e1000e: add support for new 82574L part
[linux-2.6-block.git] / drivers / net / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
97ac8cae
BA
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567LM-2 Gigabit Network Connection
44 * 82567LF-2 Gigabit Network Connection
45 * 82567V-2 Gigabit Network Connection
f4187b56
BA
46 * 82567LF-3 Gigabit Network Connection
47 * 82567LM-3 Gigabit Network Connection
2f15f9d6 48 * 82567LM-4 Gigabit Network Connection
bc7f75fa
AK
49 */
50
51#include <linux/netdevice.h>
52#include <linux/ethtool.h>
53#include <linux/delay.h>
54#include <linux/pci.h>
55
56#include "e1000.h"
57
58#define ICH_FLASH_GFPREG 0x0000
59#define ICH_FLASH_HSFSTS 0x0004
60#define ICH_FLASH_HSFCTL 0x0006
61#define ICH_FLASH_FADDR 0x0008
62#define ICH_FLASH_FDATA0 0x0010
63
64#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
65#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
66#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
67#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
68#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
69
70#define ICH_CYCLE_READ 0
71#define ICH_CYCLE_WRITE 2
72#define ICH_CYCLE_ERASE 3
73
74#define FLASH_GFPREG_BASE_MASK 0x1FFF
75#define FLASH_SECTOR_ADDR_SHIFT 12
76
77#define ICH_FLASH_SEG_SIZE_256 256
78#define ICH_FLASH_SEG_SIZE_4K 4096
79#define ICH_FLASH_SEG_SIZE_8K 8192
80#define ICH_FLASH_SEG_SIZE_64K 65536
81
82
83#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
84
85#define E1000_ICH_MNG_IAMT_MODE 0x2
86
87#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
88 (ID_LED_DEF1_OFF2 << 8) | \
89 (ID_LED_DEF1_ON2 << 4) | \
90 (ID_LED_DEF1_DEF2))
91
92#define E1000_ICH_NVM_SIG_WORD 0x13
93#define E1000_ICH_NVM_SIG_MASK 0xC000
94
95#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
96
97#define E1000_FEXTNVM_SW_CONFIG 1
98#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
99
100#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
101
102#define E1000_ICH_RAR_ENTRIES 7
103
104#define PHY_PAGE_SHIFT 5
105#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
106 ((reg) & MAX_PHY_REG_ADDRESS))
107#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
108#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
109
110#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
111#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
112#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
113
114/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
115/* Offset 04h HSFSTS */
116union ich8_hws_flash_status {
117 struct ich8_hsfsts {
118 u16 flcdone :1; /* bit 0 Flash Cycle Done */
119 u16 flcerr :1; /* bit 1 Flash Cycle Error */
120 u16 dael :1; /* bit 2 Direct Access error Log */
121 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
122 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
123 u16 reserved1 :2; /* bit 13:6 Reserved */
124 u16 reserved2 :6; /* bit 13:6 Reserved */
125 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
126 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
127 } hsf_status;
128 u16 regval;
129};
130
131/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
132/* Offset 06h FLCTL */
133union ich8_hws_flash_ctrl {
134 struct ich8_hsflctl {
135 u16 flcgo :1; /* 0 Flash Cycle Go */
136 u16 flcycle :2; /* 2:1 Flash Cycle */
137 u16 reserved :5; /* 7:3 Reserved */
138 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
139 u16 flockdn :6; /* 15:10 Reserved */
140 } hsf_ctrl;
141 u16 regval;
142};
143
144/* ICH Flash Region Access Permissions */
145union ich8_hws_flash_regacc {
146 struct ich8_flracc {
147 u32 grra :8; /* 0:7 GbE region Read Access */
148 u32 grwa :8; /* 8:15 GbE region Write Access */
149 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
150 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
151 } hsf_flregacc;
152 u16 regval;
153};
154
155static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
156static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
157static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
158static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
159static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
160static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
161 u32 offset, u8 byte);
f4187b56
BA
162static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
163 u8 *data);
bc7f75fa
AK
164static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
165 u16 *data);
166static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
167 u8 size, u16 *data);
168static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
169static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 170static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
171
172static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
173{
174 return readw(hw->flash_address + reg);
175}
176
177static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
178{
179 return readl(hw->flash_address + reg);
180}
181
182static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
183{
184 writew(val, hw->flash_address + reg);
185}
186
187static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
188{
189 writel(val, hw->flash_address + reg);
190}
191
192#define er16flash(reg) __er16flash(hw, (reg))
193#define er32flash(reg) __er32flash(hw, (reg))
194#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
195#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
196
197/**
198 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
199 * @hw: pointer to the HW structure
200 *
201 * Initialize family-specific PHY parameters and function pointers.
202 **/
203static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
204{
205 struct e1000_phy_info *phy = &hw->phy;
206 s32 ret_val;
207 u16 i = 0;
208
209 phy->addr = 1;
210 phy->reset_delay_us = 100;
211
97ac8cae
BA
212 /*
213 * We may need to do this twice - once for IGP and if that fails,
214 * we'll set BM func pointers and try again
215 */
216 ret_val = e1000e_determine_phy_address(hw);
217 if (ret_val) {
218 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
219 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
220 ret_val = e1000e_determine_phy_address(hw);
221 if (ret_val)
222 return ret_val;
223 }
224
bc7f75fa
AK
225 phy->id = 0;
226 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
227 (i++ < 100)) {
228 msleep(1);
229 ret_val = e1000e_get_phy_id(hw);
230 if (ret_val)
231 return ret_val;
232 }
233
234 /* Verify phy id */
235 switch (phy->id) {
236 case IGP03E1000_E_PHY_ID:
237 phy->type = e1000_phy_igp_3;
238 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
239 break;
240 case IFE_E_PHY_ID:
241 case IFE_PLUS_E_PHY_ID:
242 case IFE_C_E_PHY_ID:
243 phy->type = e1000_phy_ife;
244 phy->autoneg_mask = E1000_ALL_NOT_GIG;
245 break;
97ac8cae
BA
246 case BME1000_E_PHY_ID:
247 phy->type = e1000_phy_bm;
248 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
249 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
250 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
251 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
252 break;
bc7f75fa
AK
253 default:
254 return -E1000_ERR_PHY;
255 break;
256 }
257
258 return 0;
259}
260
261/**
262 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
263 * @hw: pointer to the HW structure
264 *
265 * Initialize family-specific NVM parameters and function
266 * pointers.
267 **/
268static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
269{
270 struct e1000_nvm_info *nvm = &hw->nvm;
271 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
272 u32 gfpreg;
273 u32 sector_base_addr;
274 u32 sector_end_addr;
275 u16 i;
276
ad68076e 277 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa
AK
278 if (!hw->flash_address) {
279 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
280 return -E1000_ERR_CONFIG;
281 }
282
283 nvm->type = e1000_nvm_flash_sw;
284
285 gfpreg = er32flash(ICH_FLASH_GFPREG);
286
ad68076e
BA
287 /*
288 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 289 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
290 * the overall size.
291 */
bc7f75fa
AK
292 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
293 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
294
295 /* flash_base_addr is byte-aligned */
296 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
297
ad68076e
BA
298 /*
299 * find total size of the NVM, then cut in half since the total
300 * size represents two separate NVM banks.
301 */
bc7f75fa
AK
302 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
303 << FLASH_SECTOR_ADDR_SHIFT;
304 nvm->flash_bank_size /= 2;
305 /* Adjust to word count */
306 nvm->flash_bank_size /= sizeof(u16);
307
308 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
309
310 /* Clear shadow ram */
311 for (i = 0; i < nvm->word_size; i++) {
312 dev_spec->shadow_ram[i].modified = 0;
313 dev_spec->shadow_ram[i].value = 0xFFFF;
314 }
315
316 return 0;
317}
318
319/**
320 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
321 * @hw: pointer to the HW structure
322 *
323 * Initialize family-specific MAC parameters and function
324 * pointers.
325 **/
326static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329 struct e1000_mac_info *mac = &hw->mac;
330
331 /* Set media type function pointer */
318a94d6 332 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
333
334 /* Set mta register count */
335 mac->mta_reg_count = 32;
336 /* Set rar entry count */
337 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
338 if (mac->type == e1000_ich8lan)
339 mac->rar_entry_count--;
340 /* Set if manageability features are enabled. */
341 mac->arc_subsystem_valid = 1;
342
343 /* Enable PCS Lock-loss workaround for ICH8 */
344 if (mac->type == e1000_ich8lan)
345 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
346
347 return 0;
348}
349
69e3fd8c 350static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
351{
352 struct e1000_hw *hw = &adapter->hw;
353 s32 rc;
354
355 rc = e1000_init_mac_params_ich8lan(adapter);
356 if (rc)
357 return rc;
358
359 rc = e1000_init_nvm_params_ich8lan(hw);
360 if (rc)
361 return rc;
362
363 rc = e1000_init_phy_params_ich8lan(hw);
364 if (rc)
365 return rc;
366
367 if ((adapter->hw.mac.type == e1000_ich8lan) &&
368 (adapter->hw.phy.type == e1000_phy_igp_3))
369 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
370
371 return 0;
372}
373
374/**
375 * e1000_acquire_swflag_ich8lan - Acquire software control flag
376 * @hw: pointer to the HW structure
377 *
378 * Acquires the software control flag for performing NVM and PHY
379 * operations. This is a function pointer entry point only called by
380 * read/write routines for the PHY and NVM parts.
