[PATCH] sundance: include MII address 0 in PHY probe
[linux-block.git] / drivers / net / e1000 / e1000_main.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
3
2648345f 4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
1da177e4
LT
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/* Change Log
2b02893e
MC
32 * 6.0.58 4/20/05
33 * o Accepted ethtool cleanup patch from Stephen Hemminger
2648345f
MC
34 * 6.0.44+ 2/15/05
35 * o applied Anton's patch to resolve tx hang in hardware
36 * o Applied Andrew Mortons patch - e1000 stops working after resume
1da177e4
LT
37 */
38
39char e1000_driver_name[] = "e1000";
40char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41#ifndef CONFIG_E1000_NAPI
42#define DRIVERNAPI
43#else
44#define DRIVERNAPI "-NAPI"
45#endif
2b02893e 46#define DRV_VERSION "6.0.60-k2"DRIVERNAPI
1da177e4 47char e1000_driver_version[] = DRV_VERSION;
2b02893e 48char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
1da177e4
LT
49
50/* e1000_pci_tbl - PCI Device ID Table
51 *
52 * Last entry must be all 0s
53 *
54 * Macro expands to...
55 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56 */
57static struct pci_device_id e1000_pci_tbl[] = {
58 INTEL_E1000_ETHERNET_DEVICE(0x1000),
59 INTEL_E1000_ETHERNET_DEVICE(0x1001),
60 INTEL_E1000_ETHERNET_DEVICE(0x1004),
61 INTEL_E1000_ETHERNET_DEVICE(0x1008),
62 INTEL_E1000_ETHERNET_DEVICE(0x1009),
63 INTEL_E1000_ETHERNET_DEVICE(0x100C),
64 INTEL_E1000_ETHERNET_DEVICE(0x100D),
65 INTEL_E1000_ETHERNET_DEVICE(0x100E),
66 INTEL_E1000_ETHERNET_DEVICE(0x100F),
67 INTEL_E1000_ETHERNET_DEVICE(0x1010),
68 INTEL_E1000_ETHERNET_DEVICE(0x1011),
69 INTEL_E1000_ETHERNET_DEVICE(0x1012),
70 INTEL_E1000_ETHERNET_DEVICE(0x1013),
71 INTEL_E1000_ETHERNET_DEVICE(0x1014),
72 INTEL_E1000_ETHERNET_DEVICE(0x1015),
73 INTEL_E1000_ETHERNET_DEVICE(0x1016),
74 INTEL_E1000_ETHERNET_DEVICE(0x1017),
75 INTEL_E1000_ETHERNET_DEVICE(0x1018),
76 INTEL_E1000_ETHERNET_DEVICE(0x1019),
2648345f 77 INTEL_E1000_ETHERNET_DEVICE(0x101A),
1da177e4
LT
78 INTEL_E1000_ETHERNET_DEVICE(0x101D),
79 INTEL_E1000_ETHERNET_DEVICE(0x101E),
80 INTEL_E1000_ETHERNET_DEVICE(0x1026),
81 INTEL_E1000_ETHERNET_DEVICE(0x1027),
82 INTEL_E1000_ETHERNET_DEVICE(0x1028),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x108A),
2648345f
MC
92 INTEL_E1000_ETHERNET_DEVICE(0x108B),
93 INTEL_E1000_ETHERNET_DEVICE(0x108C),
94 INTEL_E1000_ETHERNET_DEVICE(0x1099),
1da177e4
LT
95 /* required last entry */
96 {0,}
97};
98
99MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
100
101int e1000_up(struct e1000_adapter *adapter);
102void e1000_down(struct e1000_adapter *adapter);
103void e1000_reset(struct e1000_adapter *adapter);
104int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
581d708e
MC
105int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
106int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
107void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
108void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
109int e1000_setup_tx_resources(struct e1000_adapter *adapter,
110 struct e1000_tx_ring *txdr);
111int e1000_setup_rx_resources(struct e1000_adapter *adapter,
112 struct e1000_rx_ring *rxdr);
113void e1000_free_tx_resources(struct e1000_adapter *adapter,
114 struct e1000_tx_ring *tx_ring);
115void e1000_free_rx_resources(struct e1000_adapter *adapter,
116 struct e1000_rx_ring *rx_ring);
1da177e4
LT
117void e1000_update_stats(struct e1000_adapter *adapter);
118
119/* Local Function Prototypes */
120
121static int e1000_init_module(void);
122static void e1000_exit_module(void);
123static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
124static void __devexit e1000_remove(struct pci_dev *pdev);
581d708e
MC
125static int e1000_alloc_queues(struct e1000_adapter *adapter);
126#ifdef CONFIG_E1000_MQ
127static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
128#endif
1da177e4
LT
129static int e1000_sw_init(struct e1000_adapter *adapter);
130static int e1000_open(struct net_device *netdev);
131static int e1000_close(struct net_device *netdev);
132static void e1000_configure_tx(struct e1000_adapter *adapter);
133static void e1000_configure_rx(struct e1000_adapter *adapter);
134static void e1000_setup_rctl(struct e1000_adapter *adapter);
581d708e
MC
135static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
136static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
137static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
138 struct e1000_tx_ring *tx_ring);
139static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
140 struct e1000_rx_ring *rx_ring);
1da177e4
LT
141static void e1000_set_multi(struct net_device *netdev);
142static void e1000_update_phy_info(unsigned long data);
143static void e1000_watchdog(unsigned long data);
144static void e1000_watchdog_task(struct e1000_adapter *adapter);
145static void e1000_82547_tx_fifo_stall(unsigned long data);
146static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
147static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
148static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
149static int e1000_set_mac(struct net_device *netdev, void *p);
150static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
581d708e
MC
151static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
152 struct e1000_tx_ring *tx_ring);
1da177e4 153#ifdef CONFIG_E1000_NAPI
581d708e 154static int e1000_clean(struct net_device *poll_dev, int *budget);
1da177e4 155static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
581d708e 156 struct e1000_rx_ring *rx_ring,
1da177e4 157 int *work_done, int work_to_do);
2d7edb92 158static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
581d708e 159 struct e1000_rx_ring *rx_ring,
2d7edb92 160 int *work_done, int work_to_do);
1da177e4 161#else
581d708e
MC
162static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
163 struct e1000_rx_ring *rx_ring);
164static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring);
1da177e4 166#endif
581d708e
MC
167static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
168 struct e1000_rx_ring *rx_ring);
169static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
170 struct e1000_rx_ring *rx_ring);
1da177e4
LT
171static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
172static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
173 int cmd);
174void e1000_set_ethtool_ops(struct net_device *netdev);
175static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
176static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
177static void e1000_tx_timeout(struct net_device *dev);
178static void e1000_tx_timeout_task(struct net_device *dev);
179static void e1000_smartspeed(struct e1000_adapter *adapter);
180static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
181 struct sk_buff *skb);
182
183static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
184static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
185static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
186static void e1000_restore_vlan(struct e1000_adapter *adapter);
187
829ca9a3 188static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
1da177e4
LT
189#ifdef CONFIG_PM
190static int e1000_resume(struct pci_dev *pdev);
191#endif
192
193#ifdef CONFIG_NET_POLL_CONTROLLER
194/* for netdump / net console */
195static void e1000_netpoll (struct net_device *netdev);
196#endif
197
24025e4e
MC
198#ifdef CONFIG_E1000_MQ
199/* for multiple Rx queues */
200void e1000_rx_schedule(void *data);
201#endif
202
1da177e4
LT
203/* Exported from other modules */
204
205extern void e1000_check_options(struct e1000_adapter *adapter);
206
207static struct pci_driver e1000_driver = {
208 .name = e1000_driver_name,
209 .id_table = e1000_pci_tbl,
210 .probe = e1000_probe,
211 .remove = __devexit_p(e1000_remove),
212 /* Power Managment Hooks */
213#ifdef CONFIG_PM
214 .suspend = e1000_suspend,
215 .resume = e1000_resume
216#endif
217};
218
219MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221MODULE_LICENSE("GPL");
222MODULE_VERSION(DRV_VERSION);
223
224static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225module_param(debug, int, 0);
226MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228/**
229 * e1000_init_module - Driver Registration Routine
230 *
231 * e1000_init_module is the first routine called when the driver is
232 * loaded. All it does is register with the PCI subsystem.
233 **/
234
235static int __init
236e1000_init_module(void)
237{
238 int ret;
239 printk(KERN_INFO "%s - version %s\n",
240 e1000_driver_string, e1000_driver_version);
241
242 printk(KERN_INFO "%s\n", e1000_copyright);
243
244 ret = pci_module_init(&e1000_driver);
8b378def 245
1da177e4
LT
246 return ret;
247}
248
249module_init(e1000_init_module);
250
251/**
252 * e1000_exit_module - Driver Exit Cleanup Routine
253 *
254 * e1000_exit_module is called just before the driver is removed
255 * from memory.
