RDMA/cxgb3: Remove BUG_ON() on CQ rearm failure
[linux-2.6-block.git] / drivers / net / e1000e / es2lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32 */
33
bc7f75fa
AK
34#include "e1000.h"
35
36#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
37#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
38#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
2d9498f3 39#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
bc7f75fa
AK
40
41#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
42#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
43#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
44
45#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
2d9498f3 47#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
bc7f75fa 48
3421eecd
BA
49#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
50#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
51
bc7f75fa
AK
52#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
54
55#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
56#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
57
58/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
60#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
61#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
62#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
63#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
64
65/* PHY Specific Control Register 2 (Page 0, Register 26) */
66#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
67 /* 1=Reverse Auto-Negotiation */
68
69/* MAC Specific Control Register (Page 2, Register 21) */
70/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71#define GG82563_MSCR_TX_CLK_MASK 0x0007
72#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
73#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
74#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
75
76#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
77
78/* DSP Distance Register (Page 5, Register 26) */
79#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
80 1 = 50-80M
81 2 = 80-110M
82 3 = 110-140M
83 4 = >140M */
84
85/* Kumeran Mode Control Register (Page 193, Register 16) */
86#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
87
2d9498f3
DG
88/* Max number of times Kumeran read/write should be validated */
89#define GG82563_MAX_KMRN_RETRY 0x5
90
bc7f75fa
AK
91/* Power Management Control Register (Page 193, Register 20) */
92#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
93 /* 1=Enable SERDES Electrical Idle */
94
95/* In-Band Control Register (Page 194, Register 18) */
96#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
97
ad68076e
BA
98/*
99 * A table for the GG82563 cable length where the range is defined
bc7f75fa
AK
100 * with a lower bound at "index" and the upper bound at
101 * "index + 5".
102 */
103static const u16 e1000_gg82563_cable_length_table[] =
104 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
eb656d45
BA
105#define GG82563_CABLE_LENGTH_TABLE_SIZE \
106 ARRAY_SIZE(e1000_gg82563_cable_length_table)
bc7f75fa
AK
107
108static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
75eb0fad
BA
115static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117 u16 *data);
118static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119 u16 data);
17f208de 120static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
bc7f75fa
AK
121
122/**
123 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124 * @hw: pointer to the HW structure
bc7f75fa
AK
125 **/
126static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127{
128 struct e1000_phy_info *phy = &hw->phy;
129 s32 ret_val;
130
318a94d6 131 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
132 phy->type = e1000_phy_none;
133 return 0;
17f208de
BA
134 } else {
135 phy->ops.power_up = e1000_power_up_phy_copper;
136 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
bc7f75fa
AK
137 }
138
139 phy->addr = 1;
140 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
141 phy->reset_delay_us = 100;
142 phy->type = e1000_phy_gg82563;
143
144 /* This can only be done after all function pointers are setup. */
145 ret_val = e1000e_get_phy_id(hw);
146
147 /* Verify phy id */
148 if (phy->id != GG82563_E_PHY_ID)
149 return -E1000_ERR_PHY;
150
151 return ret_val;
152}
153
154/**
155 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156 * @hw: pointer to the HW structure
bc7f75fa
AK
157 **/
158static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159{
160 struct e1000_nvm_info *nvm = &hw->nvm;
161 u32 eecd = er32(EECD);
162 u16 size;
163
164 nvm->opcode_bits = 8;
165 nvm->delay_usec = 1;
166 switch (nvm->override) {
167 case e1000_nvm_override_spi_large:
168 nvm->page_size = 32;
169 nvm->address_bits = 16;
170 break;
171 case e1000_nvm_override_spi_small:
172 nvm->page_size = 8;
173 nvm->address_bits = 8;
174 break;
175 default:
176 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178 break;
179 }
180
ad68076e 181 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
182
183 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184 E1000_EECD_SIZE_EX_SHIFT);
185
ad68076e
BA
186 /*
187 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
188 * for setting word_size.
189 */
190 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
191
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
bc7f75fa
AK
195 nvm->word_size = 1 << size;
196
197 return 0;
198}
199
200/**
201 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202 * @hw: pointer to the HW structure
bc7f75fa
AK
203 **/
204static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
205{
206 struct e1000_hw *hw = &adapter->hw;
207 struct e1000_mac_info *mac = &hw->mac;
208 struct e1000_mac_operations *func = &mac->ops;
209
210 /* Set media type */
211 switch (adapter->pdev->device) {
212 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
318a94d6 213 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
214 break;
215 default:
318a94d6 216 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
217 break;
218 }
219
220 /* Set mta register count */
221 mac->mta_reg_count = 128;
222 /* Set rar entry count */
223 mac->rar_entry_count = E1000_RAR_ENTRIES;
224 /* Set if manageability features are enabled. */
564ea9bb
BA
225 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
226 ? true : false;
f464ba87
BA
227 /* Adaptive IFS not supported */
228 mac->adaptive_ifs = false;
bc7f75fa
AK
229
230 /* check for link */
318a94d6 231 switch (hw->phy.media_type) {
bc7f75fa
AK
232 case e1000_media_type_copper:
233 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
234 func->check_for_link = e1000e_check_for_copper_link;
235 break;
236 case e1000_media_type_fiber:
237 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
238 func->check_for_link = e1000e_check_for_fiber_link;
239 break;
240 case e1000_media_type_internal_serdes:
241 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
242 func->check_for_link = e1000e_check_for_serdes_link;
243 break;
244 default:
245 return -E1000_ERR_CONFIG;
246 break;
247 }
248
249 return 0;
250}
251
69e3fd8c 252static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
bc7f75fa
AK
253{
254 struct e1000_hw *hw = &adapter->hw;
255 s32 rc;
256
257 rc = e1000_init_mac_params_80003es2lan(adapter);
258 if (rc)
259 return rc;
260
261 rc = e1000_init_nvm_params_80003es2lan(hw);
262 if (rc)
263 return rc;
264
265 rc = e1000_init_phy_params_80003es2lan(hw);
266 if (rc)
267 return rc;
268
269 return 0;
270}
271
272/**
273 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
274 * @hw: pointer to the HW structure
275 *
fe401674 276 * A wrapper to acquire access rights to the correct PHY.