381 **/
382static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
383{
384 u32 extcnf_ctrl;
385 u32 timeout = PHY_CFG_TIMEOUT;
386
387 while (timeout) {
388 extcnf_ctrl = er32(EXTCNF_CTRL);
389 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
390 ew32(EXTCNF_CTRL, extcnf_ctrl);
391
392 extcnf_ctrl = er32(EXTCNF_CTRL);
393 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
394 break;
395 mdelay(1);
396 timeout--;
397 }
398
399 if (!timeout) {
400 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
401 return -E1000_ERR_CONFIG;
402 }
403
404 return 0;
405}
406
407/**
408 * e1000_release_swflag_ich8lan - Release software control flag
409 * @hw: pointer to the HW structure
410 *
411 * Releases the software control flag for performing NVM and PHY operations.
412 * This is a function pointer entry point only called by read/write
413 * routines for the PHY and NVM parts.
414 **/
415static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
416{
417 u32 extcnf_ctrl;
418
419 extcnf_ctrl = er32(EXTCNF_CTRL);
420 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
421 ew32(EXTCNF_CTRL, extcnf_ctrl);
422}
423
4662e82b
BA
424/**
425 * e1000_check_mng_mode_ich8lan - Checks management mode
426 * @hw: pointer to the HW structure
427 *
428 * This checks if the adapter has manageability enabled.
429 * This is a function pointer entry point only called by read/write
430 * routines for the PHY and NVM parts.
431 **/
432static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
433{
434 u32 fwsm = er32(FWSM);
435
436 return (fwsm & E1000_FWSM_MODE_MASK) ==
437 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
438}
439
bc7f75fa
AK
440/**
441 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
442 * @hw: pointer to the HW structure
443 *
444 * Checks if firmware is blocking the reset of the PHY.
445 * This is a function pointer entry point only called by
446 * reset routines.
447 **/
448static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
449{
450 u32 fwsm;
451
452 fwsm = er32(FWSM);
453
454 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
455}
456
457/**
458 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
459 * @hw: pointer to the HW structure
460 *
461 * Forces the speed and duplex settings of the PHY.
462 * This is a function pointer entry point only called by
463 * PHY setup routines.
464 **/
465static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
466{
467 struct e1000_phy_info *phy = &hw->phy;
468 s32 ret_val;
469 u16 data;
470 bool link;
471
472 if (phy->type != e1000_phy_ife) {
473 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
474 return ret_val;
475 }
476
477 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
478 if (ret_val)
479 return ret_val;
480
481 e1000e_phy_force_speed_duplex_setup(hw, &data);
482
483 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
484 if (ret_val)
485 return ret_val;
486
487 /* Disable MDI-X support for 10/100 */
488 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
489 if (ret_val)
490 return ret_val;
491
492 data &= ~IFE_PMC_AUTO_MDIX;
493 data &= ~IFE_PMC_FORCE_MDIX;
494
495 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
496 if (ret_val)
497 return ret_val;
498
499 hw_dbg(hw, "IFE PMC: %X\n", data);
500
501 udelay(1);
502
318a94d6 503 if (phy->autoneg_wait_to_complete) {
bc7f75fa
AK
504 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
505
506 ret_val = e1000e_phy_has_link_generic(hw,
507 PHY_FORCE_LIMIT,
508 100000,
509 &link);
510 if (ret_val)
511 return ret_val;
512
513 if (!link)
514 hw_dbg(hw, "Link taking longer than expected.\n");
515
516 /* Try once more */
517 ret_val = e1000e_phy_has_link_generic(hw,
518 PHY_FORCE_LIMIT,
519 100000,
520 &link);
521 if (ret_val)
522 return ret_val;
523 }
524
525 return 0;
526}
527
528/**
529 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
530 * @hw: pointer to the HW structure
531 *
532 * Resets the PHY
533 * This is a function pointer entry point called by drivers
534 * or other shared routines.
535 **/
536static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
537{
538 struct e1000_phy_info *phy = &hw->phy;
539 u32 i;
540 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
541 s32 ret_val;
542 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
543 u16 word_addr, reg_data, reg_addr, phy_page = 0;
544
545 ret_val = e1000e_phy_hw_reset_generic(hw);
546 if (ret_val)
547 return ret_val;
548
ad68076e
BA
549 /*
550 * Initialize the PHY from the NVM on ICH platforms. This
bc7f75fa
AK
551 * is needed due to an issue where the NVM configuration is
552 * not properly autoloaded after power transitions.
553 * Therefore, after each PHY reset, we will load the
554 * configuration data out of the NVM manually.
555 */
556 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
557 struct e1000_adapter *adapter = hw->adapter;
558
559 /* Check if SW needs configure the PHY */
560 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
561 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
562 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
563 else
564 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
565
566 data = er32(FEXTNVM);
567 if (!(data & sw_cfg_mask))
568 return 0;
569
570 /* Wait for basic configuration completes before proceeding*/
571 do {
572 data = er32(STATUS);
573 data &= E1000_STATUS_LAN_INIT_DONE;
574 udelay(100);
575 } while ((!data) && --loop);
576
ad68076e
BA
577 /*
578 * If basic configuration is incomplete before the above loop
bc7f75fa
AK
579 * count reaches 0, loading the configuration from NVM will
580 * leave the PHY in a bad state possibly resulting in no link.
581 */
582 if (loop == 0) {
583 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
584 }
585
586 /* Clear the Init Done bit for the next init event */
587 data = er32(STATUS);
588 data &= ~E1000_STATUS_LAN_INIT_DONE;
589 ew32(STATUS, data);
590
ad68076e
BA
591 /*
592 * Make sure HW does not configure LCD from PHY
593 * extended configuration before SW configuration
594 */
bc7f75fa
AK
595 data = er32(EXTCNF_CTRL);
596 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
597 return 0;
598
599 cnf_size = er32(EXTCNF_SIZE);
600 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
601 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
602 if (!cnf_size)
603 return 0;
604
605 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
606 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
607
ad68076e 608 /* Configure LCD from extended configuration region. */
bc7f75fa
AK
609
610 /* cnf_base_addr is in DWORD */
611 word_addr = (u16)(cnf_base_addr << 1);
612
613 for (i = 0; i < cnf_size; i++) {
614 ret_val = e1000_read_nvm(hw,
615 (word_addr + i * 2),
616 1,
617 &reg_data);
618 if (ret_val)
619 return ret_val;
620
621 ret_val = e1000_read_nvm(hw,
622 (word_addr + i * 2 + 1),
623 1,
624 &reg_addr);
625 if (ret_val)
626 return ret_val;
627
628 /* Save off the PHY page for future writes. */
629 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
630 phy_page = reg_data;
631 continue;
632 }
633
634 reg_addr |= phy_page;
635
636 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
637 if (ret_val)
638 return ret_val;
639 }
640 }
641
642 return 0;
643}
644
645/**
646 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
647 * @hw: pointer to the HW structure
648 *
649 * Populates "phy" structure with various feature states.
650 * This function is only called by other family-specific
651 * routines.
652 **/
653static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
654{
655 struct e1000_phy_info *phy = &hw->phy;
656 s32 ret_val;
657 u16 data;
658 bool link;
659
660 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
661 if (ret_val)
662 return ret_val;
663
664 if (!link) {
665 hw_dbg(hw, "Phy info is only valid if link is up\n");
666 return -E1000_ERR_CONFIG;
667 }
668
669 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
670 if (ret_val)
671 return ret_val;
672 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
673
674 if (phy->polarity_correction) {
675 ret_val = e1000_check_polarity_ife_ich8lan(hw);
676 if (ret_val)
677 return ret_val;
678 } else {
679 /* Polarity is forced */
680 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
681 ? e1000_rev_polarity_reversed
682 : e1000_rev_polarity_normal;
683 }
684
685 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
686 if (ret_val)
687 return ret_val;
688
689 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
690
691 /* The following parameters are undefined for 10/100 operation. */
692 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
693 phy->local_rx = e1000_1000t_rx_status_undefined;
694 phy->remote_rx = e1000_1000t_rx_status_undefined;
695
696 return 0;
697}
698
699/**
700 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
701 * @hw: pointer to the HW structure
702 *
703 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
704 * This is a function pointer entry point called by drivers
705 * or other shared routines.
706 **/
707static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
708{
709 switch (hw->phy.type) {
710 case e1000_phy_ife:
711 return e1000_get_phy_info_ife_ich8lan(hw);
712 break;
713 case e1000_phy_igp_3:
97ac8cae 714 case e1000_phy_bm:
bc7f75fa
AK
715 return e1000e_get_phy_info_igp(hw);
716 break;
717 default:
718 break;
719 }
720
721 return -E1000_ERR_PHY_TYPE;
722}
723
724/**
725 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
726 * @hw: pointer to the HW structure
727 *
489815ce 728 * Polarity is determined on the polarity reversal feature being enabled.
bc7f75fa
AK
729 * This function is only called by other family-specific
730 * routines.
