e1000e: reformat comment blocks, cosmetic changes only
[linux-2.6-block.git] / drivers / net / e1000e / lib.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/netdevice.h>
30#include <linux/ethtool.h>
31#include <linux/delay.h>
32#include <linux/pci.h>
33
34#include "e1000.h"
35
36enum e1000_mng_mode {
37 e1000_mng_mode_none = 0,
38 e1000_mng_mode_asf,
39 e1000_mng_mode_pt,
40 e1000_mng_mode_ipmi,
41 e1000_mng_mode_host_if_only
42};
43
44#define E1000_FACTPS_MNGCG 0x20000000
45
ad68076e
BA
46/* Intel(R) Active Management Technology signature */
47#define E1000_IAMT_SIGNATURE 0x544D4149
bc7f75fa
AK
48
49/**
50 * e1000e_get_bus_info_pcie - Get PCIe bus information
51 * @hw: pointer to the HW structure
52 *
53 * Determines and stores the system bus information for a particular
54 * network interface. The following bus information is determined and stored:
55 * bus speed, bus width, type (PCIe), and PCIe function.
56 **/
57s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
58{
59 struct e1000_bus_info *bus = &hw->bus;
60 struct e1000_adapter *adapter = hw->adapter;
61 u32 status;
62 u16 pcie_link_status, pci_header_type, cap_offset;
63
64 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
65 if (!cap_offset) {
66 bus->width = e1000_bus_width_unknown;
67 } else {
68 pci_read_config_word(adapter->pdev,
69 cap_offset + PCIE_LINK_STATUS,
70 &pcie_link_status);
71 bus->width = (enum e1000_bus_width)((pcie_link_status &
72 PCIE_LINK_WIDTH_MASK) >>
73 PCIE_LINK_WIDTH_SHIFT);
74 }
75
76 pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
77 &pci_header_type);
78 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
79 status = er32(STATUS);
80 bus->func = (status & E1000_STATUS_FUNC_MASK)
81 >> E1000_STATUS_FUNC_SHIFT;
82 } else {
83 bus->func = 0;
84 }
85
86 return 0;
87}
88
89/**
90 * e1000e_write_vfta - Write value to VLAN filter table
91 * @hw: pointer to the HW structure
92 * @offset: register offset in VLAN filter table
93 * @value: register value written to VLAN filter table
94 *
95 * Writes value at the given offset in the register array which stores
96 * the VLAN filter table.
97 **/
98void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
99{
100 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
101 e1e_flush();
102}
103
104/**
105 * e1000e_init_rx_addrs - Initialize receive address's
106 * @hw: pointer to the HW structure
107 * @rar_count: receive address registers
108 *
109 * Setups the receive address registers by setting the base receive address
110 * register to the devices MAC address and clearing all the other receive
111 * address registers to 0.
112 **/
113void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
114{
115 u32 i;
116
117 /* Setup the receive address */
118 hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
119
120 e1000e_rar_set(hw, hw->mac.addr, 0);
121
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
124 for (i = 1; i < rar_count; i++) {
125 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
126 e1e_flush();
127 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
128 e1e_flush();
129 }
130}
131
132/**
133 * e1000e_rar_set - Set receive address register
134 * @hw: pointer to the HW structure
135 * @addr: pointer to the receive address
136 * @index: receive address array register
137 *
138 * Sets the receive address array register at index to the address passed
139 * in by addr.
140 **/
141void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
142{
143 u32 rar_low, rar_high;
144
ad68076e
BA
145 /*
146 * HW expects these in little endian so we reverse the byte order
bc7f75fa
AK
147 * from network order (big endian) to little endian
148 */
149 rar_low = ((u32) addr[0] |
150 ((u32) addr[1] << 8) |
151 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
152
153 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
154
155 rar_high |= E1000_RAH_AV;
156
157 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
158 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
159}
160
161/**
162 * e1000_mta_set - Set multicast filter table address
163 * @hw: pointer to the HW structure
164 * @hash_value: determines the MTA register and bit to set
165 *
166 * The multicast table address is a register array of 32-bit registers.
167 * The hash_value is used to determine what register the bit is in, the
168 * current value is read, the new bit is OR'd in and the new value is
169 * written back into the register.
170 **/
171static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
172{
173 u32 hash_bit, hash_reg, mta;
174
ad68076e
BA
175 /*
176 * The MTA is a register array of 32-bit registers. It is
bc7f75fa
AK
177 * treated like an array of (32*mta_reg_count) bits. We want to
178 * set bit BitArray[hash_value]. So we figure out what register
179 * the bit is in, read it, OR in the new bit, then write
180 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
181 * mask to bits 31:5 of the hash value which gives us the
182 * register we're modifying. The hash bit within that register
183 * is determined by the lower 5 bits of the hash value.
184 */
185 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
186 hash_bit = hash_value & 0x1F;
187
188 mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
189
190 mta |= (1 << hash_bit);
191
192 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
193 e1e_flush();
194}
195
196/**
197 * e1000_hash_mc_addr - Generate a multicast hash value
198 * @hw: pointer to the HW structure
199 * @mc_addr: pointer to a multicast address
200 *
201 * Generates a multicast address hash value which is used to determine
202 * the multicast filter table array address and new table value. See
203 * e1000_mta_set_generic()
204 **/
205static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
206{
207 u32 hash_value, hash_mask;
208 u8 bit_shift = 0;
209
210 /* Register count multiplied by bits per register */
211 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
212
ad68076e
BA
213 /*
214 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
215 * where 0xFF would still fall within the hash mask.
216 */
bc7f75fa
AK
217 while (hash_mask >> bit_shift != 0xFF)
218 bit_shift++;
219
ad68076e
BA
220 /*
221 * The portion of the address that is used for the hash table
bc7f75fa
AK
222 * is determined by the mc_filter_type setting.
223 * The algorithm is such that there is a total of 8 bits of shifting.
224 * The bit_shift for a mc_filter_type of 0 represents the number of
225 * left-shifts where the MSB of mc_addr[5] would still fall within
226 * the hash_mask. Case 0 does this exactly. Since there are a total
227 * of 8 bits of shifting, then mc_addr[4] will shift right the
228 * remaining number of bits. Thus 8 - bit_shift. The rest of the
229 * cases are a variation of this algorithm...essentially raising the
230 * number of bits to shift mc_addr[5] left, while still keeping the
231 * 8-bit shifting total.
ad68076e
BA
232 *
233 * For example, given the following Destination MAC Address and an
bc7f75fa
AK
234 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
235 * we can see that the bit_shift for case 0 is 4. These are the hash
236 * values resulting from each mc_filter_type...
237 * [0] [1] [2] [3] [4] [5]
238 * 01 AA 00 12 34 56
239 * LSB MSB
240 *
241 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
242 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
243 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
244 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
245 */
246 switch (hw->mac.mc_filter_type) {
247 default:
248 case 0:
249 break;
250 case 1:
251 bit_shift += 1;
252 break;
253 case 2:
254 bit_shift += 2;
255 break;
256 case 3:
257 bit_shift += 4;
258 break;
259 }
260
261 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
262 (((u16) mc_addr[5]) << bit_shift)));
263
264 return hash_value;
265}
266
267/**
268 * e1000e_mc_addr_list_update_generic - Update Multicast addresses
269 * @hw: pointer to the HW structure
270 * @mc_addr_list: array of multicast addresses to program
271 * @mc_addr_count: number of multicast addresses to program
272 * @rar_used_count: the first RAR register free to program
273 * @rar_count: total number of supported Receive Address Registers
274 *
275 * Updates the Receive Address Registers and Multicast Table Array.
276 * The caller must have a packed mc_addr_list of multicast addresses.
277 * The parameter rar_count will usually be hw->mac.rar_entry_count
278 * unless there are workarounds that change this.
279 **/
280void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
281 u8 *mc_addr_list, u32 mc_addr_count,
282 u32 rar_used_count, u32 rar_count)
283{
284 u32 hash_value;
285 u32 i;
286
ad68076e
BA
287 /*
288 * Load the first set of multicast addresses into the exact
bc7f75fa
AK
289 * filters (RAR). If there are not enough to fill the RAR
290 * array, clear the filters.
291 */
292 for (i = rar_used_count; i < rar_count; i++) {
293 if (mc_addr_count) {
294 e1000e_rar_set(hw, mc_addr_list, i);
295 mc_addr_count--;
296 mc_addr_list += ETH_ALEN;
297 } else {
298 E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
299 e1e_flush();
300 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
301 e1e_flush();
302 }
303 }
304
305 /* Clear the old settings from the MTA */
306 hw_dbg(hw, "Clearing MTA\n");
307 for (i = 0; i < hw->mac.mta_reg_count; i++) {
308 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
309 e1e_flush();
310 }
311
312 /* Load any remaining multicast addresses into the hash table. */
313 for (; mc_addr_count > 0; mc_addr_count--) {
314 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
315 hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
316 e1000_mta_set(hw, hash_value);
317 mc_addr_list += ETH_ALEN;
318 }
319}
320
321/**
322 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
323 * @hw: pointer to the HW structure
324 *
325 * Clears the base hardware counters by reading the counter registers.