bc7f75fa
AK
277 **/
278static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
279{
280 u16 mask;
281
282 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
bc7f75fa
AK
283 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
284}
285
286/**
287 * e1000_release_phy_80003es2lan - Release rights to access PHY
288 * @hw: pointer to the HW structure
289 *
fe401674 290 * A wrapper to release access rights to the correct PHY.
bc7f75fa
AK
291 **/
292static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
293{
294 u16 mask;
295
296 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
75eb0fad
BA
297 e1000_release_swfw_sync_80003es2lan(hw, mask);
298}
299
300/**
301 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
302 * @hw: pointer to the HW structure
303 *
304 * Acquire the semaphore to access the Kumeran interface.
305 *
306 **/
307static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
308{
309 u16 mask;
310
311 mask = E1000_SWFW_CSR_SM;
312
313 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
314}
315
316/**
317 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
318 * @hw: pointer to the HW structure
319 *
320 * Release the semaphore used to access the Kumeran interface
321 **/
322static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
323{
324 u16 mask;
325
326 mask = E1000_SWFW_CSR_SM;
2d9498f3 327
bc7f75fa
AK
328 e1000_release_swfw_sync_80003es2lan(hw, mask);
329}
330
331/**
332 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
333 * @hw: pointer to the HW structure
334 *
fe401674 335 * Acquire the semaphore to access the EEPROM.
bc7f75fa
AK
336 **/
337static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
338{
339 s32 ret_val;
340
341 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
342 if (ret_val)
343 return ret_val;
344
345 ret_val = e1000e_acquire_nvm(hw);
346
347 if (ret_val)
348 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
349
350 return ret_val;
351}
352
353/**
354 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
355 * @hw: pointer to the HW structure
356 *
fe401674 357 * Release the semaphore used to access the EEPROM.
bc7f75fa
AK
358 **/
359static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
360{
361 e1000e_release_nvm(hw);
362 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
363}
364
365/**
366 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
367 * @hw: pointer to the HW structure
368 * @mask: specifies which semaphore to acquire
369 *
370 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
371 * will also specify which port we're acquiring the lock for.
372 **/
373static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
374{
375 u32 swfw_sync;
376 u32 swmask = mask;
377 u32 fwmask = mask << 16;
378 s32 i = 0;
75eb0fad 379 s32 timeout = 50;
bc7f75fa
AK
380
381 while (i < timeout) {
382 if (e1000e_get_hw_semaphore(hw))
383 return -E1000_ERR_SWFW_SYNC;
384
385 swfw_sync = er32(SW_FW_SYNC);
386 if (!(swfw_sync & (fwmask | swmask)))
387 break;
388
ad68076e
BA
389 /*
390 * Firmware currently using resource (fwmask)
391 * or other software thread using resource (swmask)
392 */
bc7f75fa
AK
393 e1000e_put_hw_semaphore(hw);
394 mdelay(5);
395 i++;
396 }
397
398 if (i == timeout) {
3bb99fe2 399 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
bc7f75fa
AK
400 return -E1000_ERR_SWFW_SYNC;
401 }
402
403 swfw_sync |= swmask;
404 ew32(SW_FW_SYNC, swfw_sync);
405
406 e1000e_put_hw_semaphore(hw);
407
408 return 0;
409}
410
411/**
412 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
413 * @hw: pointer to the HW structure
414 * @mask: specifies which semaphore to acquire
415 *
416 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
417 * will also specify which port we're releasing the lock for.