731 **/
732static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
733{
734 struct e1000_phy_info *phy = &hw->phy;
735 s32 ret_val;
736 u16 phy_data, offset, mask;
737
ad68076e
BA
738 /*
739 * Polarity is determined based on the reversal feature being enabled.
bc7f75fa
AK
740 */
741 if (phy->polarity_correction) {
742 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
743 mask = IFE_PESC_POLARITY_REVERSED;
744 } else {
745 offset = IFE_PHY_SPECIAL_CONTROL;
746 mask = IFE_PSC_FORCE_POLARITY;
747 }
748
749 ret_val = e1e_rphy(hw, offset, &phy_data);
750
751 if (!ret_val)
752 phy->cable_polarity = (phy_data & mask)
753 ? e1000_rev_polarity_reversed
754 : e1000_rev_polarity_normal;
755
756 return ret_val;
757}
758
759/**
760 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
761 * @hw: pointer to the HW structure
762 * @active: TRUE to enable LPLU, FALSE to disable
763 *
764 * Sets the LPLU D0 state according to the active flag. When
765 * activating LPLU this function also disables smart speed
766 * and vice versa. LPLU will not be activated unless the
767 * device autonegotiation advertisement meets standards of
768 * either 10 or 10/100 or 10/100/1000 at all duplexes.
769 * This is a function pointer entry point only called by
770 * PHY setup routines.
771 **/
772static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
773{
774 struct e1000_phy_info *phy = &hw->phy;
775 u32 phy_ctrl;
776 s32 ret_val = 0;
777 u16 data;
778
97ac8cae 779 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
780 return ret_val;
781
782 phy_ctrl = er32(PHY_CTRL);
783
784 if (active) {
785 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
786 ew32(PHY_CTRL, phy_ctrl);
787
ad68076e
BA
788 /*
789 * Call gig speed drop workaround on LPLU before accessing
790 * any PHY registers
791 */
bc7f75fa
AK
792 if ((hw->mac.type == e1000_ich8lan) &&
793 (hw->phy.type == e1000_phy_igp_3))
794 e1000e_gig_downshift_workaround_ich8lan(hw);
795
796 /* When LPLU is enabled, we should disable SmartSpeed */
797 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
798 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
799 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
800 if (ret_val)
801 return ret_val;
802 } else {
803 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
804 ew32(PHY_CTRL, phy_ctrl);
805
ad68076e
BA
806 /*
807 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
808 * during Dx states where the power conservation is most
809 * important. During driver activity we should enable
ad68076e
BA
810 * SmartSpeed, so performance is maintained.
811 */
bc7f75fa
AK
812 if (phy->smart_speed == e1000_smart_speed_on) {
813 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 814 &data);
bc7f75fa
AK
815 if (ret_val)
816 return ret_val;
817
818 data |= IGP01E1000_PSCFR_SMART_SPEED;
819 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 820 data);
bc7f75fa
AK
821 if (ret_val)
822 return ret_val;
823 } else if (phy->smart_speed == e1000_smart_speed_off) {
824 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 825 &data);
bc7f75fa
AK
826 if (ret_val)
827 return ret_val;
828
829 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
830 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 831 data);
bc7f75fa
AK
832 if (ret_val)
833 return ret_val;
834 }
835 }
836
837 return 0;
838}
839
840/**
841 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
842 * @hw: pointer to the HW structure
843 * @active: TRUE to enable LPLU, FALSE to disable
844 *
845 * Sets the LPLU D3 state according to the active flag. When
846 * activating LPLU this function also disables smart speed
847 * and vice versa. LPLU will not be activated unless the
848 * device autonegotiation advertisement meets standards of
849 * either 10 or 10/100 or 10/100/1000 at all duplexes.
850 * This is a function pointer entry point only called by
851 * PHY setup routines.
852 **/
853static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
854{
855 struct e1000_phy_info *phy = &hw->phy;
856 u32 phy_ctrl;
857 s32 ret_val;
858 u16 data;
859
860 phy_ctrl = er32(PHY_CTRL);
861
862 if (!active) {
863 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
864 ew32(PHY_CTRL, phy_ctrl);
ad68076e
BA
865 /*
866 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
867 * during Dx states where the power conservation is most
868 * important. During driver activity we should enable
ad68076e
BA
869 * SmartSpeed, so performance is maintained.
870 */
bc7f75fa 871 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
872 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
873 &data);
bc7f75fa
AK
874 if (ret_val)
875 return ret_val;
876
877 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
878 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
879 data);
bc7f75fa
AK
880 if (ret_val)
881 return ret_val;
882 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
883 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
884 &data);
bc7f75fa
AK
885 if (ret_val)
886 return ret_val;
887
888 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
889 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
890 data);
bc7f75fa
AK
891 if (ret_val)
892 return ret_val;
893 }
894 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
895 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
896 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
897 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
898 ew32(PHY_CTRL, phy_ctrl);
899
ad68076e
BA
900 /*
901 * Call gig speed drop workaround on LPLU before accessing
902 * any PHY registers
903 */
bc7f75fa
AK
904 if ((hw->mac.type == e1000_ich8lan) &&
905 (hw->phy.type == e1000_phy_igp_3))
906 e1000e_gig_downshift_workaround_ich8lan(hw);
907
908 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 909 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
910 if (ret_val)
911 return ret_val;
912
913 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 914 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
915 }
916
917 return 0;
918}
919
f4187b56
BA
920/**
921 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
922 * @hw: pointer to the HW structure
923 * @bank: pointer to the variable that returns the active bank
924 *
925 * Reads signature byte from the NVM using the flash access registers.
926 **/
927static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
928{
929 struct e1000_nvm_info *nvm = &hw->nvm;
930 /* flash bank size is in words */
931 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
932 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
933 u8 bank_high_byte = 0;
934
935 if (hw->mac.type != e1000_ich10lan) {
936 if (er32(EECD) & E1000_EECD_SEC1VAL)
937 *bank = 1;
938 else
939 *bank = 0;
940 } else {
941 /*
942 * Make sure the signature for bank 0 is valid,
943 * if not check for bank1
944 */
945 e1000_read_flash_byte_ich8lan(hw, act_offset, &bank_high_byte);
946 if ((bank_high_byte & 0xC0) == 0x80) {
947 *bank = 0;
948 } else {
949 /*
950 * find if segment 1 is valid by verifying
951 * bit 15:14 = 10b in word 0x13
952 */
953 e1000_read_flash_byte_ich8lan(hw,
954 act_offset + bank1_offset,
955 &bank_high_byte);
956
957 /* bank1 has a valid signature equivalent to SEC1V */
958 if ((bank_high_byte & 0xC0) == 0x80) {
959 *bank = 1;
960 } else {
961 hw_dbg(hw, "ERROR: EEPROM not present\n");
962 return -E1000_ERR_NVM;
963 }
964 }
965 }
966
967 return 0;
968}
969
bc7f75fa
AK
970/**
971 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
972 * @hw: pointer to the HW structure
973 * @offset: The offset (in bytes) of the word(s) to read.
974 * @words: Size of data to read in words
975 * @data: Pointer to the word(s) to read at offset.
976 *
977 * Reads a word(s) from the NVM using the flash access registers.
978 **/
979static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
980 u16 *data)
981{
982 struct e1000_nvm_info *nvm = &hw->nvm;
983 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
984 u32 act_offset;
985 s32 ret_val;
f4187b56 986 u32 bank = 0;
bc7f75fa
AK
987 u16 i, word;
988
989 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
990 (words == 0)) {
991 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
992 return -E1000_ERR_NVM;
993 }
994
995 ret_val = e1000_acquire_swflag_ich8lan(hw);
996 if (ret_val)
997 return ret_val;
998
f4187b56
BA
999 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1000 if (ret_val)
1001 return ret_val;
1002
1003 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
1004 act_offset += offset;
1005
1006 for (i = 0; i < words; i++) {
1007 if ((dev_spec->shadow_ram) &&
1008 (dev_spec->shadow_ram[offset+i].modified)) {
1009 data[i] = dev_spec->shadow_ram[offset+i].value;
1010 } else {
1011 ret_val = e1000_read_flash_word_ich8lan(hw,
1012 act_offset + i,
1013 &word);
1014 if (ret_val)
1015 break;
1016 data[i] = word;
1017 }
1018 }
1019
1020 e1000_release_swflag_ich8lan(hw);
1021
1022 return ret_val;
1023}
1024
1025/**
1026 * e1000_flash_cycle_init_ich8lan - Initialize flash
1027 * @hw: pointer to the HW structure
1028 *
1029 * This function does initial flash setup so that a new read/write/erase cycle
1030 * can be started.