256 **/
257
258static void __exit
259e1000_exit_module(void)
260{
1da177e4
LT
261 pci_unregister_driver(&e1000_driver);
262}
263
264module_exit(e1000_exit_module);
265
266/**
267 * e1000_irq_disable - Mask off interrupt generation on the NIC
268 * @adapter: board private structure
269 **/
270
271static inline void
272e1000_irq_disable(struct e1000_adapter *adapter)
273{
274 atomic_inc(&adapter->irq_sem);
275 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
276 E1000_WRITE_FLUSH(&adapter->hw);
277 synchronize_irq(adapter->pdev->irq);
278}
279
280/**
281 * e1000_irq_enable - Enable default interrupt generation settings
282 * @adapter: board private structure
283 **/
284
285static inline void
286e1000_irq_enable(struct e1000_adapter *adapter)
287{
288 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
289 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
290 E1000_WRITE_FLUSH(&adapter->hw);
291 }
292}
2d7edb92
MC
293void
294e1000_update_mng_vlan(struct e1000_adapter *adapter)
295{
296 struct net_device *netdev = adapter->netdev;
297 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
298 uint16_t old_vid = adapter->mng_vlan_id;
299 if(adapter->vlgrp) {
300 if(!adapter->vlgrp->vlan_devices[vid]) {
301 if(adapter->hw.mng_cookie.status &
302 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
303 e1000_vlan_rx_add_vid(netdev, vid);
304 adapter->mng_vlan_id = vid;
305 } else
306 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
307
308 if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
309 (vid != old_vid) &&
310 !adapter->vlgrp->vlan_devices[old_vid])
311 e1000_vlan_rx_kill_vid(netdev, old_vid);
312 }
313 }
314}
315
1da177e4
LT
316int
317e1000_up(struct e1000_adapter *adapter)
318{
319 struct net_device *netdev = adapter->netdev;
581d708e 320 int i, err;
1da177e4
LT
321
322 /* hardware has been reset, we need to reload some things */
323
324 /* Reset the PHY if it was previously powered down */
325 if(adapter->hw.media_type == e1000_media_type_copper) {
326 uint16_t mii_reg;
327 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
328 if(mii_reg & MII_CR_POWER_DOWN)
329 e1000_phy_reset(&adapter->hw);
330 }
331
332 e1000_set_multi(netdev);
333
334 e1000_restore_vlan(adapter);
335
336 e1000_configure_tx(adapter);
337 e1000_setup_rctl(adapter);
338 e1000_configure_rx(adapter);
581d708e
MC
339 for (i = 0; i < adapter->num_queues; i++)
340 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
1da177e4 341
fa4f7ef3
MC
342#ifdef CONFIG_PCI_MSI
343 if(adapter->hw.mac_type > e1000_82547_rev_2) {
344 adapter->have_msi = TRUE;
345 if((err = pci_enable_msi(adapter->pdev))) {
346 DPRINTK(PROBE, ERR,
347 "Unable to allocate MSI interrupt Error: %d\n", err);
348 adapter->have_msi = FALSE;
349 }
350 }
351#endif
1da177e4
LT
352 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
353 SA_SHIRQ | SA_SAMPLE_RANDOM,
2648345f
MC
354 netdev->name, netdev))) {
355 DPRINTK(PROBE, ERR,
356 "Unable to allocate interrupt Error: %d\n", err);
1da177e4 357 return err;
2648345f 358 }
1da177e4
LT
359
360 mod_timer(&adapter->watchdog_timer, jiffies);
1da177e4
LT
361
362#ifdef CONFIG_E1000_NAPI
363 netif_poll_enable(netdev);
364#endif
5de55624
MC
365 e1000_irq_enable(adapter);
366
1da177e4
LT
367 return 0;
368}
369
370void
371e1000_down(struct e1000_adapter *adapter)
372{
373 struct net_device *netdev = adapter->netdev;
374
375 e1000_irq_disable(adapter);
24025e4e
MC
376#ifdef CONFIG_E1000_MQ
377 while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
378#endif
1da177e4 379 free_irq(adapter->pdev->irq, netdev);
fa4f7ef3
MC
380#ifdef CONFIG_PCI_MSI
381 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
382 adapter->have_msi == TRUE)
383 pci_disable_msi(adapter->pdev);
384#endif
1da177e4
LT
385 del_timer_sync(&adapter->tx_fifo_stall_timer);
386 del_timer_sync(&adapter->watchdog_timer);
387 del_timer_sync(&adapter->phy_info_timer);
388
389#ifdef CONFIG_E1000_NAPI
390 netif_poll_disable(netdev);
391#endif
392 adapter->link_speed = 0;
393 adapter->link_duplex = 0;
394 netif_carrier_off(netdev);
395 netif_stop_queue(netdev);
396
397 e1000_reset(adapter);
581d708e
MC
398 e1000_clean_all_tx_rings(adapter);
399 e1000_clean_all_rx_rings(adapter);
1da177e4
LT
400
401 /* If WoL is not enabled
2d7edb92 402 * and management mode is not IAMT
1da177e4 403 * Power down the PHY so no link is implied when interface is down */
2d7edb92
MC
404 if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
405 adapter->hw.media_type == e1000_media_type_copper &&
406 !e1000_check_mng_mode(&adapter->hw) &&
407 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
1da177e4
LT
408 uint16_t mii_reg;
409 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
410 mii_reg |= MII_CR_POWER_DOWN;
411 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
4e48a2b9 412 mdelay(1);
1da177e4
LT
413 }
414}
415
416void
417e1000_reset(struct e1000_adapter *adapter)
418{
1125ecbc 419 struct net_device *netdev = adapter->netdev;
2d7edb92 420 uint32_t pba, manc;
1125ecbc
MC
421 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
422 uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
1da177e4
LT
423
424 /* Repartition Pba for greater than 9k mtu
425 * To take effect CTRL.RST is required.
426 */
427
2d7edb92
MC
428 switch (adapter->hw.mac_type) {
429 case e1000_82547:
0e6ef3e0 430 case e1000_82547_rev_2:
2d7edb92
MC
431 pba = E1000_PBA_30K;
432 break;
868d5309
MC
433 case e1000_82571:
434 case e1000_82572:
435 pba = E1000_PBA_38K;
436 break;
2d7edb92
MC
437 case e1000_82573:
438 pba = E1000_PBA_12K;
439 break;
440 default:
441 pba = E1000_PBA_48K;
442 break;
443 }
444
1125ecbc
MC
445 if((adapter->hw.mac_type != e1000_82573) &&
446 (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
447 pba -= 8; /* allocate more FIFO for Tx */
448 /* send an XOFF when there is enough space in the
449 * Rx FIFO to hold one extra full size Rx packet
450 */
451 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
452 ETHERNET_FCS_SIZE + 1;
453 fc_low_water_mark = fc_high_water_mark + 8;
454 }
2d7edb92
MC
455
456
457 if(adapter->hw.mac_type == e1000_82547) {
1da177e4
LT
458 adapter->tx_fifo_head = 0;
459 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
460 adapter->tx_fifo_size =
461 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
462 atomic_set(&adapter->tx_fifo_stall, 0);
463 }
2d7edb92 464
1da177e4
LT
465 E1000_WRITE_REG(&adapter->hw, PBA, pba);
466
467 /* flow control settings */
468 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
1125ecbc 469 fc_high_water_mark;
1da177e4 470 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
1125ecbc 471 fc_low_water_mark;
1da177e4
LT
472 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
473 adapter->hw.fc_send_xon = 1;
474 adapter->hw.fc = adapter->hw.original_fc;
475
2d7edb92 476 /* Allow time for pending master requests to run */
1da177e4
LT
477 e1000_reset_hw(&adapter->hw);
478 if(adapter->hw.mac_type >= e1000_82544)
479 E1000_WRITE_REG(&adapter->hw, WUC, 0);
480 if(e1000_init_hw(&adapter->hw))
481 DPRINTK(PROBE, ERR, "Hardware Error\n");
2d7edb92 482 e1000_update_mng_vlan(adapter);
1da177e4
LT
483 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
484 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
485
486 e1000_reset_adaptive(&adapter->hw);
487 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2d7edb92
MC
488 if (adapter->en_mng_pt) {
489 manc = E1000_READ_REG(&adapter->hw, MANC);
490 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
491 E1000_WRITE_REG(&adapter->hw, MANC, manc);
492 }
1da177e4
LT
493}
494
495/**
496 * e1000_probe - Device Initialization Routine
497 * @pdev: PCI device information struct
498 * @ent: entry in e1000_pci_tbl
499 *
500 * Returns 0 on success, negative on failure
501 *
502 * e1000_probe initializes an adapter identified by a pci_dev structure.
503 * The OS initialization, configuring of the adapter private structure,
504 * and a hardware reset occur.
505 **/
506
507static int __devinit
508e1000_probe(struct pci_dev *pdev,
509 const struct pci_device_id *ent)
510{
511 struct net_device *netdev;
512 struct e1000_adapter *adapter;
2d7edb92 513 unsigned long mmio_start, mmio_len;
868d5309 514 uint32_t ctrl_ext;
2d7edb92
MC
515 uint32_t swsm;
516
1da177e4 517 static int cards_found = 0;
2d7edb92 518 int i, err, pci_using_dac;
1da177e4
LT
519 uint16_t eeprom_data;
520 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
1da177e4
LT
521 if((err = pci_enable_device(pdev)))
522 return err;
523
524 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
525 pci_using_dac = 1;
526 } else {
527 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
528 E1000_ERR("No usable DMA configuration, aborting\n");
529 return err;
530 }
531 pci_using_dac = 0;
532 }
533
534 if((err = pci_request_regions(pdev, e1000_driver_name)))
535 return err;
536
537 pci_set_master(pdev);
538
539 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
540 if(!netdev) {
541 err = -ENOMEM;
542 goto err_alloc_etherdev;
543 }
544
545 SET_MODULE_OWNER(netdev);
546 SET_NETDEV_DEV(netdev, &pdev->dev);
547
548 pci_set_drvdata(pdev, netdev);
60490fe0 549 adapter = netdev_priv(netdev);
1da177e4
LT
550 adapter->netdev = netdev;
551 adapter->pdev = pdev;
552 adapter->hw.back = adapter;
553 adapter->msg_enable = (1 << debug) - 1;
554
555 mmio_start = pci_resource_start(pdev, BAR_0);
556 mmio_len = pci_resource_len(pdev, BAR_0);
557
558 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
559 if(!adapter->hw.hw_addr) {
560 err = -EIO;
561 goto err_ioremap;
562 }
563
564 for(i = BAR_1; i <= BAR_5; i++) {
565 if(pci_resource_len(pdev, i) == 0)
566 continue;
567 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
568 adapter->hw.io_base = pci_resource_start(pdev, i);
569 break;
570 }
571 }
572
573 netdev->open = &e1000_open;
574 netdev->stop = &e1000_close;
575 netdev->hard_start_xmit = &e1000_xmit_frame;
576 netdev->get_stats = &e1000_get_stats;
577 netdev->set_multicast_list = &e1000_set_multi;
578 netdev->set_mac_address = &e1000_set_mac;
579 netdev->change_mtu = &e1000_change_mtu;
580 netdev->do_ioctl = &e1000_ioctl;
581 e1000_set_ethtool_ops(netdev);
582 netdev->tx_timeout = &e1000_tx_timeout;
583 netdev->watchdog_timeo = 5 * HZ;
584#ifdef CONFIG_E1000_NAPI
585 netdev->poll = &e1000_clean;
586 netdev->weight = 64;
587#endif
588 netdev->vlan_rx_register = e1000_vlan_rx_register;
589 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
590 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
591#ifdef CONFIG_NET_POLL_CONTROLLER
592 netdev->poll_controller = e1000_netpoll;
593#endif
594 strcpy(netdev->name, pci_name(pdev));
595
596 netdev->mem_start = mmio_start;
597 netdev->mem_end = mmio_start + mmio_len;
598 netdev->base_addr = adapter->hw.io_base;
599
600 adapter->bd_number = cards_found;
601
602 /* setup the private structure */
603
604 if((err = e1000_sw_init(adapter)))
605 goto err_sw_init;
606
2d7edb92
MC
607 if((err = e1000_check_phy_reset_block(&adapter->hw)))
608 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
609
1da177e4
LT
610 if(adapter->hw.mac_type >= e1000_82543) {
611 netdev->features = NETIF_F_SG |
612 NETIF_F_HW_CSUM |
613 NETIF_F_HW_VLAN_TX |
614 NETIF_F_HW_VLAN_RX |
615 NETIF_F_HW_VLAN_FILTER;
616 }
617
618#ifdef NETIF_F_TSO
619 if((adapter->hw.mac_type >= e1000_82544) &&
620 (adapter->hw.mac_type != e1000_82547))
621 netdev->features |= NETIF_F_TSO;
2d7edb92
MC
622
623#ifdef NETIF_F_TSO_IPV6
624 if(adapter->hw.mac_type > e1000_82547_rev_2)
625 netdev->features |= NETIF_F_TSO_IPV6;
626#endif
1da177e4
LT
627#endif
628 if(pci_using_dac)
629 netdev->features |= NETIF_F_HIGHDMA;
630
631 /* hard_start_xmit is safe against parallel locking */
632 netdev->features |= NETIF_F_LLTX;
633
2d7edb92
MC
634 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
635
1da177e4
LT
636 /* before reading the EEPROM, reset the controller to
637 * put the device in a known good starting state */
638
639 e1000_reset_hw(&adapter->hw);
640
641 /* make sure the EEPROM is good */
642
643 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
644 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
645 err = -EIO;
646 goto err_eeprom;
647 }
648
649 /* copy the MAC address out of the EEPROM */
650
2648345f 651 if(e1000_read_mac_addr(&adapter->hw))
1da177e4
LT
652 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
653 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
9beb0ac1 654 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1da177e4 655
9beb0ac1 656 if(!is_valid_ether_addr(netdev->perm_addr)) {
1da177e4
LT
657 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
658 err = -EIO;
659 goto err_eeprom;
660 }
661
662 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
663
664 e1000_get_bus_info(&adapter->hw);
665
666 init_timer(&adapter->tx_fifo_stall_timer);
667 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
668 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
669
670 init_timer(&adapter->watchdog_timer);
671 adapter->watchdog_timer.function = &e1000_watchdog;
672 adapter->watchdog_timer.data = (unsigned long) adapter;
673
674 INIT_WORK(&adapter->watchdog_task,
675 (void (*)(void *))e1000_watchdog_task, adapter);
676
677 init_timer(&adapter->phy_info_timer);
678 adapter->phy_info_timer.function = &e1000_update_phy_info;
679 adapter->phy_info_timer.data = (unsigned long) adapter;
680
681 INIT_WORK(&adapter->tx_timeout_task,
682 (void (*)(void *))e1000_tx_timeout_task, netdev);
683
684 /* we're going to reset, so assume we have no link for now */
685
686 netif_carrier_off(netdev);
687 netif_stop_queue(netdev);
688
689 e1000_check_options(adapter);
690
691 /* Initial Wake on LAN setting
692 * If APM wake is enabled in the EEPROM,
693 * enable the ACPI Magic Packet filter
694 */
695
696 switch(adapter->hw.mac_type) {
697 case e1000_82542_rev2_0:
698 case e1000_82542_rev2_1:
699 case e1000_82543:
700 break;
701 case e1000_82544:
702 e1000_read_eeprom(&adapter->hw,
703 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
704 eeprom_apme_mask = E1000_EEPROM_82544_APM;
705 break;
706 case e1000_82546:
707 case e1000_82546_rev_3:
708 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
709 && (adapter->hw.media_type == e1000_media_type_copper)) {
710 e1000_read_eeprom(&adapter->hw,
711 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
712 break;
713 }
714 /* Fall Through */
715 default:
716 e1000_read_eeprom(&adapter->hw,
717 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
718 break;
719 }
720 if(eeprom_data & eeprom_apme_mask)
721 adapter->wol |= E1000_WUFC_MAG;
722
723 /* reset the hardware with the new settings */
724 e1000_reset(adapter);
725
2d7edb92
MC
726 /* Let firmware know the driver has taken over */
727 switch(adapter->hw.mac_type) {
868d5309
MC
728 case e1000_82571:
729 case e1000_82572:
730 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
731 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
732 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
733 break;
2d7edb92
MC
734 case e1000_82573:
735 swsm = E1000_READ_REG(&adapter->hw, SWSM);
736 E1000_WRITE_REG(&adapter->hw, SWSM,
737 swsm | E1000_SWSM_DRV_LOAD);
738 break;
739 default:
740 break;
741 }
742
1da177e4
LT
743 strcpy(netdev->name, "eth%d");
744 if((err = register_netdev(netdev)))
745 goto err_register;
746
747 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
748
749 cards_found++;
750 return 0;
751
752err_register:
753err_sw_init:
754err_eeprom:
755 iounmap(adapter->hw.hw_addr);
756err_ioremap:
757 free_netdev(netdev);
758err_alloc_etherdev:
759 pci_release_regions(pdev);
760 return err;
761}
762
763/**
764 * e1000_remove - Device Removal Routine
765 * @pdev: PCI device information struct
766 *
767 * e1000_remove is called by the PCI subsystem to alert the driver
768 * that it should release a PCI device. The could be caused by a
769 * Hot-Plug event, or because the driver is going to be removed from
770 * memory.
