e1000e: add support for 82577/82578 GbE LOM parts
[linux-2.6-block.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
46#include <linux/netdevice.h>
47#include <linux/delay.h>
48#include <linux/pci.h>
49
50#include "e1000.h"
51
52#define ID_LED_RESERVED_F746 0xF746
53#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
54 (ID_LED_OFF1_ON2 << 8) | \
55 (ID_LED_DEF1_DEF2 << 4) | \
56 (ID_LED_DEF1_DEF2))
57
58#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
59
4662e82b
BA
60#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
61
bc7f75fa
AK
62static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
63static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
64static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 65static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
66static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
67 u16 words, u16 *data);
68static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
69static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
70static s32 e1000_setup_link_82571(struct e1000_hw *hw);
71static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
4662e82b
BA
72static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
73static s32 e1000_led_on_82574(struct e1000_hw *hw);
bc7f75fa
AK
74
75/**
76 * e1000_init_phy_params_82571 - Init PHY func ptrs.
77 * @hw: pointer to the HW structure
78 *
79 * This is a function pointer entry point called by the api module.
80 **/
81static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
82{
83 struct e1000_phy_info *phy = &hw->phy;
84 s32 ret_val;
85
318a94d6 86 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
87 phy->type = e1000_phy_none;
88 return 0;
89 }
90
91 phy->addr = 1;
92 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
93 phy->reset_delay_us = 100;
94
95 switch (hw->mac.type) {
96 case e1000_82571:
97 case e1000_82572:
98 phy->type = e1000_phy_igp_2;
99 break;
100 case e1000_82573:
101 phy->type = e1000_phy_m88;
102 break;
4662e82b 103 case e1000_82574:
8c81c9c3 104 case e1000_82583:
4662e82b
BA
105 phy->type = e1000_phy_bm;
106 break;
bc7f75fa
AK
107 default:
108 return -E1000_ERR_PHY;
109 break;
110 }
111
112 /* This can only be done after all function pointers are setup. */
113 ret_val = e1000_get_phy_id_82571(hw);
114
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
120 return -E1000_ERR_PHY;
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
4662e82b 126 case e1000_82574:
8c81c9c3 127 case e1000_82583:
4662e82b
BA
128 if (phy->id != BME1000_E_PHY_ID_R2)
129 return -E1000_ERR_PHY;
130 break;
bc7f75fa
AK
131 default:
132 return -E1000_ERR_PHY;
133 break;
134 }
135
136 return 0;
137}
138
139/**
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
142 *
143 * This is a function pointer entry point called by the api module.
144 **/
145static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
146{
147 struct e1000_nvm_info *nvm = &hw->nvm;
148 u32 eecd = er32(EECD);
149 u16 size;
150
151 nvm->opcode_bits = 8;
152 nvm->delay_usec = 1;
153 switch (nvm->override) {
154 case e1000_nvm_override_spi_large:
155 nvm->page_size = 32;
156 nvm->address_bits = 16;
157 break;
158 case e1000_nvm_override_spi_small:
159 nvm->page_size = 8;
160 nvm->address_bits = 8;
161 break;
162 default:
163 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
164 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
165 break;
166 }
167
168 switch (hw->mac.type) {
169 case e1000_82573:
4662e82b 170 case e1000_82574:
8c81c9c3 171 case e1000_82583:
bc7f75fa
AK
172 if (((eecd >> 15) & 0x3) == 0x3) {
173 nvm->type = e1000_nvm_flash_hw;
174 nvm->word_size = 2048;
ad68076e
BA
175 /*
176 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
177 * to Flash update issue.
178 */
179 eecd &= ~E1000_EECD_AUPDEN;
180 ew32(EECD, eecd);
181 break;
182 }
183 /* Fall Through */
184 default:
ad68076e 185 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
186 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
188 /*
189 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
190 * for setting word_size.
191 */
192 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
193
194 /* EEPROM access above 16k is unsupported */
195 if (size > 14)
196 size = 14;
bc7f75fa
AK
197 nvm->word_size = 1 << size;
198 break;
199 }
200
201 return 0;
202}
203
204/**
205 * e1000_init_mac_params_82571 - Init MAC func ptrs.
206 * @hw: pointer to the HW structure
207 *
208 * This is a function pointer entry point called by the api module.
209 **/
210static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
211{
212 struct e1000_hw *hw = &adapter->hw;
213 struct e1000_mac_info *mac = &hw->mac;
214 struct e1000_mac_operations *func = &mac->ops;
215
216 /* Set media type */
217 switch (adapter->pdev->device) {
218 case E1000_DEV_ID_82571EB_FIBER:
219 case E1000_DEV_ID_82572EI_FIBER:
220 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 221 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
222 break;
223 case E1000_DEV_ID_82571EB_SERDES:
224 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
225 case E1000_DEV_ID_82571EB_SERDES_DUAL:
226 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 227 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
228 break;
229 default:
318a94d6 230 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
231 break;
232 }
233
234 /* Set mta register count */
235 mac->mta_reg_count = 128;
236 /* Set rar entry count */
237 mac->rar_entry_count = E1000_RAR_ENTRIES;
238 /* Set if manageability features are enabled. */
ad68076e 239 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
bc7f75fa
AK
240
241 /* check for link */
318a94d6 242 switch (hw->phy.media_type) {
bc7f75fa
AK
243 case e1000_media_type_copper:
244 func->setup_physical_interface = e1000_setup_copper_link_82571;
245 func->check_for_link = e1000e_check_for_copper_link;
246 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
247 break;
248 case e1000_media_type_fiber:
ad68076e
BA
249 func->setup_physical_interface =
250 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 251 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
252 func->get_link_up_info =
253 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
254 break;
255 case e1000_media_type_internal_serdes:
ad68076e
BA
256 func->setup_physical_interface =
257 e1000_setup_fiber_serdes_link_82571;
c9523379 258 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
259 func->get_link_up_info =
260 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
261 break;
262 default:
263 return -E1000_ERR_CONFIG;
264 break;
265 }
266
4662e82b
BA
267 switch (hw->mac.type) {
268 case e1000_82574:
8c81c9c3 269 case e1000_82583:
4662e82b
BA
270 func->check_mng_mode = e1000_check_mng_mode_82574;
271 func->led_on = e1000_led_on_82574;
272 break;
273 default:
274 func->check_mng_mode = e1000e_check_mng_mode_generic;
275 func->led_on = e1000e_led_on_generic;
276 break;
277 }
278
bc7f75fa
AK
279 return 0;
280}
281
69e3fd8c 282static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
283{
284 struct e1000_hw *hw = &adapter->hw;