326 **/
327void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
328{
329 u32 temp;
330
331 temp = er32(CRCERRS);
332 temp = er32(SYMERRS);
333 temp = er32(MPC);
334 temp = er32(SCC);
335 temp = er32(ECOL);
336 temp = er32(MCC);
337 temp = er32(LATECOL);
338 temp = er32(COLC);
339 temp = er32(DC);
340 temp = er32(SEC);
341 temp = er32(RLEC);
342 temp = er32(XONRXC);
343 temp = er32(XONTXC);
344 temp = er32(XOFFRXC);
345 temp = er32(XOFFTXC);
346 temp = er32(FCRUC);
347 temp = er32(GPRC);
348 temp = er32(BPRC);
349 temp = er32(MPRC);
350 temp = er32(GPTC);
351 temp = er32(GORCL);
352 temp = er32(GORCH);
353 temp = er32(GOTCL);
354 temp = er32(GOTCH);
355 temp = er32(RNBC);
356 temp = er32(RUC);
357 temp = er32(RFC);
358 temp = er32(ROC);
359 temp = er32(RJC);
360 temp = er32(TORL);
361 temp = er32(TORH);
362 temp = er32(TOTL);
363 temp = er32(TOTH);
364 temp = er32(TPR);
365 temp = er32(TPT);
366 temp = er32(MPTC);
367 temp = er32(BPTC);
368}
369
370/**
371 * e1000e_check_for_copper_link - Check for link (Copper)
372 * @hw: pointer to the HW structure
373 *
374 * Checks to see of the link status of the hardware has changed. If a
375 * change in link status has been detected, then we read the PHY registers
376 * to get the current speed/duplex if link exists.
377 **/
378s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
379{
380 struct e1000_mac_info *mac = &hw->mac;
381 s32 ret_val;
382 bool link;
383
ad68076e
BA
384 /*
385 * We only want to go out to the PHY registers to see if Auto-Neg
bc7f75fa
AK
386 * has completed and/or if our link status has changed. The
387 * get_link_status flag is set upon receiving a Link Status
388 * Change or Rx Sequence Error interrupt.
389 */
390 if (!mac->get_link_status)
391 return 0;
392
ad68076e
BA
393 /*
394 * First we want to see if the MII Status Register reports
bc7f75fa
AK
395 * link. If so, then we want to get the current speed/duplex
396 * of the PHY.
397 */
398 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
399 if (ret_val)
400 return ret_val;
401
402 if (!link)
403 return ret_val; /* No link detected */
404
405 mac->get_link_status = 0;
406
ad68076e
BA
407 /*
408 * Check if there was DownShift, must be checked
409 * immediately after link-up
410 */
bc7f75fa
AK
411 e1000e_check_downshift(hw);
412
ad68076e
BA
413 /*
414 * If we are forcing speed/duplex, then we simply return since
bc7f75fa
AK
415 * we have already determined whether we have link or not.
416 */
417 if (!mac->autoneg) {
418 ret_val = -E1000_ERR_CONFIG;
419 return ret_val;
420 }
421
ad68076e
BA
422 /*
423 * Auto-Neg is enabled. Auto Speed Detection takes care
bc7f75fa
AK
424 * of MAC speed/duplex configuration. So we only need to
425 * configure Collision Distance in the MAC.
426 */
427 e1000e_config_collision_dist(hw);
428
ad68076e
BA
429 /*
430 * Configure Flow Control now that Auto-Neg has completed.
bc7f75fa
AK
431 * First, we need to restore the desired flow control
432 * settings because we may have had to re-autoneg with a
433 * different link partner.
434 */
435 ret_val = e1000e_config_fc_after_link_up(hw);
436 if (ret_val) {
437 hw_dbg(hw, "Error configuring flow control\n");
438 }
439
440 return ret_val;
441}
442
443/**
444 * e1000e_check_for_fiber_link - Check for link (Fiber)
445 * @hw: pointer to the HW structure
446 *
447 * Checks for link up on the hardware. If link is not up and we have
448 * a signal, then we need to force link up.
449 **/
450s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
451{
452 struct e1000_mac_info *mac = &hw->mac;
453 u32 rxcw;
454 u32 ctrl;
455 u32 status;
456 s32 ret_val;
457
458 ctrl = er32(CTRL);
459 status = er32(STATUS);
460 rxcw = er32(RXCW);
461
ad68076e
BA
462 /*
463 * If we don't have link (auto-negotiation failed or link partner
bc7f75fa
AK
464 * cannot auto-negotiate), the cable is plugged in (we have signal),
465 * and our link partner is not trying to auto-negotiate with us (we
466 * are receiving idles or data), we need to force link up. We also
467 * need to give auto-negotiation time to complete, in case the cable
468 * was just plugged in. The autoneg_failed flag does this.
469 */
470 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
471 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
472 (!(rxcw & E1000_RXCW_C))) {
473 if (mac->autoneg_failed == 0) {
474 mac->autoneg_failed = 1;
475 return 0;
476 }
477 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
478
479 /* Disable auto-negotiation in the TXCW register */
480 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
481
482 /* Force link-up and also force full-duplex. */
483 ctrl = er32(CTRL);
484 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
485 ew32(CTRL, ctrl);
486
487 /* Configure Flow Control after forcing link up. */
488 ret_val = e1000e_config_fc_after_link_up(hw);
489 if (ret_val) {
490 hw_dbg(hw, "Error configuring flow control\n");
491 return ret_val;
492 }
493 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
ad68076e
BA
494 /*
495 * If we are forcing link and we are receiving /C/ ordered
bc7f75fa
AK
496 * sets, re-enable auto-negotiation in the TXCW register
497 * and disable forced link in the Device Control register
498 * in an attempt to auto-negotiate with our link partner.
499 */
500 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
501 ew32(TXCW, mac->txcw);
502 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
503
504 mac->serdes_has_link = 1;
505 }
506
507 return 0;
508}
509
510/**
511 * e1000e_check_for_serdes_link - Check for link (Serdes)
512 * @hw: pointer to the HW structure
513 *
514 * Checks for link up on the hardware. If link is not up and we have
515 * a signal, then we need to force link up.
516 **/
517s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
518{
519 struct e1000_mac_info *mac = &hw->mac;
520 u32 rxcw;
521 u32 ctrl;
522 u32 status;
523 s32 ret_val;
524
525 ctrl = er32(CTRL);
526 status = er32(STATUS);
527 rxcw = er32(RXCW);
528
ad68076e
BA
529 /*
530 * If we don't have link (auto-negotiation failed or link partner
bc7f75fa
AK
531 * cannot auto-negotiate), and our link partner is not trying to
532 * auto-negotiate with us (we are receiving idles or data),
533 * we need to force link up. We also need to give auto-negotiation
534 * time to complete.
535 */
536 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
537 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
538 if (mac->autoneg_failed == 0) {
539 mac->autoneg_failed = 1;
540 return 0;
541 }
542 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
543
544 /* Disable auto-negotiation in the TXCW register */
545 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
546
547 /* Force link-up and also force full-duplex. */
548 ctrl = er32(CTRL);
549 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
550 ew32(CTRL, ctrl);
551
552 /* Configure Flow Control after forcing link up. */
553 ret_val = e1000e_config_fc_after_link_up(hw);
554 if (ret_val) {
555 hw_dbg(hw, "Error configuring flow control\n");
556 return ret_val;
557 }
558 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
ad68076e
BA
559 /*
560 * If we are forcing link and we are receiving /C/ ordered
bc7f75fa
AK
561 * sets, re-enable auto-negotiation in the TXCW register
562 * and disable forced link in the Device Control register
563 * in an attempt to auto-negotiate with our link partner.
564 */
565 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
566 ew32(TXCW, mac->txcw);
567 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
568
569 mac->serdes_has_link = 1;
570 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
ad68076e
BA
571 /*
572 * If we force link for non-auto-negotiation switch, check
bc7f75fa
AK
573 * link status based on MAC synchronization for internal
574 * serdes media type.
575 */
576 /* SYNCH bit and IV bit are sticky. */
577 udelay(10);
578 if (E1000_RXCW_SYNCH & er32(RXCW)) {
579 if (!(rxcw & E1000_RXCW_IV)) {
580 mac->serdes_has_link = 1;
581 hw_dbg(hw, "SERDES: Link is up.\n");
582 }
583 } else {
584 mac->serdes_has_link = 0;
585 hw_dbg(hw, "SERDES: Link is down.\n");
586 }
587 }
588
589 if (E1000_TXCW_ANE & er32(TXCW)) {
590 status = er32(STATUS);
591 mac->serdes_has_link = (status & E1000_STATUS_LU);
592 }
593
594 return 0;
595}
596
597/**
598 * e1000_set_default_fc_generic - Set flow control default values
599 * @hw: pointer to the HW structure
600 *
601 * Read the EEPROM for the default values for flow control and store the
602 * values.
603 **/
604static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
605{
606 struct e1000_mac_info *mac = &hw->mac;
607 s32 ret_val;
608 u16 nvm_data;
609
ad68076e
BA
610 /*
611 * Read and store word 0x0F of the EEPROM. This word contains bits
bc7f75fa
AK
612 * that determine the hardware's default PAUSE (flow control) mode,
613 * a bit that determines whether the HW defaults to enabling or
614 * disabling auto-negotiation, and the direction of the
615 * SW defined pins. If there is no SW over-ride of the flow
616 * control setting, then the variable hw->fc will
617 * be initialized based on a value in the EEPROM.
618 */
619 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
620
621 if (ret_val) {
622 hw_dbg(hw, "NVM Read Error\n");
623 return ret_val;
624 }
625
626 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
627 mac->fc = e1000_fc_none;
628 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
629 NVM_WORD0F_ASM_DIR)
630 mac->fc = e1000_fc_tx_pause;
631 else
632 mac->fc = e1000_fc_full;
633
634 return 0;
635}
636
637/**
638 * e1000e_setup_link - Setup flow control and link settings
639 * @hw: pointer to the HW structure
640 *
641 * Determines which flow control settings to use, then configures flow
642 * control. Calls the appropriate media-specific link configuration
643 * function. Assuming the adapter has a valid link partner, a valid link
644 * should be established. Assumes the hardware has previously been reset
645 * and the transmitter and receiver are not enabled.