418 **/
419static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
420{
421 u32 swfw_sync;
422
423 while (e1000e_get_hw_semaphore(hw) != 0);
424 /* Empty */
425
426 swfw_sync = er32(SW_FW_SYNC);
427 swfw_sync &= ~mask;
428 ew32(SW_FW_SYNC, swfw_sync);
429
430 e1000e_put_hw_semaphore(hw);
431}
432
433/**
434 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
435 * @hw: pointer to the HW structure
436 * @offset: offset of the register to read
437 * @data: pointer to the data returned from the operation
438 *
fe401674 439 * Read the GG82563 PHY register.
bc7f75fa
AK
440 **/
441static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
442 u32 offset, u16 *data)
443{
444 s32 ret_val;
445 u32 page_select;
446 u16 temp;
447
2d9498f3
DG
448 ret_val = e1000_acquire_phy_80003es2lan(hw);
449 if (ret_val)
450 return ret_val;
451
bc7f75fa 452 /* Select Configuration Page */
2d9498f3 453 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
bc7f75fa 454 page_select = GG82563_PHY_PAGE_SELECT;
2d9498f3 455 } else {
ad68076e
BA
456 /*
457 * Use Alternative Page Select register to access
bc7f75fa
AK
458 * registers 30 and 31
459 */
460 page_select = GG82563_PHY_PAGE_SELECT_ALT;
2d9498f3 461 }
bc7f75fa
AK
462
463 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
2d9498f3
DG
464 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
465 if (ret_val) {
466 e1000_release_phy_80003es2lan(hw);
bc7f75fa 467 return ret_val;
2d9498f3 468 }
bc7f75fa 469
3421eecd
BA
470 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
471 /*
472 * The "ready" bit in the MDIC register may be incorrectly set
473 * before the device has completed the "Page Select" MDI
474 * transaction. So we wait 200us after each MDI command...
475 */
476 udelay(200);
bc7f75fa 477
3421eecd
BA
478 /* ...and verify the command was successful. */
479 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
bc7f75fa 480
3421eecd
BA
481 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
482 ret_val = -E1000_ERR_PHY;
483 e1000_release_phy_80003es2lan(hw);
484 return ret_val;
485 }
486
487 udelay(200);
bc7f75fa 488
3421eecd
BA
489 ret_val = e1000e_read_phy_reg_mdic(hw,
490 MAX_PHY_REG_ADDRESS & offset,
491 data);
bc7f75fa 492
3421eecd
BA
493 udelay(200);
494 } else {
495 ret_val = e1000e_read_phy_reg_mdic(hw,
496 MAX_PHY_REG_ADDRESS & offset,
497 data);
498 }
bc7f75fa 499
2d9498f3 500 e1000_release_phy_80003es2lan(hw);
bc7f75fa
AK
501
502 return ret_val;
503}
504
505/**
506 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
507 * @hw: pointer to the HW structure
508 * @offset: offset of the register to read
509 * @data: value to write to the register
510 *
fe401674 511 * Write to the GG82563 PHY register.
bc7f75fa
AK
512 **/
513static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
514 u32 offset, u16 data)
515{
516 s32 ret_val;
517 u32 page_select;
518 u16 temp;
519
2d9498f3
DG
520 ret_val = e1000_acquire_phy_80003es2lan(hw);
521 if (ret_val)
522 return ret_val;
523
bc7f75fa 524 /* Select Configuration Page */
2d9498f3 525 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
bc7f75fa 526 page_select = GG82563_PHY_PAGE_SELECT;
2d9498f3 527 } else {
ad68076e
BA
528 /*
529 * Use Alternative Page Select register to access
bc7f75fa
AK
530 * registers 30 and 31
531 */
532 page_select = GG82563_PHY_PAGE_SELECT_ALT;
2d9498f3 533 }
bc7f75fa
AK
534
535 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
2d9498f3
DG
536 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
537 if (ret_val) {
538 e1000_release_phy_80003es2lan(hw);
bc7f75fa 539 return ret_val;
2d9498f3 540 }
bc7f75fa 541
3421eecd
BA
542 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
543 /*
544 * The "ready" bit in the MDIC register may be incorrectly set
545 * before the device has completed the "Page Select" MDI
546 * transaction. So we wait 200us after each MDI command...
547 */
548 udelay(200);
bc7f75fa 549
3421eecd
BA
550 /* ...and verify the command was successful. */
551 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
bc7f75fa 552
3421eecd
BA
553 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
554 e1000_release_phy_80003es2lan(hw);
555 return -E1000_ERR_PHY;
556 }
bc7f75fa 557
3421eecd 558 udelay(200);
bc7f75fa 559
3421eecd
BA
560 ret_val = e1000e_write_phy_reg_mdic(hw,
561 MAX_PHY_REG_ADDRESS & offset,
562 data);
bc7f75fa 563
3421eecd
BA
564 udelay(200);
565 } else {
566 ret_val = e1000e_write_phy_reg_mdic(hw,
567 MAX_PHY_REG_ADDRESS & offset,
568 data);
569 }
bc7f75fa 570
2d9498f3 571 e1000_release_phy_80003es2lan(hw);
bc7f75fa
AK
572
573 return ret_val;
574}
575
576/**
577 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
578 * @hw: pointer to the HW structure
579 * @offset: offset of the register to read
580 * @words: number of words to write
581 * @data: buffer of data to write to the NVM
582 *
fe401674 583 * Write "words" of data to the ESB2 NVM.
bc7f75fa
AK
584 **/
585static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
586 u16 words, u16 *data)
587{
588 return e1000e_write_nvm_spi(hw, offset, words, data);
589}
590
591/**
592 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
593 * @hw: pointer to the HW structure
594 *
595 * Wait a specific amount of time for manageability processes to complete.