285 static int global_quad_port_a; /* global port a indication */
286 struct pci_dev *pdev = adapter->pdev;
287 u16 eeprom_data = 0;
288 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
289 s32 rc;
290
291 rc = e1000_init_mac_params_82571(adapter);
292 if (rc)
293 return rc;
294
295 rc = e1000_init_nvm_params_82571(hw);
296 if (rc)
297 return rc;
298
299 rc = e1000_init_phy_params_82571(hw);
300 if (rc)
301 return rc;
302
303 /* tag quad port adapters first, it's used below */
304 switch (pdev->device) {
305 case E1000_DEV_ID_82571EB_QUAD_COPPER:
306 case E1000_DEV_ID_82571EB_QUAD_FIBER:
307 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 308 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
309 adapter->flags |= FLAG_IS_QUAD_PORT;
310 /* mark the first port */
311 if (global_quad_port_a == 0)
312 adapter->flags |= FLAG_IS_QUAD_PORT_A;
313 /* Reset for multiple quad port adapters */
314 global_quad_port_a++;
315 if (global_quad_port_a == 4)
316 global_quad_port_a = 0;
317 break;
318 default:
319 break;
320 }
321
322 switch (adapter->hw.mac.type) {
323 case e1000_82571:
324 /* these dual ports don't have WoL on port B at all */
325 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
326 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
327 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
328 (is_port_b))
329 adapter->flags &= ~FLAG_HAS_WOL;
330 /* quad ports only support WoL on port A */
331 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 332 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 333 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
334 /* Does not support WoL on any port */
335 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
336 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa
AK
337 break;
338
339 case e1000_82573:
340 if (pdev->device == E1000_DEV_ID_82573L) {
e243455d
BA
341 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
342 &eeprom_data) < 0)
343 break;
2adc55c9
BA
344 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
345 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
346 adapter->max_hw_frame_size = DEFAULT_JUMBO;
347 }
bc7f75fa
AK
348 }
349 break;
350 default:
351 break;
352 }
353
354 return 0;
355}
356
357/**
358 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
359 * @hw: pointer to the HW structure
360 *
361 * Reads the PHY registers and stores the PHY ID and possibly the PHY
362 * revision in the hardware structure.
363 **/
364static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
365{
366 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
367 s32 ret_val;
368 u16 phy_id = 0;
bc7f75fa
AK
369
370 switch (hw->mac.type) {
371 case e1000_82571:
372 case e1000_82572:
ad68076e
BA
373 /*
374 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
375 * In this case, we cannot access the PHY until the
376 * configuration is done. So we explicitly set the
ad68076e
BA
377 * PHY ID.
378 */
bc7f75fa
AK
379 phy->id = IGP01E1000_I_PHY_ID;
380 break;
381 case e1000_82573:
382 return e1000e_get_phy_id(hw);
383 break;
4662e82b 384 case e1000_82574:
8c81c9c3 385 case e1000_82583:
4662e82b
BA
386 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
387 if (ret_val)
388 return ret_val;
389
390 phy->id = (u32)(phy_id << 16);
391 udelay(20);
392 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
393 if (ret_val)
394 return ret_val;
395
396 phy->id |= (u32)(phy_id);
397 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
398 break;
bc7f75fa
AK
399 default:
400 return -E1000_ERR_PHY;
401 break;
402 }
403
404 return 0;
405}
406
407/**
408 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
409 * @hw: pointer to the HW structure
410 *
411 * Acquire the HW semaphore to access the PHY or NVM
412 **/
413static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
414{
415 u32 swsm;
416 s32 timeout = hw->nvm.word_size + 1;
417 s32 i = 0;
418
419 /* Get the FW semaphore. */
420 for (i = 0; i < timeout; i++) {
421 swsm = er32(SWSM);
422 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
423
424 /* Semaphore acquired if bit latched */
425 if (er32(SWSM) & E1000_SWSM_SWESMBI)
426 break;
427
428 udelay(50);
429 }
430
431 if (i == timeout) {
432 /* Release semaphores */
433 e1000e_put_hw_semaphore(hw);
434 hw_dbg(hw, "Driver can't access the NVM\n");
435 return -E1000_ERR_NVM;
436 }
437
438 return 0;
439}
440
441/**
442 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
443 * @hw: pointer to the HW structure
444 *
445 * Release hardware semaphore used to access the PHY or NVM
446 **/
447static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
448{
449 u32 swsm;
450
451 swsm = er32(SWSM);
452
453 swsm &= ~E1000_SWSM_SWESMBI;
454
455 ew32(SWSM, swsm);
456}
457
458/**
459 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
460 * @hw: pointer to the HW structure
461 *
462 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
463 * Then for non-82573 hardware, set the EEPROM access request bit and wait
464 * for EEPROM access grant bit. If the access grant bit is not set, release
465 * hardware semaphore.
466 **/
467static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
468{
469 s32 ret_val;
470
471 ret_val = e1000_get_hw_semaphore_82571(hw);
472 if (ret_val)
473 return ret_val;
474
8c81c9c3
AD
475 switch (hw->mac.type) {
476 case e1000_82573:
477 case e1000_82574:
478 case e1000_82583:
479 break;
480 default:
bc7f75fa 481 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
482 break;
483 }
bc7f75fa
AK
484
485 if (ret_val)
486 e1000_put_hw_semaphore_82571(hw);
487
488 return ret_val;
489}
490
491/**
492 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
493 * @hw: pointer to the HW structure
494 *
495 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
496 **/
497static void e1000_release_nvm_82571(struct e1000_hw *hw)
498{
499 e1000e_release_nvm(hw);
500 e1000_put_hw_semaphore_82571(hw);
501}
502
503/**
504 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
505 * @hw: pointer to the HW structure
506 * @offset: offset within the EEPROM to be written to
507 * @words: number of words to write
508 * @data: 16 bit word(s) to be written to the EEPROM
509 *
510 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
511 *
512 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 513 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
514 **/
515static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
516 u16 *data)
517{
518 s32 ret_val;
519
520 switch (hw->mac.type) {
521 case e1000_82573:
4662e82b 522 case e1000_82574:
8c81c9c3 523 case e1000_82583:
bc7f75fa
AK
524 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
525 break;
526 case e1000_82571:
527 case e1000_82572:
528 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
529 break;
530 default:
531 ret_val = -E1000_ERR_NVM;
532 break;
533 }
534
535 return ret_val;
536}
537
538/**
539 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
540 * @hw: pointer to the HW structure
541 *
542 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
543 * up to the checksum. Then calculates the EEPROM checksum and writes the
544 * value to the EEPROM.