771 **/
772
773static void __devexit
774e1000_remove(struct pci_dev *pdev)
775{
776 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 777 struct e1000_adapter *adapter = netdev_priv(netdev);
868d5309 778 uint32_t ctrl_ext;
2d7edb92 779 uint32_t manc, swsm;
581d708e
MC
780#ifdef CONFIG_E1000_NAPI
781 int i;
782#endif
1da177e4 783
be2b28ed
JG
784 flush_scheduled_work();
785
1da177e4
LT
786 if(adapter->hw.mac_type >= e1000_82540 &&
787 adapter->hw.media_type == e1000_media_type_copper) {
788 manc = E1000_READ_REG(&adapter->hw, MANC);
789 if(manc & E1000_MANC_SMBUS_EN) {
790 manc |= E1000_MANC_ARP_EN;
791 E1000_WRITE_REG(&adapter->hw, MANC, manc);
792 }
793 }
794
2d7edb92 795 switch(adapter->hw.mac_type) {
868d5309
MC
796 case e1000_82571:
797 case e1000_82572:
798 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
799 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
800 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
801 break;
2d7edb92
MC
802 case e1000_82573:
803 swsm = E1000_READ_REG(&adapter->hw, SWSM);
804 E1000_WRITE_REG(&adapter->hw, SWSM,
805 swsm & ~E1000_SWSM_DRV_LOAD);
806 break;
807
808 default:
809 break;
810 }
811
1da177e4 812 unregister_netdev(netdev);
581d708e
MC
813#ifdef CONFIG_E1000_NAPI
814 for (i = 0; i < adapter->num_queues; i++)
815 __dev_put(&adapter->polling_netdev[i]);
816#endif
1da177e4 817
2d7edb92
MC
818 if(!e1000_check_phy_reset_block(&adapter->hw))
819 e1000_phy_hw_reset(&adapter->hw);
1da177e4 820
24025e4e
MC
821 kfree(adapter->tx_ring);
822 kfree(adapter->rx_ring);
823#ifdef CONFIG_E1000_NAPI
824 kfree(adapter->polling_netdev);
825#endif
826
1da177e4
LT
827 iounmap(adapter->hw.hw_addr);
828 pci_release_regions(pdev);
829
24025e4e
MC
830#ifdef CONFIG_E1000_MQ
831 free_percpu(adapter->cpu_netdev);
832 free_percpu(adapter->cpu_tx_ring);
833#endif
1da177e4
LT
834 free_netdev(netdev);
835
836 pci_disable_device(pdev);
837}
838
839/**
840 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
841 * @adapter: board private structure to initialize
842 *
843 * e1000_sw_init initializes the Adapter private data structure.
844 * Fields are initialized based on PCI device information and
845 * OS network device settings (MTU size).
846 **/
847
848static int __devinit
849e1000_sw_init(struct e1000_adapter *adapter)
850{
851 struct e1000_hw *hw = &adapter->hw;
852 struct net_device *netdev = adapter->netdev;
853 struct pci_dev *pdev = adapter->pdev;
581d708e
MC
854#ifdef CONFIG_E1000_NAPI
855 int i;
856#endif
1da177e4
LT
857
858 /* PCI config space info */
859
860 hw->vendor_id = pdev->vendor;
861 hw->device_id = pdev->device;
862 hw->subsystem_vendor_id = pdev->subsystem_vendor;
863 hw->subsystem_id = pdev->subsystem_device;
864
865 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
866
867 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
868
869 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2d7edb92 870 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
1da177e4
LT
871 hw->max_frame_size = netdev->mtu +
872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875 /* identify the MAC */
876
877 if(e1000_set_mac_type(hw)) {
878 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
879 return -EIO;
880 }
881
882 /* initialize eeprom parameters */
883
2d7edb92
MC
884 if(e1000_init_eeprom_params(hw)) {
885 E1000_ERR("EEPROM initialization failed\n");
886 return -EIO;
887 }
1da177e4
LT
888
889 switch(hw->mac_type) {
890 default:
891 break;
892 case e1000_82541:
893 case e1000_82547:
894 case e1000_82541_rev_2:
895 case e1000_82547_rev_2:
896 hw->phy_init_script = 1;
897 break;
898 }
899
900 e1000_set_media_type(hw);
901
902 hw->wait_autoneg_complete = FALSE;
903 hw->tbi_compatibility_en = TRUE;
904 hw->adaptive_ifs = TRUE;
905
906 /* Copper options */
907
908 if(hw->media_type == e1000_media_type_copper) {
909 hw->mdix = AUTO_ALL_MODES;
910 hw->disable_polarity_correction = FALSE;
911 hw->master_slave = E1000_MASTER_SLAVE;
912 }
913
24025e4e
MC
914#ifdef CONFIG_E1000_MQ
915 /* Number of supported queues */
916 switch (hw->mac_type) {
917 case e1000_82571:
918 case e1000_82572:
919 adapter->num_queues = 2;
920 break;
921 default:
922 adapter->num_queues = 1;
923 break;
924 }
925 adapter->num_queues = min(adapter->num_queues, num_online_cpus());
926#else
581d708e 927 adapter->num_queues = 1;
24025e4e 928#endif
581d708e
MC
929
930 if (e1000_alloc_queues(adapter)) {
931 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
932 return -ENOMEM;
933 }
934
935#ifdef CONFIG_E1000_NAPI
936 for (i = 0; i < adapter->num_queues; i++) {
937 adapter->polling_netdev[i].priv = adapter;
938 adapter->polling_netdev[i].poll = &e1000_clean;
939 adapter->polling_netdev[i].weight = 64;
940 dev_hold(&adapter->polling_netdev[i]);
941 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
942 }
943#endif
24025e4e
MC
944
945#ifdef CONFIG_E1000_MQ
946 e1000_setup_queue_mapping(adapter);
947#endif
948
1da177e4
LT
949 atomic_set(&adapter->irq_sem, 1);
950 spin_lock_init(&adapter->stats_lock);
1da177e4
LT
951
952 return 0;
953}
954
581d708e
MC
955/**
956 * e1000_alloc_queues - Allocate memory for all rings
957 * @adapter: board private structure to initialize
958 *
959 * We allocate one ring per queue at run-time since we don't know the
960 * number of queues at compile-time. The polling_netdev array is
961 * intended for Multiqueue, but should work fine with a single queue.
962 **/
963
964static int __devinit
965e1000_alloc_queues(struct e1000_adapter *adapter)
966{
967 int size;
968
969 size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
970 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
971 if (!adapter->tx_ring)
972 return -ENOMEM;
973 memset(adapter->tx_ring, 0, size);
974
975 size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
976 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
977 if (!adapter->rx_ring) {
978 kfree(adapter->tx_ring);
979 return -ENOMEM;
980 }
981 memset(adapter->rx_ring, 0, size);
982
983#ifdef CONFIG_E1000_NAPI
984 size = sizeof(struct net_device) * adapter->num_queues;
985 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
986 if (!adapter->polling_netdev) {
987 kfree(adapter->tx_ring);
988 kfree(adapter->rx_ring);
989 return -ENOMEM;
990 }
991 memset(adapter->polling_netdev, 0, size);
992#endif
993
994 return E1000_SUCCESS;
995}
996
24025e4e
MC
997#ifdef CONFIG_E1000_MQ
998static void __devinit
999e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1000{
1001 int i, cpu;
1002
1003 adapter->rx_sched_call_data.func = e1000_rx_schedule;
1004 adapter->rx_sched_call_data.info = adapter->netdev;
1005 cpus_clear(adapter->rx_sched_call_data.cpumask);
1006
1007 adapter->cpu_netdev = alloc_percpu(struct net_device *);
1008 adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1009
1010 lock_cpu_hotplug();
1011 i = 0;
1012 for_each_online_cpu(cpu) {
1013 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_queues];
1014 /* This is incomplete because we'd like to assign separate
1015 * physical cpus to these netdev polling structures and
1016 * avoid saturating a subset of cpus.