646 **/
647s32 e1000e_setup_link(struct e1000_hw *hw)
648{
649 struct e1000_mac_info *mac = &hw->mac;
650 s32 ret_val;
651
ad68076e
BA
652 /*
653 * In the case of the phy reset being blocked, we already have a link.
bc7f75fa
AK
654 * We do not need to set it up again.
655 */
656 if (e1000_check_reset_block(hw))
657 return 0;
658
309af40b
AK
659 /*
660 * If flow control is set to default, set flow control based on
661 * the EEPROM flow control settings.
662 */
663 if (mac->fc == e1000_fc_default) {
664 ret_val = e1000_set_default_fc_generic(hw);
665 if (ret_val)
666 return ret_val;
667 }
bc7f75fa 668
ad68076e
BA
669 /*
670 * We want to save off the original Flow Control configuration just
bc7f75fa
AK
671 * in case we get disconnected and then reconnected into a different
672 * hub or switch with different Flow Control capabilities.
673 */
674 mac->original_fc = mac->fc;
675
676 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
677
678 /* Call the necessary media_type subroutine to configure the link. */
679 ret_val = mac->ops.setup_physical_interface(hw);
680 if (ret_val)
681 return ret_val;
682
ad68076e
BA
683 /*
684 * Initialize the flow control address, type, and PAUSE timer
bc7f75fa
AK
685 * registers to their default values. This is done even if flow
686 * control is disabled, because it does not hurt anything to
687 * initialize these registers.
688 */
689 hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
690 ew32(FCT, FLOW_CONTROL_TYPE);
691 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
692 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
693
694 ew32(FCTTV, mac->fc_pause_time);
695
696 return e1000e_set_fc_watermarks(hw);
697}
698
699/**
700 * e1000_commit_fc_settings_generic - Configure flow control
701 * @hw: pointer to the HW structure
702 *
703 * Write the flow control settings to the Transmit Config Word Register (TXCW)
704 * base on the flow control settings in e1000_mac_info.
705 **/
706static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
707{
708 struct e1000_mac_info *mac = &hw->mac;
709 u32 txcw;
710
ad68076e
BA
711 /*
712 * Check for a software override of the flow control settings, and
bc7f75fa
AK
713 * setup the device accordingly. If auto-negotiation is enabled, then
714 * software will have to set the "PAUSE" bits to the correct value in
715 * the Transmit Config Word Register (TXCW) and re-start auto-
716 * negotiation. However, if auto-negotiation is disabled, then
717 * software will have to manually configure the two flow control enable
718 * bits in the CTRL register.
719 *
720 * The possible values of the "fc" parameter are:
721 * 0: Flow control is completely disabled
722 * 1: Rx flow control is enabled (we can receive pause frames,
723 * but not send pause frames).
724 * 2: Tx flow control is enabled (we can send pause frames but we
725 * do not support receiving pause frames).
ad68076e 726 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bc7f75fa
AK
727 */
728 switch (mac->fc) {
729 case e1000_fc_none:
730 /* Flow control completely disabled by a software over-ride. */
731 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
732 break;
733 case e1000_fc_rx_pause:
ad68076e
BA
734 /*
735 * Rx Flow control is enabled and Tx Flow control is disabled
bc7f75fa 736 * by a software over-ride. Since there really isn't a way to
ad68076e
BA
737 * advertise that we are capable of Rx Pause ONLY, we will
738 * advertise that we support both symmetric and asymmetric Rx
bc7f75fa
AK
739 * PAUSE. Later, we will disable the adapter's ability to send
740 * PAUSE frames.
741 */
742 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
743 break;
744 case e1000_fc_tx_pause:
ad68076e
BA
745 /*
746 * Tx Flow control is enabled, and Rx Flow control is disabled,
bc7f75fa
AK
747 * by a software over-ride.
748 */
749 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
750 break;
751 case e1000_fc_full:
ad68076e
BA
752 /*
753 * Flow control (both Rx and Tx) is enabled by a software
bc7f75fa
AK
754 * over-ride.
755 */
756 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
757 break;
758 default:
759 hw_dbg(hw, "Flow control param set incorrectly\n");
760 return -E1000_ERR_CONFIG;
761 break;
762 }
763
764 ew32(TXCW, txcw);
765 mac->txcw = txcw;
766
767 return 0;
768}
769
770/**
771 * e1000_poll_fiber_serdes_link_generic - Poll for link up
772 * @hw: pointer to the HW structure
773 *
774 * Polls for link up by reading the status register, if link fails to come
775 * up with auto-negotiation, then the link is forced if a signal is detected.
776 **/
777static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
778{
779 struct e1000_mac_info *mac = &hw->mac;
780 u32 i, status;
781 s32 ret_val;
782
ad68076e
BA
783 /*
784 * If we have a signal (the cable is plugged in, or assumed true for
bc7f75fa
AK
785 * serdes media) then poll for a "Link-Up" indication in the Device
786 * Status Register. Time-out if a link isn't seen in 500 milliseconds
787 * seconds (Auto-negotiation should complete in less than 500
788 * milliseconds even if the other end is doing it in SW).
789 */
790 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
791 msleep(10);
792 status = er32(STATUS);
793 if (status & E1000_STATUS_LU)
794 break;
795 }
796 if (i == FIBER_LINK_UP_LIMIT) {
797 hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
798 mac->autoneg_failed = 1;
ad68076e
BA
799 /*
800 * AutoNeg failed to achieve a link, so we'll call
bc7f75fa
AK
801 * mac->check_for_link. This routine will force the
802 * link up if we detect a signal. This will allow us to
803 * communicate with non-autonegotiating link partners.
804 */
805 ret_val = mac->ops.check_for_link(hw);
806 if (ret_val) {
807 hw_dbg(hw, "Error while checking for link\n");
808 return ret_val;
809 }
810 mac->autoneg_failed = 0;
811 } else {
812 mac->autoneg_failed = 0;
813 hw_dbg(hw, "Valid Link Found\n");
814 }
815
816 return 0;
817}
818
819/**
820 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
821 * @hw: pointer to the HW structure
822 *
823 * Configures collision distance and flow control for fiber and serdes
824 * links. Upon successful setup, poll for link.
825 **/
826s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
827{
828 u32 ctrl;
829 s32 ret_val;
830
831 ctrl = er32(CTRL);
832
833 /* Take the link out of reset */
834 ctrl &= ~E1000_CTRL_LRST;
835
836 e1000e_config_collision_dist(hw);
837
838 ret_val = e1000_commit_fc_settings_generic(hw);
839 if (ret_val)
840 return ret_val;
841
ad68076e
BA
842 /*
843 * Since auto-negotiation is enabled, take the link out of reset (the
bc7f75fa
AK
844 * link will be in reset, because we previously reset the chip). This
845 * will restart auto-negotiation. If auto-negotiation is successful
846 * then the link-up status bit will be set and the flow control enable
847 * bits (RFCE and TFCE) will be set according to their negotiated value.
848 */
849 hw_dbg(hw, "Auto-negotiation enabled\n");
850
851 ew32(CTRL, ctrl);
852 e1e_flush();
853 msleep(1);
854
ad68076e
BA
855 /*
856 * For these adapters, the SW definable pin 1 is set when the optics
bc7f75fa
AK
857 * detect a signal. If we have a signal, then poll for a "Link-Up"
858 * indication.
859 */
860 if (hw->media_type == e1000_media_type_internal_serdes ||
861 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
862 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
863 } else {
864 hw_dbg(hw, "No signal detected\n");
865 }
866
867 return 0;
868}
869
870/**
871 * e1000e_config_collision_dist - Configure collision distance
872 * @hw: pointer to the HW structure
873 *
874 * Configures the collision distance to the default value and is used
875 * during link setup. Currently no func pointer exists and all
876 * implementations are handled in the generic version of this function.
877 **/
878void e1000e_config_collision_dist(struct e1000_hw *hw)
879{
880 u32 tctl;
881
882 tctl = er32(TCTL);
883
884 tctl &= ~E1000_TCTL_COLD;
885 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
886
887 ew32(TCTL, tctl);
888 e1e_flush();
889}
890
891/**
892 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
893 * @hw: pointer to the HW structure
894 *
895 * Sets the flow control high/low threshold (watermark) registers. If
896 * flow control XON frame transmission is enabled, then set XON frame
ad68076e 897 * transmission as well.
bc7f75fa
AK
898 **/
899s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
900{
901 struct e1000_mac_info *mac = &hw->mac;
902 u32 fcrtl = 0, fcrth = 0;
903
ad68076e
BA
904 /*
905 * Set the flow control receive threshold registers. Normally,
bc7f75fa
AK
906 * these registers will be set to a default threshold that may be
907 * adjusted later by the driver's runtime code. However, if the
908 * ability to transmit pause frames is not enabled, then these
909 * registers will be set to 0.
910 */
911 if (mac->fc & e1000_fc_tx_pause) {
ad68076e
BA
912 /*
913 * We need to set up the Receive Threshold high and low water
bc7f75fa
AK
914 * marks as well as (optionally) enabling the transmission of
915 * XON frames.
916 */
917 fcrtl = mac->fc_low_water;
918 fcrtl |= E1000_FCRTL_XONE;
919 fcrth = mac->fc_high_water;
920 }
921 ew32(FCRTL, fcrtl);
922 ew32(FCRTH, fcrth);
923
924 return 0;
925}
926
927/**
928 * e1000e_force_mac_fc - Force the MAC's flow control settings
929 * @hw: pointer to the HW structure
930 *
931 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
932 * device control register to reflect the adapter settings. TFCE and RFCE
933 * need to be explicitly set by software when a copper PHY is used because
934 * autonegotiation is managed by the PHY rather than the MAC. Software must
935 * also configure these bits when link is forced on a fiber connection.