545 **/
546static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
547{
548 u32 eecd;
549 s32 ret_val;
550 u16 i;
551
552 ret_val = e1000e_update_nvm_checksum_generic(hw);
553 if (ret_val)
554 return ret_val;
555
ad68076e
BA
556 /*
557 * If our nvm is an EEPROM, then we're done
558 * otherwise, commit the checksum to the flash NVM.
559 */
bc7f75fa
AK
560 if (hw->nvm.type != e1000_nvm_flash_hw)
561 return ret_val;
562
563 /* Check for pending operations. */
564 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
565 msleep(1);
566 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
567 break;
568 }
569
570 if (i == E1000_FLASH_UPDATES)
571 return -E1000_ERR_NVM;
572
573 /* Reset the firmware if using STM opcode. */
574 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
575 /*
576 * The enabling of and the actual reset must be done
bc7f75fa
AK
577 * in two write cycles.
578 */
579 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
580 e1e_flush();
581 ew32(HICR, E1000_HICR_FW_RESET);
582 }
583
584 /* Commit the write to flash */
585 eecd = er32(EECD) | E1000_EECD_FLUPD;
586 ew32(EECD, eecd);
587
588 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
589 msleep(1);
590 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
591 break;
592 }
593
594 if (i == E1000_FLASH_UPDATES)
595 return -E1000_ERR_NVM;
596
597 return 0;
598}
599
600/**
601 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
602 * @hw: pointer to the HW structure
603 *
604 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
605 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
606 **/
607static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
608{
609 if (hw->nvm.type == e1000_nvm_flash_hw)
610 e1000_fix_nvm_checksum_82571(hw);
611
612 return e1000e_validate_nvm_checksum_generic(hw);
613}
614
615/**
616 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
617 * @hw: pointer to the HW structure
618 * @offset: offset within the EEPROM to be written to
619 * @words: number of words to write
620 * @data: 16 bit word(s) to be written to the EEPROM
621 *
622 * After checking for invalid values, poll the EEPROM to ensure the previous
623 * command has completed before trying to write the next word. After write
624 * poll for completion.
625 *
626 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 627 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
628 **/
629static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
630 u16 words, u16 *data)
631{
632 struct e1000_nvm_info *nvm = &hw->nvm;
633 u32 i;
634 u32 eewr = 0;
635 s32 ret_val = 0;
636
ad68076e
BA
637 /*
638 * A check for invalid values: offset too large, too many words,
639 * and not enough words.
640 */
bc7f75fa
AK
641 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
642 (words == 0)) {
643 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
644 return -E1000_ERR_NVM;
645 }
646
647 for (i = 0; i < words; i++) {
648 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
649 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
650 E1000_NVM_RW_REG_START;
651
652 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
653 if (ret_val)
654 break;
655
656 ew32(EEWR, eewr);
657
658 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
659 if (ret_val)
660 break;
661 }
662
663 return ret_val;
664}
665
666/**
667 * e1000_get_cfg_done_82571 - Poll for configuration done
668 * @hw: pointer to the HW structure
669 *
670 * Reads the management control register for the config done bit to be set.
671 **/
672static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
673{
674 s32 timeout = PHY_CFG_TIMEOUT;
675
676 while (timeout) {
677 if (er32(EEMNGCTL) &
678 E1000_NVM_CFG_DONE_PORT_0)
679 break;
680 msleep(1);
681 timeout--;
682 }
683 if (!timeout) {
684 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
685 return -E1000_ERR_RESET;
686 }
687
688 return 0;
689}
690
691/**
692 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
693 * @hw: pointer to the HW structure
694 * @active: TRUE to enable LPLU, FALSE to disable
695 *
696 * Sets the LPLU D0 state according to the active flag. When activating LPLU
697 * this function also disables smart speed and vice versa. LPLU will not be
698 * activated unless the device autonegotiation advertisement meets standards
699 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
700 * pointer entry point only called by PHY setup routines.
701 **/
702static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
703{
704 struct e1000_phy_info *phy = &hw->phy;
705 s32 ret_val;
706 u16 data;
707
708 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
709 if (ret_val)
710 return ret_val;
711
712 if (active) {
713 data |= IGP02E1000_PM_D0_LPLU;
714 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
715 if (ret_val)
716 return ret_val;
717
718 /* When LPLU is enabled, we should disable SmartSpeed */
719 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
720 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
721 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
722 if (ret_val)
723 return ret_val;
724 } else {
725 data &= ~IGP02E1000_PM_D0_LPLU;
726 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
727 /*
728 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
729 * during Dx states where the power conservation is most
730 * important. During driver activity we should enable
ad68076e
BA
731 * SmartSpeed, so performance is maintained.
732 */
bc7f75fa
AK
733 if (phy->smart_speed == e1000_smart_speed_on) {
734 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 735 &data);
bc7f75fa
AK
736 if (ret_val)
737 return ret_val;
738
739 data |= IGP01E1000_PSCFR_SMART_SPEED;
740 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 741 data);
bc7f75fa
AK
742 if (ret_val)
743 return ret_val;
744 } else if (phy->smart_speed == e1000_smart_speed_off) {
745 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 746 &data);
bc7f75fa
AK
747 if (ret_val)
748 return ret_val;
749
750 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
751 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 752 data);
bc7f75fa
AK
753 if (ret_val)
754 return ret_val;
755 }
756 }
757
758 return 0;
759}
760
761/**
762 * e1000_reset_hw_82571 - Reset hardware
763 * @hw: pointer to the HW structure
764 *
765 * This resets the hardware into a known state. This is a
766 * function pointer entry point called by the api module.
767 **/
768static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
769{
770 u32 ctrl;
771 u32 extcnf_ctrl;
772 u32 ctrl_ext;
773 u32 icr;
774 s32 ret_val;
775 u16 i = 0;
776
ad68076e
BA
777 /*
778 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
779 * on the last TLP read/write transaction when MAC is reset.
780 */
781 ret_val = e1000e_disable_pcie_master(hw);
782 if (ret_val)
783 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
784
785 hw_dbg(hw, "Masking off all interrupts\n");
786 ew32(IMC, 0xffffffff);
787
788 ew32(RCTL, 0);
789 ew32(TCTL, E1000_TCTL_PSP);
790 e1e_flush();
791
792 msleep(10);
793
ad68076e
BA
794 /*
795 * Must acquire the MDIO ownership before MAC reset.
796 * Ownership defaults to firmware after a reset.