1017 */
1018 if (i < adapter->num_queues) {
1019 *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1020 adapter->cpu_for_queue[i] = cpu;
1021 } else
1022 *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1023
1024 i++;
1025 }
1026 unlock_cpu_hotplug();
1027}
1028#endif
1029
1da177e4
LT
1030/**
1031 * e1000_open - Called when a network interface is made active
1032 * @netdev: network interface device structure
1033 *
1034 * Returns 0 on success, negative value on failure
1035 *
1036 * The open entry point is called when a network interface is made
1037 * active by the system (IFF_UP). At this point all resources needed
1038 * for transmit and receive operations are allocated, the interrupt
1039 * handler is registered with the OS, the watchdog timer is started,
1040 * and the stack is notified that the interface is ready.
1041 **/
1042
1043static int
1044e1000_open(struct net_device *netdev)
1045{
60490fe0 1046 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1047 int err;
1048
1049 /* allocate transmit descriptors */
1050
581d708e 1051 if ((err = e1000_setup_all_tx_resources(adapter)))
1da177e4
LT
1052 goto err_setup_tx;
1053
1054 /* allocate receive descriptors */
1055
581d708e 1056 if ((err = e1000_setup_all_rx_resources(adapter)))
1da177e4
LT
1057 goto err_setup_rx;
1058
1059 if((err = e1000_up(adapter)))
1060 goto err_up;
2d7edb92
MC
1061 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1062 if((adapter->hw.mng_cookie.status &
1063 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1064 e1000_update_mng_vlan(adapter);
1065 }
1da177e4
LT
1066
1067 return E1000_SUCCESS;
1068
1069err_up:
581d708e 1070 e1000_free_all_rx_resources(adapter);
1da177e4 1071err_setup_rx:
581d708e 1072 e1000_free_all_tx_resources(adapter);
1da177e4
LT
1073err_setup_tx:
1074 e1000_reset(adapter);
1075
1076 return err;
1077}
1078
1079/**
1080 * e1000_close - Disables a network interface
1081 * @netdev: network interface device structure
1082 *
1083 * Returns 0, this is not allowed to fail
1084 *
1085 * The close entry point is called when an interface is de-activated
1086 * by the OS. The hardware is still under the drivers control, but
1087 * needs to be disabled. A global MAC reset is issued to stop the
1088 * hardware, and all transmit and receive resources are freed.
1089 **/
1090
1091static int
1092e1000_close(struct net_device *netdev)
1093{
60490fe0 1094 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1095
1096 e1000_down(adapter);
1097
581d708e
MC
1098 e1000_free_all_tx_resources(adapter);
1099 e1000_free_all_rx_resources(adapter);
1da177e4 1100
2d7edb92
MC
1101 if((adapter->hw.mng_cookie.status &
1102 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1103 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1104 }
1da177e4
LT
1105 return 0;
1106}
1107
1108/**
1109 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1110 * @adapter: address of board private structure
2d7edb92
MC
1111 * @start: address of beginning of memory
1112 * @len: length of memory
1da177e4
LT
1113 **/
1114static inline boolean_t
1115e1000_check_64k_bound(struct e1000_adapter *adapter,
1116 void *start, unsigned long len)
1117{
1118 unsigned long begin = (unsigned long) start;
1119 unsigned long end = begin + len;
1120
2648345f
MC
1121 /* First rev 82545 and 82546 need to not allow any memory
1122 * write location to cross 64k boundary due to errata 23 */
1da177e4 1123 if (adapter->hw.mac_type == e1000_82545 ||
2648345f 1124 adapter->hw.mac_type == e1000_82546) {
1da177e4
LT
1125 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1126 }
1127
1128 return TRUE;
1129}
1130
1131/**
1132 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1133 * @adapter: board private structure
581d708e 1134 * @txdr: tx descriptor ring (for a specific queue) to setup
1da177e4
LT
1135 *
1136 * Return 0 on success, negative on failure
1137 **/
1138
1139int
581d708e
MC
1140e1000_setup_tx_resources(struct e1000_adapter *adapter,
1141 struct e1000_tx_ring *txdr)
1da177e4 1142{
1da177e4
LT
1143 struct pci_dev *pdev = adapter->pdev;
1144 int size;
1145
1146 size = sizeof(struct e1000_buffer) * txdr->count;
1147 txdr->buffer_info = vmalloc(size);
1148 if(!txdr->buffer_info) {
2648345f
MC
1149 DPRINTK(PROBE, ERR,
1150 "Unable to allocate memory for the transmit descriptor ring\n");
1da177e4
LT
1151 return -ENOMEM;
1152 }
1153 memset(txdr->buffer_info, 0, size);
2ae76d98 1154 memset(&txdr->previous_buffer_info, 0, sizeof(struct e1000_buffer));
1da177e4
LT
1155
1156 /* round up to nearest 4K */
1157
1158 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1159 E1000_ROUNDUP(txdr->size, 4096);
1160
1161 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1162 if(!txdr->desc) {
1163setup_tx_desc_die:
1da177e4 1164 vfree(txdr->buffer_info);
2648345f
MC
1165 DPRINTK(PROBE, ERR,
1166 "Unable to allocate memory for the transmit descriptor ring\n");
1da177e4
LT
1167 return -ENOMEM;
1168 }
1169
2648345f 1170 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1171 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1172 void *olddesc = txdr->desc;
1173 dma_addr_t olddma = txdr->dma;
2648345f
MC
1174 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1175 "at %p\n", txdr->size, txdr->desc);
1176 /* Try again, without freeing the previous */
1da177e4 1177 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1da177e4 1178 if(!txdr->desc) {
2648345f 1179 /* Failed allocation, critical failure */
1da177e4
LT
1180 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1181 goto setup_tx_desc_die;
1182 }
1183
1184 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1185 /* give up */
2648345f
MC
1186 pci_free_consistent(pdev, txdr->size, txdr->desc,
1187 txdr->dma);
1da177e4
LT
1188 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1189 DPRINTK(PROBE, ERR,
2648345f
MC
1190 "Unable to allocate aligned memory "
1191 "for the transmit descriptor ring\n");
1da177e4
LT
1192 vfree(txdr->buffer_info);
1193 return -ENOMEM;
1194 } else {
2648345f 1195 /* Free old allocation, new allocation was successful */
1da177e4
LT
1196 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1197 }
1198 }
1199 memset(txdr->desc, 0, txdr->size);
1200
1201 txdr->next_to_use = 0;
1202 txdr->next_to_clean = 0;
2ae76d98 1203 spin_lock_init(&txdr->tx_lock);
1da177e4
LT
1204
1205 return 0;
1206}
1207
581d708e
MC
1208/**
1209 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1210 * (Descriptors) for all queues
1211 * @adapter: board private structure
1212 *
1213 * If this function returns with an error, then it's possible one or
1214 * more of the rings is populated (while the rest are not). It is the
1215 * callers duty to clean those orphaned rings.
1216 *
1217 * Return 0 on success, negative on failure
1218 **/
1219
1220int
1221e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1222{
1223 int i, err = 0;
1224
1225 for (i = 0; i < adapter->num_queues; i++) {
1226 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1227 if (err) {
1228 DPRINTK(PROBE, ERR,
1229 "Allocation for Tx Queue %u failed\n", i);
1230 break;
1231 }
1232 }
1233
1234 return err;
1235}
1236
1da177e4
LT
1237/**
1238 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1239 * @adapter: board private structure
1240 *
1241 * Configure the Tx unit of the MAC after a reset.
1242 **/
1243
1244static void
1245e1000_configure_tx(struct e1000_adapter *adapter)
1246{
581d708e
MC
1247 uint64_t tdba;
1248 struct e1000_hw *hw = &adapter->hw;
1249 uint32_t tdlen, tctl, tipg, tarc;
1da177e4
LT
1250
1251 /* Setup the HW Tx Head and Tail descriptor pointers */
1252
24025e4e
MC
1253 switch (adapter->num_queues) {
1254 case 2:
1255 tdba = adapter->tx_ring[1].dma;
1256 tdlen = adapter->tx_ring[1].count *
1257 sizeof(struct e1000_tx_desc);
1258 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1259 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1260 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1261 E1000_WRITE_REG(hw, TDH1, 0);
1262 E1000_WRITE_REG(hw, TDT1, 0);
1263 adapter->tx_ring[1].tdh = E1000_TDH1;
1264 adapter->tx_ring[1].tdt = E1000_TDT1;
1265 /* Fall Through */
1266 case 1:
1267 default:
581d708e
MC
1268 tdba = adapter->tx_ring[0].dma;
1269 tdlen = adapter->tx_ring[0].count *
1270 sizeof(struct e1000_tx_desc);
1271 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1272 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1273 E1000_WRITE_REG(hw, TDLEN, tdlen);
1274 E1000_WRITE_REG(hw, TDH, 0);
1275 E1000_WRITE_REG(hw, TDT, 0);
1276 adapter->tx_ring[0].tdh = E1000_TDH;
1277 adapter->tx_ring[0].tdt = E1000_TDT;
24025e4e
MC
1278 break;
1279 }
1da177e4
LT
1280
1281 /* Set the default values for the Tx Inter Packet Gap timer */
1282
581d708e 1283 switch (hw->mac_type) {
1da177e4
LT
1284 case e1000_82542_rev2_0:
1285 case e1000_82542_rev2_1:
1286 tipg = DEFAULT_82542_TIPG_IPGT;
1287 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1288 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1289 break;
1290 default:
581d708e
MC
1291 if (hw->media_type == e1000_media_type_fiber ||
1292 hw->media_type == e1000_media_type_internal_serdes)
1da177e4
LT
1293 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1294 else
1295 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1296 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1297 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1298 }
581d708e 1299 E1000_WRITE_REG(hw, TIPG, tipg);
1da177e4
LT
1300
1301 /* Set the Tx Interrupt Delay register */
1302
581d708e
MC
1303 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1304 if (hw->mac_type >= e1000_82540)