936 **/
937s32 e1000e_force_mac_fc(struct e1000_hw *hw)
938{
939 struct e1000_mac_info *mac = &hw->mac;
940 u32 ctrl;
941
942 ctrl = er32(CTRL);
943
ad68076e
BA
944 /*
945 * Because we didn't get link via the internal auto-negotiation
bc7f75fa
AK
946 * mechanism (we either forced link or we got link via PHY
947 * auto-neg), we have to manually enable/disable transmit an
948 * receive flow control.
949 *
950 * The "Case" statement below enables/disable flow control
951 * according to the "mac->fc" parameter.
952 *
953 * The possible values of the "fc" parameter are:
954 * 0: Flow control is completely disabled
955 * 1: Rx flow control is enabled (we can receive pause
956 * frames but not send pause frames).
957 * 2: Tx flow control is enabled (we can send pause frames
958 * frames but we do not receive pause frames).
ad68076e 959 * 3: Both Rx and Tx flow control (symmetric) is enabled.
bc7f75fa
AK
960 * other: No other values should be possible at this point.
961 */
962 hw_dbg(hw, "mac->fc = %u\n", mac->fc);
963
964 switch (mac->fc) {
965 case e1000_fc_none:
966 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
967 break;
968 case e1000_fc_rx_pause:
969 ctrl &= (~E1000_CTRL_TFCE);
970 ctrl |= E1000_CTRL_RFCE;
971 break;
972 case e1000_fc_tx_pause:
973 ctrl &= (~E1000_CTRL_RFCE);
974 ctrl |= E1000_CTRL_TFCE;
975 break;
976 case e1000_fc_full:
977 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
978 break;
979 default:
980 hw_dbg(hw, "Flow control param set incorrectly\n");
981 return -E1000_ERR_CONFIG;
982 }
983
984 ew32(CTRL, ctrl);
985
986 return 0;
987}
988
989/**
990 * e1000e_config_fc_after_link_up - Configures flow control after link
991 * @hw: pointer to the HW structure
992 *
993 * Checks the status of auto-negotiation after link up to ensure that the
994 * speed and duplex were not forced. If the link needed to be forced, then
995 * flow control needs to be forced also. If auto-negotiation is enabled
996 * and did not fail, then we configure flow control based on our link
997 * partner.
998 **/
999s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1000{
1001 struct e1000_mac_info *mac = &hw->mac;
1002 s32 ret_val = 0;
1003 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1004 u16 speed, duplex;
1005
ad68076e
BA
1006 /*
1007 * Check for the case where we have fiber media and auto-neg failed
bc7f75fa
AK
1008 * so we had to force link. In this case, we need to force the
1009 * configuration of the MAC to match the "fc" parameter.
1010 */
1011 if (mac->autoneg_failed) {
1012 if (hw->media_type == e1000_media_type_fiber ||
1013 hw->media_type == e1000_media_type_internal_serdes)
1014 ret_val = e1000e_force_mac_fc(hw);
1015 } else {
1016 if (hw->media_type == e1000_media_type_copper)
1017 ret_val = e1000e_force_mac_fc(hw);
1018 }
1019
1020 if (ret_val) {
1021 hw_dbg(hw, "Error forcing flow control settings\n");
1022 return ret_val;
1023 }
1024
ad68076e
BA
1025 /*
1026 * Check for the case where we have copper media and auto-neg is
bc7f75fa
AK
1027 * enabled. In this case, we need to check and see if Auto-Neg
1028 * has completed, and if so, how the PHY and link partner has
1029 * flow control configured.
1030 */
1031 if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
ad68076e
BA
1032 /*
1033 * Read the MII Status Register and check to see if AutoNeg
bc7f75fa
AK
1034 * has completed. We read this twice because this reg has
1035 * some "sticky" (latched) bits.
1036 */
1037 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1038 if (ret_val)
1039 return ret_val;
1040 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1041 if (ret_val)
1042 return ret_val;
1043
1044 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1045 hw_dbg(hw, "Copper PHY and Auto Neg "
1046 "has not completed.\n");
1047 return ret_val;
1048 }
1049
ad68076e
BA
1050 /*
1051 * The AutoNeg process has completed, so we now need to
bc7f75fa
AK
1052 * read both the Auto Negotiation Advertisement
1053 * Register (Address 4) and the Auto_Negotiation Base
1054 * Page Ability Register (Address 5) to determine how
1055 * flow control was negotiated.
1056 */
1057 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1058 if (ret_val)
1059 return ret_val;
1060 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1061 if (ret_val)
1062 return ret_val;
1063
ad68076e
BA
1064 /*
1065 * Two bits in the Auto Negotiation Advertisement Register
bc7f75fa
AK
1066 * (Address 4) and two bits in the Auto Negotiation Base
1067 * Page Ability Register (Address 5) determine flow control
1068 * for both the PHY and the link partner. The following
1069 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1070 * 1999, describes these PAUSE resolution bits and how flow
1071 * control is determined based upon these settings.
1072 * NOTE: DC = Don't Care
1073 *
1074 * LOCAL DEVICE | LINK PARTNER
1075 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1076 *-------|---------|-------|---------|--------------------
1077 * 0 | 0 | DC | DC | e1000_fc_none
1078 * 0 | 1 | 0 | DC | e1000_fc_none
1079 * 0 | 1 | 1 | 0 | e1000_fc_none
1080 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1081 * 1 | 0 | 0 | DC | e1000_fc_none
1082 * 1 | DC | 1 | DC | e1000_fc_full
1083 * 1 | 1 | 0 | 0 | e1000_fc_none
1084 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1085 *
ad68076e
BA
1086 *
1087 * Are both PAUSE bits set to 1? If so, this implies
bc7f75fa
AK
1088 * Symmetric Flow Control is enabled at both ends. The
1089 * ASM_DIR bits are irrelevant per the spec.
1090 *
1091 * For Symmetric Flow Control:
1092 *
1093 * LOCAL DEVICE | LINK PARTNER
1094 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1095 *-------|---------|-------|---------|--------------------
1096 * 1 | DC | 1 | DC | E1000_fc_full
1097 *
1098 */
1099 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1100 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
ad68076e
BA
1101 /*
1102 * Now we need to check if the user selected Rx ONLY
bc7f75fa 1103 * of pause frames. In this case, we had to advertise
ad68076e 1104 * FULL flow control because we could not advertise Rx
bc7f75fa
AK
1105 * ONLY. Hence, we must now check to see if we need to
1106 * turn OFF the TRANSMISSION of PAUSE frames.
1107 */
1108 if (mac->original_fc == e1000_fc_full) {
1109 mac->fc = e1000_fc_full;
1110 hw_dbg(hw, "Flow Control = FULL.\r\n");
1111 } else {
1112 mac->fc = e1000_fc_rx_pause;
1113 hw_dbg(hw, "Flow Control = "
1114 "RX PAUSE frames only.\r\n");
1115 }
1116 }
ad68076e
BA
1117 /*
1118 * For receiving PAUSE frames ONLY.
bc7f75fa
AK
1119 *
1120 * LOCAL DEVICE | LINK PARTNER
1121 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1122 *-------|---------|-------|---------|--------------------
1123 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1124 *
1125 */
1126 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1127 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1128 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1129 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1130 mac->fc = e1000_fc_tx_pause;
1131 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
1132 }
ad68076e
BA
1133 /*
1134 * For transmitting PAUSE frames ONLY.
bc7f75fa
AK
1135 *
1136 * LOCAL DEVICE | LINK PARTNER
1137 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1138 *-------|---------|-------|---------|--------------------
1139 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1140 *
1141 */
1142 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1143 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1144 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1145 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1146 mac->fc = e1000_fc_rx_pause;
1147 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
de92d84e
JB
1148 } else {
1149 /*
1150 * Per the IEEE spec, at this point flow control
1151 * should be disabled.
1152 */
bc7f75fa
AK
1153 mac->fc = e1000_fc_none;
1154 hw_dbg(hw, "Flow Control = NONE.\r\n");
bc7f75fa
AK
1155 }
1156
ad68076e
BA
1157 /*
1158 * Now we need to do one last check... If we auto-
bc7f75fa
AK
1159 * negotiated to HALF DUPLEX, flow control should not be
1160 * enabled per IEEE 802.3 spec.
1161 */
1162 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1163 if (ret_val) {
1164 hw_dbg(hw, "Error getting link speed and duplex\n");
1165 return ret_val;
1166 }
1167
1168 if (duplex == HALF_DUPLEX)
1169 mac->fc = e1000_fc_none;
1170
ad68076e
BA
1171 /*
1172 * Now we call a subroutine to actually force the MAC
bc7f75fa
AK
1173 * controller to use the correct flow control settings.
1174 */
1175 ret_val = e1000e_force_mac_fc(hw);
1176 if (ret_val) {
1177 hw_dbg(hw, "Error forcing flow control settings\n");
1178 return ret_val;
1179 }
1180 }
1181
1182 return 0;
1183}
1184
1185/**
489815ce 1186 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
bc7f75fa
AK
1187 * @hw: pointer to the HW structure
1188 * @speed: stores the current speed
1189 * @duplex: stores the current duplex
1190 *
1191 * Read the status register for the current speed/duplex and store the current
1192 * speed and duplex for copper connections.