596 * This is a function pointer entry point called by the phy module.
597 **/
598static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
599{
600 s32 timeout = PHY_CFG_TIMEOUT;
601 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
602
603 if (hw->bus.func == 1)
604 mask = E1000_NVM_CFG_DONE_PORT_1;
605
606 while (timeout) {
607 if (er32(EEMNGCTL) & mask)
608 break;
609 msleep(1);
610 timeout--;
611 }
612 if (!timeout) {
3bb99fe2 613 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
614 return -E1000_ERR_RESET;
615 }
616
617 return 0;
618}
619
620/**
621 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
622 * @hw: pointer to the HW structure
623 *
624 * Force the speed and duplex settings onto the PHY. This is a
625 * function pointer entry point called by the phy module.
626 **/
627static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
628{
629 s32 ret_val;
630 u16 phy_data;
631 bool link;
632
ad68076e
BA
633 /*
634 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
bc7f75fa
AK
635 * forced whenever speed and duplex are forced.
636 */
637 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
638 if (ret_val)
639 return ret_val;
640
641 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
642 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
643 if (ret_val)
644 return ret_val;
645
3bb99fe2 646 e_dbg("GG82563 PSCR: %X\n", phy_data);
bc7f75fa
AK
647
648 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
649 if (ret_val)
650 return ret_val;
651
652 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
653
654 /* Reset the phy to commit changes. */
655 phy_data |= MII_CR_RESET;
656
657 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
658 if (ret_val)
659 return ret_val;
660
661 udelay(1);
662
318a94d6 663 if (hw->phy.autoneg_wait_to_complete) {
3bb99fe2 664 e_dbg("Waiting for forced speed/duplex link "
bc7f75fa
AK
665 "on GG82563 phy.\n");
666
667 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
668 100000, &link);
669 if (ret_val)
670 return ret_val;
671
672 if (!link) {
ad68076e
BA
673 /*
674 * We didn't get link.
bc7f75fa
AK
675 * Reset the DSP and cross our fingers.
676 */
677 ret_val = e1000e_phy_reset_dsp(hw);
678 if (ret_val)
679 return ret_val;
680 }
681
682 /* Try once more */
683 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
684 100000, &link);
685 if (ret_val)
686 return ret_val;
687 }
688
689 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
690 if (ret_val)
691 return ret_val;
692
ad68076e
BA
693 /*
694 * Resetting the phy means we need to verify the TX_CLK corresponds
bc7f75fa
AK
695 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
696 */
697 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
698 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
699 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
700 else
701 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
702
ad68076e
BA
703 /*
704 * In addition, we must re-enable CRS on Tx for both half and full
bc7f75fa
AK
705 * duplex.
706 */
707 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
708 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
709
710 return ret_val;
711}
712
713/**
714 * e1000_get_cable_length_80003es2lan - Set approximate cable length
715 * @hw: pointer to the HW structure
716 *
717 * Find the approximate cable length as measured by the GG82563 PHY.
718 * This is a function pointer entry point called by the phy module.
719 **/
720static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
721{
722 struct e1000_phy_info *phy = &hw->phy;
eb656d45 723 s32 ret_val = 0;
a708dd88 724 u16 phy_data, index;
bc7f75fa
AK
725
726 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
727 if (ret_val)
eb656d45 728 goto out;
bc7f75fa
AK
729
730 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
eb656d45
BA
731
732 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
733 ret_val = -E1000_ERR_PHY;
734 goto out;
735 }
736
bc7f75fa 737 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
eb656d45 738 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
bc7f75fa
AK
739
740 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
741
eb656d45
BA
742out:
743 return ret_val;
bc7f75fa
AK
744}
745
746/**
747 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
748 * @hw: pointer to the HW structure
749 * @speed: pointer to speed buffer
750 * @duplex: pointer to duplex buffer
751 *
752 * Retrieve the current speed and duplex configuration.
bc7f75fa
AK
753 **/
754static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
755 u16 *duplex)
756{
757 s32 ret_val;
758
318a94d6 759 if (hw->phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
760 ret_val = e1000e_get_speed_and_duplex_copper(hw,
761 speed,
762 duplex);
75eb0fad 763 hw->phy.ops.cfg_on_link_up(hw);
bc7f75fa
AK
764 } else {
765 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
766 speed,
767 duplex);
768 }
769
770 return ret_val;
771}
772
773/**
774 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
775 * @hw: pointer to the HW structure
776 *
777 * Perform a global reset to the ESB2 controller.
bc7f75fa
AK
778 **/
779static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
780{
a708dd88 781 u32 ctrl, icr;
bc7f75fa
AK
782 s32 ret_val;
783
ad68076e
BA
784 /*
785 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
786 * on the last TLP read/write transaction when MAC is reset.
