * The caller must have a packed mc_addr_list of multicast addresses.
2537 * The parameter rar_count will usually be hw->mac.rar_entry_count
2538 * unless there are workarounds that change this. Currently no func pointer
2539 * exists and all implementations are handled in the generic version of this
2540 * function.
2541 **/
e2de3eb6
JK
2542static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2543 u32 mc_addr_count, u32 rar_used_count,
2544 u32 rar_count)
bc7f75fa 2545{
e2de3eb6 2546 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
2547 rar_used_count, rar_count);
2548}
2549
2550/**
2551 * e1000_set_multi - Multicast and Promiscuous mode set
2552 * @netdev: network interface device structure
2553 *
2554 * The set_multi entry point is called whenever the multicast address
2555 * list or the network interface flags are updated. This routine is
2556 * responsible for configuring the hardware for proper multicast,
2557 * promiscuous mode, and all-multi behavior.
2558 **/
2559static void e1000_set_multi(struct net_device *netdev)
2560{
2561 struct e1000_adapter *adapter = netdev_priv(netdev);
2562 struct e1000_hw *hw = &adapter->hw;
2563 struct e1000_mac_info *mac = &hw->mac;
2564 struct dev_mc_list *mc_ptr;
2565 u8 *mta_list;
2566 u32 rctl;
2567 int i;
2568
2569 /* Check for Promiscuous and All Multicast modes */
2570
2571 rctl = er32(RCTL);
2572
2573 if (netdev->flags & IFF_PROMISC) {
2574 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2575 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2576 } else {
746b9f02
PM
2577 if (netdev->flags & IFF_ALLMULTI) {
2578 rctl |= E1000_RCTL_MPE;
2579 rctl &= ~E1000_RCTL_UPE;
2580 } else {
2581 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2582 }
78ed11a5 2583 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
746b9f02 2584 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2585 }
2586
2587 ew32(RCTL, rctl);
2588
2589 if (netdev->mc_count) {
2590 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2591 if (!mta_list)
2592 return;
2593
2594 /* prepare a packed array of only addresses. */
2595 mc_ptr = netdev->mc_list;
2596
2597 for (i = 0; i < netdev->mc_count; i++) {
2598 if (!mc_ptr)
2599 break;
2600 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2601 ETH_ALEN);
2602 mc_ptr = mc_ptr->next;
2603 }
2604
e2de3eb6 2605 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
2606 mac->rar_entry_count);
2607 kfree(mta_list);
2608 } else {
2609 /*
2610 * if we're called from probe, we might not have
2611 * anything to do here, so clear out the list
2612 */
e2de3eb6 2613 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
2614 }
2615}
2616
2617/**
ad68076e 2618 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2619 * @adapter: private board structure
2620 **/
2621static void e1000_configure(struct e1000_adapter *adapter)
2622{
2623 e1000_set_multi(adapter->netdev);
2624
2625 e1000_restore_vlan(adapter);
2626 e1000_init_manageability(adapter);
2627
2628 e1000_configure_tx(adapter);
2629 e1000_setup_rctl(adapter);
2630 e1000_configure_rx(adapter);
ad68076e 2631 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2632}
2633
2634/**
2635 * e1000e_power_up_phy - restore link in case the phy was powered down
2636 * @adapter: address of board private structure
2637 *
2638 * The phy may be powered down to save power and turn off link when the
2639 * driver is unloaded and wake on lan is not enabled (among others)
2640 * *** this routine MUST be followed by a call to e1000e_reset ***
2641 **/
2642void e1000e_power_up_phy(struct e1000_adapter *adapter)
2643{
2644 u16 mii_reg = 0;
2645
2646 /* Just clear the power down bit to wake the phy back up */
318a94d6 2647 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2648 /*
2649 * According to the manual, the phy will retain its
2650 * settings across a power-down/up cycle
2651 */
bc7f75fa
AK
2652 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2653 mii_reg &= ~MII_CR_POWER_DOWN;
2654 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2655 }
2656
2657 adapter->hw.mac.ops.setup_link(&adapter->hw);
2658}
2659
2660/**
2661 * e1000_power_down_phy - Power down the PHY
2662 *
2663 * Power down the PHY so no link is implied when interface is down
2664 * The PHY cannot be powered down is management or WoL is active
2665 */
2666static void e1000_power_down_phy(struct e1000_adapter *adapter)
2667{
2668 struct e1000_hw *hw = &adapter->hw;
2669 u16 mii_reg;
2670
2671 /* WoL is enabled */
23b66e2b 2672 if (adapter->wol)
bc7f75fa
AK
2673 return;
2674
2675 /* non-copper PHY? */
318a94d6 2676 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2677 return;
2678
2679 /* reset is blocked because of a SoL/IDER session */
ad68076e 2680 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2681 return;
2682
489815ce 2683 /* manageability (AMT) is enabled */
bc7f75fa
AK
2684 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2685 return;
2686
2687 /* power down the PHY */
2688 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2689 mii_reg |= MII_CR_POWER_DOWN;
2690 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2691 mdelay(1);
2692}
2693
2694/**
2695 * e1000e_reset - bring the hardware into a known good state
2696 *
2697 * This function boots the hardware and enables some settings that
2698 * require a configuration cycle of the hardware - those cannot be
2699 * set/changed during runtime. After reset the device needs to be
ad68076e 2700 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2701 */
2702void e1000e_reset(struct e1000_adapter *adapter)
2703{
2704 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2705 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2706 struct e1000_hw *hw = &adapter->hw;
2707 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2708 u32 pba = adapter->pba;
bc7f75fa
AK
2709 u16 hwm;
2710
ad68076e 2711 /* reset Packet Buffer Allocation to default */
318a94d6 2712 ew32(PBA, pba);
df762464 2713
318a94d6 2714 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2715 /*
2716 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2717 * large enough to accommodate two full transmit packets,
2718 * rounded up to the next 1KB and expressed in KB. Likewise,
2719 * the Rx FIFO should be large enough to accommodate at least
2720 * one full receive packet and is similarly rounded up and
ad68076e
BA
2721 * expressed in KB.
2722 */
df762464 2723 pba = er32(PBA);
bc7f75fa 2724 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2725 tx_space = pba >> 16;
bc7f75fa 2726 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2727 pba &= 0xffff;
ad68076e
BA
2728 /*
2729 * the Tx fifo also stores 16 bytes of information about the tx
2730 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2731 */
2732 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2733 sizeof(struct e1000_tx_desc) -
2734 ETH_FCS_LEN) * 2;
2735 min_tx_space = ALIGN(min_tx_space, 1024);
2736 min_tx_space >>= 10;
2737 /* software strips receive CRC, so leave room for it */
318a94d6 2738 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2739 min_rx_space = ALIGN(min_rx_space, 1024);
2740 min_rx_space >>= 10;
2741
ad68076e
BA
2742 /*
2743 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2744 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2745 * allocation, take space away from current Rx allocation
2746 */
df762464
AK
2747 if ((tx_space < min_tx_space) &&
2748 ((min_tx_space - tx_space) < pba)) {
2749 pba -= min_tx_space - tx_space;
bc7f75fa 2750
ad68076e
BA
2751 /*
2752 * if short on Rx space, Rx wins and must trump tx
2753 * adjustment or use Early Receive if available
2754 */
df762464 2755 if ((pba < min_rx_space) &&
bc7f75fa
AK
2756 (!(adapter->flags & FLAG_HAS_ERT)))
2757 /* ERT enabled in e1000_configure_rx */
df762464 2758 pba = min_rx_space;
bc7f75fa 2759 }
df762464
AK
2760
2761 ew32(PBA, pba);
bc7f75fa
AK
2762 }
2763
bc7f75fa 2764
ad68076e
BA
2765 /*
2766 * flow control settings
2767 *
2768 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2769 * (or the size used for early receive) above it in the Rx FIFO.
2770 * Set it to the lower of:
2771 * - 90% of the Rx FIFO size, and
2772 * - the full Rx FIFO size minus the early receive size (for parts
2773 * with ERT support assuming ERT set to E1000_ERT_2048), or
ad68076e
BA
2774 * - the full Rx FIFO size minus one full frame
2775 */
bc7f75fa 2776 if (adapter->flags & FLAG_HAS_ERT)
318a94d6
JK
2777 hwm = min(((pba << 10) * 9 / 10),
2778 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2779 else
318a94d6
JK
2780 hwm = min(((pba << 10) * 9 / 10),
2781 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2782
318a94d6
JK
2783 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2784 fc->low_water = fc->high_water - 8;
bc7f75fa
AK
2785
2786 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2787 fc->pause_time = 0xFFFF;
bc7f75fa 2788 else
318a94d6
JK
2789 fc->pause_time = E1000_FC_PAUSE_TIME;
2790 fc->send_xon = 1;
2791 fc->type = fc->original_type;
bc7f75fa
AK
2792
2793 /* Allow time for pending master requests to run */
2794 mac->ops.reset_hw(hw);
97ac8cae
BA
2795
2796 /*
2797 * For parts with AMT enabled, let the firmware know
2798 * that the network interface is in control
2799 */
c43bc57e 2800 if (adapter->flags & FLAG_HAS_AMT)
97ac8cae
BA
2801 e1000_get_hw_control(adapter);
2802
bc7f75fa
AK
2803 ew32(WUC, 0);
2804
2805 if (mac->ops.init_hw(hw))
44defeb3 2806 e_err("Hardware Error\n");
bc7f75fa
AK
2807
2808 e1000_update_mng_vlan(adapter);
2809
2810 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2811 ew32(VET, ETH_P_8021Q);
2812
2813 e1000e_reset_adaptive(hw);
2814 e1000_get_phy_info(hw);
2815
2816 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2817 u16 phy_data = 0;
ad68076e
BA
2818 /*
2819 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2820 * the return value of this function because there is nothing
ad68076e
BA
2821 * different we would do if it failed
2822 */
bc7f75fa
AK
2823 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2824 phy_data &= ~IGP02E1000_PM_SPD;
2825 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2826 }
bc7f75fa
AK
2827}
2828
2829int e1000e_up(struct e1000_adapter *adapter)
2830{
2831 struct e1000_hw *hw = &adapter->hw;
2832
2833 /* hardware has been reset, we need to reload some things */
2834 e1000_configure(adapter);
2835
2836 clear_bit(__E1000_DOWN, &adapter->state);
2837
2838 napi_enable(&adapter->napi);
4662e82b
BA
2839 if (adapter->msix_entries)
2840 e1000_configure_msix(adapter);
bc7f75fa
AK
2841 e1000_irq_enable(adapter);
2842
2843 /* fire a link change interrupt to start the watchdog */
2844 ew32(ICS, E1000_ICS_LSC);
2845 return 0;
2846}
2847
2848void e1000e_down(struct e1000_adapter *adapter)
2849{
2850 struct net_device *netdev = adapter->netdev;
2851 struct e1000_hw *hw = &adapter->hw;
2852 u32 tctl, rctl;
2853
ad68076e
BA
2854 /*
2855 * signal that we're down so the interrupt handler does not
2856 * reschedule our watchdog timer
2857 */
bc7f75fa
AK
2858 set_bit(__E1000_DOWN, &adapter->state);
2859
2860 /* disable receives in the hardware */
2861 rctl = er32(RCTL);
2862 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2863 /* flush and sleep below */
2864
d55b53ff 2865 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
2866
2867 /* disable transmits in the hardware */
2868 tctl = er32(TCTL);
2869 tctl &= ~E1000_TCTL_EN;
2870 ew32(TCTL, tctl);
2871 /* flush both disables and wait for them to finish */
2872 e1e_flush();
2873 msleep(10);
2874
2875 napi_disable(&adapter->napi);
2876 e1000_irq_disable(adapter);
2877
2878 del_timer_sync(&adapter->watchdog_timer);
2879 del_timer_sync(&adapter->phy_info_timer);
2880
2881 netdev->tx_queue_len = adapter->tx_queue_len;
2882 netif_carrier_off(netdev);
2883 adapter->link_speed = 0;
2884 adapter->link_duplex = 0;
2885
52cc3086
JK
2886 if (!pci_channel_offline(adapter->pdev))
2887 e1000e_reset(adapter);
bc7f75fa
AK
2888 e1000_clean_tx_ring(adapter);
2889 e1000_clean_rx_ring(adapter);
2890
2891 /*
2892 * TODO: for power management, we could drop the link and
2893 * pci_disable_device here.