1193 **/
1194s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1195{
1196 u32 status;
1197
1198 status = er32(STATUS);
1199 if (status & E1000_STATUS_SPEED_1000) {
1200 *speed = SPEED_1000;
1201 hw_dbg(hw, "1000 Mbs, ");
1202 } else if (status & E1000_STATUS_SPEED_100) {
1203 *speed = SPEED_100;
1204 hw_dbg(hw, "100 Mbs, ");
1205 } else {
1206 *speed = SPEED_10;
1207 hw_dbg(hw, "10 Mbs, ");
1208 }
1209
1210 if (status & E1000_STATUS_FD) {
1211 *duplex = FULL_DUPLEX;
1212 hw_dbg(hw, "Full Duplex\n");
1213 } else {
1214 *duplex = HALF_DUPLEX;
1215 hw_dbg(hw, "Half Duplex\n");
1216 }
1217
1218 return 0;
1219}
1220
1221/**
489815ce 1222 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
bc7f75fa
AK
1223 * @hw: pointer to the HW structure
1224 * @speed: stores the current speed
1225 * @duplex: stores the current duplex
1226 *
1227 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1228 * for fiber/serdes links.
1229 **/
1230s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1231{
1232 *speed = SPEED_1000;
1233 *duplex = FULL_DUPLEX;
1234
1235 return 0;
1236}
1237
1238/**
1239 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1240 * @hw: pointer to the HW structure
1241 *
1242 * Acquire the HW semaphore to access the PHY or NVM
1243 **/
1244s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1245{
1246 u32 swsm;
1247 s32 timeout = hw->nvm.word_size + 1;
1248 s32 i = 0;
1249
1250 /* Get the SW semaphore */
1251 while (i < timeout) {
1252 swsm = er32(SWSM);
1253 if (!(swsm & E1000_SWSM_SMBI))
1254 break;
1255
1256 udelay(50);
1257 i++;
1258 }
1259
1260 if (i == timeout) {
1261 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
1262 return -E1000_ERR_NVM;
1263 }
1264
1265 /* Get the FW semaphore. */
1266 for (i = 0; i < timeout; i++) {
1267 swsm = er32(SWSM);
1268 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1269
1270 /* Semaphore acquired if bit latched */
1271 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1272 break;
1273
1274 udelay(50);
1275 }
1276
1277 if (i == timeout) {
1278 /* Release semaphores */
1279 e1000e_put_hw_semaphore(hw);
1280 hw_dbg(hw, "Driver can't access the NVM\n");
1281 return -E1000_ERR_NVM;
1282 }
1283
1284 return 0;
1285}
1286
1287/**
1288 * e1000e_put_hw_semaphore - Release hardware semaphore
1289 * @hw: pointer to the HW structure
1290 *
1291 * Release hardware semaphore used to access the PHY or NVM
1292 **/
1293void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1294{
1295 u32 swsm;
1296
1297 swsm = er32(SWSM);
1298 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1299 ew32(SWSM, swsm);
1300}
1301
1302/**
1303 * e1000e_get_auto_rd_done - Check for auto read completion
1304 * @hw: pointer to the HW structure
1305 *
1306 * Check EEPROM for Auto Read done bit.
1307 **/
1308s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1309{
1310 s32 i = 0;
1311
1312 while (i < AUTO_READ_DONE_TIMEOUT) {
1313 if (er32(EECD) & E1000_EECD_AUTO_RD)
1314 break;
1315 msleep(1);
1316 i++;
1317 }
1318
1319 if (i == AUTO_READ_DONE_TIMEOUT) {
1320 hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
1321 return -E1000_ERR_RESET;
1322 }
1323
1324 return 0;
1325}
1326
1327/**
1328 * e1000e_valid_led_default - Verify a valid default LED config
1329 * @hw: pointer to the HW structure
1330 * @data: pointer to the NVM (EEPROM)
1331 *
1332 * Read the EEPROM for the current default LED configuration. If the
1333 * LED configuration is not valid, set to a valid LED configuration.
1334 **/
1335s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1336{
1337 s32 ret_val;
1338
1339 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1340 if (ret_val) {
1341 hw_dbg(hw, "NVM Read Error\n");
1342 return ret_val;
1343 }
1344
1345 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1346 *data = ID_LED_DEFAULT;
1347
1348 return 0;
1349}
1350
1351/**
1352 * e1000e_id_led_init -
1353 * @hw: pointer to the HW structure
1354 *
1355 **/
1356s32 e1000e_id_led_init(struct e1000_hw *hw)
1357{
1358 struct e1000_mac_info *mac = &hw->mac;
1359 s32 ret_val;
1360 const u32 ledctl_mask = 0x000000FF;
1361 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1362 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1363 u16 data, i, temp;
1364 const u16 led_mask = 0x0F;
1365
1366 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1367 if (ret_val)
1368 return ret_val;
1369
1370 mac->ledctl_default = er32(LEDCTL);
1371 mac->ledctl_mode1 = mac->ledctl_default;
1372 mac->ledctl_mode2 = mac->ledctl_default;
1373
1374 for (i = 0; i < 4; i++) {
1375 temp = (data >> (i << 2)) & led_mask;
1376 switch (temp) {
1377 case ID_LED_ON1_DEF2:
1378 case ID_LED_ON1_ON2:
1379 case ID_LED_ON1_OFF2:
1380 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1381 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1382 break;
1383 case ID_LED_OFF1_DEF2:
1384 case ID_LED_OFF1_ON2:
1385 case ID_LED_OFF1_OFF2:
1386 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1387 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1388 break;
1389 default:
1390 /* Do nothing */
1391 break;
1392 }
1393 switch (temp) {
1394 case ID_LED_DEF1_ON2:
1395 case ID_LED_ON1_ON2:
1396 case ID_LED_OFF1_ON2:
1397 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1398 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1399 break;
1400 case ID_LED_DEF1_OFF2:
1401 case ID_LED_ON1_OFF2:
1402 case ID_LED_OFF1_OFF2:
1403 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1404 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1405 break;
1406 default:
1407 /* Do nothing */
1408 break;
1409 }
1410 }
1411
1412 return 0;
1413}
1414
1415/**
1416 * e1000e_cleanup_led_generic - Set LED config to default operation
1417 * @hw: pointer to the HW structure
1418 *
1419 * Remove the current LED configuration and set the LED configuration
1420 * to the default value, saved from the EEPROM.
1421 **/
1422s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1423{
1424 ew32(LEDCTL, hw->mac.ledctl_default);
1425 return 0;
1426}
1427
1428/**
1429 * e1000e_blink_led - Blink LED
1430 * @hw: pointer to the HW structure
1431 *
489815ce 1432 * Blink the LEDs which are set to be on.
bc7f75fa
AK
1433 **/
1434s32 e1000e_blink_led(struct e1000_hw *hw)
1435{
1436 u32 ledctl_blink = 0;
1437 u32 i;
1438
1439 if (hw->media_type == e1000_media_type_fiber) {
1440 /* always blink LED0 for PCI-E fiber */
1441 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1442 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1443 } else {
ad68076e
BA
1444 /*
1445 * set the blink bit for each LED that's "on" (0x0E)
1446 * in ledctl_mode2
1447 */
bc7f75fa
AK
1448 ledctl_blink = hw->mac.ledctl_mode2;
1449 for (i = 0; i < 4; i++)
1450 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1451 E1000_LEDCTL_MODE_LED_ON)
1452 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1453 (i * 8));
1454 }
1455
1456 ew32(LEDCTL, ledctl_blink);
1457
1458 return 0;
1459}
1460
1461/**
1462 * e1000e_led_on_generic - Turn LED on
1463 * @hw: pointer to the HW structure
1464 *
1465 * Turn LED on.
1466 **/
1467s32 e1000e_led_on_generic(struct e1000_hw *hw)
1468{
1469 u32 ctrl;
1470
1471 switch (hw->media_type) {
1472 case e1000_media_type_fiber:
1473 ctrl = er32(CTRL);
1474 ctrl &= ~E1000_CTRL_SWDPIN0;
1475 ctrl |= E1000_CTRL_SWDPIO0;
1476 ew32(CTRL, ctrl);
1477 break;
1478 case e1000_media_type_copper:
1479 ew32(LEDCTL, hw->mac.ledctl_mode2);
1480 break;
1481 default:
1482 break;
1483 }
1484
1485 return 0;
1486}
1487
1488/**
1489 * e1000e_led_off_generic - Turn LED off
1490 * @hw: pointer to the HW structure
1491 *
1492 * Turn LED off.
1493 **/
1494s32 e1000e_led_off_generic(struct e1000_hw *hw)
1495{
1496 u32 ctrl;
1497
1498 switch (hw->media_type) {
1499 case e1000_media_type_fiber:
1500 ctrl = er32(CTRL);
1501 ctrl |= E1000_CTRL_SWDPIN0;
1502 ctrl |= E1000_CTRL_SWDPIO0;
1503 ew32(CTRL, ctrl);
1504 break;
1505 case e1000_media_type_copper:
1506 ew32(LEDCTL, hw->mac.ledctl_mode1);
1507 break;
1508 default:
1509 break;
1510 }
1511
1512 return 0;
1513}
1514
1515/**
1516 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1517 * @hw: pointer to the HW structure
1518 * @no_snoop: bitmap of snoop events
1519 *
1520 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1521 **/
1522void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1523{
1524 u32 gcr;
1525
1526 if (no_snoop) {
1527 gcr = er32(GCR);
1528 gcr &= ~(PCIE_NO_SNOOP_ALL);
1529 gcr |= no_snoop;
1530 ew32(GCR, gcr);
1531 }
1532}
1533
1534/**
1535 * e1000e_disable_pcie_master - Disables PCI-express master access
1536 * @hw: pointer to the HW structure
1537 *
1538 * Returns 0 if successful, else returns -10
489815ce 1539 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
bc7f75fa
AK
1540 * the master requests to be disabled.