787 */
788 ret_val = e1000e_disable_pcie_master(hw);
789 if (ret_val)
3bb99fe2 790 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 791
3bb99fe2 792 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
793 ew32(IMC, 0xffffffff);
794
795 ew32(RCTL, 0);
796 ew32(TCTL, E1000_TCTL_PSP);
797 e1e_flush();
798
799 msleep(10);
800
801 ctrl = er32(CTRL);
802
75eb0fad 803 ret_val = e1000_acquire_phy_80003es2lan(hw);
3bb99fe2 804 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa 805 ew32(CTRL, ctrl | E1000_CTRL_RST);
75eb0fad 806 e1000_release_phy_80003es2lan(hw);
bc7f75fa
AK
807
808 ret_val = e1000e_get_auto_rd_done(hw);
809 if (ret_val)
810 /* We don't want to continue accessing MAC registers. */
811 return ret_val;
812
813 /* Clear any pending interrupt events. */
814 ew32(IMC, 0xffffffff);
815 icr = er32(ICR);
816
817 return 0;
818}
819
820/**
821 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
822 * @hw: pointer to the HW structure
823 *
824 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
bc7f75fa
AK
825 **/
826static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
827{
828 struct e1000_mac_info *mac = &hw->mac;
829 u32 reg_data;
830 s32 ret_val;
831 u16 i;
832
833 e1000_initialize_hw_bits_80003es2lan(hw);
834
835 /* Initialize identification LED */
836 ret_val = e1000e_id_led_init(hw);
de39b752 837 if (ret_val)
3bb99fe2 838 e_dbg("Error initializing identification LED\n");
de39b752 839 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
840
841 /* Disabling VLAN filtering */
3bb99fe2 842 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 843 mac->ops.clear_vfta(hw);
bc7f75fa
AK
844
845 /* Setup the receive address. */
846 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
847
848 /* Zero out the Multicast HASH table */
3bb99fe2 849 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
850 for (i = 0; i < mac->mta_reg_count; i++)
851 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
852
853 /* Setup link and flow control */
854 ret_val = e1000e_setup_link(hw);
855
856 /* Set the transmit descriptor write-back policy */
e9ec2c0f 857 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
858 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
859 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 860 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
861
862 /* ...for both queues. */
e9ec2c0f 863 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
864 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
865 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 866 ew32(TXDCTL(1), reg_data);
bc7f75fa
AK
867
868 /* Enable retransmit on late collisions */
869 reg_data = er32(TCTL);
870 reg_data |= E1000_TCTL_RTLC;
871 ew32(TCTL, reg_data);
872
873 /* Configure Gigabit Carry Extend Padding */
874 reg_data = er32(TCTL_EXT);
875 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
876 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
877 ew32(TCTL_EXT, reg_data);
878
879 /* Configure Transmit Inter-Packet Gap */
880 reg_data = er32(TIPG);
881 reg_data &= ~E1000_TIPG_IPGT_MASK;
882 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
883 ew32(TIPG, reg_data);
884
885 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
886 reg_data &= ~0x00100000;
887 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
888
3421eecd
BA
889 /* default to true to enable the MDIC W/A */
890 hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
891
892 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
893 E1000_KMRNCTRLSTA_OFFSET >>
894 E1000_KMRNCTRLSTA_OFFSET_SHIFT,
895 &i);
896 if (!ret_val) {
897 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
898 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
899 hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
900 }
901
ad68076e
BA
902 /*
903 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
904 * important that we do this after we have tried to establish link
905 * because the symbol error count will increment wildly if there
906 * is no link.
907 */
908 e1000_clear_hw_cntrs_80003es2lan(hw);
909
910 return ret_val;
911}
912
913/**
914 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
915 * @hw: pointer to the HW structure
916 *
917 * Initializes required hardware-dependent bits needed for normal operation.
918 **/
919static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
920{
921 u32 reg;
922
923 /* Transmit Descriptor Control 0 */
e9ec2c0f 924 reg = er32(TXDCTL(0));
bc7f75fa 925 reg |= (1 << 22);
e9ec2c0f 926 ew32(TXDCTL(0), reg);
bc7f75fa
AK
927
928 /* Transmit Descriptor Control 1 */
e9ec2c0f 929 reg = er32(TXDCTL(1));
bc7f75fa 930 reg |= (1 << 22);
e9ec2c0f 931 ew32(TXDCTL(1), reg);
bc7f75fa
AK
932
933 /* Transmit Arbitration Control 0 */
e9ec2c0f 934 reg = er32(TARC(0));
bc7f75fa 935 reg &= ~(0xF << 27); /* 30:27 */
318a94d6 936 if (hw->phy.media_type != e1000_media_type_copper)
bc7f75fa 937 reg &= ~(1 << 20);
e9ec2c0f 938 ew32(TARC(0), reg);
bc7f75fa
AK
939
940 /* Transmit Arbitration Control 1 */
e9ec2c0f 941 reg = er32(TARC(1));
bc7f75fa
AK
942 if (er32(TCTL) & E1000_TCTL_MULR)
943 reg &= ~(1 << 28);
944 else
945 reg |= (1 << 28);
e9ec2c0f 946 ew32(TARC(1), reg);
bc7f75fa
AK
947}
948
949/**
950 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
951 * @hw: pointer to the HW structure
952 *
953 * Setup some GG82563 PHY registers for obtaining link
954 **/
955static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
956{
957 struct e1000_phy_info *phy = &hw->phy;
958 s32 ret_val;
959 u32 ctrl_ext;
75eb0fad 960 u16 data;
bc7f75fa 961
2d9498f3 962 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
bc7f75fa
AK
963 if (ret_val)
964 return ret_val;
965
966 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
967 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
968 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
969
2d9498f3 970 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
bc7f75fa
AK
971 if (ret_val)