2894 */
2895}
2896
2897void e1000e_reinit_locked(struct e1000_adapter *adapter)
2898{
2899 might_sleep();
2900 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2901 msleep(1);
2902 e1000e_down(adapter);
2903 e1000e_up(adapter);
2904 clear_bit(__E1000_RESETTING, &adapter->state);
2905}
2906
2907/**
2908 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2909 * @adapter: board private structure to initialize
2910 *
2911 * e1000_sw_init initializes the Adapter private data structure.
2912 * Fields are initialized based on PCI device information and
2913 * OS network device settings (MTU size).
2914 **/
2915static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2916{
bc7f75fa
AK
2917 struct net_device *netdev = adapter->netdev;
2918
2919 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2920 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2921 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2922 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa 2923
4662e82b 2924 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2925
4662e82b
BA
2926 if (e1000_alloc_queues(adapter))
2927 return -ENOMEM;
bc7f75fa
AK
2928
2929 spin_lock_init(&adapter->tx_queue_lock);
2930
2931 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2932 e1000_irq_disable(adapter);
2933
bc7f75fa
AK
2934 set_bit(__E1000_DOWN, &adapter->state);
2935 return 0;
bc7f75fa
AK
2936}
2937
f8d59f78
BA
2938/**
2939 * e1000_intr_msi_test - Interrupt Handler
2940 * @irq: interrupt number
2941 * @data: pointer to a network interface device structure
2942 **/
2943static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2944{
2945 struct net_device *netdev = data;
2946 struct e1000_adapter *adapter = netdev_priv(netdev);
2947 struct e1000_hw *hw = &adapter->hw;
2948 u32 icr = er32(ICR);
2949
2950 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2951 if (icr & E1000_ICR_RXSEQ) {
2952 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2953 wmb();
2954 }
2955
2956 return IRQ_HANDLED;
2957}
2958
2959/**
2960 * e1000_test_msi_interrupt - Returns 0 for successful test
2961 * @adapter: board private struct
2962 *
2963 * code flow taken from tg3.c
2964 **/
2965static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2966{
2967 struct net_device *netdev = adapter->netdev;
2968 struct e1000_hw *hw = &adapter->hw;
2969 int err;
2970
2971 /* poll_enable hasn't been called yet, so don't need disable */
2972 /* clear any pending events */
2973 er32(ICR);
2974
2975 /* free the real vector and request a test handler */
2976 e1000_free_irq(adapter);
4662e82b 2977 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
2978
2979 /* Assume that the test fails, if it succeeds then the test
2980 * MSI irq handler will unset this flag */
2981 adapter->flags |= FLAG_MSI_TEST_FAILED;
2982
2983 err = pci_enable_msi(adapter->pdev);
2984 if (err)
2985 goto msi_test_failed;
2986
2987 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2988 netdev->name, netdev);
2989 if (err) {
2990 pci_disable_msi(adapter->pdev);
2991 goto msi_test_failed;
2992 }
2993
2994 wmb();
2995
2996 e1000_irq_enable(adapter);
2997
2998 /* fire an unusual interrupt on the test handler */
2999 ew32(ICS, E1000_ICS_RXSEQ);
3000 e1e_flush();
3001 msleep(50);
3002
3003 e1000_irq_disable(adapter);
3004
3005 rmb();
3006
3007 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 3008 adapter->int_mode = E1000E_INT_MODE_LEGACY;
f8d59f78
BA
3009 err = -EIO;
3010 e_info("MSI interrupt test failed!\n");
3011 }
3012
3013 free_irq(adapter->pdev->irq, netdev);
3014 pci_disable_msi(adapter->pdev);
3015
3016 if (err == -EIO)
3017 goto msi_test_failed;
3018
3019 /* okay so the test worked, restore settings */
3020 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3021msi_test_failed:
4662e82b 3022 e1000e_set_interrupt_capability(adapter);
f8d59f78
BA
3023 e1000_request_irq(adapter);
3024 return err;
3025}
3026
3027/**
3028 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3029 * @adapter: board private struct
3030 *
3031 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3032 **/
3033static int e1000_test_msi(struct e1000_adapter *adapter)
3034{
3035 int err;
3036 u16 pci_cmd;
3037
3038 if (!(adapter->flags & FLAG_MSI_ENABLED))
3039 return 0;
3040
3041 /* disable SERR in case the MSI write causes a master abort */
3042 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3043 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3044 pci_cmd & ~PCI_COMMAND_SERR);
3045
3046 err = e1000_test_msi_interrupt(adapter);
3047
3048 /* restore previous setting of command word */
3049 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3050
3051 /* success ! */
3052 if (!err)
3053 return 0;
3054
3055 /* EIO means MSI test failed */
3056 if (err != -EIO)
3057 return err;
3058
3059 /* back to INTx mode */
3060 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3061
3062 e1000_free_irq(adapter);
3063
3064 err = e1000_request_irq(adapter);
3065
3066 return err;
3067}
3068
bc7f75fa
AK
3069/**
3070 * e1000_open - Called when a network interface is made active
3071 * @netdev: network interface device structure
3072 *
3073 * Returns 0 on success, negative value on failure
3074 *
3075 * The open entry point is called when a network interface is made
3076 * active by the system (IFF_UP). At this point all resources needed
3077 * for transmit and receive operations are allocated, the interrupt
3078 * handler is registered with the OS, the watchdog timer is started,
3079 * and the stack is notified that the interface is ready.
3080 **/
3081static int e1000_open(struct net_device *netdev)
3082{
3083 struct e1000_adapter *adapter = netdev_priv(netdev);
3084 struct e1000_hw *hw = &adapter->hw;
3085 int err;
3086
3087 /* disallow open during test */
3088 if (test_bit(__E1000_TESTING, &adapter->state))
3089 return -EBUSY;
3090
3091 /* allocate transmit descriptors */
3092 err = e1000e_setup_tx_resources(adapter);
3093 if (err)
3094 goto err_setup_tx;
3095
3096 /* allocate receive descriptors */
3097 err = e1000e_setup_rx_resources(adapter);
3098 if (err)
3099 goto err_setup_rx;
3100
3101 e1000e_power_up_phy(adapter);
3102
3103 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3104 if ((adapter->hw.mng_cookie.status &
3105 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3106 e1000_update_mng_vlan(adapter);
3107
ad68076e
BA
3108 /*
3109 * If AMT is enabled, let the firmware know that the network
3110 * interface is now open
3111 */
c43bc57e 3112 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3113 e1000_get_hw_control(adapter);
3114
ad68076e
BA
3115 /*
3116 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
3117 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3118 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
3119 * clean_rx handler before we do so.
3120 */
bc7f75fa
AK
3121 e1000_configure(adapter);
3122
3123 err = e1000_request_irq(adapter);
3124 if (err)
3125 goto err_req_irq;
3126
f8d59f78
BA
3127 /*
3128 * Work around PCIe errata with MSI interrupts causing some chipsets to
3129 * ignore e1000e MSI messages, which means we need to test our MSI
3130 * interrupt now
3131 */
4662e82b 3132 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
3133 err = e1000_test_msi(adapter);
3134 if (err) {
3135 e_err("Interrupt allocation failed\n");
3136 goto err_req_irq;
3137 }
3138 }
3139
bc7f75fa
AK
3140 /* From here on the code is the same as e1000e_up() */
3141 clear_bit(__E1000_DOWN, &adapter->state);
3142
3143 napi_enable(&adapter->napi);
3144
3145 e1000_irq_enable(adapter);
3146
d55b53ff
JK
3147 netif_tx_start_all_queues(netdev);
3148
bc7f75fa
AK
3149 /* fire a link status change interrupt to start the watchdog */
3150 ew32(ICS, E1000_ICS_LSC);
3151
3152 return 0;
3153
3154err_req_irq:
3155 e1000_release_hw_control(adapter);
3156 e1000_power_down_phy(adapter);
3157 e1000e_free_rx_resources(adapter);
3158err_setup_rx:
3159 e1000e_free_tx_resources(adapter);
3160err_setup_tx:
3161 e1000e_reset(adapter);
3162
3163 return err;
3164}
3165
3166/**
3167 * e1000_close - Disables a network interface
3168 * @netdev: network interface device structure
3169 *
3170 * Returns 0, this is not allowed to fail
3171 *
3172 * The close entry point is called when an interface is de-activated
3173 * by the OS. The hardware is still under the drivers control, but
3174 * needs to be disabled. A global MAC reset is issued to stop the
3175 * hardware, and all transmit and receive resources are freed.