1541 *
1542 * Disables PCI-Express master access and verifies there are no pending
1543 * requests.
1544 **/
1545s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1546{
1547 u32 ctrl;
1548 s32 timeout = MASTER_DISABLE_TIMEOUT;
1549
1550 ctrl = er32(CTRL);
1551 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1552 ew32(CTRL, ctrl);
1553
1554 while (timeout) {
1555 if (!(er32(STATUS) &
1556 E1000_STATUS_GIO_MASTER_ENABLE))
1557 break;
1558 udelay(100);
1559 timeout--;
1560 }
1561
1562 if (!timeout) {
1563 hw_dbg(hw, "Master requests are pending.\n");
1564 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1565 }
1566
1567 return 0;
1568}
1569
1570/**
1571 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1572 * @hw: pointer to the HW structure
1573 *
1574 * Reset the Adaptive Interframe Spacing throttle to default values.
1575 **/
1576void e1000e_reset_adaptive(struct e1000_hw *hw)
1577{
1578 struct e1000_mac_info *mac = &hw->mac;
1579
1580 mac->current_ifs_val = 0;
1581 mac->ifs_min_val = IFS_MIN;
1582 mac->ifs_max_val = IFS_MAX;
1583 mac->ifs_step_size = IFS_STEP;
1584 mac->ifs_ratio = IFS_RATIO;
1585
1586 mac->in_ifs_mode = 0;
1587 ew32(AIT, 0);
1588}
1589
1590/**
1591 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1592 * @hw: pointer to the HW structure
1593 *
1594 * Update the Adaptive Interframe Spacing Throttle value based on the
1595 * time between transmitted packets and time between collisions.
1596 **/
1597void e1000e_update_adaptive(struct e1000_hw *hw)
1598{
1599 struct e1000_mac_info *mac = &hw->mac;
1600
1601 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1602 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1603 mac->in_ifs_mode = 1;
1604 if (mac->current_ifs_val < mac->ifs_max_val) {
1605 if (!mac->current_ifs_val)
1606 mac->current_ifs_val = mac->ifs_min_val;
1607 else
1608 mac->current_ifs_val +=
1609 mac->ifs_step_size;
ad68076e 1610 ew32(AIT, mac->current_ifs_val);
bc7f75fa
AK
1611 }
1612 }
1613 } else {
1614 if (mac->in_ifs_mode &&
1615 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1616 mac->current_ifs_val = 0;
1617 mac->in_ifs_mode = 0;
1618 ew32(AIT, 0);
1619 }
1620 }
1621}
1622
1623/**
1624 * e1000_raise_eec_clk - Raise EEPROM clock
1625 * @hw: pointer to the HW structure
1626 * @eecd: pointer to the EEPROM
1627 *
1628 * Enable/Raise the EEPROM clock bit.
1629 **/
1630static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1631{
1632 *eecd = *eecd | E1000_EECD_SK;
1633 ew32(EECD, *eecd);
1634 e1e_flush();
1635 udelay(hw->nvm.delay_usec);
1636}
1637
1638/**
1639 * e1000_lower_eec_clk - Lower EEPROM clock
1640 * @hw: pointer to the HW structure
1641 * @eecd: pointer to the EEPROM
1642 *
1643 * Clear/Lower the EEPROM clock bit.
1644 **/
1645static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1646{
1647 *eecd = *eecd & ~E1000_EECD_SK;
1648 ew32(EECD, *eecd);
1649 e1e_flush();
1650 udelay(hw->nvm.delay_usec);
1651}
1652
1653/**
1654 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1655 * @hw: pointer to the HW structure
1656 * @data: data to send to the EEPROM
1657 * @count: number of bits to shift out
1658 *
1659 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1660 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1661 * In order to do this, "data" must be broken down into bits.
1662 **/
1663static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1664{
1665 struct e1000_nvm_info *nvm = &hw->nvm;
1666 u32 eecd = er32(EECD);
1667 u32 mask;
1668
1669 mask = 0x01 << (count - 1);
1670 if (nvm->type == e1000_nvm_eeprom_spi)
1671 eecd |= E1000_EECD_DO;
1672
1673 do {
1674 eecd &= ~E1000_EECD_DI;
1675
1676 if (data & mask)
1677 eecd |= E1000_EECD_DI;
1678
1679 ew32(EECD, eecd);
1680 e1e_flush();
1681
1682 udelay(nvm->delay_usec);
1683
1684 e1000_raise_eec_clk(hw, &eecd);
1685 e1000_lower_eec_clk(hw, &eecd);
1686
1687 mask >>= 1;
1688 } while (mask);
1689
1690 eecd &= ~E1000_EECD_DI;
1691 ew32(EECD, eecd);
1692}
1693
1694/**
1695 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1696 * @hw: pointer to the HW structure
1697 * @count: number of bits to shift in
1698 *
1699 * In order to read a register from the EEPROM, we need to shift 'count' bits
1700 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1701 * the EEPROM (setting the SK bit), and then reading the value of the data out
1702 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1703 * always be clear.
1704 **/
1705static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1706{
1707 u32 eecd;
1708 u32 i;
1709 u16 data;
1710
1711 eecd = er32(EECD);
1712
1713 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1714 data = 0;
1715
1716 for (i = 0; i < count; i++) {
1717 data <<= 1;
1718 e1000_raise_eec_clk(hw, &eecd);
1719
1720 eecd = er32(EECD);
1721
1722 eecd &= ~E1000_EECD_DI;
1723 if (eecd & E1000_EECD_DO)
1724 data |= 1;
1725
1726 e1000_lower_eec_clk(hw, &eecd);
1727 }
1728
1729 return data;
1730}
1731
1732/**
1733 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1734 * @hw: pointer to the HW structure
1735 * @ee_reg: EEPROM flag for polling
1736 *
1737 * Polls the EEPROM status bit for either read or write completion based
1738 * upon the value of 'ee_reg'.
1739 **/
1740s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1741{
1742 u32 attempts = 100000;
1743 u32 i, reg = 0;
1744
1745 for (i = 0; i < attempts; i++) {
1746 if (ee_reg == E1000_NVM_POLL_READ)
1747 reg = er32(EERD);
1748 else
1749 reg = er32(EEWR);
1750
1751 if (reg & E1000_NVM_RW_REG_DONE)
1752 return 0;
1753
1754 udelay(5);
1755 }
1756
1757 return -E1000_ERR_NVM;
1758}
1759
1760/**
1761 * e1000e_acquire_nvm - Generic request for access to EEPROM
1762 * @hw: pointer to the HW structure
1763 *
1764 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1765 * Return successful if access grant bit set, else clear the request for
1766 * EEPROM access and return -E1000_ERR_NVM (-1).
1767 **/
1768s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1769{
1770 u32 eecd = er32(EECD);
1771 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1772
1773 ew32(EECD, eecd | E1000_EECD_REQ);
1774 eecd = er32(EECD);
1775
1776 while (timeout) {
1777 if (eecd & E1000_EECD_GNT)
1778 break;
1779 udelay(5);
1780 eecd = er32(EECD);
1781 timeout--;
1782 }
1783
1784 if (!timeout) {
1785 eecd &= ~E1000_EECD_REQ;
1786 ew32(EECD, eecd);
1787 hw_dbg(hw, "Could not acquire NVM grant\n");
1788 return -E1000_ERR_NVM;
1789 }
1790
1791 return 0;
1792}
1793
1794/**
1795 * e1000_standby_nvm - Return EEPROM to standby state
1796 * @hw: pointer to the HW structure
1797 *
1798 * Return the EEPROM to a standby state.
1799 **/
1800static void e1000_standby_nvm(struct e1000_hw *hw)
1801{
1802 struct e1000_nvm_info *nvm = &hw->nvm;
1803 u32 eecd = er32(EECD);
1804
1805 if (nvm->type == e1000_nvm_eeprom_spi) {
1806 /* Toggle CS to flush commands */
1807 eecd |= E1000_EECD_CS;
1808 ew32(EECD, eecd);
1809 e1e_flush();
1810 udelay(nvm->delay_usec);
1811 eecd &= ~E1000_EECD_CS;
1812 ew32(EECD, eecd);
1813 e1e_flush();
1814 udelay(nvm->delay_usec);
1815 }
1816}
1817
1818/**
1819 * e1000_stop_nvm - Terminate EEPROM command
1820 * @hw: pointer to the HW structure
1821 *
1822 * Terminates the current command by inverting the EEPROM's chip select pin.
1823 **/
1824static void e1000_stop_nvm(struct e1000_hw *hw)
1825{
1826 u32 eecd;
1827
1828 eecd = er32(EECD);
1829 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1830 /* Pull CS high */
1831 eecd |= E1000_EECD_CS;
1832 e1000_lower_eec_clk(hw, &eecd);
1833 }
1834}
1835
1836/**
1837 * e1000e_release_nvm - Release exclusive access to EEPROM
1838 * @hw: pointer to the HW structure
1839 *
1840 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1841 **/
1842void e1000e_release_nvm(struct e1000_hw *hw)
1843{
1844 u32 eecd;
1845
1846 e1000_stop_nvm(hw);
1847
1848 eecd = er32(EECD);
1849 eecd &= ~E1000_EECD_REQ;
1850 ew32(EECD, eecd);
1851}
1852
1853/**
1854 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1855 * @hw: pointer to the HW structure
1856 *
1857 * Setups the EEPROM for reading and writing.