972 return ret_val;
973
ad68076e
BA
974 /*
975 * Options:
bc7f75fa
AK
976 * MDI/MDI-X = 0 (default)
977 * 0 - Auto for all speeds
978 * 1 - MDI mode
979 * 2 - MDI-X mode
980 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
981 */
982 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
983 if (ret_val)
984 return ret_val;
985
986 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
987
988 switch (phy->mdix) {
989 case 1:
990 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
991 break;
992 case 2:
993 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
994 break;
995 case 0:
996 default:
997 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
998 break;
999 }
1000
ad68076e
BA
1001 /*
1002 * Options:
bc7f75fa
AK
1003 * disable_polarity_correction = 0 (default)
1004 * Automatic Correction for Reversed Cable Polarity
1005 * 0 - Disabled
1006 * 1 - Enabled
1007 */
1008 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1009 if (phy->disable_polarity_correction)
1010 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1011
1012 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1013 if (ret_val)
1014 return ret_val;
1015
1016 /* SW Reset the PHY so all changes take effect */
1017 ret_val = e1000e_commit_phy(hw);
1018 if (ret_val) {
3bb99fe2 1019 e_dbg("Error Resetting the PHY\n");
bc7f75fa
AK
1020 return ret_val;
1021 }
1022
ad68076e 1023 /* Bypass Rx and Tx FIFO's */
75eb0fad
BA
1024 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1025 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
ad68076e 1026 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
bc7f75fa
AK
1027 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1028 if (ret_val)
1029 return ret_val;
1030
75eb0fad 1031 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
2d9498f3
DG
1032 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1033 &data);
1034 if (ret_val)
1035 return ret_val;
1036 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
75eb0fad 1037 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
2d9498f3
DG
1038 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1039 data);
1040 if (ret_val)
1041 return ret_val;
1042
bc7f75fa
AK
1043 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1044 if (ret_val)
1045 return ret_val;
1046
1047 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1048 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1049 if (ret_val)
1050 return ret_val;
1051
1052 ctrl_ext = er32(CTRL_EXT);
1053 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1054 ew32(CTRL_EXT, ctrl_ext);
1055
1056 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1057 if (ret_val)
1058 return ret_val;
1059
ad68076e
BA
1060 /*
1061 * Do not init these registers when the HW is in IAMT mode, since the
bc7f75fa
AK
1062 * firmware will have already initialized them. We only initialize
1063 * them if the HW is not in IAMT mode.
1064 */
1065 if (!e1000e_check_mng_mode(hw)) {
1066 /* Enable Electrical Idle on the PHY */
1067 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1068 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1069 if (ret_val)
1070 return ret_val;
1071
75eb0fad
BA
1072 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1073 if (ret_val)
1074 return ret_val;
bc7f75fa
AK
1075
1076 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1077 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1078 if (ret_val)
1079 return ret_val;
1080 }
1081
ad68076e
BA
1082 /*
1083 * Workaround: Disable padding in Kumeran interface in the MAC
bc7f75fa
AK
1084 * and in the PHY to avoid CRC errors.
1085 */
1086 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1087 if (ret_val)
1088 return ret_val;
1089
1090 data |= GG82563_ICR_DIS_PADDING;
1091 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1092 if (ret_val)
1093 return ret_val;
1094
1095 return 0;
1096}
1097
1098/**
1099 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1100 * @hw: pointer to the HW structure
1101 *
1102 * Essentially a wrapper for setting up all things "copper" related.
1103 * This is a function pointer entry point called by the mac module.
1104 **/
1105static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1106{
1107 u32 ctrl;
1108 s32 ret_val;
1109 u16 reg_data;
1110
1111 ctrl = er32(CTRL);
1112 ctrl |= E1000_CTRL_SLU;
1113 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1114 ew32(CTRL, ctrl);
1115
ad68076e
BA
1116 /*
1117 * Set the mac to wait the maximum time between each
bc7f75fa 1118 * iteration and increase the max iterations when
ad68076e
BA
1119 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1120 */
75eb0fad
BA
1121 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1122 0xFFFF);
bc7f75fa
AK
1123 if (ret_val)
1124 return ret_val;
75eb0fad
BA
1125 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1126 &reg_data);
bc7f75fa
AK
1127 if (ret_val)
1128 return ret_val;
1129 reg_data |= 0x3F;
75eb0fad
BA
1130 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1131 reg_data);
bc7f75fa
AK
1132 if (ret_val)
1133 return ret_val;
75eb0fad 1134 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
bc7f75fa
AK
1135 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1136 &reg_data);
1137 if (ret_val)
1138 return ret_val;
1139 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
75eb0fad
BA
1140 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1141 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
ad68076e 1142 reg_data);
bc7f75fa
AK
1143 if (ret_val)
1144 return ret_val;
1145
1146 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1147 if (ret_val)
1148 return ret_val;
1149
1150 ret_val = e1000e_setup_copper_link(hw);
1151
1152 return 0;
1153}
1154
75eb0fad
BA
1155/**
1156 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1157 * @hw: pointer to the HW structure
1158 * @duplex: current duplex setting
1159 *
1160 * Configure the KMRN interface by applying last minute quirks for
1161 * 10/100 operation.