3176 **/
3177static int e1000_close(struct net_device *netdev)
3178{
3179 struct e1000_adapter *adapter = netdev_priv(netdev);
3180
3181 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3182 e1000e_down(adapter);
3183 e1000_power_down_phy(adapter);
3184 e1000_free_irq(adapter);
3185
3186 e1000e_free_tx_resources(adapter);
3187 e1000e_free_rx_resources(adapter);
3188
ad68076e
BA
3189 /*
3190 * kill manageability vlan ID if supported, but not if a vlan with
3191 * the same ID is registered on the host OS (let 8021q kill it)
3192 */
bc7f75fa
AK
3193 if ((adapter->hw.mng_cookie.status &
3194 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3195 !(adapter->vlgrp &&
3196 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3197 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3198
ad68076e
BA
3199 /*
3200 * If AMT is enabled, let the firmware know that the network
3201 * interface is now closed
3202 */
c43bc57e 3203 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3204 e1000_release_hw_control(adapter);
3205
3206 return 0;
3207}
3208/**
3209 * e1000_set_mac - Change the Ethernet Address of the NIC
3210 * @netdev: network interface device structure
3211 * @p: pointer to an address structure
3212 *
3213 * Returns 0 on success, negative on failure
3214 **/
3215static int e1000_set_mac(struct net_device *netdev, void *p)
3216{
3217 struct e1000_adapter *adapter = netdev_priv(netdev);
3218 struct sockaddr *addr = p;
3219
3220 if (!is_valid_ether_addr(addr->sa_data))
3221 return -EADDRNOTAVAIL;
3222
3223 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3224 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3225
3226 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3227
3228 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3229 /* activate the work around */
3230 e1000e_set_laa_state_82571(&adapter->hw, 1);
3231
ad68076e
BA
3232 /*
3233 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
3234 * between the time RAR[0] gets clobbered and the time it
3235 * gets fixed (in e1000_watchdog), the actual LAA is in one
3236 * of the RARs and no incoming packets directed to this port
3237 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
3238 * RAR[14]
3239 */
bc7f75fa
AK
3240 e1000e_rar_set(&adapter->hw,
3241 adapter->hw.mac.addr,
3242 adapter->hw.mac.rar_entry_count - 1);
3243 }
3244
3245 return 0;
3246}
3247
a8f88ff5
JB
3248/**
3249 * e1000e_update_phy_task - work thread to update phy
3250 * @work: pointer to our work struct
3251 *
3252 * this worker thread exists because we must acquire a
3253 * semaphore to read the phy, which we could msleep while
3254 * waiting for it, and we can't msleep in a timer.
3255 **/
3256static void e1000e_update_phy_task(struct work_struct *work)
3257{
3258 struct e1000_adapter *adapter = container_of(work,
3259 struct e1000_adapter, update_phy_task);
3260 e1000_get_phy_info(&adapter->hw);
3261}
3262
ad68076e
BA
3263/*
3264 * Need to wait a few seconds after link up to get diagnostic information from
3265 * the phy
3266 */
bc7f75fa
AK
3267static void e1000_update_phy_info(unsigned long data)
3268{
3269 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
a8f88ff5 3270 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
3271}
3272
3273/**
3274 * e1000e_update_stats - Update the board statistics counters
3275 * @adapter: board private structure
3276 **/
3277void e1000e_update_stats(struct e1000_adapter *adapter)
3278{
3279 struct e1000_hw *hw = &adapter->hw;
3280 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
3281
3282 /*
3283 * Prevent stats update while adapter is being reset, or if the pci
3284 * connection is down.
3285 */
3286 if (adapter->link_speed == 0)
3287 return;
3288 if (pci_channel_offline(pdev))
3289 return;
3290
bc7f75fa
AK
3291 adapter->stats.crcerrs += er32(CRCERRS);
3292 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
3293 adapter->stats.gorc += er32(GORCL);
3294 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
3295 adapter->stats.bprc += er32(BPRC);
3296 adapter->stats.mprc += er32(MPRC);
3297 adapter->stats.roc += er32(ROC);
3298
bc7f75fa
AK
3299 adapter->stats.mpc += er32(MPC);
3300 adapter->stats.scc += er32(SCC);
3301 adapter->stats.ecol += er32(ECOL);
3302 adapter->stats.mcc += er32(MCC);
3303 adapter->stats.latecol += er32(LATECOL);
3304 adapter->stats.dc += er32(DC);
bc7f75fa
AK
3305 adapter->stats.xonrxc += er32(XONRXC);
3306 adapter->stats.xontxc += er32(XONTXC);
3307 adapter->stats.xoffrxc += er32(XOFFRXC);
3308 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 3309 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
3310 adapter->stats.gotc += er32(GOTCL);
3311 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
3312 adapter->stats.rnbc += er32(RNBC);
3313 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
3314
3315 adapter->stats.mptc += er32(MPTC);
3316 adapter->stats.bptc += er32(BPTC);
3317
3318 /* used for adaptive IFS */
3319
3320 hw->mac.tx_packet_delta = er32(TPT);
3321 adapter->stats.tpt += hw->mac.tx_packet_delta;
3322 hw->mac.collision_delta = er32(COLC);
3323 adapter->stats.colc += hw->mac.collision_delta;
3324
3325 adapter->stats.algnerrc += er32(ALGNERRC);
3326 adapter->stats.rxerrc += er32(RXERRC);
4662e82b
BA
3327 if (hw->mac.type != e1000_82574)
3328 adapter->stats.tncrs += er32(TNCRS);
bc7f75fa
AK
3329 adapter->stats.cexterr += er32(CEXTERR);
3330 adapter->stats.tsctc += er32(TSCTC);
3331 adapter->stats.tsctfc += er32(TSCTFC);
3332
bc7f75fa 3333 /* Fill out the OS statistics structure */
bc7f75fa
AK
3334 adapter->net_stats.multicast = adapter->stats.mprc;
3335 adapter->net_stats.collisions = adapter->stats.colc;
3336
3337 /* Rx Errors */
3338
ad68076e
BA
3339 /*
3340 * RLEC on some newer hardware can be incorrect so build
3341 * our own version based on RUC and ROC
3342 */
bc7f75fa
AK
3343 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3344 adapter->stats.crcerrs + adapter->stats.algnerrc +
3345 adapter->stats.ruc + adapter->stats.roc +
3346 adapter->stats.cexterr;
3347 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3348 adapter->stats.roc;
3349 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3350 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3351 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3352
3353 /* Tx Errors */
3354 adapter->net_stats.tx_errors = adapter->stats.ecol +
3355 adapter->stats.latecol;
3356 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3357 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3358 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3359
3360 /* Tx Dropped needs to be maintained elsewhere */
3361
bc7f75fa
AK
3362 /* Management Stats */
3363 adapter->stats.mgptc += er32(MGTPTC);
3364 adapter->stats.mgprc += er32(MGTPRC);
3365 adapter->stats.mgpdc += er32(MGTPDC);
bc7f75fa
AK
3366}
3367
7c25769f
BA
3368/**
3369 * e1000_phy_read_status - Update the PHY register status snapshot
3370 * @adapter: board private structure
3371 **/
3372static void e1000_phy_read_status(struct e1000_adapter *adapter)
3373{
3374 struct e1000_hw *hw = &adapter->hw;
3375 struct e1000_phy_regs *phy = &adapter->phy_regs;
3376 int ret_val;
7c25769f
BA
3377
3378 if ((er32(STATUS) & E1000_STATUS_LU) &&
3379 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3380 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3381 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3382 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3383 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3384 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3385 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3386 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3387 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3388 if (ret_val)
44defeb3 3389 e_warn("Error reading PHY register\n");
7c25769f
BA
3390 } else {
3391 /*
3392 * Do not read PHY registers if link is not up
3393 * Set values to typical power-on defaults
3394 */
3395 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3396 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3397 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3398 BMSR_ERCAP);
3399 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3400 ADVERTISE_ALL | ADVERTISE_CSMA);
3401 phy->lpa = 0;
3402 phy->expansion = EXPANSION_ENABLENPAGE;
3403 phy->ctrl1000 = ADVERTISE_1000FULL;
3404 phy->stat1000 = 0;
3405 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3406 }
7c25769f
BA
3407}
3408
bc7f75fa
AK
3409static void e1000_print_link_info(struct e1000_adapter *adapter)
3410{
bc7f75fa
AK
3411 struct e1000_hw *hw = &adapter->hw;
3412 u32 ctrl = er32(CTRL);
3413
44defeb3
JK
3414 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3415 adapter->link_speed,
3416 (adapter->link_duplex == FULL_DUPLEX) ?
3417 "Full Duplex" : "Half Duplex",
3418 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3419 "RX/TX" :
3420 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3421 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
bc7f75fa
AK
3422}
3423
318a94d6
JK
3424static bool e1000_has_link(struct e1000_adapter *adapter)
3425{
3426 struct e1000_hw *hw = &adapter->hw;
3427 bool link_active = 0;
3428 s32 ret_val = 0;
3429
3430 /*
3431 * get_link_status is set on LSC (link status) interrupt or
3432 * Rx sequence error interrupt. get_link_status will stay
3433 * false until the check_for_link establishes link
3434 * for copper adapters ONLY
3435 */
3436 switch (hw->phy.media_type) {
3437 case e1000_media_type_copper:
3438 if (hw->mac.get_link_status) {
3439 ret_val = hw->mac.ops.check_for_link(hw);
3440 link_active = !hw->mac.get_link_status;
3441 } else {
3442 link_active = 1;
3443 }
3444 break;
3445 case e1000_media_type_fiber:
3446 ret_val = hw->mac.ops.check_for_link(hw);
3447 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3448 break;
3449 case e1000_media_type_internal_serdes:
3450 ret_val = hw->mac.ops.check_for_link(hw);
3451 link_active = adapter->hw.mac.serdes_has_link;
3452 break;
3453 default:
3454 case e1000_media_type_unknown:
3455 break;
3456 }
3457
3458 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3459 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3460 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 3461 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
3462 }
3463
3464 return link_active;
3465}
3466
3467static void e1000e_enable_receives(struct e1000_adapter *adapter)
3468{
3469 /* make sure the receive unit is started */
3470 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3471 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3472 struct e1000_hw *hw = &adapter->hw;
3473 u32 rctl = er32(RCTL);
3474 ew32(RCTL, rctl | E1000_RCTL_EN);
3475 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3476 }
3477}
3478
bc7f75fa
AK
3479/**
3480 * e1000_watchdog - Timer Call-back
3481 * @data: pointer to adapter cast into an unsigned long
3482 **/
3483static void e1000_watchdog(unsigned long data)
3484{
3485 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3486
3487 /* Do the rest outside of interrupt context */
3488 schedule_work(&adapter->watchdog_task);
3489
3490 /* TODO: make this use queue_delayed_work() */
3491}