1858 **/
1859static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1860{
1861 struct e1000_nvm_info *nvm = &hw->nvm;
1862 u32 eecd = er32(EECD);
1863 u16 timeout = 0;
1864 u8 spi_stat_reg;
1865
1866 if (nvm->type == e1000_nvm_eeprom_spi) {
1867 /* Clear SK and CS */
1868 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1869 ew32(EECD, eecd);
1870 udelay(1);
1871 timeout = NVM_MAX_RETRY_SPI;
1872
ad68076e
BA
1873 /*
1874 * Read "Status Register" repeatedly until the LSB is cleared.
bc7f75fa
AK
1875 * The EEPROM will signal that the command has been completed
1876 * by clearing bit 0 of the internal status register. If it's
ad68076e
BA
1877 * not cleared within 'timeout', then error out.
1878 */
bc7f75fa
AK
1879 while (timeout) {
1880 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
1881 hw->nvm.opcode_bits);
1882 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
1883 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
1884 break;
1885
1886 udelay(5);
1887 e1000_standby_nvm(hw);
1888 timeout--;
1889 }
1890
1891 if (!timeout) {
1892 hw_dbg(hw, "SPI NVM Status error\n");
1893 return -E1000_ERR_NVM;
1894 }
1895 }
1896
1897 return 0;
1898}
1899
bc7f75fa
AK
1900/**
1901 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
1902 * @hw: pointer to the HW structure
1903 * @offset: offset of word in the EEPROM to read
1904 * @words: number of words to read
1905 * @data: word read from the EEPROM
1906 *
1907 * Reads a 16 bit word from the EEPROM using the EERD register.
1908 **/
1909s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1910{
1911 struct e1000_nvm_info *nvm = &hw->nvm;
1912 u32 i, eerd = 0;
1913 s32 ret_val = 0;
1914
ad68076e
BA
1915 /*
1916 * A check for invalid values: offset too large, too many words,
1917 * too many words for the offset, and not enough words.
1918 */
bc7f75fa
AK
1919 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1920 (words == 0)) {
1921 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1922 return -E1000_ERR_NVM;
1923 }
1924
1925 for (i = 0; i < words; i++) {
1926 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
1927 E1000_NVM_RW_REG_START;
1928
1929 ew32(EERD, eerd);
1930 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
1931 if (ret_val)
1932 break;
1933
ad68076e 1934 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
bc7f75fa
AK
1935 }
1936
1937 return ret_val;
1938}
1939
1940/**
1941 * e1000e_write_nvm_spi - Write to EEPROM using SPI
1942 * @hw: pointer to the HW structure
1943 * @offset: offset within the EEPROM to be written to
1944 * @words: number of words to write
1945 * @data: 16 bit word(s) to be written to the EEPROM
1946 *
1947 * Writes data to EEPROM at offset using SPI interface.
1948 *
1949 * If e1000e_update_nvm_checksum is not called after this function , the
489815ce 1950 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
1951 **/
1952s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1953{
1954 struct e1000_nvm_info *nvm = &hw->nvm;
1955 s32 ret_val;
1956 u16 widx = 0;
1957
ad68076e
BA
1958 /*
1959 * A check for invalid values: offset too large, too many words,
1960 * and not enough words.
1961 */
bc7f75fa
AK
1962 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1963 (words == 0)) {
1964 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1965 return -E1000_ERR_NVM;
1966 }
1967
1968 ret_val = nvm->ops.acquire_nvm(hw);
1969 if (ret_val)
1970 return ret_val;
1971
1972 msleep(10);
1973
1974 while (widx < words) {
1975 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
1976
1977 ret_val = e1000_ready_nvm_eeprom(hw);
1978 if (ret_val) {
1979 nvm->ops.release_nvm(hw);
1980 return ret_val;
1981 }
1982
1983 e1000_standby_nvm(hw);
1984
1985 /* Send the WRITE ENABLE command (8 bit opcode) */
1986 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
1987 nvm->opcode_bits);
1988
1989 e1000_standby_nvm(hw);
1990
ad68076e
BA
1991 /*
1992 * Some SPI eeproms use the 8th address bit embedded in the
1993 * opcode
1994 */
bc7f75fa
AK
1995 if ((nvm->address_bits == 8) && (offset >= 128))
1996 write_opcode |= NVM_A8_OPCODE_SPI;
1997
1998 /* Send the Write command (8-bit opcode + addr) */
1999 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2000 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2001 nvm->address_bits);
2002
2003 /* Loop to allow for up to whole page write of eeprom */
2004 while (widx < words) {
2005 u16 word_out = data[widx];
2006 word_out = (word_out >> 8) | (word_out << 8);
2007 e1000_shift_out_eec_bits(hw, word_out, 16);
2008 widx++;
2009
2010 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2011 e1000_standby_nvm(hw);
2012 break;
2013 }
2014 }
2015 }
2016
2017 msleep(10);
2018 return 0;
2019}
2020
2021/**
2022 * e1000e_read_mac_addr - Read device MAC address
2023 * @hw: pointer to the HW structure
2024 *
2025 * Reads the device MAC address from the EEPROM and stores the value.
2026 * Since devices with two ports use the same EEPROM, we increment the
2027 * last bit in the MAC address for the second port.
2028 **/
2029s32 e1000e_read_mac_addr(struct e1000_hw *hw)
2030{
2031 s32 ret_val;
2032 u16 offset, nvm_data, i;
93ca1610
BH
2033 u16 mac_addr_offset = 0;
2034
2035 if (hw->mac.type == e1000_82571) {
2036 /* Check for an alternate MAC address. An alternate MAC
2037 * address can be setup by pre-boot software and must be
2038 * treated like a permanent address and must override the
ad68076e 2039 * actual permanent MAC address.*/
93ca1610 2040 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
ad68076e 2041 &mac_addr_offset);
93ca1610
BH
2042 if (ret_val) {
2043 hw_dbg(hw, "NVM Read Error\n");
2044 return ret_val;
2045 }
2046 if (mac_addr_offset == 0xFFFF)
2047 mac_addr_offset = 0;
2048
2049 if (mac_addr_offset) {
2050 if (hw->bus.func == E1000_FUNC_1)
2051 mac_addr_offset += ETH_ALEN/sizeof(u16);
2052
2053 /* make sure we have a valid mac address here
ad68076e 2054 * before using it */
93ca1610
BH
2055 ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
2056 &nvm_data);
2057 if (ret_val) {
2058 hw_dbg(hw, "NVM Read Error\n");
2059 return ret_val;
2060 }
2061 if (nvm_data & 0x0001)
2062 mac_addr_offset = 0;
2063 }
2064
2065 if (mac_addr_offset)
ad68076e 2066 hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
93ca1610 2067 }
bc7f75fa
AK
2068
2069 for (i = 0; i < ETH_ALEN; i += 2) {
93ca1610 2070 offset = mac_addr_offset + (i >> 1);
bc7f75fa
AK
2071 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
2072 if (ret_val) {
2073 hw_dbg(hw, "NVM Read Error\n");
2074 return ret_val;
2075 }
2076 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
2077 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
2078 }
2079
2080 /* Flip last bit of mac address if we're on second port */
93ca1610 2081 if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
bc7f75fa
AK
2082 hw->mac.perm_addr[5] ^= 1;
2083
2084 for (i = 0; i < ETH_ALEN; i++)
2085 hw->mac.addr[i] = hw->mac.perm_addr[i];
2086
2087 return 0;
2088}
2089
2090/**
2091 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2092 * @hw: pointer to the HW structure
2093 *
2094 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2095 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2096 **/
2097s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2098{
2099 s32 ret_val;
2100 u16 checksum = 0;
2101 u16 i, nvm_data;
2102
2103 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2104 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2105 if (ret_val) {
2106 hw_dbg(hw, "NVM Read Error\n");
2107 return ret_val;
2108 }
2109 checksum += nvm_data;
2110 }
2111
2112 if (checksum != (u16) NVM_SUM) {
2113 hw_dbg(hw, "NVM Checksum Invalid\n");
2114 return -E1000_ERR_NVM;
2115 }
2116
2117 return 0;
2118}
2119
2120/**
2121 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2122 * @hw: pointer to the HW structure
2123 *
2124 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2125 * up to the checksum. Then calculates the EEPROM checksum and writes the
2126 * value to the EEPROM.
2127 **/
2128s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2129{
2130 s32 ret_val;
2131 u16 checksum = 0;
2132 u16 i, nvm_data;
2133
2134 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2135 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2136 if (ret_val) {
2137 hw_dbg(hw, "NVM Read Error while updating checksum.\n");
2138 return ret_val;
2139 }
2140 checksum += nvm_data;
2141 }
2142 checksum = (u16) NVM_SUM - checksum;
2143 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2144 if (ret_val)
2145 hw_dbg(hw, "NVM Write Error while updating checksum.\n");
2146
2147 return ret_val;
2148}
2149
2150/**
2151 * e1000e_reload_nvm - Reloads EEPROM
2152 * @hw: pointer to the HW structure
2153 *
2154 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2155 * extended control register.
2156 **/
2157void e1000e_reload_nvm(struct e1000_hw *hw)
2158{
2159 u32 ctrl_ext;
2160
2161 udelay(10);
2162 ctrl_ext = er32(CTRL_EXT);
2163 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2164 ew32(CTRL_EXT, ctrl_ext);
2165 e1e_flush();
2166}
2167
2168/**
2169 * e1000_calculate_checksum - Calculate checksum for buffer
2170 * @buffer: pointer to EEPROM
2171 * @length: size of EEPROM to calculate a checksum for
2172 *
2173 * Calculates the checksum for some buffer on a specified length. The
2174 * checksum calculated is returned.