1305 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1da177e4
LT
1306
1307 /* Program the Transmit Control Register */
1308
581d708e 1309 tctl = E1000_READ_REG(hw, TCTL);
1da177e4
LT
1310
1311 tctl &= ~E1000_TCTL_CT;
24025e4e 1312 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1da177e4
LT
1313 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1314
581d708e 1315 E1000_WRITE_REG(hw, TCTL, tctl);
1da177e4 1316
2ae76d98
MC
1317 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1318 tarc = E1000_READ_REG(hw, TARC0);
1319 tarc |= ((1 << 25) | (1 << 21));
1320 E1000_WRITE_REG(hw, TARC0, tarc);
1321 tarc = E1000_READ_REG(hw, TARC1);
1322 tarc |= (1 << 25);
1323 if (tctl & E1000_TCTL_MULR)
1324 tarc &= ~(1 << 28);
1325 else
1326 tarc |= (1 << 28);
1327 E1000_WRITE_REG(hw, TARC1, tarc);
1328 }
1329
581d708e 1330 e1000_config_collision_dist(hw);
1da177e4
LT
1331
1332 /* Setup Transmit Descriptor Settings for eop descriptor */
1333 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1334 E1000_TXD_CMD_IFCS;
1335
581d708e 1336 if (hw->mac_type < e1000_82543)
1da177e4
LT
1337 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1338 else
1339 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1340
1341 /* Cache if we're 82544 running in PCI-X because we'll
1342 * need this to apply a workaround later in the send path. */
581d708e
MC
1343 if (hw->mac_type == e1000_82544 &&
1344 hw->bus_type == e1000_bus_type_pcix)
1da177e4
LT
1345 adapter->pcix_82544 = 1;
1346}
1347
1348/**
1349 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1350 * @adapter: board private structure
581d708e 1351 * @rxdr: rx descriptor ring (for a specific queue) to setup
1da177e4
LT
1352 *
1353 * Returns 0 on success, negative on failure
1354 **/
1355
1356int
581d708e
MC
1357e1000_setup_rx_resources(struct e1000_adapter *adapter,
1358 struct e1000_rx_ring *rxdr)
1da177e4 1359{
1da177e4 1360 struct pci_dev *pdev = adapter->pdev;
2d7edb92 1361 int size, desc_len;
1da177e4
LT
1362
1363 size = sizeof(struct e1000_buffer) * rxdr->count;
1364 rxdr->buffer_info = vmalloc(size);
581d708e 1365 if (!rxdr->buffer_info) {
2648345f
MC
1366 DPRINTK(PROBE, ERR,
1367 "Unable to allocate memory for the receive descriptor ring\n");
1da177e4
LT
1368 return -ENOMEM;
1369 }
1370 memset(rxdr->buffer_info, 0, size);
1371
2d7edb92
MC
1372 size = sizeof(struct e1000_ps_page) * rxdr->count;
1373 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1374 if(!rxdr->ps_page) {
1375 vfree(rxdr->buffer_info);
1376 DPRINTK(PROBE, ERR,
1377 "Unable to allocate memory for the receive descriptor ring\n");
1378 return -ENOMEM;
1379 }
1380 memset(rxdr->ps_page, 0, size);
1381
1382 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1383 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1384 if(!rxdr->ps_page_dma) {
1385 vfree(rxdr->buffer_info);
1386 kfree(rxdr->ps_page);
1387 DPRINTK(PROBE, ERR,
1388 "Unable to allocate memory for the receive descriptor ring\n");
1389 return -ENOMEM;
1390 }
1391 memset(rxdr->ps_page_dma, 0, size);
1392
1393 if(adapter->hw.mac_type <= e1000_82547_rev_2)
1394 desc_len = sizeof(struct e1000_rx_desc);
1395 else
1396 desc_len = sizeof(union e1000_rx_desc_packet_split);
1397
1da177e4
LT
1398 /* Round up to nearest 4K */
1399
2d7edb92 1400 rxdr->size = rxdr->count * desc_len;
1da177e4
LT
1401 E1000_ROUNDUP(rxdr->size, 4096);
1402
1403 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1404
581d708e
MC
1405 if (!rxdr->desc) {
1406 DPRINTK(PROBE, ERR,
1407 "Unable to allocate memory for the receive descriptor ring\n");
1da177e4 1408setup_rx_desc_die:
1da177e4 1409 vfree(rxdr->buffer_info);
2d7edb92
MC
1410 kfree(rxdr->ps_page);
1411 kfree(rxdr->ps_page_dma);
1da177e4
LT
1412 return -ENOMEM;
1413 }
1414
2648345f 1415 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1416 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1417 void *olddesc = rxdr->desc;
1418 dma_addr_t olddma = rxdr->dma;
2648345f
MC
1419 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1420 "at %p\n", rxdr->size, rxdr->desc);
1421 /* Try again, without freeing the previous */
1da177e4 1422 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
2648345f 1423 /* Failed allocation, critical failure */
581d708e 1424 if (!rxdr->desc) {
1da177e4 1425 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
581d708e
MC
1426 DPRINTK(PROBE, ERR,
1427 "Unable to allocate memory "
1428 "for the receive descriptor ring\n");
1da177e4
LT
1429 goto setup_rx_desc_die;
1430 }
1431
1432 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1433 /* give up */
2648345f
MC
1434 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1435 rxdr->dma);
1da177e4 1436 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
2648345f
MC
1437 DPRINTK(PROBE, ERR,
1438 "Unable to allocate aligned memory "
1439 "for the receive descriptor ring\n");
581d708e 1440 goto setup_rx_desc_die;
1da177e4 1441 } else {
2648345f 1442 /* Free old allocation, new allocation was successful */
1da177e4
LT
1443 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1444 }
1445 }
1446 memset(rxdr->desc, 0, rxdr->size);
1447
1448 rxdr->next_to_clean = 0;
1449 rxdr->next_to_use = 0;
1450
1451 return 0;
1452}
1453
581d708e
MC
1454/**
1455 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1456 * (Descriptors) for all queues
1457 * @adapter: board private structure
1458 *
1459 * If this function returns with an error, then it's possible one or
1460 * more of the rings is populated (while the rest are not). It is the
1461 * callers duty to clean those orphaned rings.
1462 *
1463 * Return 0 on success, negative on failure
1464 **/
1465
1466int
1467e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1468{
1469 int i, err = 0;
1470
1471 for (i = 0; i < adapter->num_queues; i++) {
1472 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1473 if (err) {
1474 DPRINTK(PROBE, ERR,
1475 "Allocation for Rx Queue %u failed\n", i);
1476 break;
1477 }
1478 }
1479
1480 return err;
1481}
1482
1da177e4 1483/**
2648345f 1484 * e1000_setup_rctl - configure the receive control registers
1da177e4
LT
1485 * @adapter: Board private structure
1486 **/
e4c811c9
MC
1487#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1488 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1da177e4
LT
1489static void
1490e1000_setup_rctl(struct e1000_adapter *adapter)
1491{
2d7edb92
MC
1492 uint32_t rctl, rfctl;
1493 uint32_t psrctl = 0;
e4c811c9
MC
1494#ifdef CONFIG_E1000_PACKET_SPLIT
1495 uint32_t pages = 0;
1496#endif
1da177e4
LT
1497
1498 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1499
1500 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1501
1502 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1503 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1504 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1505
1506 if(adapter->hw.tbi_compatibility_on == 1)
1507 rctl |= E1000_RCTL_SBP;
1508 else
1509 rctl &= ~E1000_RCTL_SBP;
1510
2d7edb92
MC
1511 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1512 rctl &= ~E1000_RCTL_LPE;
1513 else
1514 rctl |= E1000_RCTL_LPE;
1515
1da177e4 1516 /* Setup buffer sizes */
868d5309 1517 if(adapter->hw.mac_type >= e1000_82571) {
2d7edb92
MC
1518 /* We can now specify buffers in 1K increments.
1519 * BSIZE and BSEX are ignored in this case. */
1520 rctl |= adapter->rx_buffer_len << 0x11;
1521 } else {
1522 rctl &= ~E1000_RCTL_SZ_4096;
1523 rctl |= E1000_RCTL_BSEX;
1524 switch (adapter->rx_buffer_len) {
1525 case E1000_RXBUFFER_2048:
1526 default:
1527 rctl |= E1000_RCTL_SZ_2048;
1528 rctl &= ~E1000_RCTL_BSEX;
1529 break;
1530 case E1000_RXBUFFER_4096:
1531 rctl |= E1000_RCTL_SZ_4096;
1532 break;
1533 case E1000_RXBUFFER_8192:
1534 rctl |= E1000_RCTL_SZ_8192;
1535 break;
1536 case E1000_RXBUFFER_16384:
1537 rctl |= E1000_RCTL_SZ_16384;
1538 break;
1539 }
1540 }
1541
1542#ifdef CONFIG_E1000_PACKET_SPLIT
1543 /* 82571 and greater support packet-split where the protocol
1544 * header is placed in skb->data and the packet data is
1545 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1546 * In the case of a non-split, skb->data is linearly filled,
1547 * followed by the page buffers. Therefore, skb->data is
1548 * sized to hold the largest protocol header.
1549 */
e4c811c9
MC
1550 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1551 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1552 PAGE_SIZE <= 16384)
1553 adapter->rx_ps_pages = pages;
1554 else
1555 adapter->rx_ps_pages = 0;
2d7edb92 1556#endif
e4c811c9 1557 if (adapter->rx_ps_pages) {
2d7edb92
MC
1558 /* Configure extra packet-split registers */
1559 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1560 rfctl |= E1000_RFCTL_EXTEN;
1561 /* disable IPv6 packet split support */
1562 rfctl |= E1000_RFCTL_IPV6_DIS;
1563 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1564
1565 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1566
1567 psrctl |= adapter->rx_ps_bsize0 >>
1568 E1000_PSRCTL_BSIZE0_SHIFT;
e4c811c9
MC
1569
1570 switch (adapter->rx_ps_pages) {
1571 case 3:
1572 psrctl |= PAGE_SIZE <<
1573 E1000_PSRCTL_BSIZE3_SHIFT;
1574 case 2:
1575 psrctl |= PAGE_SIZE <<
1576 E1000_PSRCTL_BSIZE2_SHIFT;
1577 case 1:
1578 psrctl |= PAGE_SIZE >>
1579 E1000_PSRCTL_BSIZE1_SHIFT;
1580 break;
1581 }
2d7edb92
MC
1582
1583 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1da177e4
LT
1584 }
1585
1586 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1587}
1588
1589/**
1590 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Rx unit of the MAC after a reset.