3492
3493static void e1000_watchdog_task(struct work_struct *work)
3494{
3495 struct e1000_adapter *adapter = container_of(work,
3496 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3497 struct net_device *netdev = adapter->netdev;
3498 struct e1000_mac_info *mac = &adapter->hw.mac;
3499 struct e1000_ring *tx_ring = adapter->tx_ring;
3500 struct e1000_hw *hw = &adapter->hw;
3501 u32 link, tctl;
bc7f75fa
AK
3502 int tx_pending = 0;
3503
318a94d6
JK
3504 link = e1000_has_link(adapter);
3505 if ((netif_carrier_ok(netdev)) && link) {
3506 e1000e_enable_receives(adapter);
bc7f75fa 3507 goto link_up;
bc7f75fa
AK
3508 }
3509
3510 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3511 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3512 e1000_update_mng_vlan(adapter);
3513
bc7f75fa
AK
3514 if (link) {
3515 if (!netif_carrier_ok(netdev)) {
3516 bool txb2b = 1;
318a94d6 3517 /* update snapshot of PHY registers on LSC */
7c25769f 3518 e1000_phy_read_status(adapter);
bc7f75fa
AK
3519 mac->ops.get_link_up_info(&adapter->hw,
3520 &adapter->link_speed,
3521 &adapter->link_duplex);
3522 e1000_print_link_info(adapter);
f4187b56
BA
3523 /*
3524 * On supported PHYs, check for duplex mismatch only
3525 * if link has autonegotiated at 10/100 half
3526 */
3527 if ((hw->phy.type == e1000_phy_igp_3 ||
3528 hw->phy.type == e1000_phy_bm) &&
3529 (hw->mac.autoneg == true) &&
3530 (adapter->link_speed == SPEED_10 ||
3531 adapter->link_speed == SPEED_100) &&
3532 (adapter->link_duplex == HALF_DUPLEX)) {
3533 u16 autoneg_exp;
3534
3535 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3536
3537 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3538 e_info("Autonegotiated half duplex but"
3539 " link partner cannot autoneg. "
3540 " Try forcing full duplex if "
3541 "link gets many collisions.\n");
3542 }
3543
ad68076e
BA
3544 /*
3545 * tweak tx_queue_len according to speed/duplex
3546 * and adjust the timeout factor
3547 */
bc7f75fa
AK
3548 netdev->tx_queue_len = adapter->tx_queue_len;
3549 adapter->tx_timeout_factor = 1;
3550 switch (adapter->link_speed) {
3551 case SPEED_10:
3552 txb2b = 0;
3553 netdev->tx_queue_len = 10;
10f1b492 3554 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
3555 break;
3556 case SPEED_100:
3557 txb2b = 0;
3558 netdev->tx_queue_len = 100;
3559 /* maybe add some timeout factor ? */
3560 break;
3561 }
3562
ad68076e
BA
3563 /*
3564 * workaround: re-program speed mode bit after
3565 * link-up event
3566 */
bc7f75fa
AK
3567 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3568 !txb2b) {
3569 u32 tarc0;
e9ec2c0f 3570 tarc0 = er32(TARC(0));
bc7f75fa 3571 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3572 ew32(TARC(0), tarc0);
bc7f75fa
AK
3573 }
3574
ad68076e
BA
3575 /*
3576 * disable TSO for pcie and 10/100 speeds, to avoid
3577 * some hardware issues
3578 */
bc7f75fa
AK
3579 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3580 switch (adapter->link_speed) {
3581 case SPEED_10:
3582 case SPEED_100:
44defeb3 3583 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
3584 netdev->features &= ~NETIF_F_TSO;
3585 netdev->features &= ~NETIF_F_TSO6;
3586 break;
3587 case SPEED_1000:
3588 netdev->features |= NETIF_F_TSO;
3589 netdev->features |= NETIF_F_TSO6;
3590 break;
3591 default:
3592 /* oops */
3593 break;
3594 }
3595 }
3596
ad68076e
BA
3597 /*
3598 * enable transmits in the hardware, need to do this
3599 * after setting TARC(0)
3600 */
bc7f75fa
AK
3601 tctl = er32(TCTL);
3602 tctl |= E1000_TCTL_EN;
3603 ew32(TCTL, tctl);
3604
3605 netif_carrier_on(netdev);
d55b53ff 3606 netif_tx_wake_all_queues(netdev);
bc7f75fa
AK
3607
3608 if (!test_bit(__E1000_DOWN, &adapter->state))
3609 mod_timer(&adapter->phy_info_timer,
3610 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3611 }
3612 } else {
3613 if (netif_carrier_ok(netdev)) {
3614 adapter->link_speed = 0;
3615 adapter->link_duplex = 0;
44defeb3 3616 e_info("Link is Down\n");
bc7f75fa 3617 netif_carrier_off(netdev);
d55b53ff 3618 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
3619 if (!test_bit(__E1000_DOWN, &adapter->state))
3620 mod_timer(&adapter->phy_info_timer,
3621 round_jiffies(jiffies + 2 * HZ));
3622
3623 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3624 schedule_work(&adapter->reset_task);
3625 }
3626 }
3627
3628link_up:
3629 e1000e_update_stats(adapter);
3630
3631 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3632 adapter->tpt_old = adapter->stats.tpt;
3633 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3634 adapter->colc_old = adapter->stats.colc;
3635
7c25769f
BA
3636 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3637 adapter->gorc_old = adapter->stats.gorc;
3638 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3639 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3640
3641 e1000e_update_adaptive(&adapter->hw);
3642
3643 if (!netif_carrier_ok(netdev)) {
3644 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3645 tx_ring->count);
3646 if (tx_pending) {
ad68076e
BA
3647 /*
3648 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3649 * but we've got queued Tx work that's never going
3650 * to get done, so reset controller to flush Tx.
ad68076e
BA
3651 * (Do the reset outside of interrupt context).
3652 */
bc7f75fa
AK
3653 adapter->tx_timeout_count++;
3654 schedule_work(&adapter->reset_task);
3655 }
3656 }
3657
ad68076e 3658 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
3659 if (adapter->msix_entries)
3660 ew32(ICS, adapter->rx_ring->ims_val);
3661 else
3662 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa
AK
3663
3664 /* Force detection of hung controller every watchdog period */
3665 adapter->detect_tx_hung = 1;
3666
ad68076e
BA
3667 /*
3668 * With 82571 controllers, LAA may be overwritten due to controller
3669 * reset from the other port. Set the appropriate LAA in RAR[0]
3670 */
bc7f75fa
AK
3671 if (e1000e_get_laa_state_82571(hw))
3672 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3673
3674 /* Reset the timer */
3675 if (!test_bit(__E1000_DOWN, &adapter->state))
3676 mod_timer(&adapter->watchdog_timer,
3677 round_jiffies(jiffies + 2 * HZ));
3678}
3679
3680#define E1000_TX_FLAGS_CSUM 0x00000001
3681#define E1000_TX_FLAGS_VLAN 0x00000002
3682#define E1000_TX_FLAGS_TSO 0x00000004
3683#define E1000_TX_FLAGS_IPV4 0x00000008
3684#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3685#define E1000_TX_FLAGS_VLAN_SHIFT 16
3686
3687static int e1000_tso(struct e1000_adapter *adapter,
3688 struct sk_buff *skb)
3689{
3690 struct e1000_ring *tx_ring = adapter->tx_ring;
3691 struct e1000_context_desc *context_desc;
3692 struct e1000_buffer *buffer_info;
3693 unsigned int i;
3694 u32 cmd_length = 0;
3695 u16 ipcse = 0, tucse, mss;
3696 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3697 int err;
3698
3699 if (skb_is_gso(skb)) {
3700 if (skb_header_cloned(skb)) {
3701 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3702 if (err)
3703 return err;
3704 }
3705
3706 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3707 mss = skb_shinfo(skb)->gso_size;
3708 if (skb->protocol == htons(ETH_P_IP)) {
3709 struct iphdr *iph = ip_hdr(skb);
3710 iph->tot_len = 0;
3711 iph->check = 0;
3712 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3713 iph->daddr, 0,
3714 IPPROTO_TCP,
3715 0);
3716 cmd_length = E1000_TXD_CMD_IP;
3717 ipcse = skb_transport_offset(skb) - 1;
3718 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3719 ipv6_hdr(skb)->payload_len = 0;
3720 tcp_hdr(skb)->check =
3721 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3722 &ipv6_hdr(skb)->daddr,
3723 0, IPPROTO_TCP, 0);
3724 ipcse = 0;
3725 }
3726 ipcss = skb_network_offset(skb);
3727 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3728 tucss = skb_transport_offset(skb);
3729 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3730 tucse = 0;
3731
3732 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3733 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3734
3735 i = tx_ring->next_to_use;
3736 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3737 buffer_info = &tx_ring->buffer_info[i];
3738
3739 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3740 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3741 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3742 context_desc->upper_setup.tcp_fields.tucss = tucss;
3743 context_desc->upper_setup.tcp_fields.tucso = tucso;
3744 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3745 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3746 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3747 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3748
3749 buffer_info->time_stamp = jiffies;
3750 buffer_info->next_to_watch = i;
3751
3752 i++;
3753 if (i == tx_ring->count)
3754 i = 0;
3755 tx_ring->next_to_use = i;
3756
3757 return 1;
3758 }
3759
3760 return 0;
3761}
3762
3763static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3764{
3765 struct e1000_ring *tx_ring = adapter->tx_ring;
3766 struct e1000_context_desc *context_desc;
3767 struct e1000_buffer *buffer_info;
3768 unsigned int i;
3769 u8 css;
af807c82 3770 u32 cmd_len = E1000_TXD_CMD_DEXT;
bc7f75fa 3771
af807c82
DG
3772 if (skb->ip_summed != CHECKSUM_PARTIAL)
3773 return 0;
bc7f75fa 3774
af807c82
DG
3775 switch (skb->protocol) {
3776 case __constant_htons(ETH_P_IP):
3777 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3778 cmd_len |= E1000_TXD_CMD_TCP;
3779 break;
3780 case __constant_htons(ETH_P_IPV6):
3781 /* XXX not handling all IPV6 headers */
3782 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3783 cmd_len |= E1000_TXD_CMD_TCP;
3784 break;
3785 default:
3786 if (unlikely(net_ratelimit()))
3787 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3788 break;
bc7f75fa
AK
3789 }
3790
af807c82
DG
3791 css = skb_transport_offset(skb);
3792
3793 i = tx_ring->next_to_use;
3794 buffer_info = &tx_ring->buffer_info[i];
3795 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3796
3797 context_desc->lower_setup.ip_config = 0;
3798 context_desc->upper_setup.tcp_fields.tucss = css;
3799 context_desc->upper_setup.tcp_fields.tucso =
3800 css + skb->csum_offset;
3801 context_desc->upper_setup.tcp_fields.tucse = 0;
3802 context_desc->tcp_seg_setup.data = 0;
3803 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3804
3805 buffer_info->time_stamp = jiffies;
3806 buffer_info->next_to_watch = i;
3807
3808 i++;
3809 if (i == tx_ring->count)
3810 i = 0;
3811 tx_ring->next_to_use = i;
3812
3813 return 1;
bc7f75fa
AK
3814}
3815
3816#define E1000_MAX_PER_TXD 8192
3817#define E1000_MAX_TXD_PWR 12
3818
3819static int e1000_tx_map(struct e1000_adapter *adapter,
3820 struct sk_buff *skb, unsigned int first,
3821 unsigned int max_per_txd, unsigned int nr_frags,
3822 unsigned int mss)
3823{
3824 struct e1000_ring *tx_ring = adapter->tx_ring;
3825 struct e1000_buffer *buffer_info;
3826 unsigned int len = skb->len - skb->data_len;
3827 unsigned int offset = 0, size, count = 0, i;
3828 unsigned int f;
3829
3830 i = tx_ring->next_to_use;
3831
3832 while (len) {
3833 buffer_info = &tx_ring->buffer_info[i];
3834 size = min(len, max_per_txd);
3835
3836 /* Workaround for premature desc write-backs