2175 **/
2176static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2177{
2178 u32 i;
2179 u8 sum = 0;
2180
2181 if (!buffer)
2182 return 0;
2183
2184 for (i = 0; i < length; i++)
2185 sum += buffer[i];
2186
2187 return (u8) (0 - sum);
2188}
2189
2190/**
2191 * e1000_mng_enable_host_if - Checks host interface is enabled
2192 * @hw: pointer to the HW structure
2193 *
2194 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2195 *
489815ce 2196 * This function checks whether the HOST IF is enabled for command operation
bc7f75fa
AK
2197 * and also checks whether the previous command is completed. It busy waits
2198 * in case of previous command is not completed.
2199 **/
2200static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2201{
2202 u32 hicr;
2203 u8 i;
2204
2205 /* Check that the host interface is enabled. */
2206 hicr = er32(HICR);
2207 if ((hicr & E1000_HICR_EN) == 0) {
2208 hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
2209 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2210 }
2211 /* check the previous command is completed */
2212 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2213 hicr = er32(HICR);
2214 if (!(hicr & E1000_HICR_C))
2215 break;
2216 mdelay(1);
2217 }
2218
2219 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
2220 hw_dbg(hw, "Previous command timeout failed .\n");
2221 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2222 }
2223
2224 return 0;
2225}
2226
2227/**
489815ce 2228 * e1000e_check_mng_mode - check management mode
bc7f75fa
AK
2229 * @hw: pointer to the HW structure
2230 *
2231 * Reads the firmware semaphore register and returns true (>0) if
2232 * manageability is enabled, else false (0).
2233 **/
2234bool e1000e_check_mng_mode(struct e1000_hw *hw)
2235{
2236 u32 fwsm = er32(FWSM);
2237
2238 return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab;
2239}
2240
2241/**
ad68076e 2242 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
bc7f75fa
AK
2243 * @hw: pointer to the HW structure
2244 *
2245 * Enables packet filtering on transmit packets if manageability is enabled
2246 * and host interface is enabled.
2247 **/
2248bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2249{
2250 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2251 u32 *buffer = (u32 *)&hw->mng_cookie;
2252 u32 offset;
2253 s32 ret_val, hdr_csum, csum;
2254 u8 i, len;
2255
2256 /* No manageability, no filtering */
2257 if (!e1000e_check_mng_mode(hw)) {
2258 hw->mac.tx_pkt_filtering = 0;
2259 return 0;
2260 }
2261
ad68076e
BA
2262 /*
2263 * If we can't read from the host interface for whatever
bc7f75fa
AK
2264 * reason, disable filtering.
2265 */
2266 ret_val = e1000_mng_enable_host_if(hw);
2267 if (ret_val != 0) {
2268 hw->mac.tx_pkt_filtering = 0;
2269 return ret_val;
2270 }
2271
2272 /* Read in the header. Length and offset are in dwords. */
2273 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2274 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2275 for (i = 0; i < len; i++)
2276 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2277 hdr_csum = hdr->checksum;
2278 hdr->checksum = 0;
2279 csum = e1000_calculate_checksum((u8 *)hdr,
2280 E1000_MNG_DHCP_COOKIE_LENGTH);
ad68076e
BA
2281 /*
2282 * If either the checksums or signature don't match, then
bc7f75fa
AK
2283 * the cookie area isn't considered valid, in which case we
2284 * take the safe route of assuming Tx filtering is enabled.
2285 */
2286 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
2287 hw->mac.tx_pkt_filtering = 1;
2288 return 1;
2289 }
2290
2291 /* Cookie area is valid, make the final check for filtering. */
2292 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
2293 hw->mac.tx_pkt_filtering = 0;
2294 return 0;
2295 }
2296
2297 hw->mac.tx_pkt_filtering = 1;
2298 return 1;
2299}
2300
2301/**
2302 * e1000_mng_write_cmd_header - Writes manageability command header
2303 * @hw: pointer to the HW structure
2304 * @hdr: pointer to the host interface command header
2305 *
2306 * Writes the command header after does the checksum calculation.
2307 **/
2308static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2309 struct e1000_host_mng_command_header *hdr)
2310{
2311 u16 i, length = sizeof(struct e1000_host_mng_command_header);
2312
2313 /* Write the whole command header structure with new checksum. */
2314
2315 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2316
2317 length >>= 2;
2318 /* Write the relevant command block into the ram area. */
2319 for (i = 0; i < length; i++) {
2320 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2321 *((u32 *) hdr + i));
2322 e1e_flush();
2323 }
2324
2325 return 0;
2326}
2327
2328/**
2329 * e1000_mng_host_if_write - Writes to the manageability host interface
2330 * @hw: pointer to the HW structure
2331 * @buffer: pointer to the host interface buffer
2332 * @length: size of the buffer
2333 * @offset: location in the buffer to write to
2334 * @sum: sum of the data (not checksum)
2335 *
2336 * This function writes the buffer content at the offset given on the host if.
2337 * It also does alignment considerations to do the writes in most efficient
2338 * way. Also fills up the sum of the buffer in *buffer parameter.
2339 **/
2340static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2341 u16 length, u16 offset, u8 *sum)
2342{
2343 u8 *tmp;
2344 u8 *bufptr = buffer;
2345 u32 data = 0;
2346 u16 remaining, i, j, prev_bytes;
2347
2348 /* sum = only sum of the data and it is not checksum */
2349
2350 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2351 return -E1000_ERR_PARAM;
2352
2353 tmp = (u8 *)&data;
2354 prev_bytes = offset & 0x3;
2355 offset >>= 2;
2356
2357 if (prev_bytes) {
2358 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2359 for (j = prev_bytes; j < sizeof(u32); j++) {
2360 *(tmp + j) = *bufptr++;
2361 *sum += *(tmp + j);
2362 }
2363 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2364 length -= j - prev_bytes;
2365 offset++;
2366 }
2367
2368 remaining = length & 0x3;
2369 length -= remaining;
2370
2371 /* Calculate length in DWORDs */
2372 length >>= 2;
2373
ad68076e
BA
2374 /*
2375 * The device driver writes the relevant command block into the
2376 * ram area.
2377 */
bc7f75fa
AK
2378 for (i = 0; i < length; i++) {
2379 for (j = 0; j < sizeof(u32); j++) {
2380 *(tmp + j) = *bufptr++;
2381 *sum += *(tmp + j);
2382 }
2383
2384 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2385 }
2386 if (remaining) {
2387 for (j = 0; j < sizeof(u32); j++) {
2388 if (j < remaining)
2389 *(tmp + j) = *bufptr++;
2390 else
2391 *(tmp + j) = 0;
2392
2393 *sum += *(tmp + j);
2394 }
2395 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2396 }
2397
2398 return 0;
2399}
2400
2401/**
2402 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2403 * @hw: pointer to the HW structure
2404 * @buffer: pointer to the host interface
2405 * @length: size of the buffer
2406 *
2407 * Writes the DHCP information to the host interface.
2408 **/
2409s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2410{
2411 struct e1000_host_mng_command_header hdr;
2412 s32 ret_val;
2413 u32 hicr;
2414
2415 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2416 hdr.command_length = length;
2417 hdr.reserved1 = 0;
2418 hdr.reserved2 = 0;
2419 hdr.checksum = 0;
2420
2421 /* Enable the host interface */
2422 ret_val = e1000_mng_enable_host_if(hw);
2423 if (ret_val)
2424 return ret_val;
2425
2426 /* Populate the host interface with the contents of "buffer". */
2427 ret_val = e1000_mng_host_if_write(hw, buffer, length,
2428 sizeof(hdr), &(hdr.checksum));
2429 if (ret_val)
2430 return ret_val;
2431
2432 /* Write the manageability command header */
2433 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2434 if (ret_val)
2435 return ret_val;
2436
2437 /* Tell the ARC a new command is pending. */
2438 hicr = er32(HICR);
2439 ew32(HICR, hicr | E1000_HICR_C);
2440
2441 return 0;
2442}
2443
2444/**
2445 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2446 * @hw: pointer to the HW structure
2447 *
2448 * Verifies the hardware needs to allow ARPs to be processed by the host.
2449 **/
2450bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2451{
2452 u32 manc;
2453 u32 fwsm, factps;
2454 bool ret_val = 0;
2455
2456 manc = er32(MANC);
2457
2458 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
2459 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
2460 return ret_val;
2461
2462 if (hw->mac.arc_subsystem_valid) {
2463 fwsm = er32(FWSM);
2464 factps = er32(FACTPS);
2465
2466 if (!(factps & E1000_FACTPS_MNGCG) &&
2467 ((fwsm & E1000_FWSM_MODE_MASK) ==
2468 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
2469 ret_val = 1;
2470 return ret_val;
2471 }
2472 } else {
2473 if ((manc & E1000_MANC_SMBUS_EN) &&
2474 !(manc & E1000_MANC_ASF_EN)) {
2475 ret_val = 1;
2476 return ret_val;
2477 }
2478 }
2479
2480 return ret_val;
2481}
2482
2483s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num)
2484{
2485 s32 ret_val;
2486 u16 nvm_data;
2487
2488 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2489 if (ret_val) {
2490 hw_dbg(hw, "NVM Read Error\n");
2491 return ret_val;
2492 }
2493 *part_num = (u32)(nvm_data << 16);
2494
2495 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
2496 if (ret_val) {
2497 hw_dbg(hw, "NVM Read Error\n");
2498 return ret_val;
2499 }
2500 *part_num |= nvm_data;
2501
2502 return 0;
2503}