797 */
8c81c9c3
AD
798 switch (hw->mac.type) {
799 case e1000_82573:
800 case e1000_82574:
801 case e1000_82583:
bc7f75fa
AK
802 extcnf_ctrl = er32(EXTCNF_CTRL);
803 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
804
805 do {
806 ew32(EXTCNF_CTRL, extcnf_ctrl);
807 extcnf_ctrl = er32(EXTCNF_CTRL);
808
809 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
810 break;
811
812 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
813
814 msleep(2);
815 i++;
816 } while (i < MDIO_OWNERSHIP_TIMEOUT);
8c81c9c3
AD
817 break;
818 default:
819 break;
bc7f75fa
AK
820 }
821
822 ctrl = er32(CTRL);
823
824 hw_dbg(hw, "Issuing a global reset to MAC\n");
825 ew32(CTRL, ctrl | E1000_CTRL_RST);
826
827 if (hw->nvm.type == e1000_nvm_flash_hw) {
828 udelay(10);
829 ctrl_ext = er32(CTRL_EXT);
830 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
831 ew32(CTRL_EXT, ctrl_ext);
832 e1e_flush();
833 }
834
835 ret_val = e1000e_get_auto_rd_done(hw);
836 if (ret_val)
837 /* We don't want to continue accessing MAC registers. */
838 return ret_val;
839
ad68076e
BA
840 /*
841 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
842 * Need to wait for Phy configuration completion before accessing
843 * NVM and Phy.
844 */
8c81c9c3
AD
845
846 switch (hw->mac.type) {
847 case e1000_82573:
848 case e1000_82574:
849 case e1000_82583:
bc7f75fa 850 msleep(25);
8c81c9c3
AD
851 break;
852 default:
853 break;
854 }
bc7f75fa
AK
855
856 /* Clear any pending interrupt events. */
857 ew32(IMC, 0xffffffff);
858 icr = er32(ICR);
859
93ca1610
BH
860 if (hw->mac.type == e1000_82571 &&
861 hw->dev_spec.e82571.alt_mac_addr_is_present)
862 e1000e_set_laa_state_82571(hw, true);
863
c9523379 864 /* Reinitialize the 82571 serdes link state machine */
865 if (hw->phy.media_type == e1000_media_type_internal_serdes)
866 hw->mac.serdes_link_state = e1000_serdes_link_down;
867
bc7f75fa
AK
868 return 0;
869}
870
871/**
872 * e1000_init_hw_82571 - Initialize hardware
873 * @hw: pointer to the HW structure
874 *
875 * This inits the hardware readying it for operation.
876 **/
877static s32 e1000_init_hw_82571(struct e1000_hw *hw)
878{
879 struct e1000_mac_info *mac = &hw->mac;
880 u32 reg_data;
881 s32 ret_val;
882 u16 i;
883 u16 rar_count = mac->rar_entry_count;
884
885 e1000_initialize_hw_bits_82571(hw);
886
887 /* Initialize identification LED */
888 ret_val = e1000e_id_led_init(hw);
889 if (ret_val) {
890 hw_dbg(hw, "Error initializing identification LED\n");
891 return ret_val;
892 }
893
894 /* Disabling VLAN filtering */
895 hw_dbg(hw, "Initializing the IEEE VLAN\n");
896 e1000e_clear_vfta(hw);
897
898 /* Setup the receive address. */
ad68076e
BA
899 /*
900 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
901 * 82571, we must reserve a RAR for it to work around an issue where
902 * resetting one port will reload the MAC on the other port.
903 */
904 if (e1000e_get_laa_state_82571(hw))
905 rar_count--;
906 e1000e_init_rx_addrs(hw, rar_count);
907
908 /* Zero out the Multicast HASH table */
909 hw_dbg(hw, "Zeroing the MTA\n");
910 for (i = 0; i < mac->mta_reg_count; i++)
911 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
912
913 /* Setup link and flow control */
914 ret_val = e1000_setup_link_82571(hw);
915
916 /* Set the transmit descriptor write-back policy */
e9ec2c0f 917 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
918 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
919 E1000_TXDCTL_FULL_TX_DESC_WB |
920 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 921 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
922
923 /* ...for both queues. */
8c81c9c3
AD
924 switch (mac->type) {
925 case e1000_82573:
926 case e1000_82574:
927 case e1000_82583:
928 e1000e_enable_tx_pkt_filtering(hw);
929 reg_data = er32(GCR);
930 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
931 ew32(GCR, reg_data);
932 break;
933 default:
e9ec2c0f 934 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
935 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
936 E1000_TXDCTL_FULL_TX_DESC_WB |
937 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 938 ew32(TXDCTL(1), reg_data);
8c81c9c3 939 break;
bc7f75fa
AK
940 }
941
ad68076e
BA
942 /*
943 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
944 * important that we do this after we have tried to establish link
945 * because the symbol error count will increment wildly if there
946 * is no link.
947 */
948 e1000_clear_hw_cntrs_82571(hw);
949
950 return ret_val;
951}
952
953/**
954 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
955 * @hw: pointer to the HW structure
956 *
957 * Initializes required hardware-dependent bits needed for normal operation.
958 **/
959static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
960{
961 u32 reg;
962
963 /* Transmit Descriptor Control 0 */
e9ec2c0f 964 reg = er32(TXDCTL(0));
bc7f75fa 965 reg |= (1 << 22);
e9ec2c0f 966 ew32(TXDCTL(0), reg);
bc7f75fa
AK
967
968 /* Transmit Descriptor Control 1 */
e9ec2c0f 969 reg = er32(TXDCTL(1));
bc7f75fa 970 reg |= (1 << 22);
e9ec2c0f 971 ew32(TXDCTL(1), reg);
bc7f75fa
AK
972
973 /* Transmit Arbitration Control 0 */
e9ec2c0f 974 reg = er32(TARC(0));
bc7f75fa
AK
975 reg &= ~(0xF << 27); /* 30:27 */
976 switch (hw->mac.type) {
977 case e1000_82571:
978 case e1000_82572:
979 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
980 break;
981 default:
982 break;
983 }
e9ec2c0f 984 ew32(TARC(0), reg);
bc7f75fa
AK
985
986 /* Transmit Arbitration Control 1 */
e9ec2c0f 987 reg = er32(TARC(1));
bc7f75fa
AK
988 switch (hw->mac.type) {
989 case e1000_82571:
990 case e1000_82572:
991 reg &= ~((1 << 29) | (1 << 30));
992 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
993 if (er32(TCTL) & E1000_TCTL_MULR)
994 reg &= ~(1 << 28);
995 else
996 reg |= (1 << 28);
e9ec2c0f 997 ew32(TARC(1), reg);
bc7f75fa
AK
998 break;
999 default:
1000 break;
1001 }
1002
1003 /* Device Control */
8c81c9c3
AD
1004 switch (hw->mac.type) {
1005 case e1000_82573:
1006 case e1000_82574:
1007 case e1000_82583:
bc7f75fa
AK
1008 reg = er32(CTRL);
1009 reg &= ~(1 << 29);
1010 ew32(CTRL, reg);
8c81c9c3
AD
1011 break;
1012 default:
1013 break;
bc7f75fa
AK
1014 }
1015
1016 /* Extended Device Control */
8c81c9c3
AD
1017 switch (hw->mac.type) {
1018 case e1000_82573:
1019 case e1000_82574:
1020 case e1000_82583:
bc7f75fa
AK
1021 reg = er32(CTRL_EXT);
1022 reg &= ~(1 << 23);
1023 reg |= (1 << 22);
1024 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1025 break;
1026 default:
1027 break;
bc7f75fa 1028 }
4662e82b 1029
6ea7ae1d
AD
1030 if (hw->mac.type == e1000_82571) {
1031 reg = er32(PBA_ECC);
1032 reg |= E1000_PBA_ECC_CORR_EN;
1033 ew32(PBA_ECC, reg);
1034 }
5df3f0ea 1035 /*
1036 * Workaround for hardware errata.