1162 **/
1163static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1164{
1165 s32 ret_val = 0;
1166 u16 speed;
1167 u16 duplex;
1168
1169 if (hw->phy.media_type == e1000_media_type_copper) {
1170 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1171 &duplex);
1172 if (ret_val)
1173 return ret_val;
1174
1175 if (speed == SPEED_1000)
1176 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1177 else
1178 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1179 }
1180
1181 return ret_val;
1182}
1183
bc7f75fa
AK
1184/**
1185 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1186 * @hw: pointer to the HW structure
1187 * @duplex: current duplex setting
1188 *
1189 * Configure the KMRN interface by applying last minute quirks for
1190 * 10/100 operation.
1191 **/
1192static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1193{
1194 s32 ret_val;
1195 u32 tipg;
2d9498f3
DG
1196 u32 i = 0;
1197 u16 reg_data, reg_data2;
bc7f75fa
AK
1198
1199 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
75eb0fad
BA
1200 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1201 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1202 reg_data);
bc7f75fa
AK
1203 if (ret_val)
1204 return ret_val;
1205
1206 /* Configure Transmit Inter-Packet Gap */
1207 tipg = er32(TIPG);
1208 tipg &= ~E1000_TIPG_IPGT_MASK;
1209 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1210 ew32(TIPG, tipg);
1211
2d9498f3
DG
1212 do {
1213 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1214 if (ret_val)
1215 return ret_val;
1216
1217 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1218 if (ret_val)
1219 return ret_val;
1220 i++;
1221 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
bc7f75fa
AK
1222
1223 if (duplex == HALF_DUPLEX)
1224 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1225 else
1226 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1227
1228 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1229
1230 return 0;
1231}
1232
1233/**
1234 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1235 * @hw: pointer to the HW structure
1236 *
1237 * Configure the KMRN interface by applying last minute quirks for
1238 * gigabit operation.
1239 **/
1240static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1241{
1242 s32 ret_val;
2d9498f3 1243 u16 reg_data, reg_data2;
bc7f75fa 1244 u32 tipg;
2d9498f3 1245 u32 i = 0;
bc7f75fa
AK
1246
1247 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
75eb0fad
BA
1248 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1249 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1250 reg_data);
bc7f75fa
AK
1251 if (ret_val)
1252 return ret_val;
1253
1254 /* Configure Transmit Inter-Packet Gap */
1255 tipg = er32(TIPG);
1256 tipg &= ~E1000_TIPG_IPGT_MASK;
1257 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1258 ew32(TIPG, tipg);
1259
2d9498f3
DG
1260 do {
1261 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1262 if (ret_val)
1263 return ret_val;
1264
1265 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1266 if (ret_val)
1267 return ret_val;
1268 i++;
1269 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
bc7f75fa
AK
1270
1271 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1272 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1273
1274 return ret_val;
1275}
1276
75eb0fad
BA
1277/**
1278 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1279 * @hw: pointer to the HW structure
1280 * @offset: register offset to be read
1281 * @data: pointer to the read data
1282 *
1283 * Acquire semaphore, then read the PHY register at offset
1284 * using the kumeran interface. The information retrieved is stored in data.
1285 * Release the semaphore before exiting.
1286 **/
fa4c16da
HE
1287static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1288 u16 *data)
75eb0fad
BA
1289{
1290 u32 kmrnctrlsta;
1291 s32 ret_val = 0;
1292
1293 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1294 if (ret_val)
1295 return ret_val;
1296
1297 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1298 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1299 ew32(KMRNCTRLSTA, kmrnctrlsta);
1300
1301 udelay(2);
1302
1303 kmrnctrlsta = er32(KMRNCTRLSTA);
1304 *data = (u16)kmrnctrlsta;
1305
1306 e1000_release_mac_csr_80003es2lan(hw);
1307
1308 return ret_val;
1309}
1310
1311/**
1312 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1313 * @hw: pointer to the HW structure
1314 * @offset: register offset to write to
1315 * @data: data to write at register offset
1316 *
1317 * Acquire semaphore, then write the data to PHY register
1318 * at the offset using the kumeran interface. Release semaphore
1319 * before exiting.
1320 **/
fa4c16da
HE
1321static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1322 u16 data)
75eb0fad
BA
1323{
1324 u32 kmrnctrlsta;
1325 s32 ret_val = 0;
1326
1327 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1328 if (ret_val)
1329 return ret_val;
1330
1331 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1332 E1000_KMRNCTRLSTA_OFFSET) | data;
1333 ew32(KMRNCTRLSTA, kmrnctrlsta);
1334
1335 udelay(2);
1336
1337 e1000_release_mac_csr_80003es2lan(hw);
1338
1339 return ret_val;
1340}
1341
17f208de
BA
1342/**
1343 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1344 * @hw: pointer to the HW structure
1345 *
1346 * In the case of a PHY power down to save power, or to turn off link during a
1347 * driver unload, or wake on lan is not enabled, remove the link.