1594 **/
1595
1596static void
1597e1000_configure_rx(struct e1000_adapter *adapter)
1598{
581d708e
MC
1599 uint64_t rdba;
1600 struct e1000_hw *hw = &adapter->hw;
1601 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1602#ifdef CONFIG_E1000_MQ
1603 uint32_t reta, mrqc;
1604 int i;
1605#endif
2d7edb92 1606
e4c811c9 1607 if (adapter->rx_ps_pages) {
581d708e 1608 rdlen = adapter->rx_ring[0].count *
2d7edb92
MC
1609 sizeof(union e1000_rx_desc_packet_split);
1610 adapter->clean_rx = e1000_clean_rx_irq_ps;
1611 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1612 } else {
581d708e
MC
1613 rdlen = adapter->rx_ring[0].count *
1614 sizeof(struct e1000_rx_desc);
2d7edb92
MC
1615 adapter->clean_rx = e1000_clean_rx_irq;
1616 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1617 }
1da177e4
LT
1618
1619 /* disable receives while setting up the descriptors */
581d708e
MC
1620 rctl = E1000_READ_REG(hw, RCTL);
1621 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1da177e4
LT
1622
1623 /* set the Receive Delay Timer Register */
581d708e 1624 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1da177e4 1625
581d708e
MC
1626 if (hw->mac_type >= e1000_82540) {
1627 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1da177e4 1628 if(adapter->itr > 1)
581d708e 1629 E1000_WRITE_REG(hw, ITR,
1da177e4
LT
1630 1000000000 / (adapter->itr * 256));
1631 }
1632
2ae76d98
MC
1633 if (hw->mac_type >= e1000_82571) {
1634 /* Reset delay timers after every interrupt */
1635 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1636 ctrl_ext |= E1000_CTRL_EXT_CANC;
1637 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1638 E1000_WRITE_FLUSH(hw);
1639 }
1640
581d708e
MC
1641 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1642 * the Base and Length of the Rx Descriptor Ring */
24025e4e
MC
1643 switch (adapter->num_queues) {
1644#ifdef CONFIG_E1000_MQ
1645 case 2:
1646 rdba = adapter->rx_ring[1].dma;
1647 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1648 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1649 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1650 E1000_WRITE_REG(hw, RDH1, 0);
1651 E1000_WRITE_REG(hw, RDT1, 0);
1652 adapter->rx_ring[1].rdh = E1000_RDH1;
1653 adapter->rx_ring[1].rdt = E1000_RDT1;
1654 /* Fall Through */
1655#endif
1656 case 1:
1657 default:
581d708e
MC
1658 rdba = adapter->rx_ring[0].dma;
1659 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1660 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1661 E1000_WRITE_REG(hw, RDLEN, rdlen);
1662 E1000_WRITE_REG(hw, RDH, 0);
1663 E1000_WRITE_REG(hw, RDT, 0);
1664 adapter->rx_ring[0].rdh = E1000_RDH;
1665 adapter->rx_ring[0].rdt = E1000_RDT;
1666 break;
24025e4e
MC
1667 }
1668
1669#ifdef CONFIG_E1000_MQ
1670 if (adapter->num_queues > 1) {
1671 uint32_t random[10];
1672
1673 get_random_bytes(&random[0], 40);
1674
1675 if (hw->mac_type <= e1000_82572) {
1676 E1000_WRITE_REG(hw, RSSIR, 0);
1677 E1000_WRITE_REG(hw, RSSIM, 0);
1678 }
1679
1680 switch (adapter->num_queues) {
1681 case 2:
1682 default:
1683 reta = 0x00800080;
1684 mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1685 break;
1686 }
1687
1688 /* Fill out redirection table */
1689 for (i = 0; i < 32; i++)
1690 E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1691 /* Fill out hash function seeds */
1692 for (i = 0; i < 10; i++)
1693 E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1694
1695 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1696 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1697 E1000_WRITE_REG(hw, MRQC, mrqc);
1698 }
1699
1700 /* Multiqueue and packet checksumming are mutually exclusive. */
1701 if (hw->mac_type >= e1000_82571) {
1702 rxcsum = E1000_READ_REG(hw, RXCSUM);
1703 rxcsum |= E1000_RXCSUM_PCSD;
1704 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1705 }
1706
1707#else
1da177e4
LT
1708
1709 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
581d708e
MC
1710 if (hw->mac_type >= e1000_82543) {
1711 rxcsum = E1000_READ_REG(hw, RXCSUM);
2d7edb92
MC
1712 if(adapter->rx_csum == TRUE) {
1713 rxcsum |= E1000_RXCSUM_TUOFL;
1714
868d5309 1715 /* Enable 82571 IPv4 payload checksum for UDP fragments
2d7edb92 1716 * Must be used in conjunction with packet-split. */
e4c811c9
MC
1717 if ((hw->mac_type >= e1000_82571) &&
1718 (adapter->rx_ps_pages)) {
2d7edb92
MC
1719 rxcsum |= E1000_RXCSUM_IPPCSE;
1720 }
1721 } else {
1722 rxcsum &= ~E1000_RXCSUM_TUOFL;
1723 /* don't need to clear IPPCSE as it defaults to 0 */
1724 }
581d708e 1725 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1da177e4 1726 }
24025e4e 1727#endif /* CONFIG_E1000_MQ */
1da177e4 1728
581d708e
MC
1729 if (hw->mac_type == e1000_82573)
1730 E1000_WRITE_REG(hw, ERT, 0x0100);
2d7edb92 1731
1da177e4 1732 /* Enable Receives */
581d708e 1733 E1000_WRITE_REG(hw, RCTL, rctl);
1da177e4
LT
1734}
1735
1736/**
581d708e 1737 * e1000_free_tx_resources - Free Tx Resources per Queue
1da177e4 1738 * @adapter: board private structure
581d708e 1739 * @tx_ring: Tx descriptor ring for a specific queue
1da177e4
LT
1740 *
1741 * Free all transmit software resources
1742 **/
1743
1744void
581d708e
MC
1745e1000_free_tx_resources(struct e1000_adapter *adapter,
1746 struct e1000_tx_ring *tx_ring)
1da177e4
LT
1747{
1748 struct pci_dev *pdev = adapter->pdev;
1749
581d708e 1750 e1000_clean_tx_ring(adapter, tx_ring);
1da177e4 1751
581d708e
MC
1752 vfree(tx_ring->buffer_info);
1753 tx_ring->buffer_info = NULL;
1da177e4 1754
581d708e 1755 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1da177e4 1756
581d708e
MC
1757 tx_ring->desc = NULL;
1758}
1759
1760/**
1761 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1762 * @adapter: board private structure
1763 *
1764 * Free all transmit software resources
1765 **/
1766
1767void
1768e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1769{
1770 int i;
1771
1772 for (i = 0; i < adapter->num_queues; i++)
1773 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1da177e4
LT
1774}
1775
1776static inline void
1777e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1778 struct e1000_buffer *buffer_info)
1779{
1da177e4 1780 if(buffer_info->dma) {
2648345f
MC
1781 pci_unmap_page(adapter->pdev,
1782 buffer_info->dma,
1783 buffer_info->length,
1784 PCI_DMA_TODEVICE);
1da177e4
LT
1785 buffer_info->dma = 0;
1786 }
1787 if(buffer_info->skb) {
1788 dev_kfree_skb_any(buffer_info->skb);
1789 buffer_info->skb = NULL;
1790 }
1791}
1792
1793/**
1794 * e1000_clean_tx_ring - Free Tx Buffers
1795 * @adapter: board private structure
581d708e 1796 * @tx_ring: ring to be cleaned
1da177e4
LT
1797 **/
1798
1799static void
581d708e
MC
1800e1000_clean_tx_ring(struct e1000_adapter *adapter,
1801 struct e1000_tx_ring *tx_ring)
1da177e4 1802{
1da177e4
LT
1803 struct e1000_buffer *buffer_info;
1804 unsigned long size;
1805 unsigned int i;
1806
1807 /* Free all the Tx ring sk_buffs */
1808
581d708e 1809 if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
2648345f 1810 e1000_unmap_and_free_tx_resource(adapter,
581d708e 1811 &tx_ring->previous_buffer_info);
1da177e4
LT
1812 }
1813
1814 for(i = 0; i < tx_ring->count; i++) {
1815 buffer_info = &tx_ring->buffer_info[i];
1816 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1817 }
1818
1819 size = sizeof(struct e1000_buffer) * tx_ring->count;
1820 memset(tx_ring->buffer_info, 0, size);
1821
1822 /* Zero out the descriptor ring */
1823
1824 memset(tx_ring->desc, 0, tx_ring->size);
1825
1826 tx_ring->next_to_use = 0;
1827 tx_ring->next_to_clean = 0;
1828
581d708e
MC
1829 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1830 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1831}
1832
1833/**
1834 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1835 * @adapter: board private structure
1836 **/
1837
1838static void
1839e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1840{
1841 int i;
1842
1843 for (i = 0; i < adapter->num_queues; i++)
1844 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1da177e4
LT
1845}
1846
1847/**
1848 * e1000_free_rx_resources - Free Rx Resources
1849 * @adapter: board private structure
581d708e 1850 * @rx_ring: ring to clean the resources from
1da177e4
LT
1851 *
1852 * Free all receive software resources
1853 **/
1854
1855void
581d708e
MC
1856e1000_free_rx_resources(struct e1000_adapter *adapter,
1857 struct e1000_rx_ring *rx_ring)
1da177e4 1858{
1da177e4
LT
1859 struct pci_dev *pdev = adapter->pdev;
1860
581d708e 1861 e1000_clean_rx_ring(adapter, rx_ring);
1da177e4
LT
1862
1863 vfree(rx_ring->buffer_info);
1864 rx_ring->buffer_info = NULL;
2d7edb92
MC
1865 kfree(rx_ring->ps_page);
1866 rx_ring->ps_page = NULL;
1867 kfree(rx_ring->ps_page_dma);
1868 rx_ring->ps_page_dma = NULL;
1da177e4
LT
1869
1870 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1871
1872 rx_ring->desc = NULL;
1873}
1874
1875/**
581d708e 1876 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1da177e4 1877 * @adapter: board private structure
581d708e
MC
1878 *
1879 * Free all receive software resources
1880 **/
1881
1882void
1883e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1884{
1885 int i;
1886
1887 for (i = 0; i < adapter->num_queues; i++)
1888 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1889}
1890
1891/**
1892 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1893 * @adapter: board private structure
1894 * @rx_ring: ring to free buffers from
1da177e4
LT
1895 **/
1896
1897static void
581d708e
MC
1898e1000_clean_rx_ring(struct e1000_adapter *adapter,
1899 struct e1000_rx_ring *rx_ring)
1da177e4 1900{
1da177e4 1901 struct e1000_buffer *buffer_info;
2d7edb92
MC
1902 struct e1000_ps_page *ps_page;
1903 struct e1000_ps_page_dma *ps_page_dma;
1da177e4
LT
1904 struct pci_dev *pdev = adapter->pdev;
1905 unsigned long size;
2d7edb92 1906 unsigned int i, j;
1da177e4
LT
1907
1908 /* Free all the Rx ring sk_buffs */
1909
1910 for(i = 0; i < rx_ring->count; i++) {
1911 buffer_info = &rx_ring->buffer_info[i];
1912 if(buffer_info->skb) {
2d7edb92
MC
1913 ps_page = &rx_ring->ps_page[i];
1914 ps_page_dma = &rx_ring->ps_page_dma[i];
1da177e4
LT
1915 pci_unmap_single(pdev,
1916 buffer_info->dma,
1917 buffer_info->length,
1918 PCI_DMA_FROMDEVICE);
1919
1920 dev_kfree_skb(buffer_info->skb);
1921 buffer_info->skb = NULL;
2d7edb92 1922
e4c811c9 1923 for(j = 0; j < adapter->rx_ps_pages; j++) {
2d7edb92
MC
1924 if(!ps_page->ps_page[j]) break;
1925 pci_unmap_single(pdev,
1926 ps_page_dma->ps_page_dma[j],
1927 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1928 ps_page_dma->ps_page_dma[j] = 0;
1929 put_page(ps_page->ps_page[j]);
1930 ps_page->ps_page[j] = NULL;
1931 }
1da177e4
LT
1932 }
1933 }
1934
1935 size = sizeof(struct e1000_buffer) * rx_ring->count;
1936 memset(rx_ring->buffer_info, 0, size);
2d7edb92
MC
1937 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1938 memset(rx_ring->ps_page, 0, size);
1939 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1940 memset(rx_ring->ps_page_dma, 0, size);
1da177e4
LT
1941
1942 /* Zero out the descriptor ring */
1943
1944 memset(rx_ring->desc, 0, rx_ring->size);
1945
1946 rx_ring->next_to_clean = 0;
1947 rx_ring->next_to_use = 0;
1948
581d708e
MC
1949 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1950 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1951}
1952
1953/**
1954 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1955 * @adapter: board private structure
1956 **/
1957
1958static void
1959e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1960{
1961 int i;
1962
1963 for (i = 0; i < adapter->num_queues; i++)
1964 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1da177e4
LT
1965}
1966
1967/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1968 * and memory write and invalidate disabled for certain operations
1969 */
1970static void
1971e1000_enter_82542_rst(struct e1000_adapter *adapter)
1972{
1973 struct net_device *netdev = adapter->netdev;
1974 uint32_t rctl;
1975
1976 e1000_pci_clear_mwi(&adapter->hw);
1977
1978 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1979 rctl |= E1000_RCTL_RST;
1980 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1981 E1000_WRITE_FLUSH(&adapter->hw);
1982 mdelay(5);
1983
1984 if(netif_running(netdev))
581d708e 1985 e1000_clean_all_rx_rings(adapter);
1da177e4
LT
1986}
1987
1988static void
1989e1000_leave_82542_rst(struct e1000_adapter *adapter)
1990{
1991 struct net_device *netdev = adapter->netdev;
1992 uint32_t rctl;
1993
1994 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1995 rctl &= ~E1000_RCTL_RST;
1996 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1997 E1000_WRITE_FLUSH(&adapter->hw);
1998 mdelay(5);
1999
2000 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2001 e1000_pci_set_mwi(&adapter->hw);
2002
2003 if(netif_running(netdev)) {
2004 e1000_configure_rx(adapter);
581d708e 2005 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
1da177e4
LT
2006 }
2007}
2008
2009/**
2010 * e1000_set_mac - Change the Ethernet Address of the NIC
2011 * @netdev: network interface device structure
2012 * @p: pointer to an address structure
2013 *
2014 * Returns 0 on success, negative on failure
2015 **/
2016
2017static int
2018e1000_set_mac(struct net_device *netdev, void *p)
2019{
60490fe0 2020 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2021 struct sockaddr *addr = p;
2022
2023 if(!is_valid_ether_addr(addr->sa_data))
2024 return -EADDRNOTAVAIL;
2025
2026 /* 82542 2.0 needs to be in reset to write receive address registers */
2027
2028 if(adapter->hw.mac_type == e1000_82542_rev2_0)
2029 e1000_enter_82542_rst(adapter);
2030
2031 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2032 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2033
2034 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2035
868d5309
MC
2036 /* With 82571 controllers, LAA may be overwritten (with the default)
2037 * due to controller reset from the other port. */
2038 if (adapter->hw.mac_type == e1000_82571) {
2039 /* activate the work around */
2040 adapter->hw.laa_is_present = 1;
2041
2042 /* Hold a copy of the LAA in RAR[14] This is done so that
2043 * between the time RAR[0] gets clobbered and the time it
2044 * gets fixed (in e1000_watchdog), the actual LAA is in one
2045 * of the RARs and no incoming packets directed to this port
2046 * are dropped. Eventaully the LAA will be in RAR[0] and
2047 * RAR[14] */
2048 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2049 E1000_RAR_ENTRIES - 1);
2050 }
2051
1da177e4
LT
2052 if(adapter->hw.mac_type == e1000_82542_rev2_0)
2053 e1000_leave_82542_rst(adapter);
2054
2055 return 0;
2056}
2057
2058/**
2059 * e1000_set_multi - Multicast and Promiscuous mode set
2060 * @netdev: network interface device structure
2061 *
2062 * The set_multi entry point is called whenever the multicast address
2063 * list or the network interface flags are updated. This routine is
2064 * responsible for configuring the hardware for proper multicast,
2065 * promiscuous mode, and all-multi behavior.