3837 * in TSO mode. Append 4-byte sentinel desc */
3838 if (mss && !nr_frags && size == len && size > 8)
3839 size -= 4;
3840
3841 buffer_info->length = size;
3842 /* set time_stamp *before* dma to help avoid a possible race */
3843 buffer_info->time_stamp = jiffies;
3844 buffer_info->dma =
3845 pci_map_single(adapter->pdev,
3846 skb->data + offset,
3847 size,
3848 PCI_DMA_TODEVICE);
8d8bb39b 3849 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
bc7f75fa
AK
3850 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3851 adapter->tx_dma_failed++;
3852 return -1;
3853 }
3854 buffer_info->next_to_watch = i;
3855
3856 len -= size;
3857 offset += size;
3858 count++;
3859 i++;
3860 if (i == tx_ring->count)
3861 i = 0;
3862 }
3863
3864 for (f = 0; f < nr_frags; f++) {
3865 struct skb_frag_struct *frag;
3866
3867 frag = &skb_shinfo(skb)->frags[f];
3868 len = frag->size;
3869 offset = frag->page_offset;
3870
3871 while (len) {
3872 buffer_info = &tx_ring->buffer_info[i];
3873 size = min(len, max_per_txd);
3874 /* Workaround for premature desc write-backs
3875 * in TSO mode. Append 4-byte sentinel desc */
3876 if (mss && f == (nr_frags-1) && size == len && size > 8)
3877 size -= 4;
3878
3879 buffer_info->length = size;
3880 buffer_info->time_stamp = jiffies;
3881 buffer_info->dma =
3882 pci_map_page(adapter->pdev,
3883 frag->page,
3884 offset,
3885 size,
3886 PCI_DMA_TODEVICE);
8d8bb39b
FT
3887 if (pci_dma_mapping_error(adapter->pdev,
3888 buffer_info->dma)) {
bc7f75fa
AK
3889 dev_err(&adapter->pdev->dev,
3890 "TX DMA page map failed\n");
3891 adapter->tx_dma_failed++;
3892 return -1;
3893 }
3894
3895 buffer_info->next_to_watch = i;
3896
3897 len -= size;
3898 offset += size;
3899 count++;
3900
3901 i++;
3902 if (i == tx_ring->count)
3903 i = 0;
3904 }
3905 }
3906
3907 if (i == 0)
3908 i = tx_ring->count - 1;
3909 else
3910 i--;
3911
3912 tx_ring->buffer_info[i].skb = skb;
3913 tx_ring->buffer_info[first].next_to_watch = i;
3914
3915 return count;
3916}
3917
3918static void e1000_tx_queue(struct e1000_adapter *adapter,
3919 int tx_flags, int count)
3920{
3921 struct e1000_ring *tx_ring = adapter->tx_ring;
3922 struct e1000_tx_desc *tx_desc = NULL;
3923 struct e1000_buffer *buffer_info;
3924 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3925 unsigned int i;
3926
3927 if (tx_flags & E1000_TX_FLAGS_TSO) {
3928 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3929 E1000_TXD_CMD_TSE;
3930 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3931
3932 if (tx_flags & E1000_TX_FLAGS_IPV4)
3933 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3934 }
3935
3936 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3937 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3938 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3939 }
3940
3941 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3942 txd_lower |= E1000_TXD_CMD_VLE;
3943 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3944 }
3945
3946 i = tx_ring->next_to_use;
3947
3948 while (count--) {
3949 buffer_info = &tx_ring->buffer_info[i];
3950 tx_desc = E1000_TX_DESC(*tx_ring, i);
3951 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3952 tx_desc->lower.data =
3953 cpu_to_le32(txd_lower | buffer_info->length);
3954 tx_desc->upper.data = cpu_to_le32(txd_upper);
3955
3956 i++;
3957 if (i == tx_ring->count)
3958 i = 0;
3959 }
3960
3961 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3962
ad68076e
BA
3963 /*
3964 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3965 * know there are new descriptors to fetch. (Only
3966 * applicable for weak-ordered memory model archs,
ad68076e
BA
3967 * such as IA-64).
3968 */
bc7f75fa
AK
3969 wmb();
3970
3971 tx_ring->next_to_use = i;
3972 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3973 /*
3974 * we need this if more than one processor can write to our tail
3975 * at a time, it synchronizes IO on IA64/Altix systems
3976 */
bc7f75fa
AK
3977 mmiowb();
3978}
3979
3980#define MINIMUM_DHCP_PACKET_SIZE 282
3981static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3982 struct sk_buff *skb)
3983{
3984 struct e1000_hw *hw = &adapter->hw;
3985 u16 length, offset;
3986
3987 if (vlan_tx_tag_present(skb)) {
3988 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3989 && (adapter->hw.mng_cookie.status &
3990 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3991 return 0;
3992 }
3993
3994 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3995 return 0;
3996
3997 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3998 return 0;
3999
4000 {
4001 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4002 struct udphdr *udp;
4003
4004 if (ip->protocol != IPPROTO_UDP)
4005 return 0;
4006
4007 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4008 if (ntohs(udp->dest) != 67)
4009 return 0;
4010
4011 offset = (u8 *)udp + 8 - skb->data;
4012 length = skb->len - offset;
4013 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4014 }
4015
4016 return 0;
4017}
4018
4019static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4020{
4021 struct e1000_adapter *adapter = netdev_priv(netdev);
4022
4023 netif_stop_queue(netdev);
ad68076e
BA
4024 /*
4025 * Herbert's original patch had:
bc7f75fa 4026 * smp_mb__after_netif_stop_queue();
ad68076e
BA
4027 * but since that doesn't exist yet, just open code it.
4028 */
bc7f75fa
AK
4029 smp_mb();
4030
ad68076e
BA
4031 /*
4032 * We need to check again in a case another CPU has just
4033 * made room available.
4034 */
bc7f75fa
AK
4035 if (e1000_desc_unused(adapter->tx_ring) < size)
4036 return -EBUSY;
4037
4038 /* A reprieve! */
4039 netif_start_queue(netdev);
4040 ++adapter->restart_queue;
4041 return 0;
4042}
4043
4044static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4045{
4046 struct e1000_adapter *adapter = netdev_priv(netdev);
4047
4048 if (e1000_desc_unused(adapter->tx_ring) >= size)
4049 return 0;
4050 return __e1000_maybe_stop_tx(netdev, size);
4051}
4052
4053#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4054static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4055{
4056 struct e1000_adapter *adapter = netdev_priv(netdev);
4057 struct e1000_ring *tx_ring = adapter->tx_ring;
4058 unsigned int first;
4059 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4060 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4061 unsigned int tx_flags = 0;
4e6c709c 4062 unsigned int len = skb->len - skb->data_len;
bc7f75fa 4063 unsigned long irq_flags;
4e6c709c
AK
4064 unsigned int nr_frags;
4065 unsigned int mss;
bc7f75fa
AK
4066 int count = 0;
4067 int tso;
4068 unsigned int f;
bc7f75fa
AK
4069
4070 if (test_bit(__E1000_DOWN, &adapter->state)) {
4071 dev_kfree_skb_any(skb);
4072 return NETDEV_TX_OK;
4073 }
4074
4075 if (skb->len <= 0) {
4076 dev_kfree_skb_any(skb);
4077 return NETDEV_TX_OK;
4078 }
4079
4080 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
4081 /*
4082 * The controller does a simple calculation to
bc7f75fa
AK
4083 * make sure there is enough room in the FIFO before
4084 * initiating the DMA for each buffer. The calc is:
4085 * 4 = ceil(buffer len/mss). To make sure we don't
4086 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
4087 * drops.
4088 */
bc7f75fa
AK
4089 if (mss) {
4090 u8 hdr_len;
4091 max_per_txd = min(mss << 2, max_per_txd);
4092 max_txd_pwr = fls(max_per_txd) - 1;
4093
ad68076e
BA
4094 /*
4095 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4096 * points to just header, pull a few bytes of payload from
4097 * frags into skb->data
4098 */
bc7f75fa 4099 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
4100 /*
4101 * we do this workaround for ES2LAN, but it is un-necessary,
4102 * avoiding it could save a lot of cycles
4103 */
4e6c709c 4104 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
4105 unsigned int pull_size;
4106
4107 pull_size = min((unsigned int)4, skb->data_len);
4108 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 4109 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
4110 dev_kfree_skb_any(skb);
4111 return NETDEV_TX_OK;
4112 }
4113 len = skb->len - skb->data_len;
4114 }
4115 }
4116
4117 /* reserve a descriptor for the offload context */
4118 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4119 count++;
4120 count++;
4121
4122 count += TXD_USE_COUNT(len, max_txd_pwr);
4123
4124 nr_frags = skb_shinfo(skb)->nr_frags;
4125 for (f = 0; f < nr_frags; f++)
4126 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4127 max_txd_pwr);
4128
4129 if (adapter->hw.mac.tx_pkt_filtering)
4130 e1000_transfer_dhcp_info(adapter, skb);
4131
4132 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4133 /* Collision - tell upper layer to requeue */
4134 return NETDEV_TX_LOCKED;
4135
ad68076e
BA
4136 /*
4137 * need: count + 2 desc gap to keep tail from touching
4138 * head, otherwise try next time
4139 */
bc7f75fa
AK
4140 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4141 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4142 return NETDEV_TX_BUSY;
4143 }
4144
4145 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4146 tx_flags |= E1000_TX_FLAGS_VLAN;
4147 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4148 }
4149
4150 first = tx_ring->next_to_use;
4151
4152 tso = e1000_tso(adapter, skb);
4153 if (tso < 0) {
4154 dev_kfree_skb_any(skb);
4155 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4156 return NETDEV_TX_OK;
4157 }
4158
4159 if (tso)
4160 tx_flags |= E1000_TX_FLAGS_TSO;
4161 else if (e1000_tx_csum(adapter, skb))
4162 tx_flags |= E1000_TX_FLAGS_CSUM;
4163
ad68076e
BA
4164 /*
4165 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 4166 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
4167 * no longer assume, we must.
4168 */
bc7f75fa
AK
4169 if (skb->protocol == htons(ETH_P_IP))
4170 tx_flags |= E1000_TX_FLAGS_IPV4;
4171
4172 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4173 if (count < 0) {
4174 /* handle pci_map_single() error in e1000_tx_map */
4175 dev_kfree_skb_any(skb);
4176 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
7b5dfe1a 4177 return NETDEV_TX_OK;
bc7f75fa
AK
4178 }
4179
4180 e1000_tx_queue(adapter, tx_flags, count);
4181
4182 netdev->trans_start = jiffies;
4183
4184 /* Make sure there is space in the ring for the next send. */
4185 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4186
4187 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4188 return NETDEV_TX_OK;
4189}
4190
4191/**
4192 * e1000_tx_timeout - Respond to a Tx Hang
4193 * @netdev: network interface device structure
4194 **/
4195static void e1000_tx_timeout(struct net_device *netdev)
4196{
4197 struct e1000_adapter *adapter = netdev_priv(netdev);
4198
4199 /* Do the reset outside of interrupt context */
4200 adapter->tx_timeout_count++;
4201 schedule_work(&adapter->reset_task);
4202}
4203
4204static void e1000_reset_task(struct work_struct *work)
4205{
4206 struct e1000_adapter *adapter;
4207 adapter = container_of(work, struct e1000_adapter, reset_task);
4208
4209 e1000e_reinit_locked(adapter);
4210}
4211
4212/**
4213 * e1000_get_stats - Get System Network Statistics
4214 * @netdev: network interface device structure
4215 *
4216 * Returns the address of the device statistics structure.