1348 **/
1349static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1350{
1351 /* If the management interface is not enabled, then power down */
1352 if (!(hw->mac.ops.check_mng_mode(hw) ||
1353 hw->phy.ops.check_reset_block(hw)))
1354 e1000_power_down_phy_copper(hw);
1355
1356 return;
1357}
1358
bc7f75fa
AK
1359/**
1360 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1361 * @hw: pointer to the HW structure
1362 *
1363 * Clears the hardware counters by reading the counter registers.
1364 **/
1365static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1366{
bc7f75fa
AK
1367 e1000e_clear_hw_cntrs_base(hw);
1368
99673d9b
BA
1369 er32(PRC64);
1370 er32(PRC127);
1371 er32(PRC255);
1372 er32(PRC511);
1373 er32(PRC1023);
1374 er32(PRC1522);
1375 er32(PTC64);
1376 er32(PTC127);
1377 er32(PTC255);
1378 er32(PTC511);
1379 er32(PTC1023);
1380 er32(PTC1522);
1381
1382 er32(ALGNERRC);
1383 er32(RXERRC);
1384 er32(TNCRS);
1385 er32(CEXTERR);
1386 er32(TSCTC);
1387 er32(TSCTFC);
1388
1389 er32(MGTPRC);
1390 er32(MGTPDC);
1391 er32(MGTPTC);
1392
1393 er32(IAC);
1394 er32(ICRXOC);
1395
1396 er32(ICRXPTC);
1397 er32(ICRXATC);
1398 er32(ICTXPTC);
1399 er32(ICTXATC);
1400 er32(ICTXQEC);
1401 er32(ICTXQMTC);
1402 er32(ICRXDMTC);
bc7f75fa
AK
1403}
1404
1405static struct e1000_mac_operations es2_mac_ops = {
a4f58f54 1406 .id_led_init = e1000e_id_led_init,
4662e82b 1407 .check_mng_mode = e1000e_check_mng_mode_generic,
bc7f75fa
AK
1408 /* check_for_link dependent on media type */
1409 .cleanup_led = e1000e_cleanup_led_generic,
1410 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1411 .get_bus_info = e1000e_get_bus_info_pcie,
1412 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1413 .led_on = e1000e_led_on_generic,
1414 .led_off = e1000e_led_off_generic,
e2de3eb6 1415 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1416 .write_vfta = e1000_write_vfta_generic,
1417 .clear_vfta = e1000_clear_vfta_generic,
bc7f75fa
AK
1418 .reset_hw = e1000_reset_hw_80003es2lan,
1419 .init_hw = e1000_init_hw_80003es2lan,
1420 .setup_link = e1000e_setup_link,
1421 /* setup_physical_interface dependent on media type */
a4f58f54 1422 .setup_led = e1000e_setup_led_generic,
bc7f75fa
AK
1423};
1424
1425static struct e1000_phy_operations es2_phy_ops = {
94d8186a 1426 .acquire = e1000_acquire_phy_80003es2lan,
94e5b651 1427 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1428 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1429 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1430 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1431 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1432 .get_cable_length = e1000_get_cable_length_80003es2lan,
94d8186a
BA
1433 .get_info = e1000e_get_phy_info_m88,
1434 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1435 .release = e1000_release_phy_80003es2lan,
1436 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1437 .set_d0_lplu_state = NULL,
1438 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1439 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
75eb0fad 1440 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
bc7f75fa
AK
1441};
1442
1443static struct e1000_nvm_operations es2_nvm_ops = {
94d8186a
BA
1444 .acquire = e1000_acquire_nvm_80003es2lan,
1445 .read = e1000e_read_nvm_eerd,
1446 .release = e1000_release_nvm_80003es2lan,
1447 .update = e1000e_update_nvm_checksum_generic,
bc7f75fa 1448 .valid_led_default = e1000e_valid_led_default,
94d8186a
BA
1449 .validate = e1000e_validate_nvm_checksum_generic,
1450 .write = e1000_write_nvm_80003es2lan,
bc7f75fa
AK
1451};
1452
1453struct e1000_info e1000_es2_info = {
1454 .mac = e1000_80003es2lan,
1455 .flags = FLAG_HAS_HW_VLAN_FILTER
1456 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1457 | FLAG_HAS_WOL
1458 | FLAG_APME_IN_CTRL3
1459 | FLAG_RX_CSUM_ENABLED
1460 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1461 | FLAG_RX_NEEDS_RESTART /* errata */
1462 | FLAG_TARC_SET_BIT_ZERO /* errata */
1463 | FLAG_APME_CHECK_PORT_B
1464 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1465 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1466 .pba = 38,
2adc55c9 1467 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1468 .get_variants = e1000_get_variants_80003es2lan,
bc7f75fa
AK
1469 .mac_ops = &es2_mac_ops,
1470 .phy_ops = &es2_phy_ops,
1471 .nvm_ops = &es2_nvm_ops,
1472};
1473