1031 **/
1032static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1033{
1034 union ich8_hws_flash_status hsfsts;
1035 s32 ret_val = -E1000_ERR_NVM;
1036 s32 i = 0;
1037
1038 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1039
1040 /* Check if the flash descriptor is valid */
1041 if (hsfsts.hsf_status.fldesvalid == 0) {
1042 hw_dbg(hw, "Flash descriptor invalid. "
1043 "SW Sequencing must be used.");
1044 return -E1000_ERR_NVM;
1045 }
1046
1047 /* Clear FCERR and DAEL in hw status by writing 1 */
1048 hsfsts.hsf_status.flcerr = 1;
1049 hsfsts.hsf_status.dael = 1;
1050
1051 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1052
ad68076e
BA
1053 /*
1054 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
1055 * bit to check against, in order to start a new cycle or
1056 * FDONE bit should be changed in the hardware so that it
489815ce 1057 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
1058 * indication whether a cycle is in progress or has been
1059 * completed.
1060 */
1061
1062 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
1063 /*
1064 * There is no cycle running at present,
1065 * so we can start a cycle
1066 * Begin by setting Flash Cycle Done.
1067 */
bc7f75fa
AK
1068 hsfsts.hsf_status.flcdone = 1;
1069 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1070 ret_val = 0;
1071 } else {
ad68076e
BA
1072 /*
1073 * otherwise poll for sometime so the current
1074 * cycle has a chance to end before giving up.
1075 */
bc7f75fa
AK
1076 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1077 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1078 if (hsfsts.hsf_status.flcinprog == 0) {
1079 ret_val = 0;
1080 break;
1081 }
1082 udelay(1);
1083 }
1084 if (ret_val == 0) {
ad68076e
BA
1085 /*
1086 * Successful in waiting for previous cycle to timeout,
1087 * now set the Flash Cycle Done.
1088 */
bc7f75fa
AK
1089 hsfsts.hsf_status.flcdone = 1;
1090 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1091 } else {
1092 hw_dbg(hw, "Flash controller busy, cannot get access");
1093 }
1094 }
1095
1096 return ret_val;
1097}
1098
1099/**
1100 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1101 * @hw: pointer to the HW structure
1102 * @timeout: maximum time to wait for completion
1103 *
1104 * This function starts a flash cycle and waits for its completion.
1105 **/
1106static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1107{
1108 union ich8_hws_flash_ctrl hsflctl;
1109 union ich8_hws_flash_status hsfsts;
1110 s32 ret_val = -E1000_ERR_NVM;
1111 u32 i = 0;
1112
1113 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1114 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1115 hsflctl.hsf_ctrl.flcgo = 1;
1116 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1117
1118 /* wait till FDONE bit is set to 1 */
1119 do {
1120 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1121 if (hsfsts.hsf_status.flcdone == 1)
1122 break;
1123 udelay(1);
1124 } while (i++ < timeout);
1125
1126 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1127 return 0;
1128
1129 return ret_val;
1130}
1131
1132/**
1133 * e1000_read_flash_word_ich8lan - Read word from flash
1134 * @hw: pointer to the HW structure
1135 * @offset: offset to data location
1136 * @data: pointer to the location for storing the data
1137 *
1138 * Reads the flash word at offset into data. Offset is converted
1139 * to bytes before read.
1140 **/
1141static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1142 u16 *data)
1143{
1144 /* Must convert offset into bytes. */
1145 offset <<= 1;
1146
1147 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1148}
1149
f4187b56
BA
1150/**
1151 * e1000_read_flash_byte_ich8lan - Read byte from flash
1152 * @hw: pointer to the HW structure
1153 * @offset: The offset of the byte to read.
1154 * @data: Pointer to a byte to store the value read.
1155 *
1156 * Reads a single byte from the NVM using the flash access registers.
1157 **/
1158static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1159 u8 *data)
1160{
1161 s32 ret_val;
1162 u16 word = 0;
1163
1164 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1165 if (ret_val)
1166 return ret_val;
1167
1168 *data = (u8)word;
1169
1170 return 0;
1171}
1172
bc7f75fa
AK
1173/**
1174 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1175 * @hw: pointer to the HW structure
1176 * @offset: The offset (in bytes) of the byte or word to read.
1177 * @size: Size of data to read, 1=byte 2=word
1178 * @data: Pointer to the word to store the value read.
1179 *
1180 * Reads a byte or word from the NVM using the flash access registers.
1181 **/
1182static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1183 u8 size, u16 *data)
1184{
1185 union ich8_hws_flash_status hsfsts;
1186 union ich8_hws_flash_ctrl hsflctl;
1187 u32 flash_linear_addr;
1188 u32 flash_data = 0;
1189 s32 ret_val = -E1000_ERR_NVM;
1190 u8 count = 0;
1191
1192 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1193 return -E1000_ERR_NVM;
1194
1195 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1196 hw->nvm.flash_base_addr;
1197
1198 do {
1199 udelay(1);
1200 /* Steps */
1201 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1202 if (ret_val != 0)
1203 break;
1204
1205 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1206 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1207 hsflctl.hsf_ctrl.fldbcount = size - 1;
1208 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1209 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1210
1211 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1212
1213 ret_val = e1000_flash_cycle_ich8lan(hw,
1214 ICH_FLASH_READ_COMMAND_TIMEOUT);
1215
ad68076e
BA
1216 /*
1217 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
1218 * and try the whole sequence a few more times, else
1219 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
1220 * least significant byte first msb to lsb
1221 */
bc7f75fa
AK
1222 if (ret_val == 0) {
1223 flash_data = er32flash(ICH_FLASH_FDATA0);
1224 if (size == 1) {
1225 *data = (u8)(flash_data & 0x000000FF);
1226 } else if (size == 2) {
1227 *data = (u16)(flash_data & 0x0000FFFF);
1228 }
1229 break;
1230 } else {
ad68076e
BA
1231 /*
1232 * If we've gotten here, then things are probably
bc7f75fa
AK
1233 * completely hosed, but if the error condition is
1234 * detected, it won't hurt to give it another try...
1235 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1236 */
1237 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1238 if (hsfsts.hsf_status.flcerr == 1) {
1239 /* Repeat for some time before giving up. */
1240 continue;
1241 } else if (hsfsts.hsf_status.flcdone == 0) {
1242 hw_dbg(hw, "Timeout error - flash cycle "
1243 "did not complete.");
1244 break;
1245 }
1246 }
1247 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1248
1249 return ret_val;
1250}
1251
1252/**
1253 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1254 * @hw: pointer to the HW structure
1255 * @offset: The offset (in bytes) of the word(s) to write.
1256 * @words: Size of data to write in words
1257 * @data: Pointer to the word(s) to write at offset.
1258 *
1259 * Writes a byte or word to the NVM using the flash access registers.
1260 **/
1261static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1262 u16 *data)
1263{
1264 struct e1000_nvm_info *nvm = &hw->nvm;
1265 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1266 s32 ret_val;
1267 u16 i;
1268
1269 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1270 (words == 0)) {
1271 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1272 return -E1000_ERR_NVM;
1273 }
1274
1275 ret_val = e1000_acquire_swflag_ich8lan(hw);
1276 if (ret_val)
1277 return ret_val;
1278
1279 for (i = 0; i < words; i++) {
1280 dev_spec->shadow_ram[offset+i].modified = 1;
1281 dev_spec->shadow_ram[offset+i].value = data[i];
1282 }
1283
1284 e1000_release_swflag_ich8lan(hw);
1285
1286 return 0;
1287}
1288
1289/**
1290 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1291 * @hw: pointer to the HW structure
1292 *
1293 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1294 * which writes the checksum to the shadow ram. The changes in the shadow
1295 * ram are then committed to the EEPROM by processing each bank at a time
1296 * checking for the modified bit and writing only the pending changes.
489815ce 1297 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
1298 * future writes.
1299 **/
1300static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1301{
1302 struct e1000_nvm_info *nvm = &hw->nvm;
1303 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 1304 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
1305 s32 ret_val;
1306 u16 data;
1307
1308 ret_val = e1000e_update_nvm_checksum_generic(hw);
1309 if (ret_val)
ad68076e 1310 return ret_val;
bc7f75fa
AK
1311
1312 if (nvm->type != e1000_nvm_flash_sw)
ad68076e 1313 return ret_val;
bc7f75fa
AK
1314
1315 ret_val = e1000_acquire_swflag_ich8lan(hw);
1316 if (ret_val)
ad68076e 1317 return ret_val;
bc7f75fa 1318
ad68076e
BA
1319 /*
1320 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 1321 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
1322 * is going to be written
1323 */
f4187b56
BA
1324 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1325 if (ret_val)
1326 return ret_val;
1327
1328 if (bank == 0) {
bc7f75fa
AK
1329 new_bank_offset = nvm->flash_bank_size;
1330 old_bank_offset = 0;
1331 e1000_erase_flash_bank_ich8lan(hw, 1);
1332 } else {
1333 old_bank_offset = nvm->flash_bank_size;
1334 new_bank_offset = 0;
1335 e1000_erase_flash_bank_ich8lan(hw, 0);
1336 }
1337
1338 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
1339 /*
1340 * Determine whether to write the value stored
bc7f75fa 1341 * in the other NVM bank or a modified value stored
ad68076e
BA
1342 * in the shadow RAM
1343 */
bc7f75fa
AK
1344 if (dev_spec->shadow_ram[i].modified) {
1345 data = dev_spec->shadow_ram[i].value;
1346 } else {
1347 e1000_read_flash_word_ich8lan(hw,
1348 i + old_bank_offset,
1349 &data);
1350 }
1351
ad68076e
BA
1352 /*
1353 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
1354 * (15:14) are 11b until the commit has completed.