1037 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1038 */
1039
1040 if ((hw->mac.type == e1000_82571) ||
1041 (hw->mac.type == e1000_82572)) {
1042 reg = er32(CTRL_EXT);
1043 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1044 ew32(CTRL_EXT, reg);
1045 }
1046
6ea7ae1d 1047
78272bba 1048 /* PCI-Ex Control Registers */
8c81c9c3
AD
1049 switch (hw->mac.type) {
1050 case e1000_82574:
1051 case e1000_82583:
4662e82b
BA
1052 reg = er32(GCR);
1053 reg |= (1 << 22);
1054 ew32(GCR, reg);
78272bba
JB
1055
1056 reg = er32(GCR2);
1057 reg |= 1;
1058 ew32(GCR2, reg);
8c81c9c3
AD
1059 break;
1060 default:
1061 break;
4662e82b
BA
1062 }
1063
1064 return;
bc7f75fa
AK
1065}
1066
1067/**
1068 * e1000e_clear_vfta - Clear VLAN filter table
1069 * @hw: pointer to the HW structure
1070 *
1071 * Clears the register array which contains the VLAN filter table by
1072 * setting all the values to 0.
1073 **/
1074void e1000e_clear_vfta(struct e1000_hw *hw)
1075{
1076 u32 offset;
1077 u32 vfta_value = 0;
1078 u32 vfta_offset = 0;
1079 u32 vfta_bit_in_reg = 0;
1080
8c81c9c3
AD
1081 switch (hw->mac.type) {
1082 case e1000_82573:
1083 case e1000_82574:
1084 case e1000_82583:
bc7f75fa 1085 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1086 /*
1087 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1088 * a single VLAN ID. The following operations
1089 * determine which 32b entry (i.e. offset) into the
1090 * array we want to set the VLAN ID (i.e. bit) of
1091 * the manageability unit.
1092 */
1093 vfta_offset = (hw->mng_cookie.vlan_id >>
1094 E1000_VFTA_ENTRY_SHIFT) &
1095 E1000_VFTA_ENTRY_MASK;
1096 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1097 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1098 }
8c81c9c3
AD
1099 break;
1100 default:
1101 break;
bc7f75fa
AK
1102 }
1103 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1104 /*
1105 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1106 * manageability VLAN ID, then clear all bits except that of
1107 * the manageability unit.
1108 */
1109 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1110 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1111 e1e_flush();
1112 }
1113}
1114
4662e82b
BA
1115/**
1116 * e1000_check_mng_mode_82574 - Check manageability is enabled
1117 * @hw: pointer to the HW structure
1118 *
1119 * Reads the NVM Initialization Control Word 2 and returns true
1120 * (>0) if any manageability is enabled, else false (0).
1121 **/
1122static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1123{
1124 u16 data;
1125
1126 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1127 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1128}
1129
1130/**
1131 * e1000_led_on_82574 - Turn LED on
1132 * @hw: pointer to the HW structure
1133 *
1134 * Turn LED on.
1135 **/
1136static s32 e1000_led_on_82574(struct e1000_hw *hw)
1137{
1138 u32 ctrl;
1139 u32 i;
1140
1141 ctrl = hw->mac.ledctl_mode2;
1142 if (!(E1000_STATUS_LU & er32(STATUS))) {
1143 /*
1144 * If no link, then turn LED on by setting the invert bit
1145 * for each LED that's "on" (0x0E) in ledctl_mode2.
1146 */
1147 for (i = 0; i < 4; i++)
1148 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1149 E1000_LEDCTL_MODE_LED_ON)
1150 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1151 }
1152 ew32(LEDCTL, ctrl);
1153
1154 return 0;
1155}
1156
bc7f75fa 1157/**
e2de3eb6 1158 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
bc7f75fa
AK
1159 * @hw: pointer to the HW structure
1160 * @mc_addr_list: array of multicast addresses to program
1161 * @mc_addr_count: number of multicast addresses to program
1162 * @rar_used_count: the first RAR register free to program
1163 * @rar_count: total number of supported Receive Address Registers
1164 *
1165 * Updates the Receive Address Registers and Multicast Table Array.
1166 * The caller must have a packed mc_addr_list of multicast addresses.
1167 * The parameter rar_count will usually be hw->mac.rar_entry_count
1168 * unless there are workarounds that change this.
1169 **/
e2de3eb6 1170static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
bc7f75fa
AK
1171 u8 *mc_addr_list,
1172 u32 mc_addr_count,
1173 u32 rar_used_count,
1174 u32 rar_count)
1175{
1176 if (e1000e_get_laa_state_82571(hw))
1177 rar_count--;
1178
e2de3eb6
JK
1179 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1180 rar_used_count, rar_count);
bc7f75fa
AK
1181}
1182
1183/**
1184 * e1000_setup_link_82571 - Setup flow control and link settings
1185 * @hw: pointer to the HW structure
1186 *
1187 * Determines which flow control settings to use, then configures flow
1188 * control. Calls the appropriate media-specific link configuration
1189 * function. Assuming the adapter has a valid link partner, a valid link
1190 * should be established. Assumes the hardware has previously been reset
1191 * and the transmitter and receiver are not enabled.
1192 **/
1193static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1194{
ad68076e
BA
1195 /*
1196 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1197 * the default flow control setting, so we explicitly
1198 * set it to full.
1199 */
8c81c9c3
AD
1200 switch (hw->mac.type) {
1201 case e1000_82573:
1202 case e1000_82574:
1203 case e1000_82583:
1204 if (hw->fc.requested_mode == e1000_fc_default)
1205 hw->fc.requested_mode = e1000_fc_full;
1206 break;
1207 default:
1208 break;
1209 }
bc7f75fa
AK
1210
1211 return e1000e_setup_link(hw);
1212}
1213
1214/**
1215 * e1000_setup_copper_link_82571 - Configure copper link settings
1216 * @hw: pointer to the HW structure
1217 *
1218 * Configures the link for auto-neg or forced speed and duplex. Then we check
1219 * for link, once link is established calls to configure collision distance
1220 * and flow control are called.