4217 * The statistics are actually updated from the timer callback.
4218 **/
4219static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4220{
4221 struct e1000_adapter *adapter = netdev_priv(netdev);
4222
4223 /* only return the current stats */
4224 return &adapter->net_stats;
4225}
4226
4227/**
4228 * e1000_change_mtu - Change the Maximum Transfer Unit
4229 * @netdev: network interface device structure
4230 * @new_mtu: new value for maximum frame size
4231 *
4232 * Returns 0 on success, negative on failure
4233 **/
4234static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4235{
4236 struct e1000_adapter *adapter = netdev_priv(netdev);
4237 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4238
d53f706d 4239 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
bc7f75fa 4240 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
44defeb3 4241 e_err("Invalid MTU setting\n");
bc7f75fa
AK
4242 return -EINVAL;
4243 }
4244
4245 /* Jumbo frame size limits */
4246 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4247 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
44defeb3 4248 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4249 return -EINVAL;
4250 }
4251 if (adapter->hw.phy.type == e1000_phy_ife) {
44defeb3 4252 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4253 return -EINVAL;
4254 }
4255 }
4256
4257#define MAX_STD_JUMBO_FRAME_SIZE 9234
4258 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
44defeb3 4259 e_err("MTU > 9216 not supported.\n");
bc7f75fa
AK
4260 return -EINVAL;
4261 }
4262
4263 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4264 msleep(1);
4265 /* e1000e_down has a dependency on max_frame_size */
318a94d6 4266 adapter->max_frame_size = max_frame;
bc7f75fa
AK
4267 if (netif_running(netdev))
4268 e1000e_down(adapter);
4269
ad68076e
BA
4270 /*
4271 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
4272 * means we reserve 2 more, this pushes us to allocate from the next
4273 * larger slab size.
ad68076e 4274 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
4275 * However with the new *_jumbo_rx* routines, jumbo receives will use
4276 * fragmented skbs
ad68076e 4277 */
bc7f75fa
AK
4278
4279 if (max_frame <= 256)
4280 adapter->rx_buffer_len = 256;
4281 else if (max_frame <= 512)
4282 adapter->rx_buffer_len = 512;
4283 else if (max_frame <= 1024)
4284 adapter->rx_buffer_len = 1024;
4285 else if (max_frame <= 2048)
4286 adapter->rx_buffer_len = 2048;
4287 else
4288 adapter->rx_buffer_len = 4096;
4289
4290 /* adjust allocation if LPE protects us, and we aren't using SBP */
4291 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4292 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4293 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 4294 + ETH_FCS_LEN;
bc7f75fa 4295
44defeb3 4296 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
bc7f75fa
AK
4297 netdev->mtu = new_mtu;
4298
4299 if (netif_running(netdev))
4300 e1000e_up(adapter);
4301 else
4302 e1000e_reset(adapter);
4303
4304 clear_bit(__E1000_RESETTING, &adapter->state);
4305
4306 return 0;
4307}
4308
4309static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4310 int cmd)
4311{
4312 struct e1000_adapter *adapter = netdev_priv(netdev);
4313 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 4314
318a94d6 4315 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
4316 return -EOPNOTSUPP;
4317
4318 switch (cmd) {
4319 case SIOCGMIIPHY:
4320 data->phy_id = adapter->hw.phy.addr;
4321 break;
4322 case SIOCGMIIREG:
4323 if (!capable(CAP_NET_ADMIN))
4324 return -EPERM;
7c25769f
BA
4325 switch (data->reg_num & 0x1F) {
4326 case MII_BMCR:
4327 data->val_out = adapter->phy_regs.bmcr;
4328 break;
4329 case MII_BMSR:
4330 data->val_out = adapter->phy_regs.bmsr;
4331 break;
4332 case MII_PHYSID1:
4333 data->val_out = (adapter->hw.phy.id >> 16);
4334 break;
4335 case MII_PHYSID2:
4336 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4337 break;
4338 case MII_ADVERTISE:
4339 data->val_out = adapter->phy_regs.advertise;
4340 break;
4341 case MII_LPA:
4342 data->val_out = adapter->phy_regs.lpa;
4343 break;
4344 case MII_EXPANSION:
4345 data->val_out = adapter->phy_regs.expansion;
4346 break;
4347 case MII_CTRL1000:
4348 data->val_out = adapter->phy_regs.ctrl1000;
4349 break;
4350 case MII_STAT1000:
4351 data->val_out = adapter->phy_regs.stat1000;
4352 break;
4353 case MII_ESTATUS:
4354 data->val_out = adapter->phy_regs.estatus;
4355 break;
4356 default:
bc7f75fa
AK
4357 return -EIO;
4358 }
bc7f75fa
AK
4359 break;
4360 case SIOCSMIIREG:
4361 default:
4362 return -EOPNOTSUPP;
4363 }
4364 return 0;
4365}
4366
4367static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4368{
4369 switch (cmd) {
4370 case SIOCGMIIPHY:
4371 case SIOCGMIIREG:
4372 case SIOCSMIIREG:
4373 return e1000_mii_ioctl(netdev, ifr, cmd);
4374 default:
4375 return -EOPNOTSUPP;
4376 }
4377}
4378
4379static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4380{
4381 struct net_device *netdev = pci_get_drvdata(pdev);
4382 struct e1000_adapter *adapter = netdev_priv(netdev);
4383 struct e1000_hw *hw = &adapter->hw;
4384 u32 ctrl, ctrl_ext, rctl, status;
4385 u32 wufc = adapter->wol;
4386 int retval = 0;
4387
4388 netif_device_detach(netdev);
4389
4390 if (netif_running(netdev)) {
4391 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4392 e1000e_down(adapter);
4393 e1000_free_irq(adapter);
4394 }
4662e82b 4395 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
4396
4397 retval = pci_save_state(pdev);
4398 if (retval)
4399 return retval;
4400
4401 status = er32(STATUS);
4402 if (status & E1000_STATUS_LU)
4403 wufc &= ~E1000_WUFC_LNKC;
4404
4405 if (wufc) {
4406 e1000_setup_rctl(adapter);
4407 e1000_set_multi(netdev);
4408
4409 /* turn on all-multi mode if wake on multicast is enabled */
4410 if (wufc & E1000_WUFC_MC) {
4411 rctl = er32(RCTL);
4412 rctl |= E1000_RCTL_MPE;
4413 ew32(RCTL, rctl);
4414 }
4415
4416 ctrl = er32(CTRL);
4417 /* advertise wake from D3Cold */
4418 #define E1000_CTRL_ADVD3WUC 0x00100000
4419 /* phy power management enable */
4420 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4421 ctrl |= E1000_CTRL_ADVD3WUC |
4422 E1000_CTRL_EN_PHY_PWR_MGMT;
4423 ew32(CTRL, ctrl);
4424
318a94d6
JK
4425 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4426 adapter->hw.phy.media_type ==
4427 e1000_media_type_internal_serdes) {
bc7f75fa
AK
4428 /* keep the laser running in D3 */
4429 ctrl_ext = er32(CTRL_EXT);
4430 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4431 ew32(CTRL_EXT, ctrl_ext);
4432 }
4433
97ac8cae
BA
4434 if (adapter->flags & FLAG_IS_ICH)
4435 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4436
bc7f75fa
AK
4437 /* Allow time for pending master requests to run */
4438 e1000e_disable_pcie_master(&adapter->hw);
4439
4440 ew32(WUC, E1000_WUC_PME_EN);
4441 ew32(WUFC, wufc);
4442 pci_enable_wake(pdev, PCI_D3hot, 1);
4443 pci_enable_wake(pdev, PCI_D3cold, 1);
4444 } else {
4445 ew32(WUC, 0);
4446 ew32(WUFC, 0);
4447 pci_enable_wake(pdev, PCI_D3hot, 0);
4448 pci_enable_wake(pdev, PCI_D3cold, 0);
4449 }
4450
bc7f75fa
AK
4451 /* make sure adapter isn't asleep if manageability is enabled */
4452 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4453 pci_enable_wake(pdev, PCI_D3hot, 1);
4454 pci_enable_wake(pdev, PCI_D3cold, 1);
4455 }
4456
4457 if (adapter->hw.phy.type == e1000_phy_igp_3)
4458 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4459
ad68076e
BA
4460 /*
4461 * Release control of h/w to f/w. If f/w is AMT enabled, this
4462 * would have already happened in close and is redundant.
4463 */
bc7f75fa
AK
4464 e1000_release_hw_control(adapter);
4465
4466 pci_disable_device(pdev);
4467
4468 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4469
4470 return 0;
4471}
4472
1eae4eb2
AK
4473static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4474{
4475 int pos;
1eae4eb2
AK
4476 u16 val;
4477
4478 /*
4479 * 82573 workaround - disable L1 ASPM on mobile chipsets
4480 *
4481 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4482 * resulting in lost data or garbage information on the pci-e link
4483 * level. This could result in (false) bad EEPROM checksum errors,
4484 * long ping times (up to 2s) or even a system freeze/hang.
4485 *
4486 * Unfortunately this feature saves about 1W power consumption when
4487 * active.
4488 */
4489 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
4490 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4491 if (val & 0x2) {
4492 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4493 val &= ~0x2;
4494 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4495 }
4496}
4497
bc7f75fa
AK
4498#ifdef CONFIG_PM
4499static int e1000_resume(struct pci_dev *pdev)
4500{
4501 struct net_device *netdev = pci_get_drvdata(pdev);
4502 struct e1000_adapter *adapter = netdev_priv(netdev);
4503 struct e1000_hw *hw = &adapter->hw;
4504 u32 err;
4505
4506 pci_set_power_state(pdev, PCI_D0);
4507 pci_restore_state(pdev);
1eae4eb2 4508 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4509
f0f422e5 4510 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4511 if (err) {
4512 dev_err(&pdev->dev,
4513 "Cannot enable PCI device from suspend\n");
4514 return err;
4515 }
4516
4517 pci_set_master(pdev);
4518
4519 pci_enable_wake(pdev, PCI_D3hot, 0);
4520 pci_enable_wake(pdev, PCI_D3cold, 0);
4521
4662e82b 4522 e1000e_set_interrupt_capability(adapter);
bc7f75fa
AK
4523 if (netif_running(netdev)) {
4524 err = e1000_request_irq(adapter);
4525 if (err)
4526 return err;
4527 }
4528
4529 e1000e_power_up_phy(adapter);
4530 e1000e_reset(adapter);
4531 ew32(WUS, ~0);
4532
4533 e1000_init_manageability(adapter);
4534
4535 if (netif_running(netdev))
4536 e1000e_up(adapter);
4537
4538 netif_device_attach(netdev);
4539
ad68076e
BA
4540 /*
4541 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4542 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4543 * under the control of the driver.