1355 * This will allow us to write 10b which indicates the
1356 * signature is valid. We want to do this after the write
1357 * has completed so that we don't mark the segment valid
ad68076e
BA
1358 * while the write is still in progress
1359 */
bc7f75fa
AK
1360 if (i == E1000_ICH_NVM_SIG_WORD)
1361 data |= E1000_ICH_NVM_SIG_MASK;
1362
1363 /* Convert offset to bytes. */
1364 act_offset = (i + new_bank_offset) << 1;
1365
1366 udelay(100);
1367 /* Write the bytes to the new bank. */
1368 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1369 act_offset,
1370 (u8)data);
1371 if (ret_val)
1372 break;
1373
1374 udelay(100);
1375 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1376 act_offset + 1,
1377 (u8)(data >> 8));
1378 if (ret_val)
1379 break;
1380 }
1381
ad68076e
BA
1382 /*
1383 * Don't bother writing the segment valid bits if sector
1384 * programming failed.
1385 */
bc7f75fa
AK
1386 if (ret_val) {
1387 hw_dbg(hw, "Flash commit failed.\n");
1388 e1000_release_swflag_ich8lan(hw);
1389 return ret_val;
1390 }
1391
ad68076e
BA
1392 /*
1393 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
1394 * to 10b in word 0x13 , this can be done without an
1395 * erase as well since these bits are 11 to start with
ad68076e
BA
1396 * and we need to change bit 14 to 0b
1397 */
bc7f75fa
AK
1398 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1399 e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1400 data &= 0xBFFF;
1401 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1402 act_offset * 2 + 1,
1403 (u8)(data >> 8));
1404 if (ret_val) {
1405 e1000_release_swflag_ich8lan(hw);
1406 return ret_val;
1407 }
1408
ad68076e
BA
1409 /*
1410 * And invalidate the previously valid segment by setting
bc7f75fa
AK
1411 * its signature word (0x13) high_byte to 0b. This can be
1412 * done without an erase because flash erase sets all bits
ad68076e
BA
1413 * to 1's. We can write 1's to 0's without an erase
1414 */
bc7f75fa
AK
1415 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1416 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1417 if (ret_val) {
1418 e1000_release_swflag_ich8lan(hw);
1419 return ret_val;
1420 }
1421
1422 /* Great! Everything worked, we can now clear the cached entries. */
1423 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1424 dev_spec->shadow_ram[i].modified = 0;
1425 dev_spec->shadow_ram[i].value = 0xFFFF;
1426 }
1427
1428 e1000_release_swflag_ich8lan(hw);
1429
ad68076e
BA
1430 /*
1431 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
1432 * until after the next adapter reset.
1433 */
1434 e1000e_reload_nvm(hw);
1435 msleep(10);
1436
1437 return ret_val;
1438}
1439
1440/**
1441 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1442 * @hw: pointer to the HW structure
1443 *
1444 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1445 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1446 * calculated, in which case we need to calculate the checksum and set bit 6.
1447 **/
1448static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1449{
1450 s32 ret_val;
1451 u16 data;
1452
ad68076e
BA
1453 /*
1454 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
1455 * needs to be fixed. This bit is an indication that the NVM
1456 * was prepared by OEM software and did not calculate the
1457 * checksum...a likely scenario.
1458 */
1459 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1460 if (ret_val)
1461 return ret_val;
1462
1463 if ((data & 0x40) == 0) {
1464 data |= 0x40;
1465 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1466 if (ret_val)
1467 return ret_val;
1468 ret_val = e1000e_update_nvm_checksum(hw);
1469 if (ret_val)
1470 return ret_val;
1471 }
1472
1473 return e1000e_validate_nvm_checksum_generic(hw);
1474}
1475
1476/**
1477 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1478 * @hw: pointer to the HW structure
1479 * @offset: The offset (in bytes) of the byte/word to read.
1480 * @size: Size of data to read, 1=byte 2=word
1481 * @data: The byte(s) to write to the NVM.
1482 *
1483 * Writes one/two bytes to the NVM using the flash access registers.
1484 **/
1485static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1486 u8 size, u16 data)
1487{
1488 union ich8_hws_flash_status hsfsts;
1489 union ich8_hws_flash_ctrl hsflctl;
1490 u32 flash_linear_addr;
1491 u32 flash_data = 0;
1492 s32 ret_val;
1493 u8 count = 0;
1494
1495 if (size < 1 || size > 2 || data > size * 0xff ||
1496 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1497 return -E1000_ERR_NVM;
1498
1499 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1500 hw->nvm.flash_base_addr;
1501
1502 do {
1503 udelay(1);
1504 /* Steps */
1505 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1506 if (ret_val)
1507 break;
1508
1509 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1510 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1511 hsflctl.hsf_ctrl.fldbcount = size -1;
1512 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1513 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1514
1515 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1516
1517 if (size == 1)
1518 flash_data = (u32)data & 0x00FF;
1519 else
1520 flash_data = (u32)data;
1521
1522 ew32flash(ICH_FLASH_FDATA0, flash_data);
1523
ad68076e
BA
1524 /*
1525 * check if FCERR is set to 1 , if set to 1, clear it
1526 * and try the whole sequence a few more times else done
1527 */
bc7f75fa
AK
1528 ret_val = e1000_flash_cycle_ich8lan(hw,
1529 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1530 if (!ret_val)
1531 break;
1532
ad68076e
BA
1533 /*
1534 * If we're here, then things are most likely
bc7f75fa
AK
1535 * completely hosed, but if the error condition
1536 * is detected, it won't hurt to give it another
1537 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1538 */
1539 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1540 if (hsfsts.hsf_status.flcerr == 1)
1541 /* Repeat for some time before giving up. */
1542 continue;
1543 if (hsfsts.hsf_status.flcdone == 0) {
1544 hw_dbg(hw, "Timeout error - flash cycle "
1545 "did not complete.");
1546 break;
1547 }
1548 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1549
1550 return ret_val;
1551}
1552
1553/**
1554 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1555 * @hw: pointer to the HW structure
1556 * @offset: The index of the byte to read.
1557 * @data: The byte to write to the NVM.
1558 *
1559 * Writes a single byte to the NVM using the flash access registers.
1560 **/
1561static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1562 u8 data)
1563{
1564 u16 word = (u16)data;
1565
1566 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1567}
1568
1569/**
1570 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1571 * @hw: pointer to the HW structure
1572 * @offset: The offset of the byte to write.
1573 * @byte: The byte to write to the NVM.
1574 *
1575 * Writes a single byte to the NVM using the flash access registers.
1576 * Goes through a retry algorithm before giving up.
1577 **/
1578static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1579 u32 offset, u8 byte)
1580{
1581 s32 ret_val;
1582 u16 program_retries;
1583
1584 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1585 if (!ret_val)
1586 return ret_val;
1587
1588 for (program_retries = 0; program_retries < 100; program_retries++) {
1589 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1590 udelay(100);
1591 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1592 if (!ret_val)
1593 break;
1594 }
1595 if (program_retries == 100)
1596 return -E1000_ERR_NVM;
1597
1598 return 0;
1599}
1600
1601/**
1602 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1603 * @hw: pointer to the HW structure
1604 * @bank: 0 for first bank, 1 for second bank, etc.
1605 *
1606 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1607 * bank N is 4096 * N + flash_reg_addr.
1608 **/
1609static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1610{
1611 struct e1000_nvm_info *nvm = &hw->nvm;
1612 union ich8_hws_flash_status hsfsts;
1613 union ich8_hws_flash_ctrl hsflctl;
1614 u32 flash_linear_addr;
1615 /* bank size is in 16bit words - adjust to bytes */
1616 u32 flash_bank_size = nvm->flash_bank_size * 2;
1617 s32 ret_val;
1618 s32 count = 0;
1619 s32 iteration;
1620 s32 sector_size;
1621 s32 j;
1622
1623 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1624
ad68076e
BA
1625 /*
1626 * Determine HW Sector size: Read BERASE bits of hw flash status
1627 * register
1628 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
1629 * consecutive sectors. The start index for the nth Hw sector
1630 * can be calculated as = bank * 4096 + n * 256
1631 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1632 * The start index for the nth Hw sector can be calculated
1633 * as = bank * 4096
1634 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1635 * (ich9 only, otherwise error condition)
1636 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1637 */
1638 switch (hsfsts.hsf_status.berasesz) {
1639 case 0:
1640 /* Hw sector size 256 */
1641 sector_size = ICH_FLASH_SEG_SIZE_256;
1642 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1643 break;
1644 case 1:
1645 sector_size = ICH_FLASH_SEG_SIZE_4K;
1646 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1647 break;
1648 case 2:
1649 if (hw->mac.type == e1000_ich9lan) {
1650 sector_size = ICH_FLASH_SEG_SIZE_8K;
1651 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1652 } else {
1653 return -E1000_ERR_NVM;
1654 }
1655 break;
1656 case 3:
1657 sector_size = ICH_FLASH_SEG_SIZE_64K;
1658 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1659 break;
1660 default:
1661 return -E1000_ERR_NVM;
1662 }
1663
1664 /* Start with the base address, then add the sector offset. */
1665 flash_linear_addr = hw->nvm.flash_base_addr;
1666 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1667
1668 for (j = 0; j < iteration ; j++) {
1669 do {
1670 /* Steps */
1671 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1672 if (ret_val)
1673 return ret_val;
1674
ad68076e
BA
1675 /*
1676 * Write a value 11 (block Erase) in Flash
1677 * Cycle field in hw flash control
1678 */
bc7f75fa
AK
1679 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1680 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1681 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1682
ad68076e
BA
1683 /*
1684 * Write the last 24 bits of an index within the
bc7f75fa
AK
1685 * block into Flash Linear address field in Flash
1686 * Address.