2066 **/
2067
2068static void
2069e1000_set_multi(struct net_device *netdev)
2070{
60490fe0 2071 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2072 struct e1000_hw *hw = &adapter->hw;
2073 struct dev_mc_list *mc_ptr;
2074 uint32_t rctl;
2075 uint32_t hash_value;
868d5309 2076 int i, rar_entries = E1000_RAR_ENTRIES;
1da177e4 2077
868d5309
MC
2078 /* reserve RAR[14] for LAA over-write work-around */
2079 if (adapter->hw.mac_type == e1000_82571)
2080 rar_entries--;
1da177e4 2081
2648345f
MC
2082 /* Check for Promiscuous and All Multicast modes */
2083
1da177e4
LT
2084 rctl = E1000_READ_REG(hw, RCTL);
2085
2086 if(netdev->flags & IFF_PROMISC) {
2087 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2088 } else if(netdev->flags & IFF_ALLMULTI) {
2089 rctl |= E1000_RCTL_MPE;
2090 rctl &= ~E1000_RCTL_UPE;
2091 } else {
2092 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2093 }
2094
2095 E1000_WRITE_REG(hw, RCTL, rctl);
2096
2097 /* 82542 2.0 needs to be in reset to write receive address registers */
2098
2099 if(hw->mac_type == e1000_82542_rev2_0)
2100 e1000_enter_82542_rst(adapter);
2101
2102 /* load the first 14 multicast address into the exact filters 1-14
2103 * RAR 0 is used for the station MAC adddress
2104 * if there are not 14 addresses, go ahead and clear the filters
868d5309 2105 * -- with 82571 controllers only 0-13 entries are filled here
1da177e4
LT
2106 */
2107 mc_ptr = netdev->mc_list;
2108
868d5309
MC
2109 for(i = 1; i < rar_entries; i++) {
2110 if (mc_ptr) {
1da177e4
LT
2111 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2112 mc_ptr = mc_ptr->next;
2113 } else {
2114 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2115 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2116 }
2117 }
2118
2119 /* clear the old settings from the multicast hash table */
2120
2121 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2122 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2123
2124 /* load any remaining addresses into the hash table */
2125
2126 for(; mc_ptr; mc_ptr = mc_ptr->next) {
2127 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2128 e1000_mta_set(hw, hash_value);
2129 }
2130
2131 if(hw->mac_type == e1000_82542_rev2_0)
2132 e1000_leave_82542_rst(adapter);
1da177e4
LT
2133}
2134
2135/* Need to wait a few seconds after link up to get diagnostic information from
2136 * the phy */
2137
2138static void
2139e1000_update_phy_info(unsigned long data)
2140{
2141 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2142 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2143}
2144
2145/**
2146 * e1000_82547_tx_fifo_stall - Timer Call-back
2147 * @data: pointer to adapter cast into an unsigned long
2148 **/
2149
2150static void
2151e1000_82547_tx_fifo_stall(unsigned long data)
2152{
2153 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2154 struct net_device *netdev = adapter->netdev;
2155 uint32_t tctl;
2156
2157 if(atomic_read(&adapter->tx_fifo_stall)) {
2158 if((E1000_READ_REG(&adapter->hw, TDT) ==
2159 E1000_READ_REG(&adapter->hw, TDH)) &&
2160 (E1000_READ_REG(&adapter->hw, TDFT) ==
2161 E1000_READ_REG(&adapter->hw, TDFH)) &&
2162 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2163 E1000_READ_REG(&adapter->hw, TDFHS))) {
2164 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2165 E1000_WRITE_REG(&adapter->hw, TCTL,
2166 tctl & ~E1000_TCTL_EN);
2167 E1000_WRITE_REG(&adapter->hw, TDFT,
2168 adapter->tx_head_addr);
2169 E1000_WRITE_REG(&adapter->hw, TDFH,
2170 adapter->tx_head_addr);
2171 E1000_WRITE_REG(&adapter->hw, TDFTS,
2172 adapter->tx_head_addr);
2173 E1000_WRITE_REG(&adapter->hw, TDFHS,
2174 adapter->tx_head_addr);
2175 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2176 E1000_WRITE_FLUSH(&adapter->hw);
2177
2178 adapter->tx_fifo_head = 0;
2179 atomic_set(&adapter->tx_fifo_stall, 0);
2180 netif_wake_queue(netdev);
2181 } else {
2182 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2183 }
2184 }
2185}
2186
2187/**
2188 * e1000_watchdog - Timer Call-back
2189 * @data: pointer to adapter cast into an unsigned long
2190 **/
2191static void
2192e1000_watchdog(unsigned long data)
2193{
2194 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2195
2196 /* Do the rest outside of interrupt context */
2197 schedule_work(&adapter->watchdog_task);
2198}
2199
2200static void
2201e1000_watchdog_task(struct e1000_adapter *adapter)
2202{
2203 struct net_device *netdev = adapter->netdev;
581d708e 2204 struct e1000_tx_ring *txdr = &adapter->tx_ring[0];
1da177e4
LT
2205 uint32_t link;
2206
2207 e1000_check_for_link(&adapter->hw);
2d7edb92
MC
2208 if (adapter->hw.mac_type == e1000_82573) {
2209 e1000_enable_tx_pkt_filtering(&adapter->hw);
2210 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2211 e1000_update_mng_vlan(adapter);
2212 }
1da177e4
LT
2213
2214 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2215 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2216 link = !adapter->hw.serdes_link_down;
2217 else
2218 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2219
2220 if(link) {
2221 if(!netif_carrier_ok(netdev)) {
2222 e1000_get_speed_and_duplex(&adapter->hw,
2223 &adapter->link_speed,
2224 &adapter->link_duplex);
2225
2226 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2227 adapter->link_speed,
2228 adapter->link_duplex == FULL_DUPLEX ?
2229 "Full Duplex" : "Half Duplex");
2230
2231 netif_carrier_on(netdev);
2232 netif_wake_queue(netdev);
2233 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2234 adapter->smartspeed = 0;
2235 }
2236 } else {
2237 if(netif_carrier_ok(netdev)) {
2238 adapter->link_speed = 0;
2239 adapter->link_duplex = 0;
2240 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2241 netif_carrier_off(netdev);
2242 netif_stop_queue(netdev);
2243 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2244 }
2245
2246 e1000_smartspeed(adapter);
2247 }
2248
2249 e1000_update_stats(adapter);
2250
2251 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2252 adapter->tpt_old = adapter->stats.tpt;
2253 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2254 adapter->colc_old = adapter->stats.colc;
2255
2256 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2257 adapter->gorcl_old = adapter->stats.gorcl;
2258 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2259 adapter->gotcl_old = adapter->stats.gotcl;
2260
2261 e1000_update_adaptive(&adapter->hw);
2262
581d708e
MC
2263 if (adapter->num_queues == 1 && !netif_carrier_ok(netdev)) {
2264 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1da177e4
LT
2265 /* We've lost link, so the controller stops DMA,
2266 * but we've got queued Tx work that's never going
2267 * to get done, so reset controller to flush Tx.