1221 **/
1222static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1223{
1224 u32 ctrl;
1225 u32 led_ctrl;
1226 s32 ret_val;
1227
1228 ctrl = er32(CTRL);
1229 ctrl |= E1000_CTRL_SLU;
1230 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1231 ew32(CTRL, ctrl);
1232
1233 switch (hw->phy.type) {
1234 case e1000_phy_m88:
4662e82b 1235 case e1000_phy_bm:
bc7f75fa
AK
1236 ret_val = e1000e_copper_link_setup_m88(hw);
1237 break;
1238 case e1000_phy_igp_2:
1239 ret_val = e1000e_copper_link_setup_igp(hw);
1240 /* Setup activity LED */
1241 led_ctrl = er32(LEDCTL);
1242 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1243 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1244 ew32(LEDCTL, led_ctrl);
1245 break;
1246 default:
1247 return -E1000_ERR_PHY;
1248 break;
1249 }
1250
1251 if (ret_val)
1252 return ret_val;
1253
1254 ret_val = e1000e_setup_copper_link(hw);
1255
1256 return ret_val;
1257}
1258
1259/**
1260 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1261 * @hw: pointer to the HW structure
1262 *
1263 * Configures collision distance and flow control for fiber and serdes links.
1264 * Upon successful setup, poll for link.
1265 **/
1266static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1267{
1268 switch (hw->mac.type) {
1269 case e1000_82571:
1270 case e1000_82572:
ad68076e
BA
1271 /*
1272 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1273 * of reset to take the adapter out of that mode. So we
1274 * have to explicitly take the adapter out of loopback
489815ce 1275 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1276 * if another tool failed to take it out of loopback mode.
1277 */
ad68076e 1278 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1279 break;
1280 default:
1281 break;
1282 }
1283
1284 return e1000e_setup_fiber_serdes_link(hw);
1285}
1286
c9523379 1287/**
1288 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1289 * @hw: pointer to the HW structure
1290 *
1291 * Checks for link up on the hardware. If link is not up and we have
1292 * a signal, then we need to force link up.
1293 **/
f6370117 1294static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1295{
1296 struct e1000_mac_info *mac = &hw->mac;
1297 u32 rxcw;
1298 u32 ctrl;
1299 u32 status;
1300 s32 ret_val = 0;
1301
1302 ctrl = er32(CTRL);
1303 status = er32(STATUS);
1304 rxcw = er32(RXCW);
1305
1306 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1307
1308 /* Receiver is synchronized with no invalid bits. */
1309 switch (mac->serdes_link_state) {
1310 case e1000_serdes_link_autoneg_complete:
1311 if (!(status & E1000_STATUS_LU)) {
1312 /*
1313 * We have lost link, retry autoneg before
1314 * reporting link failure
1315 */
1316 mac->serdes_link_state =
1317 e1000_serdes_link_autoneg_progress;
1318 hw_dbg(hw, "AN_UP -> AN_PROG\n");
1319 }
1320 break;
1321
1322 case e1000_serdes_link_forced_up:
1323 /*
1324 * If we are receiving /C/ ordered sets, re-enable
1325 * auto-negotiation in the TXCW register and disable
1326 * forced link in the Device Control register in an
1327 * attempt to auto-negotiate with our link partner.
1328 */
1329 if (rxcw & E1000_RXCW_C) {
1330 /* Enable autoneg, and unforce link up */
1331 ew32(TXCW, mac->txcw);
1332 ew32(CTRL,
1333 (ctrl & ~E1000_CTRL_SLU));
1334 mac->serdes_link_state =
1335 e1000_serdes_link_autoneg_progress;
1336 hw_dbg(hw, "FORCED_UP -> AN_PROG\n");
1337 }
1338 break;
1339
1340 case e1000_serdes_link_autoneg_progress:
1341 /*
1342 * If the LU bit is set in the STATUS register,
1343 * autoneg has completed sucessfully. If not,
1344 * try foring the link because the far end may be
1345 * available but not capable of autonegotiation.
1346 */
1347 if (status & E1000_STATUS_LU) {
1348 mac->serdes_link_state =
1349 e1000_serdes_link_autoneg_complete;
1350 hw_dbg(hw, "AN_PROG -> AN_UP\n");
1351 } else {
1352 /*
1353 * Disable autoneg, force link up and
1354 * full duplex, and change state to forced
1355 */
1356 ew32(TXCW,
1357 (mac->txcw & ~E1000_TXCW_ANE));
1358 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1359 ew32(CTRL, ctrl);
1360
1361 /* Configure Flow Control after link up. */
1362 ret_val =
1363 e1000e_config_fc_after_link_up(hw);
1364 if (ret_val) {
1365 hw_dbg(hw, "Error config flow control\n");
1366 break;
1367 }
1368 mac->serdes_link_state =
1369 e1000_serdes_link_forced_up;
1370 hw_dbg(hw, "AN_PROG -> FORCED_UP\n");
1371 }
1372 mac->serdes_has_link = true;
1373 break;
1374
1375 case e1000_serdes_link_down:
1376 default:
1377 /* The link was down but the receiver has now gained
1378 * valid sync, so lets see if we can bring the link
1379 * up. */
1380 ew32(TXCW, mac->txcw);
1381 ew32(CTRL,
1382 (ctrl & ~E1000_CTRL_SLU));
1383 mac->serdes_link_state =
1384 e1000_serdes_link_autoneg_progress;
1385 hw_dbg(hw, "DOWN -> AN_PROG\n");
1386 break;
1387 }
1388 } else {
1389 if (!(rxcw & E1000_RXCW_SYNCH)) {
1390 mac->serdes_has_link = false;
1391 mac->serdes_link_state = e1000_serdes_link_down;
1392 hw_dbg(hw, "ANYSTATE -> DOWN\n");
1393 } else {
1394 /*
1395 * We have sync, and can tolerate one
1396 * invalid (IV) codeword before declaring
1397 * link down, so reread to look again
1398 */
1399 udelay(10);
1400 rxcw = er32(RXCW);
1401 if (rxcw & E1000_RXCW_IV) {
1402 mac->serdes_link_state = e1000_serdes_link_down;
1403 mac->serdes_has_link = false;
1404 hw_dbg(hw, "ANYSTATE -> DOWN\n");
1405 }
1406 }
1407 }
1408
1409 return ret_val;
1410}
1411
bc7f75fa
AK
1412/**
1413 * e1000_valid_led_default_82571 - Verify a valid default LED config
1414 * @hw: pointer to the HW structure
1415 * @data: pointer to the NVM (EEPROM)
1416 *
1417 * Read the EEPROM for the current default LED configuration. If the
1418 * LED configuration is not valid, set to a valid LED configuration.