1687 */
1688 flash_linear_addr += (j * sector_size);
1689 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1690
1691 ret_val = e1000_flash_cycle_ich8lan(hw,
1692 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1693 if (ret_val == 0)
1694 break;
1695
ad68076e
BA
1696 /*
1697 * Check if FCERR is set to 1. If 1,
bc7f75fa 1698 * clear it and try the whole sequence
ad68076e
BA
1699 * a few more times else Done
1700 */
bc7f75fa
AK
1701 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1702 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 1703 /* repeat for some time before giving up */
bc7f75fa
AK
1704 continue;
1705 else if (hsfsts.hsf_status.flcdone == 0)
1706 return ret_val;
1707 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1708 }
1709
1710 return 0;
1711}
1712
1713/**
1714 * e1000_valid_led_default_ich8lan - Set the default LED settings
1715 * @hw: pointer to the HW structure
1716 * @data: Pointer to the LED settings
1717 *
1718 * Reads the LED default settings from the NVM to data. If the NVM LED
1719 * settings is all 0's or F's, set the LED default to a valid LED default
1720 * setting.
1721 **/
1722static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1723{
1724 s32 ret_val;
1725
1726 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1727 if (ret_val) {
1728 hw_dbg(hw, "NVM Read Error\n");
1729 return ret_val;
1730 }
1731
1732 if (*data == ID_LED_RESERVED_0000 ||
1733 *data == ID_LED_RESERVED_FFFF)
1734 *data = ID_LED_DEFAULT_ICH8LAN;
1735
1736 return 0;
1737}
1738
1739/**
1740 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1741 * @hw: pointer to the HW structure
1742 *
1743 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1744 * register, so the the bus width is hard coded.
1745 **/
1746static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1747{
1748 struct e1000_bus_info *bus = &hw->bus;
1749 s32 ret_val;
1750
1751 ret_val = e1000e_get_bus_info_pcie(hw);
1752
ad68076e
BA
1753 /*
1754 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
1755 * a configuration space, but do not contain
1756 * PCI Express Capability registers, so bus width
1757 * must be hardcoded.
1758 */
1759 if (bus->width == e1000_bus_width_unknown)
1760 bus->width = e1000_bus_width_pcie_x1;
1761
1762 return ret_val;
1763}
1764
1765/**
1766 * e1000_reset_hw_ich8lan - Reset the hardware
1767 * @hw: pointer to the HW structure
1768 *
1769 * Does a full reset of the hardware which includes a reset of the PHY and
1770 * MAC.
1771 **/
1772static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1773{
1774 u32 ctrl, icr, kab;
1775 s32 ret_val;
1776
ad68076e
BA
1777 /*
1778 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
1779 * on the last TLP read/write transaction when MAC is reset.
1780 */
1781 ret_val = e1000e_disable_pcie_master(hw);
1782 if (ret_val) {
1783 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1784 }
1785
1786 hw_dbg(hw, "Masking off all interrupts\n");
1787 ew32(IMC, 0xffffffff);
1788
ad68076e
BA
1789 /*
1790 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
1791 * any pending transactions to complete before we hit the MAC
1792 * with the global reset.
1793 */
1794 ew32(RCTL, 0);
1795 ew32(TCTL, E1000_TCTL_PSP);
1796 e1e_flush();
1797
1798 msleep(10);
1799
1800 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1801 if (hw->mac.type == e1000_ich8lan) {
1802 /* Set Tx and Rx buffer allocation to 8k apiece. */
1803 ew32(PBA, E1000_PBA_8K);
1804 /* Set Packet Buffer Size to 16k. */
1805 ew32(PBS, E1000_PBS_16K);
1806 }
1807
1808 ctrl = er32(CTRL);
1809
1810 if (!e1000_check_reset_block(hw)) {
ad68076e
BA
1811 /*
1812 * PHY HW reset requires MAC CORE reset at the same
bc7f75fa
AK
1813 * time to make sure the interface between MAC and the
1814 * external PHY is reset.
1815 */
1816 ctrl |= E1000_CTRL_PHY_RST;
1817 }
1818 ret_val = e1000_acquire_swflag_ich8lan(hw);
1819 hw_dbg(hw, "Issuing a global reset to ich8lan");
1820 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1821 msleep(20);
1822
1823 ret_val = e1000e_get_auto_rd_done(hw);
1824 if (ret_val) {
1825 /*
1826 * When auto config read does not complete, do not
1827 * return with an error. This can happen in situations
1828 * where there is no eeprom and prevents getting link.
1829 */
1830 hw_dbg(hw, "Auto Read Done did not complete\n");
1831 }
1832
1833 ew32(IMC, 0xffffffff);
1834 icr = er32(ICR);
1835
1836 kab = er32(KABGTXD);
1837 kab |= E1000_KABGTXD_BGSQLBIAS;
1838 ew32(KABGTXD, kab);
1839
1840 return ret_val;
1841}
1842
1843/**
1844 * e1000_init_hw_ich8lan - Initialize the hardware
1845 * @hw: pointer to the HW structure
1846 *
1847 * Prepares the hardware for transmit and receive by doing the following:
1848 * - initialize hardware bits
1849 * - initialize LED identification
1850 * - setup receive address registers
1851 * - setup flow control
489815ce 1852 * - setup transmit descriptors
bc7f75fa
AK
1853 * - clear statistics
1854 **/
1855static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1856{
1857 struct e1000_mac_info *mac = &hw->mac;
1858 u32 ctrl_ext, txdctl, snoop;
1859 s32 ret_val;
1860 u16 i;
1861
1862 e1000_initialize_hw_bits_ich8lan(hw);
1863
1864 /* Initialize identification LED */
1865 ret_val = e1000e_id_led_init(hw);
1866 if (ret_val) {
1867 hw_dbg(hw, "Error initializing identification LED\n");
1868 return ret_val;
1869 }
1870
1871 /* Setup the receive address. */
1872 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1873
1874 /* Zero out the Multicast HASH table */
1875 hw_dbg(hw, "Zeroing the MTA\n");
1876 for (i = 0; i < mac->mta_reg_count; i++)
1877 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1878
1879 /* Setup link and flow control */
1880 ret_val = e1000_setup_link_ich8lan(hw);
1881
1882 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 1883 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
1884 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1885 E1000_TXDCTL_FULL_TX_DESC_WB;
1886 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1887 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
1888 ew32(TXDCTL(0), txdctl);
1889 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
1890 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1891 E1000_TXDCTL_FULL_TX_DESC_WB;
1892 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1893 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 1894 ew32(TXDCTL(1), txdctl);
bc7f75fa 1895
ad68076e
BA
1896 /*
1897 * ICH8 has opposite polarity of no_snoop bits.
1898 * By default, we should use snoop behavior.
1899 */
bc7f75fa
AK
1900 if (mac->type == e1000_ich8lan)
1901 snoop = PCIE_ICH8_SNOOP_ALL;
1902 else
1903 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1904 e1000e_set_pcie_no_snoop(hw, snoop);
1905
1906 ctrl_ext = er32(CTRL_EXT);
1907 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1908 ew32(CTRL_EXT, ctrl_ext);
1909
ad68076e
BA
1910 /*
1911 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1912 * important that we do this after we have tried to establish link
1913 * because the symbol error count will increment wildly if there
1914 * is no link.
1915 */
1916 e1000_clear_hw_cntrs_ich8lan(hw);
1917
1918 return 0;
1919}
1920/**
1921 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1922 * @hw: pointer to the HW structure
1923 *
1924 * Sets/Clears required hardware bits necessary for correctly setting up the
1925 * hardware for transmit and receive.