4544 */
c43bc57e 4545 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4546 e1000_get_hw_control(adapter);
4547
4548 return 0;
4549}
4550#endif
4551
4552static void e1000_shutdown(struct pci_dev *pdev)
4553{
4554 e1000_suspend(pdev, PMSG_SUSPEND);
4555}
4556
4557#ifdef CONFIG_NET_POLL_CONTROLLER
4558/*
4559 * Polling 'interrupt' - used by things like netconsole to send skbs
4560 * without having to re-enable interrupts. It's not called while
4561 * the interrupt routine is executing.
4562 */
4563static void e1000_netpoll(struct net_device *netdev)
4564{
4565 struct e1000_adapter *adapter = netdev_priv(netdev);
4566
4567 disable_irq(adapter->pdev->irq);
4568 e1000_intr(adapter->pdev->irq, netdev);
4569
bc7f75fa
AK
4570 enable_irq(adapter->pdev->irq);
4571}
4572#endif
4573
4574/**
4575 * e1000_io_error_detected - called when PCI error is detected
4576 * @pdev: Pointer to PCI device
4577 * @state: The current pci connection state
4578 *
4579 * This function is called after a PCI bus error affecting
4580 * this device has been detected.
4581 */
4582static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4583 pci_channel_state_t state)
4584{
4585 struct net_device *netdev = pci_get_drvdata(pdev);
4586 struct e1000_adapter *adapter = netdev_priv(netdev);
4587
4588 netif_device_detach(netdev);
4589
4590 if (netif_running(netdev))
4591 e1000e_down(adapter);
4592 pci_disable_device(pdev);
4593
4594 /* Request a slot slot reset. */
4595 return PCI_ERS_RESULT_NEED_RESET;
4596}
4597
4598/**
4599 * e1000_io_slot_reset - called after the pci bus has been reset.
4600 * @pdev: Pointer to PCI device
4601 *
4602 * Restart the card from scratch, as if from a cold-boot. Implementation
4603 * resembles the first-half of the e1000_resume routine.
4604 */
4605static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4606{
4607 struct net_device *netdev = pci_get_drvdata(pdev);
4608 struct e1000_adapter *adapter = netdev_priv(netdev);
4609 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4610 int err;
bc7f75fa 4611
1eae4eb2 4612 e1000e_disable_l1aspm(pdev);
f0f422e5 4613 err = pci_enable_device_mem(pdev);
6e4f6f6b 4614 if (err) {
bc7f75fa
AK
4615 dev_err(&pdev->dev,
4616 "Cannot re-enable PCI device after reset.\n");
4617 return PCI_ERS_RESULT_DISCONNECT;
4618 }
4619 pci_set_master(pdev);
aad32739 4620 pci_restore_state(pdev);
bc7f75fa
AK
4621
4622 pci_enable_wake(pdev, PCI_D3hot, 0);
4623 pci_enable_wake(pdev, PCI_D3cold, 0);
4624
4625 e1000e_reset(adapter);
4626 ew32(WUS, ~0);
4627
4628 return PCI_ERS_RESULT_RECOVERED;
4629}
4630
4631/**
4632 * e1000_io_resume - called when traffic can start flowing again.
4633 * @pdev: Pointer to PCI device
4634 *
4635 * This callback is called when the error recovery driver tells us that
4636 * its OK to resume normal operation. Implementation resembles the
4637 * second-half of the e1000_resume routine.
4638 */
4639static void e1000_io_resume(struct pci_dev *pdev)
4640{
4641 struct net_device *netdev = pci_get_drvdata(pdev);
4642 struct e1000_adapter *adapter = netdev_priv(netdev);
4643
4644 e1000_init_manageability(adapter);
4645
4646 if (netif_running(netdev)) {
4647 if (e1000e_up(adapter)) {
4648 dev_err(&pdev->dev,
4649 "can't bring device back up after reset\n");
4650 return;
4651 }
4652 }
4653
4654 netif_device_attach(netdev);
4655
ad68076e
BA
4656 /*
4657 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4658 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4659 * under the control of the driver.
4660 */
c43bc57e 4661 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4662 e1000_get_hw_control(adapter);
4663
4664}
4665
4666static void e1000_print_device_info(struct e1000_adapter *adapter)
4667{
4668 struct e1000_hw *hw = &adapter->hw;
4669 struct net_device *netdev = adapter->netdev;
69e3fd8c 4670 u32 pba_num;
bc7f75fa
AK
4671
4672 /* print bus type/speed/width info */
44defeb3
JK
4673 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4674 /* bus width */
4675 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4676 "Width x1"),
4677 /* MAC address */
4678 netdev->dev_addr[0], netdev->dev_addr[1],
4679 netdev->dev_addr[2], netdev->dev_addr[3],
4680 netdev->dev_addr[4], netdev->dev_addr[5]);
4681 e_info("Intel(R) PRO/%s Network Connection\n",
4682 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
69e3fd8c 4683 e1000e_read_pba_num(hw, &pba_num);
44defeb3
JK
4684 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4685 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4686}
4687
10aa4c04
AK
4688static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4689{
4690 struct e1000_hw *hw = &adapter->hw;
4691 int ret_val;
4692 u16 buf = 0;
4693
4694 if (hw->mac.type != e1000_82573)
4695 return;
4696
4697 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4698 if (!(le16_to_cpu(buf) & (1 << 0))) {
4699 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
4700 dev_warn(&adapter->pdev->dev,
4701 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04
AK
4702 }
4703
4704 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4705 if (le16_to_cpu(buf) & (3 << 2)) {
4706 /* ASPM enable */
6c2a9efa
FP
4707 dev_warn(&adapter->pdev->dev,
4708 "Warning: detected ASPM enabled in EEPROM\n");
10aa4c04
AK
4709 }
4710}
4711
bc7f75fa
AK
4712/**
4713 * e1000_probe - Device Initialization Routine
4714 * @pdev: PCI device information struct
4715 * @ent: entry in e1000_pci_tbl
4716 *
4717 * Returns 0 on success, negative on failure
4718 *
4719 * e1000_probe initializes an adapter identified by a pci_dev structure.
4720 * The OS initialization, configuring of the adapter private structure,
4721 * and a hardware reset occur.
4722 **/
4723static int __devinit e1000_probe(struct pci_dev *pdev,
4724 const struct pci_device_id *ent)
4725{
4726 struct net_device *netdev;
4727 struct e1000_adapter *adapter;
4728 struct e1000_hw *hw;
4729 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4730 resource_size_t mmio_start, mmio_len;
4731 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4732
4733 static int cards_found;
4734 int i, err, pci_using_dac;
4735 u16 eeprom_data = 0;
4736 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4737
1eae4eb2 4738 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4739
f0f422e5 4740 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4741 if (err)
4742 return err;
4743
4744 pci_using_dac = 0;
4745 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4746 if (!err) {
4747 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4748 if (!err)
4749 pci_using_dac = 1;
4750 } else {
4751 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4752 if (err) {
4753 err = pci_set_consistent_dma_mask(pdev,
4754 DMA_32BIT_MASK);
4755 if (err) {
4756 dev_err(&pdev->dev, "No usable DMA "
4757 "configuration, aborting\n");
4758 goto err_dma;
4759 }
4760 }
4761 }
4762
f0f422e5
BA
4763 err = pci_request_selected_regions(pdev,
4764 pci_select_bars(pdev, IORESOURCE_MEM),
4765 e1000e_driver_name);
bc7f75fa
AK
4766 if (err)
4767 goto err_pci_reg;
4768
4769 pci_set_master(pdev);
aad32739 4770 pci_save_state(pdev);
bc7f75fa
AK
4771
4772 err = -ENOMEM;
4773 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4774 if (!netdev)
4775 goto err_alloc_etherdev;
4776
bc7f75fa
AK
4777 SET_NETDEV_DEV(netdev, &pdev->dev);
4778
4779 pci_set_drvdata(pdev, netdev);
4780 adapter = netdev_priv(netdev);
4781 hw = &adapter->hw;
4782 adapter->netdev = netdev;
4783 adapter->pdev = pdev;
4784 adapter->ei = ei;
4785 adapter->pba = ei->pba;
4786 adapter->flags = ei->flags;
eb7c3adb 4787 adapter->flags2 = ei->flags2;
bc7f75fa
AK
4788 adapter->hw.adapter = adapter;
4789 adapter->hw.mac.type = ei->mac;
4790 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4791
4792 mmio_start = pci_resource_start(pdev, 0);
4793 mmio_len = pci_resource_len(pdev, 0);
4794
4795 err = -EIO;
4796 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4797 if (!adapter->hw.hw_addr)
4798 goto err_ioremap;
4799
4800 if ((adapter->flags & FLAG_HAS_FLASH) &&
4801 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4802 flash_start = pci_resource_start(pdev, 1);
4803 flash_len = pci_resource_len(pdev, 1);
4804 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4805 if (!adapter->hw.flash_address)
4806 goto err_flashmap;
4807 }
4808
4809 /* construct the net_device struct */
4810 netdev->open = &e1000_open;
4811 netdev->stop = &e1000_close;
4812 netdev->hard_start_xmit = &e1000_xmit_frame;
4813 netdev->get_stats = &e1000_get_stats;
4814 netdev->set_multicast_list = &e1000_set_multi;
4815 netdev->set_mac_address = &e1000_set_mac;
4816 netdev->change_mtu = &e1000_change_mtu;
4817 netdev->do_ioctl = &e1000_ioctl;
4818 e1000e_set_ethtool_ops(netdev);
4819 netdev->tx_timeout = &e1000_tx_timeout;
4820 netdev->watchdog_timeo = 5 * HZ;
4821 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4822 netdev->vlan_rx_register = e1000_vlan_rx_register;
4823 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4824 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4825#ifdef CONFIG_NET_POLL_CONTROLLER
4826 netdev->poll_controller = e1000_netpoll;
4827#endif
4828 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4829
4830 netdev->mem_start = mmio_start;
4831 netdev->mem_end = mmio_start + mmio_len;
4832
4833 adapter->bd_number = cards_found++;
4834
4662e82b
BA
4835 e1000e_check_options(adapter);
4836
bc7f75fa
AK
4837 /* setup adapter struct */
4838 err = e1000_sw_init(adapter);
4839 if (err)
4840 goto err_sw_init;
4841
4842 err = -EIO;
4843
4844 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4845 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4846 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4847
69e3fd8c 4848 err = ei->get_variants(adapter);
bc7f75fa
AK
4849 if (err)
4850 goto err_hw_init;
4851
4a770358
BA
4852 if ((adapter->flags & FLAG_IS_ICH) &&
4853 (adapter->flags & FLAG_READ_ONLY_NVM))
4854 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4855
bc7f75fa
AK
4856 hw->mac.ops.get_bus_info(&adapter->hw);
4857
318a94d6 4858 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
4859
4860 /* Copper options */
318a94d6 4861 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
4862 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4863 adapter->hw.phy.disable_polarity_correction = 0;
4864 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4865 }
4866
4867 if (e1000_check_reset_block(&adapter->hw))
44defeb3 4868 e_info("PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa
AK
4869
4870 netdev->features = NETIF_F_SG |
4871 NETIF_F_HW_CSUM |
4872 NETIF_F_HW_VLAN_TX |
4873 NETIF_F_HW_VLAN_RX;
4874
4875 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4876 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4877
4878 netdev->features |= NETIF_F_TSO;
4879 netdev->features |= NETIF_F_TSO6;
4880
a5136e23
JK
4881 netdev->vlan_features |= NETIF_F_TSO;
4882 netdev->vlan_features |= NETIF_F_TSO6;
4883 netdev->vlan_features |= NETIF_F_HW_CSUM;
4884 netdev->vlan_features |= NETIF_F_SG;
4885
bc7f75fa
AK
4886 if (pci_using_dac)
4887 netdev->features |= NETIF_F_HIGHDMA;
4888
ad68076e
BA
4889 /*
4890 * We should not be using LLTX anymore, but we are still Tx faster with
4891 * it.