1419 **/
1420static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1421{
1422 s32 ret_val;
1423
1424 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1425 if (ret_val) {
1426 hw_dbg(hw, "NVM Read Error\n");
1427 return ret_val;
1428 }
1429
8c81c9c3
AD
1430 switch (hw->mac.type) {
1431 case e1000_82573:
1432 case e1000_82574:
1433 case e1000_82583:
1434 if (*data == ID_LED_RESERVED_F746)
1435 *data = ID_LED_DEFAULT_82573;
1436 break;
1437 default:
1438 if (*data == ID_LED_RESERVED_0000 ||
1439 *data == ID_LED_RESERVED_FFFF)
1440 *data = ID_LED_DEFAULT;
1441 break;
1442 }
bc7f75fa
AK
1443
1444 return 0;
1445}
1446
1447/**
1448 * e1000e_get_laa_state_82571 - Get locally administered address state
1449 * @hw: pointer to the HW structure
1450 *
489815ce 1451 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1452 **/
1453bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1454{
1455 if (hw->mac.type != e1000_82571)
1456 return 0;
1457
1458 return hw->dev_spec.e82571.laa_is_present;
1459}
1460
1461/**
1462 * e1000e_set_laa_state_82571 - Set locally administered address state
1463 * @hw: pointer to the HW structure
1464 * @state: enable/disable locally administered address
1465 *
489815ce 1466 * Enable/Disable the current locally administers address state.
bc7f75fa
AK
1467 **/
1468void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1469{
1470 if (hw->mac.type != e1000_82571)
1471 return;
1472
1473 hw->dev_spec.e82571.laa_is_present = state;
1474
1475 /* If workaround is activated... */
1476 if (state)
ad68076e
BA
1477 /*
1478 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1479 * between the time RAR[0] gets clobbered and the time it
1480 * gets fixed, the actual LAA is in one of the RARs and no
1481 * incoming packets directed to this port are dropped.
1482 * Eventually the LAA will be in RAR[0] and RAR[14].
1483 */
1484 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1485}
1486
1487/**
1488 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1489 * @hw: pointer to the HW structure
1490 *
1491 * Verifies that the EEPROM has completed the update. After updating the
1492 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1493 * the checksum fix is not implemented, we need to set the bit and update
1494 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1495 * we need to return bad checksum.
1496 **/
1497static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1498{
1499 struct e1000_nvm_info *nvm = &hw->nvm;
1500 s32 ret_val;
1501 u16 data;
1502
1503 if (nvm->type != e1000_nvm_flash_hw)
1504 return 0;
1505
ad68076e
BA
1506 /*
1507 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1508 * 10h-12h. Checksum may need to be fixed.
1509 */
1510 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1511 if (ret_val)
1512 return ret_val;
1513
1514 if (!(data & 0x10)) {
ad68076e
BA
1515 /*
1516 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1517 * when the checksum has already been fixed. If
1518 * the checksum is still wrong and this bit is a
1519 * 1, we need to return bad checksum. Otherwise,
1520 * we need to set this bit to a 1 and update the
1521 * checksum.
1522 */
1523 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1524 if (ret_val)
1525 return ret_val;
1526
1527 if (!(data & 0x8000)) {
1528 data |= 0x8000;
1529 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1530 if (ret_val)
1531 return ret_val;
1532 ret_val = e1000e_update_nvm_checksum(hw);
1533 }
1534 }
1535
1536 return 0;
1537}
1538
1539/**
1540 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1541 * @hw: pointer to the HW structure
1542 *
1543 * Clears the hardware counters by reading the counter registers.
1544 **/
1545static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1546{
1547 u32 temp;
1548
1549 e1000e_clear_hw_cntrs_base(hw);
1550
1551 temp = er32(PRC64);
1552 temp = er32(PRC127);
1553 temp = er32(PRC255);
1554 temp = er32(PRC511);
1555 temp = er32(PRC1023);
1556 temp = er32(PRC1522);
1557 temp = er32(PTC64);
1558 temp = er32(PTC127);
1559 temp = er32(PTC255);
1560 temp = er32(PTC511);
1561 temp = er32(PTC1023);
1562 temp = er32(PTC1522);
1563
1564 temp = er32(ALGNERRC);
1565 temp = er32(RXERRC);
1566 temp = er32(TNCRS);
1567 temp = er32(CEXTERR);
1568 temp = er32(TSCTC);
1569 temp = er32(TSCTFC);
1570
1571 temp = er32(MGTPRC);
1572 temp = er32(MGTPDC);
1573 temp = er32(MGTPTC);
1574
1575 temp = er32(IAC);
1576 temp = er32(ICRXOC);
1577
1578 temp = er32(ICRXPTC);
1579 temp = er32(ICRXATC);
1580 temp = er32(ICTXPTC);
1581 temp = er32(ICTXATC);
1582 temp = er32(ICTXQEC);
1583 temp = er32(ICTXQMTC);
1584 temp = er32(ICRXDMTC);
1585}
1586
1587static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1588 /* .check_mng_mode: mac type dependent */
bc7f75fa 1589 /* .check_for_link: media type dependent */
a4f58f54 1590 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1591 .cleanup_led = e1000e_cleanup_led_generic,
1592 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1593 .get_bus_info = e1000e_get_bus_info_pcie,
1594 /* .get_link_up_info: media type dependent */
4662e82b 1595 /* .led_on: mac type dependent */
bc7f75fa 1596 .led_off = e1000e_led_off_generic,
e2de3eb6 1597 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
bc7f75fa
AK
1598 .reset_hw = e1000_reset_hw_82571,
1599 .init_hw = e1000_init_hw_82571,
1600 .setup_link = e1000_setup_link_82571,
1601 /* .setup_physical_interface: media type dependent */
a4f58f54 1602 .setup_led = e1000e_setup_led_generic,
bc7f75fa
AK
1603};
1604
1605static struct e1000_phy_operations e82_phy_ops_igp = {
1606 .acquire_phy = e1000_get_hw_semaphore_82571,
1607 .check_reset_block = e1000e_check_reset_block_generic,
1608 .commit_phy = NULL,