1926 **/
1927static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
1928{
1929 u32 reg;
1930
1931 /* Extended Device Control */
1932 reg = er32(CTRL_EXT);
1933 reg |= (1 << 22);
1934 ew32(CTRL_EXT, reg);
1935
1936 /* Transmit Descriptor Control 0 */
e9ec2c0f 1937 reg = er32(TXDCTL(0));
bc7f75fa 1938 reg |= (1 << 22);
e9ec2c0f 1939 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1940
1941 /* Transmit Descriptor Control 1 */
e9ec2c0f 1942 reg = er32(TXDCTL(1));
bc7f75fa 1943 reg |= (1 << 22);
e9ec2c0f 1944 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1945
1946 /* Transmit Arbitration Control 0 */
e9ec2c0f 1947 reg = er32(TARC(0));
bc7f75fa
AK
1948 if (hw->mac.type == e1000_ich8lan)
1949 reg |= (1 << 28) | (1 << 29);
1950 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 1951 ew32(TARC(0), reg);
bc7f75fa
AK
1952
1953 /* Transmit Arbitration Control 1 */
e9ec2c0f 1954 reg = er32(TARC(1));
bc7f75fa
AK
1955 if (er32(TCTL) & E1000_TCTL_MULR)
1956 reg &= ~(1 << 28);
1957 else
1958 reg |= (1 << 28);
1959 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 1960 ew32(TARC(1), reg);
bc7f75fa
AK
1961
1962 /* Device Status */
1963 if (hw->mac.type == e1000_ich8lan) {
1964 reg = er32(STATUS);
1965 reg &= ~(1 << 31);
1966 ew32(STATUS, reg);
1967 }
1968}
1969
1970/**
1971 * e1000_setup_link_ich8lan - Setup flow control and link settings
1972 * @hw: pointer to the HW structure
1973 *
1974 * Determines which flow control settings to use, then configures flow
1975 * control. Calls the appropriate media-specific link configuration
1976 * function. Assuming the adapter has a valid link partner, a valid link
1977 * should be established. Assumes the hardware has previously been reset
1978 * and the transmitter and receiver are not enabled.
1979 **/
1980static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
1981{
bc7f75fa
AK
1982 s32 ret_val;
1983
1984 if (e1000_check_reset_block(hw))
1985 return 0;
1986
ad68076e
BA
1987 /*
1988 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
1989 * the default flow control setting, so we explicitly
1990 * set it to full.
1991 */
318a94d6
JK
1992 if (hw->fc.type == e1000_fc_default)
1993 hw->fc.type = e1000_fc_full;
bc7f75fa 1994
318a94d6 1995 hw->fc.original_type = hw->fc.type;
bc7f75fa 1996
318a94d6 1997 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
bc7f75fa
AK
1998
1999 /* Continue to configure the copper link. */
2000 ret_val = e1000_setup_copper_link_ich8lan(hw);
2001 if (ret_val)
2002 return ret_val;
2003
318a94d6 2004 ew32(FCTTV, hw->fc.pause_time);
bc7f75fa
AK
2005
2006 return e1000e_set_fc_watermarks(hw);
2007}
2008
2009/**
2010 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2011 * @hw: pointer to the HW structure
2012 *
2013 * Configures the kumeran interface to the PHY to wait the appropriate time
2014 * when polling the PHY, then call the generic setup_copper_link to finish
2015 * configuring the copper link.
2016 **/
2017static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2018{
2019 u32 ctrl;
2020 s32 ret_val;
2021 u16 reg_data;
2022
2023 ctrl = er32(CTRL);
2024 ctrl |= E1000_CTRL_SLU;
2025 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2026 ew32(CTRL, ctrl);
2027
ad68076e
BA
2028 /*
2029 * Set the mac to wait the maximum time between each iteration
bc7f75fa 2030 * and increase the max iterations when polling the phy;
ad68076e
BA
2031 * this fixes erroneous timeouts at 10Mbps.
2032 */
bc7f75fa
AK
2033 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2034 if (ret_val)
2035 return ret_val;
2036 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2037 if (ret_val)
2038 return ret_val;
2039 reg_data |= 0x3F;
2040 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2041 if (ret_val)
2042 return ret_val;
2043
2044 if (hw->phy.type == e1000_phy_igp_3) {
2045 ret_val = e1000e_copper_link_setup_igp(hw);
2046 if (ret_val)
2047 return ret_val;
97ac8cae
BA
2048 } else if (hw->phy.type == e1000_phy_bm) {
2049 ret_val = e1000e_copper_link_setup_m88(hw);
2050 if (ret_val)
2051 return ret_val;
bc7f75fa
AK
2052 }
2053
97ac8cae
BA
2054 if (hw->phy.type == e1000_phy_ife) {
2055 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2056 if (ret_val)
2057 return ret_val;
2058
2059 reg_data &= ~IFE_PMC_AUTO_MDIX;
2060
2061 switch (hw->phy.mdix) {
2062 case 1:
2063 reg_data &= ~IFE_PMC_FORCE_MDIX;
2064 break;
2065 case 2:
2066 reg_data |= IFE_PMC_FORCE_MDIX;
2067 break;
2068 case 0:
2069 default:
2070 reg_data |= IFE_PMC_AUTO_MDIX;
2071 break;
2072 }
2073 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2074 if (ret_val)
2075 return ret_val;
2076 }
bc7f75fa
AK
2077 return e1000e_setup_copper_link(hw);
2078}
2079
2080/**
2081 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2082 * @hw: pointer to the HW structure
2083 * @speed: pointer to store current link speed
2084 * @duplex: pointer to store the current link duplex
2085 *
ad68076e 2086 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
2087 * information and then calls the Kumeran lock loss workaround for links at
2088 * gigabit speeds.
2089 **/
2090static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2091 u16 *duplex)
2092{
2093 s32 ret_val;
2094
2095 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2096 if (ret_val)
2097 return ret_val;
2098
2099 if ((hw->mac.type == e1000_ich8lan) &&
2100 (hw->phy.type == e1000_phy_igp_3) &&
2101 (*speed == SPEED_1000)) {
2102 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2103 }
2104
2105 return ret_val;
2106}
2107
2108/**
2109 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2110 * @hw: pointer to the HW structure
2111 *
2112 * Work-around for 82566 Kumeran PCS lock loss:
2113 * On link status change (i.e. PCI reset, speed change) and link is up and
2114 * speed is gigabit-
2115 * 0) if workaround is optionally disabled do nothing
2116 * 1) wait 1ms for Kumeran link to come up
2117 * 2) check Kumeran Diagnostic register PCS lock loss bit
2118 * 3) if not set the link is locked (all is good), otherwise...
2119 * 4) reset the PHY
2120 * 5) repeat up to 10 times
2121 * Note: this is only called for IGP3 copper when speed is 1gb.
2122 **/
2123static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2124{
2125 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2126 u32 phy_ctrl;
2127 s32 ret_val;
2128 u16 i, data;
2129 bool link;
2130
2131 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2132 return 0;
2133
ad68076e
BA
2134 /*
2135 * Make sure link is up before proceeding. If not just return.
bc7f75fa 2136 * Attempting this while link is negotiating fouled up link
ad68076e
BA
2137 * stability
2138 */
bc7f75fa
AK
2139 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2140 if (!link)
2141 return 0;
2142
2143 for (i = 0; i < 10; i++) {
2144 /* read once to clear */
2145 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2146 if (ret_val)
2147 return ret_val;
2148 /* and again to get new status */
2149 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2150 if (ret_val)
2151 return ret_val;
2152
2153 /* check for PCS lock */
2154 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2155 return 0;
2156
2157 /* Issue PHY reset */
2158 e1000_phy_hw_reset(hw);
2159 mdelay(5);
2160 }
2161 /* Disable GigE link negotiation */
2162 phy_ctrl = er32(PHY_CTRL);
2163 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2164 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2165 ew32(PHY_CTRL, phy_ctrl);
2166
ad68076e
BA
2167 /*
2168 * Call gig speed drop workaround on Gig disable before accessing
2169 * any PHY registers
2170 */
bc7f75fa
AK
2171 e1000e_gig_downshift_workaround_ich8lan(hw);
2172
2173 /* unable to acquire PCS lock */
2174 return -E1000_ERR_PHY;
2175}
2176
2177/**
ad68076e 2178 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 2179 * @hw: pointer to the HW structure
489815ce 2180 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa
AK
2181 *
2182 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2183 * /disabled - FALSE).
2184 **/
2185void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2186 bool state)
2187{
2188 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2189
2190 if (hw->mac.type != e1000_ich8lan) {
2191 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2192 return;
2193 }
2194
2195 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2196}
2197
2198/**
2199 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2200 * @hw: pointer to the HW structure
2201 *
2202 * Workaround for 82566 power-down on D3 entry:
2203 * 1) disable gigabit link
2204 * 2) write VR power-down enable
2205 * 3) read it back
2206 * Continue if successful, else issue LCD reset and repeat
2207 **/
2208void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2209{
2210 u32 reg;
2211 u16 data;
2212 u8 retry = 0;
2213
2214 if (hw->phy.type != e1000_phy_igp_3)
2215 return;
2216
2217 /* Try the workaround twice (if needed) */
2218 do {
2219 /* Disable link */
2220 reg = er32(PHY_CTRL);
2221 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2222 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2223 ew32(PHY_CTRL, reg);
2224
ad68076e
BA
2225 /*
2226 * Call gig speed drop workaround on Gig disable before
2227 * accessing any PHY registers
2228 */
bc7f75fa
AK
2229 if (hw->mac.type == e1000_ich8lan)
2230 e1000e_gig_downshift_workaround_ich8lan(hw);
2231
2232 /* Write VR power-down enable */
2233 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2234 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2235 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2236
2237 /* Read it back and test */
2238 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2239 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2240 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2241 break;
2242
2243 /* Issue PHY reset and repeat at most one more time */
2244 reg = er32(CTRL);
2245 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2246 retry++;
2247 } while (retry);
2248}
2249
2250/**
2251 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2252 * @hw: pointer to the HW structure
2253 *
2254 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 2255 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
2256 * 1) Set Kumeran Near-end loopback
2257 * 2) Clear Kumeran Near-end loopback
2258 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2259 **/
2260void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2261{
2262 s32 ret_val;
2263 u16 reg_data;
2264
2265 if ((hw->mac.type != e1000_ich8lan) ||
2266 (hw->phy.type != e1000_phy_igp_3))
2267 return;
2268
2269 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2270 &reg_data);
2271 if (ret_val)
2272 return;
2273 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2274 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2275 reg_data);
2276 if (ret_val)
2277 return;
2278 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2279 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2280 reg_data);
2281}
2282
97ac8cae
BA
2283/**
2284 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2285 * @hw: pointer to the HW structure
2286 *
2287 * During S0 to Sx transition, it is possible the link remains at gig
2288 * instead of negotiating to a lower speed. Before going to Sx, set
2289 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2290 * to a lower speed.