4892 */
bc7f75fa
AK
4893 netdev->features |= NETIF_F_LLTX;
4894
4895 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4896 adapter->flags |= FLAG_MNG_PT_ENABLED;
4897
ad68076e
BA
4898 /*
4899 * before reading the NVM, reset the controller to
4900 * put the device in a known good starting state
4901 */
bc7f75fa
AK
4902 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4903
4904 /*
4905 * systems with ASPM and others may see the checksum fail on the first
4906 * attempt. Let's give it a few tries
4907 */
4908 for (i = 0;; i++) {
4909 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4910 break;
4911 if (i == 2) {
44defeb3 4912 e_err("The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
4913 err = -EIO;
4914 goto err_eeprom;
4915 }
4916 }
4917
10aa4c04
AK
4918 e1000_eeprom_checks(adapter);
4919
bc7f75fa
AK
4920 /* copy the MAC address out of the NVM */
4921 if (e1000e_read_mac_addr(&adapter->hw))
44defeb3 4922 e_err("NVM Read Error while reading MAC address\n");
bc7f75fa
AK
4923
4924 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4925 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4926
4927 if (!is_valid_ether_addr(netdev->perm_addr)) {
44defeb3
JK
4928 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4929 netdev->perm_addr[0], netdev->perm_addr[1],
4930 netdev->perm_addr[2], netdev->perm_addr[3],
4931 netdev->perm_addr[4], netdev->perm_addr[5]);
bc7f75fa
AK
4932 err = -EIO;
4933 goto err_eeprom;
4934 }
4935
4936 init_timer(&adapter->watchdog_timer);
4937 adapter->watchdog_timer.function = &e1000_watchdog;
4938 adapter->watchdog_timer.data = (unsigned long) adapter;
4939
4940 init_timer(&adapter->phy_info_timer);
4941 adapter->phy_info_timer.function = &e1000_update_phy_info;
4942 adapter->phy_info_timer.data = (unsigned long) adapter;
4943
4944 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4945 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
4946 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4947 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
bc7f75fa 4948
bc7f75fa
AK
4949 /* Initialize link parameters. User can change them with ethtool */
4950 adapter->hw.mac.autoneg = 1;
309af40b 4951 adapter->fc_autoneg = 1;
318a94d6
JK
4952 adapter->hw.fc.original_type = e1000_fc_default;
4953 adapter->hw.fc.type = e1000_fc_default;
bc7f75fa
AK
4954 adapter->hw.phy.autoneg_advertised = 0x2f;
4955
4956 /* ring size defaults */
4957 adapter->rx_ring->count = 256;
4958 adapter->tx_ring->count = 256;
4959
4960 /*
4961 * Initial Wake on LAN setting - If APM wake is enabled in
4962 * the EEPROM, enable the ACPI Magic Packet filter
4963 */
4964 if (adapter->flags & FLAG_APME_IN_WUC) {
4965 /* APME bit in EEPROM is mapped to WUC.APME */
4966 eeprom_data = er32(WUC);
4967 eeprom_apme_mask = E1000_WUC_APME;
4968 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4969 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4970 (adapter->hw.bus.func == 1))
4971 e1000_read_nvm(&adapter->hw,
4972 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4973 else
4974 e1000_read_nvm(&adapter->hw,
4975 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4976 }
4977
4978 /* fetch WoL from EEPROM */
4979 if (eeprom_data & eeprom_apme_mask)
4980 adapter->eeprom_wol |= E1000_WUFC_MAG;
4981
4982 /*
4983 * now that we have the eeprom settings, apply the special cases
4984 * where the eeprom may be wrong or the board simply won't support
4985 * wake on lan on a particular port
4986 */
4987 if (!(adapter->flags & FLAG_HAS_WOL))
4988 adapter->eeprom_wol = 0;
4989
4990 /* initialize the wol settings based on the eeprom settings */
4991 adapter->wol = adapter->eeprom_wol;
6ff68026 4992 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
bc7f75fa
AK
4993
4994 /* reset the hardware with the new settings */
4995 e1000e_reset(adapter);
4996
ad68076e
BA
4997 /*
4998 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4999 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
5000 * under the control of the driver.
5001 */
c43bc57e 5002 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
5003 e1000_get_hw_control(adapter);
5004
5005 /* tell the stack to leave us alone until e1000_open() is called */
5006 netif_carrier_off(netdev);
d55b53ff 5007 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
5008
5009 strcpy(netdev->name, "eth%d");
5010 err = register_netdev(netdev);
5011 if (err)
5012 goto err_register;
5013
5014 e1000_print_device_info(adapter);
5015
5016 return 0;
5017
5018err_register:
c43bc57e
JB
5019 if (!(adapter->flags & FLAG_HAS_AMT))
5020 e1000_release_hw_control(adapter);
bc7f75fa
AK
5021err_eeprom:
5022 if (!e1000_check_reset_block(&adapter->hw))
5023 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 5024err_hw_init:
bc7f75fa 5025
bc7f75fa
AK
5026 kfree(adapter->tx_ring);
5027 kfree(adapter->rx_ring);
5028err_sw_init:
c43bc57e
JB
5029 if (adapter->hw.flash_address)
5030 iounmap(adapter->hw.flash_address);
e82f54ba 5031 e1000e_reset_interrupt_capability(adapter);
c43bc57e 5032err_flashmap:
bc7f75fa
AK
5033 iounmap(adapter->hw.hw_addr);
5034err_ioremap:
5035 free_netdev(netdev);
5036err_alloc_etherdev:
f0f422e5
BA
5037 pci_release_selected_regions(pdev,
5038 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5039err_pci_reg:
5040err_dma:
5041 pci_disable_device(pdev);
5042 return err;
5043}
5044
5045/**
5046 * e1000_remove - Device Removal Routine
5047 * @pdev: PCI device information struct
5048 *
5049 * e1000_remove is called by the PCI subsystem to alert the driver
5050 * that it should release a PCI device. The could be caused by a
5051 * Hot-Plug event, or because the driver is going to be removed from
5052 * memory.
5053 **/
5054static void __devexit e1000_remove(struct pci_dev *pdev)
5055{
5056 struct net_device *netdev = pci_get_drvdata(pdev);
5057 struct e1000_adapter *adapter = netdev_priv(netdev);
5058
ad68076e
BA
5059 /*
5060 * flush_scheduled work may reschedule our watchdog task, so
5061 * explicitly disable watchdog tasks from being rescheduled
5062 */
bc7f75fa
AK
5063 set_bit(__E1000_DOWN, &adapter->state);
5064 del_timer_sync(&adapter->watchdog_timer);
5065 del_timer_sync(&adapter->phy_info_timer);
5066
5067 flush_scheduled_work();
5068
ad68076e
BA
5069 /*
5070 * Release control of h/w to f/w. If f/w is AMT enabled, this
5071 * would have already happened in close and is redundant.
5072 */
bc7f75fa
AK
5073 e1000_release_hw_control(adapter);
5074
5075 unregister_netdev(netdev);
5076
5077 if (!e1000_check_reset_block(&adapter->hw))
5078 e1000_phy_hw_reset(&adapter->hw);
5079
4662e82b 5080 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
5081 kfree(adapter->tx_ring);
5082 kfree(adapter->rx_ring);
5083
5084 iounmap(adapter->hw.hw_addr);
5085 if (adapter->hw.flash_address)
5086 iounmap(adapter->hw.flash_address);
f0f422e5
BA
5087 pci_release_selected_regions(pdev,
5088 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5089
5090 free_netdev(netdev);
5091
5092 pci_disable_device(pdev);
5093}
5094
5095/* PCI Error Recovery (ERS) */
5096static struct pci_error_handlers e1000_err_handler = {
5097 .error_detected = e1000_io_error_detected,
5098 .slot_reset = e1000_io_slot_reset,
5099 .resume = e1000_io_resume,
5100};
5101
5102static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
5103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
5109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 5112
bc7f75fa
AK
5113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 5117
bc7f75fa
AK
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 5121
4662e82b
BA
5122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5123
bc7f75fa
AK
5124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5125 board_80003es2lan },
5126 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5127 board_80003es2lan },
5128 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5129 board_80003es2lan },
5130 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5131 board_80003es2lan },
ad68076e 5132
bc7f75fa
AK
5133 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5134 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5135 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5136 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5137 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5138 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5139 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 5140
bc7f75fa
AK
5141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5143 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 5146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
5147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5148 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5150
5151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 5154
f4187b56
BA
5155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5156 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5157
bc7f75fa
AK
5158 { } /* terminate list */
5159};
5160MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5161
5162/* PCI Device API Driver */
5163static struct pci_driver e1000_driver = {
5164 .name = e1000e_driver_name,
5165 .id_table = e1000_pci_tbl,
5166 .probe = e1000_probe,
5167 .remove = __devexit_p(e1000_remove),
5168#ifdef CONFIG_PM
ad68076e 5169 /* Power Management Hooks */
bc7f75fa
AK
5170 .suspend = e1000_suspend,
5171 .resume = e1000_resume,
5172#endif
5173 .shutdown = e1000_shutdown,
5174 .err_handler = &e1000_err_handler
5175};
5176
5177/**
5178 * e1000_init_module - Driver Registration Routine
5179 *
5180 * e1000_init_module is the first routine called when the driver is
5181 * loaded. All it does is register with the PCI subsystem.
5182 **/
5183static int __init e1000_init_module(void)
5184{
5185 int ret;
5186 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5187 e1000e_driver_name, e1000e_driver_version);
ad68076e 5188 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
5189 e1000e_driver_name);
5190 ret = pci_register_driver(&e1000_driver);
97ac8cae
BA
5191 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5192 PM_QOS_DEFAULT_VALUE);
5193
bc7f75fa
AK
5194 return ret;
5195}
5196module_init(e1000_init_module);
5197
5198/**
5199 * e1000_exit_module - Driver Exit Cleanup Routine
5200 *
5201 * e1000_exit_module is called just before the driver is removed
5202 * from memory.
5203 **/
5204static void __exit e1000_exit_module(void)
5205{
5206 pci_unregister_driver(&e1000_driver);
97ac8cae 5207 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
bc7f75fa
AK
5208}
5209module_exit(e1000_exit_module);
5210
5211
5212MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5213MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5214MODULE_LICENSE("GPL");
5215MODULE_VERSION(DRV_VERSION);
5216
5217/* e1000_main.c */