1609 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1610 .get_cfg_done = e1000_get_cfg_done_82571,
1611 .get_cable_length = e1000e_get_cable_length_igp_2,
1612 .get_phy_info = e1000e_get_phy_info_igp,
1613 .read_phy_reg = e1000e_read_phy_reg_igp,
1614 .release_phy = e1000_put_hw_semaphore_82571,
1615 .reset_phy = e1000e_phy_hw_reset_generic,
1616 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1617 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1618 .write_phy_reg = e1000e_write_phy_reg_igp,
75eb0fad 1619 .cfg_on_link_up = NULL,
bc7f75fa
AK
1620};
1621
1622static struct e1000_phy_operations e82_phy_ops_m88 = {
1623 .acquire_phy = e1000_get_hw_semaphore_82571,
1624 .check_reset_block = e1000e_check_reset_block_generic,
1625 .commit_phy = e1000e_phy_sw_reset,
1626 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1627 .get_cfg_done = e1000e_get_cfg_done,
1628 .get_cable_length = e1000e_get_cable_length_m88,
1629 .get_phy_info = e1000e_get_phy_info_m88,
1630 .read_phy_reg = e1000e_read_phy_reg_m88,
1631 .release_phy = e1000_put_hw_semaphore_82571,
1632 .reset_phy = e1000e_phy_hw_reset_generic,
1633 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1634 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1635 .write_phy_reg = e1000e_write_phy_reg_m88,
75eb0fad 1636 .cfg_on_link_up = NULL,
bc7f75fa
AK
1637};
1638
4662e82b
BA
1639static struct e1000_phy_operations e82_phy_ops_bm = {
1640 .acquire_phy = e1000_get_hw_semaphore_82571,
1641 .check_reset_block = e1000e_check_reset_block_generic,
1642 .commit_phy = e1000e_phy_sw_reset,
1643 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1644 .get_cfg_done = e1000e_get_cfg_done,
1645 .get_cable_length = e1000e_get_cable_length_m88,
1646 .get_phy_info = e1000e_get_phy_info_m88,
1647 .read_phy_reg = e1000e_read_phy_reg_bm2,
1648 .release_phy = e1000_put_hw_semaphore_82571,
1649 .reset_phy = e1000e_phy_hw_reset_generic,
1650 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1651 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1652 .write_phy_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1653 .cfg_on_link_up = NULL,
4662e82b
BA
1654};
1655
bc7f75fa 1656static struct e1000_nvm_operations e82571_nvm_ops = {
bc7f75fa
AK
1657 .acquire_nvm = e1000_acquire_nvm_82571,
1658 .read_nvm = e1000e_read_nvm_eerd,
1659 .release_nvm = e1000_release_nvm_82571,
1660 .update_nvm = e1000_update_nvm_checksum_82571,
1661 .valid_led_default = e1000_valid_led_default_82571,
1662 .validate_nvm = e1000_validate_nvm_checksum_82571,
1663 .write_nvm = e1000_write_nvm_82571,
1664};
1665
1666struct e1000_info e1000_82571_info = {
1667 .mac = e1000_82571,
1668 .flags = FLAG_HAS_HW_VLAN_FILTER
1669 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1670 | FLAG_HAS_WOL
1671 | FLAG_APME_IN_CTRL3
1672 | FLAG_RX_CSUM_ENABLED
1673 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1674 | FLAG_HAS_SMART_POWER_DOWN
1675 | FLAG_RESET_OVERWRITES_LAA /* errata */
1676 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1677 | FLAG_APME_CHECK_PORT_B,
1678 .pba = 38,
2adc55c9 1679 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1680 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1681 .mac_ops = &e82571_mac_ops,
1682 .phy_ops = &e82_phy_ops_igp,
1683 .nvm_ops = &e82571_nvm_ops,
1684};
1685
1686struct e1000_info e1000_82572_info = {
1687 .mac = e1000_82572,
1688 .flags = FLAG_HAS_HW_VLAN_FILTER
1689 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1690 | FLAG_HAS_WOL
1691 | FLAG_APME_IN_CTRL3
1692 | FLAG_RX_CSUM_ENABLED
1693 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1694 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1695 .pba = 38,
2adc55c9 1696 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1697 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1698 .mac_ops = &e82571_mac_ops,
1699 .phy_ops = &e82_phy_ops_igp,
1700 .nvm_ops = &e82571_nvm_ops,
1701};
1702
1703struct e1000_info e1000_82573_info = {
1704 .mac = e1000_82573,
1705 .flags = FLAG_HAS_HW_VLAN_FILTER
1706 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1707 | FLAG_HAS_WOL
1708 | FLAG_APME_IN_CTRL3
1709 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1710 | FLAG_HAS_SMART_POWER_DOWN
1711 | FLAG_HAS_AMT
bc7f75fa
AK
1712 | FLAG_HAS_ERT
1713 | FLAG_HAS_SWSM_ON_LOAD,
1714 .pba = 20,
2adc55c9 1715 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 1716 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1717 .mac_ops = &e82571_mac_ops,
1718 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1719 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1720};
1721
4662e82b
BA
1722struct e1000_info e1000_82574_info = {
1723 .mac = e1000_82574,
1724 .flags = FLAG_HAS_HW_VLAN_FILTER
1725 | FLAG_HAS_MSIX
1726 | FLAG_HAS_JUMBO_FRAMES
1727 | FLAG_HAS_WOL
1728 | FLAG_APME_IN_CTRL3
1729 | FLAG_RX_CSUM_ENABLED
1730 | FLAG_HAS_SMART_POWER_DOWN
1731 | FLAG_HAS_AMT
1732 | FLAG_HAS_CTRLEXT_ON_LOAD,
1733 .pba = 20,
2adc55c9 1734 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4662e82b
BA
1735 .get_variants = e1000_get_variants_82571,
1736 .mac_ops = &e82571_mac_ops,
1737 .phy_ops = &e82_phy_ops_bm,
1738 .nvm_ops = &e82571_nvm_ops,
1739};
1740
8c81c9c3
AD
1741struct e1000_info e1000_82583_info = {
1742 .mac = e1000_82583,
1743 .flags = FLAG_HAS_HW_VLAN_FILTER
1744 | FLAG_HAS_WOL
1745 | FLAG_APME_IN_CTRL3
1746 | FLAG_RX_CSUM_ENABLED
1747 | FLAG_HAS_SMART_POWER_DOWN
1748 | FLAG_HAS_AMT
1749 | FLAG_HAS_CTRLEXT_ON_LOAD,
1750 .pba = 20,
2adc55c9 1751 .max_hw_frame_size = DEFAULT_JUMBO,
8c81c9c3
AD
1752 .get_variants = e1000_get_variants_82571,
1753 .mac_ops = &e82571_mac_ops,
1754 .phy_ops = &e82_phy_ops_bm,
1755 .nvm_ops = &e82571_nvm_ops,
1756};
1757