2291 *
f4187b56 2292 * Should only be called for ICH9 and ICH10 devices.
97ac8cae
BA
2293 **/
2294void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2295{
2296 u32 phy_ctrl;
2297
f4187b56
BA
2298 if ((hw->mac.type == e1000_ich10lan) ||
2299 (hw->mac.type == e1000_ich9lan)) {
97ac8cae
BA
2300 phy_ctrl = er32(PHY_CTRL);
2301 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2302 E1000_PHY_CTRL_GBE_DISABLE;
2303 ew32(PHY_CTRL, phy_ctrl);
2304 }
2305
2306 return;
2307}
2308
bc7f75fa
AK
2309/**
2310 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2311 * @hw: pointer to the HW structure
2312 *
2313 * Return the LED back to the default configuration.
2314 **/
2315static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2316{
2317 if (hw->phy.type == e1000_phy_ife)
2318 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2319
2320 ew32(LEDCTL, hw->mac.ledctl_default);
2321 return 0;
2322}
2323
2324/**
489815ce 2325 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
2326 * @hw: pointer to the HW structure
2327 *
489815ce 2328 * Turn on the LEDs.
bc7f75fa
AK
2329 **/
2330static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2331{
2332 if (hw->phy.type == e1000_phy_ife)
2333 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2334 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2335
2336 ew32(LEDCTL, hw->mac.ledctl_mode2);
2337 return 0;
2338}
2339
2340/**
489815ce 2341 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
2342 * @hw: pointer to the HW structure
2343 *
489815ce 2344 * Turn off the LEDs.
bc7f75fa
AK
2345 **/
2346static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2347{
2348 if (hw->phy.type == e1000_phy_ife)
2349 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2350 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2351
2352 ew32(LEDCTL, hw->mac.ledctl_mode1);
2353 return 0;
2354}
2355
f4187b56
BA
2356/**
2357 * e1000_get_cfg_done_ich8lan - Read config done bit
2358 * @hw: pointer to the HW structure
2359 *
2360 * Read the management control register for the config done bit for
2361 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2362 * to read the config done bit, so an error is *ONLY* logged and returns
2363 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2364 * would not be able to be reset or change link.
2365 **/
2366static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2367{
2368 u32 bank = 0;
2369
2370 e1000e_get_cfg_done(hw);
2371
2372 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2373 if (hw->mac.type != e1000_ich10lan) {
2374 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2375 (hw->phy.type == e1000_phy_igp_3)) {
2376 e1000e_phy_init_script_igp3(hw);
2377 }
2378 } else {
2379 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2380 /* Maybe we should do a basic PHY config */
2381 hw_dbg(hw, "EEPROM not present\n");
2382 return -E1000_ERR_CONFIG;
2383 }
2384 }
2385
2386 return 0;
2387}
2388
bc7f75fa
AK
2389/**
2390 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2391 * @hw: pointer to the HW structure
2392 *
2393 * Clears hardware counters specific to the silicon family and calls
2394 * clear_hw_cntrs_generic to clear all general purpose counters.
2395 **/
2396static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2397{
2398 u32 temp;
2399
2400 e1000e_clear_hw_cntrs_base(hw);
2401
2402 temp = er32(ALGNERRC);
2403 temp = er32(RXERRC);
2404 temp = er32(TNCRS);
2405 temp = er32(CEXTERR);
2406 temp = er32(TSCTC);
2407 temp = er32(TSCTFC);
2408
2409 temp = er32(MGTPRC);
2410 temp = er32(MGTPDC);
2411 temp = er32(MGTPTC);
2412
2413 temp = er32(IAC);
2414 temp = er32(ICRXOC);
2415
2416}
2417
2418static struct e1000_mac_operations ich8_mac_ops = {
4662e82b 2419 .check_mng_mode = e1000_check_mng_mode_ich8lan,
bc7f75fa
AK
2420 .check_for_link = e1000e_check_for_copper_link,
2421 .cleanup_led = e1000_cleanup_led_ich8lan,
2422 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2423 .get_bus_info = e1000_get_bus_info_ich8lan,
2424 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2425 .led_on = e1000_led_on_ich8lan,
2426 .led_off = e1000_led_off_ich8lan,
e2de3eb6 2427 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
2428 .reset_hw = e1000_reset_hw_ich8lan,
2429 .init_hw = e1000_init_hw_ich8lan,
2430 .setup_link = e1000_setup_link_ich8lan,
2431 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2432};
2433
2434static struct e1000_phy_operations ich8_phy_ops = {
2435 .acquire_phy = e1000_acquire_swflag_ich8lan,
2436 .check_reset_block = e1000_check_reset_block_ich8lan,
2437 .commit_phy = NULL,
2438 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
f4187b56 2439 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa
AK
2440 .get_cable_length = e1000e_get_cable_length_igp_2,
2441 .get_phy_info = e1000_get_phy_info_ich8lan,
2442 .read_phy_reg = e1000e_read_phy_reg_igp,
2443 .release_phy = e1000_release_swflag_ich8lan,
2444 .reset_phy = e1000_phy_hw_reset_ich8lan,
2445 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2446 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2447 .write_phy_reg = e1000e_write_phy_reg_igp,
2448};
2449
2450static struct e1000_nvm_operations ich8_nvm_ops = {
2451 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2452 .read_nvm = e1000_read_nvm_ich8lan,
2453 .release_nvm = e1000_release_swflag_ich8lan,
2454 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2455 .valid_led_default = e1000_valid_led_default_ich8lan,
2456 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2457 .write_nvm = e1000_write_nvm_ich8lan,
2458};
2459
2460struct e1000_info e1000_ich8_info = {
2461 .mac = e1000_ich8lan,
2462 .flags = FLAG_HAS_WOL
97ac8cae 2463 | FLAG_IS_ICH
bc7f75fa
AK
2464 | FLAG_RX_CSUM_ENABLED
2465 | FLAG_HAS_CTRLEXT_ON_LOAD
2466 | FLAG_HAS_AMT
2467 | FLAG_HAS_FLASH
2468 | FLAG_APME_IN_WUC,
2469 .pba = 8,
69e3fd8c 2470 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
2471 .mac_ops = &ich8_mac_ops,
2472 .phy_ops = &ich8_phy_ops,
2473 .nvm_ops = &ich8_nvm_ops,
2474};
2475
2476struct e1000_info e1000_ich9_info = {
2477 .mac = e1000_ich9lan,
2478 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 2479 | FLAG_IS_ICH
bc7f75fa
AK
2480 | FLAG_HAS_WOL
2481 | FLAG_RX_CSUM_ENABLED
2482 | FLAG_HAS_CTRLEXT_ON_LOAD
2483 | FLAG_HAS_AMT
2484 | FLAG_HAS_ERT
2485 | FLAG_HAS_FLASH
2486 | FLAG_APME_IN_WUC,
2487 .pba = 10,
69e3fd8c 2488 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
2489 .mac_ops = &ich8_mac_ops,
2490 .phy_ops = &ich8_phy_ops,
2491 .nvm_ops = &ich8_nvm_ops,
2492};
2493
f4187b56
BA
2494struct e1000_info e1000_ich10_info = {
2495 .mac = e1000_ich10lan,
2496 .flags = FLAG_HAS_JUMBO_FRAMES
2497 | FLAG_IS_ICH
2498 | FLAG_HAS_WOL
2499 | FLAG_RX_CSUM_ENABLED
2500 | FLAG_HAS_CTRLEXT_ON_LOAD
2501 | FLAG_HAS_AMT
2502 | FLAG_HAS_ERT
2503 | FLAG_HAS_FLASH
2504 | FLAG_APME_IN_WUC,
2505 .pba = 10,
2506 .get_variants = e1000_get_variants_ich8lan,
2507 .mac_ops = &ich8_mac_ops,
2508 .phy_ops = &ich8_phy_ops,
2509 .nvm_ops = &ich8_nvm_ops,
2510};