2268 * (Do the reset outside of interrupt context). */
2269 schedule_work(&adapter->tx_timeout_task);
2270 }
2271 }
2272
2273 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2274 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2275 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2276 * asymmetrical Tx or Rx gets ITR=8000; everyone
2277 * else is between 2000-8000. */
2278 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2279 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2280 adapter->gotcl - adapter->gorcl :
2281 adapter->gorcl - adapter->gotcl) / 10000;
2282 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2283 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2284 }
2285
2286 /* Cause software interrupt to ensure rx ring is cleaned */
2287 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2288
2648345f 2289 /* Force detection of hung controller every watchdog period */
1da177e4
LT
2290 adapter->detect_tx_hung = TRUE;
2291
868d5309
MC
2292 /* With 82571 controllers, LAA may be overwritten due to controller
2293 * reset from the other port. Set the appropriate LAA in RAR[0] */
2294 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2295 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2296
1da177e4
LT
2297 /* Reset the timer */
2298 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2299}
2300
2301#define E1000_TX_FLAGS_CSUM 0x00000001
2302#define E1000_TX_FLAGS_VLAN 0x00000002
2303#define E1000_TX_FLAGS_TSO 0x00000004
2d7edb92 2304#define E1000_TX_FLAGS_IPV4 0x00000008
1da177e4
LT
2305#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2306#define E1000_TX_FLAGS_VLAN_SHIFT 16
2307
2308static inline int
581d708e
MC
2309e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2310 struct sk_buff *skb)
1da177e4
LT
2311{
2312#ifdef NETIF_F_TSO
2313 struct e1000_context_desc *context_desc;
2314 unsigned int i;
2315 uint32_t cmd_length = 0;
2d7edb92 2316 uint16_t ipcse = 0, tucse, mss;
1da177e4
LT
2317 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2318 int err;
2319
2320 if(skb_shinfo(skb)->tso_size) {
2321 if (skb_header_cloned(skb)) {
2322 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2323 if (err)
2324 return err;
2325 }
2326
2327 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2328 mss = skb_shinfo(skb)->tso_size;
2d7edb92
MC
2329 if(skb->protocol == ntohs(ETH_P_IP)) {
2330 skb->nh.iph->tot_len = 0;
2331 skb->nh.iph->check = 0;
2332 skb->h.th->check =
2333 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2334 skb->nh.iph->daddr,
2335 0,
2336 IPPROTO_TCP,
2337 0);
2338 cmd_length = E1000_TXD_CMD_IP;
2339 ipcse = skb->h.raw - skb->data - 1;
2340#ifdef NETIF_F_TSO_IPV6
2341 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2342 skb->nh.ipv6h->payload_len = 0;
2343 skb->h.th->check =
2344 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2345 &skb->nh.ipv6h->daddr,
2346 0,
2347 IPPROTO_TCP,
2348 0);
2349 ipcse = 0;
2350#endif
2351 }
1da177e4
LT
2352 ipcss = skb->nh.raw - skb->data;
2353 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1da177e4
LT
2354 tucss = skb->h.raw - skb->data;
2355 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2356 tucse = 0;
2357
2358 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2d7edb92 2359 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1da177e4 2360
581d708e
MC
2361 i = tx_ring->next_to_use;
2362 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
1da177e4
LT
2363
2364 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2365 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2366 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2367 context_desc->upper_setup.tcp_fields.tucss = tucss;
2368 context_desc->upper_setup.tcp_fields.tucso = tucso;
2369 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2370 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2371 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2372 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2373
581d708e
MC
2374 if (++i == tx_ring->count) i = 0;
2375 tx_ring->next_to_use = i;
1da177e4
LT
2376
2377 return 1;
2378 }
2379#endif
2380
2381 return 0;
2382}
2383
2384static inline boolean_t
581d708e
MC
2385e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2386 struct sk_buff *skb)
1da177e4
LT
2387{
2388 struct e1000_context_desc *context_desc;
2389 unsigned int i;
2390 uint8_t css;
2391
2392 if(likely(skb->ip_summed == CHECKSUM_HW)) {
2393 css = skb->h.raw - skb->data;
2394
581d708e
MC
2395 i = tx_ring->next_to_use;
2396 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
1da177e4
LT
2397
2398 context_desc->upper_setup.tcp_fields.tucss = css;
2399 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2400 context_desc->upper_setup.tcp_fields.tucse = 0;
2401 context_desc->tcp_seg_setup.data = 0;
2402 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2403
581d708e
MC
2404 if (unlikely(++i == tx_ring->count)) i = 0;
2405 tx_ring->next_to_use = i;
1da177e4
LT
2406
2407 return TRUE;
2408 }
2409
2410 return FALSE;
2411}
2412
2413#define E1000_MAX_TXD_PWR 12
2414#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2415
2416static inline int
581d708e
MC
2417e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2418 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2419 unsigned int nr_frags, unsigned int mss)
1da177e4 2420{
1da177e4
LT
2421 struct e1000_buffer *buffer_info;
2422 unsigned int len = skb->len;
2423 unsigned int offset = 0, size, count = 0, i;
2424 unsigned int f;
2425 len -= skb->data_len;
2426
2427 i = tx_ring->next_to_use;
2428
2429 while(len) {
2430 buffer_info = &tx_ring->buffer_info[i];
2431 size = min(len, max_per_txd);
2432#ifdef NETIF_F_TSO
2433 /* Workaround for premature desc write-backs
2434 * in TSO mode. Append 4-byte sentinel desc */
2435 if(unlikely(mss && !nr_frags && size == len && size > 8))
2436 size -= 4;
2437#endif
97338bde
MC
2438 /* work-around for errata 10 and it applies
2439 * to all controllers in PCI-X mode
2440 * The fix is to make sure that the first descriptor of a
2441 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2442 */
2443 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2444 (size > 2015) && count == 0))
2445 size = 2015;
2446
1da177e4
LT
2447 /* Workaround for potential 82544 hang in PCI-X. Avoid
2448 * terminating buffers within evenly-aligned dwords. */
2449 if(unlikely(adapter->pcix_82544 &&
2450 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2451 size > 4))
2452 size -= 4;
2453
2454 buffer_info->length = size;
2455 buffer_info->dma =
2456 pci_map_single(adapter->pdev,
2457 skb->data + offset,
2458 size,
2459 PCI_DMA_TODEVICE);
2460 buffer_info->time_stamp = jiffies;
2461
2462 len -= size;
2463 offset += size;
2464 count++;
2465 if(unlikely(++i == tx_ring->count)) i = 0;
2466 }
2467
2468 for(f = 0; f < nr_frags; f++) {
2469 struct skb_frag_struct *frag;
2470
2471 frag = &skb_shinfo(skb)->frags[f];
2472 len = frag->size;
2473 offset = frag->page_offset;
2474
2475 while(len) {
2476 buffer_info = &tx_ring->buffer_info[i];
2477 size = min(len, max_per_txd);
2478#ifdef NETIF_F_TSO
2479 /* Workaround for premature desc write-backs
2480 * in TSO mode. Append 4-byte sentinel desc */
2481 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2482 size -= 4;
2483#endif
2484 /* Workaround for potential 82544 hang in PCI-X.
2485 * Avoid terminating buffers within evenly-aligned
2486 * dwords. */
2487 if(unlikely(adapter->pcix_82544 &&
2488 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2489 size > 4))
2490 size -= 4;
2491
2492 buffer_info->length = size;
2493 buffer_info->dma =
2494 pci_map_page(adapter->pdev,
2495 frag->page,
2496 offset,
2497 size,
2498 PCI_DMA_TODEVICE);
2499 buffer_info->time_stamp = jiffies;
2500
2501 len -= size;
2502 offset += size;
2503 count++;
2504 if(unlikely(++i == tx_ring->count)) i = 0;
2505 }
2506 }
2507
2508 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2509 tx_ring->buffer_info[i].skb = skb;
2510 tx_ring->buffer_info[first].next_to_watch = i;
2511
2512 return count;
2513}
2514
2515static inline void
581d708e
MC
2516e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2517 int tx_flags, int count)
1da177e4 2518{
1da177e4
LT
2519 struct e1000_tx_desc *tx_desc = NULL;
2520 struct e1000_buffer *buffer_info;
2521 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2522 unsigned int i;
2523
2524 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2525 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2526 E1000_TXD_CMD_TSE;
2d7edb92
MC
2527 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2528
2529 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2530 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
1da177e4
LT
2531 }
2532
2533 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2534 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2535 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2536 }
2537
2538 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2539 txd_lower |= E1000_TXD_CMD_VLE;
2540 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2541 }
2542
2543 i = tx_ring->next_to_use;
2544
2545 while(count--) {
2546 buffer_info = &tx_ring->buffer_info[i];
2547 tx_desc = E1000_TX_DESC(*tx_ring, i);
2548 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2549 tx_desc->lower.data =
2550 cpu_to_le32(txd_lower | buffer_info->length);
2551 tx_desc->upper.data = cpu_to_le32(txd_upper);
2552 if(unlikely(++i == tx_ring->count)) i = 0;
2553 }
2554
2555 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2556
2557 /* Force memory writes to complete before letting h/w
2558 * know there are new descriptors to fetch. (Only
2559 * applicable for weak-ordered memory model archs,
2560 * such as IA-64). */
2561 wmb();
2562
2563 tx_ring->next_to_use = i;
581d708e 2564 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
1da177e4
LT
2565}
2566
2567/**
2568 * 82547 workaround to avoid controller hang in half-duplex environment.
2569 * The workaround is to avoid queuing a large packet that would span
2570 * the internal Tx FIFO ring boundary by notifying the stack to resend
2571 * the packet at a later time. This gives the Tx FIFO an opportunity to
2572 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2573 * to the beginning of the Tx FIFO.
2574 **/
2575
2576#define E1000_FIFO_HDR 0x10
2577#define E1000_82547_PAD_LEN 0x3E0
2578
2579static inline int
2580e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2581{
2582 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2583 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2584
2585 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2586
2587 if(adapter->link_duplex != HALF_DUPLEX)
2588 goto no_fifo_stall_required;
2589
2590 if(atomic_read(&adapter->tx_fifo_stall))
2591 return 1;
2592
2593 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2594 atomic_set(&adapter->tx_fifo_stall, 1);
2595 return 1;
2596 }
2597
2598no_fifo_stall_required:
2599 adapter->tx_fifo_head += skb_fifo_len;
2600 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2601 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2602 return 0;
2603}
2604
2d7edb92
MC
2605#define MINIMUM_DHCP_PACKET_SIZE 282
2606static inline int
2607e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2608{
2609 struct e1000_hw *hw = &adapter->hw;
2610 uint16_t length, offset;
2611 if(vlan_tx_tag_present(skb)) {
2612 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2613 ( adapter->hw.mng_cookie.status &
2614 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2615 return 0;
2616 }
2617 if(htons(ETH_P_IP) == skb->protocol) {
2618 const struct iphdr *ip = skb->nh.iph;
2619 if(IPPROTO_UDP == ip->protocol) {
2620 struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2621 if(ntohs(udp->dest) == 67) {
2622 offset = (uint8_t *)udp + 8 - skb->data;
2623 length = skb->len - offset;
2624
2625 return e1000_mng_write_dhcp_info(hw,
2626 (uint8_t *)udp + 8, length);
2627 }
2628 }
2629 } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2630 struct ethhdr *eth = (struct ethhdr *) skb->data;
2631 if((htons(ETH_P_IP) == eth->h_proto)) {
2632 const struct iphdr *ip =
2633 (struct iphdr *)((uint8_t *)skb->data+14);
2634 if(IPPROTO_UDP == ip->protocol) {
2635 struct udphdr *udp =
2636 (struct udphdr *)((uint8_t *)ip +
2637 (ip->ihl << 2));
2638 if(ntohs(udp->dest) == 67) {
2639 offset = (uint8_t *)udp + 8 - skb->data;
2640 length = skb->len - offset;
2641
2642 return e1000_mng_write_dhcp_info(hw,
2643 (uint8_t *)udp + 8,
2644 length);
2645 }
2646 }
2647 }
2648 }
2649 return 0;
2650}
2651
1da177e4
LT
2652#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2653static int
2654e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2655{
60490fe0 2656 struct e1000_adapter *adapter = netdev_priv(netdev);
581d708e 2657 struct e1000_tx_ring *tx_ring;
1da177e4
LT
2658 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2659 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2660 unsigned int tx_flags = 0;
2661 unsigned int len = skb->len;
2662 unsigned long flags;
2663 unsigned int nr_frags = 0;
2664 unsigned int mss = 0;
2665 int count = 0;
2666 int tso;
2667 unsigned int f;
2668 len -= skb->data_len;
2669
24025e4e
MC
2670#ifdef CONFIG_E1000_MQ
2671 tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2672#else
581d708e 2673 tx_ring = adapter->tx_ring;
24025e4e
MC
2674#endif
2675
581d708e 2676 if (unlikely(skb->len <= 0)) {
1da177e4
LT
2677 dev_kfree_skb_any(skb);
2678 return NETDEV_TX_OK;
2679 }
2680
2681#ifdef NETIF_F_TSO
2682 mss = skb_shinfo(skb)->tso_size;
2648345f 2683 /* The controller does a simple calculation to
1da177e4
LT
2684 * make sure there is enough room in the FIFO before
2685 * initiating the DMA for each buffer. The calc is:
2686 * 4 = ceil(buffer len/mss). To make sure we don't
2687 * overrun the FIFO, adjust the max buffer len if mss
2688 * drops. */
2689 if(mss) {
2690 max_per_txd = min(mss << 2, max_per_txd);
2691 max_txd_pwr = fls(max_per_txd) - 1;
2692 }
2693
2694 if((mss) || (skb->ip_summed == CHECKSUM_HW))
2695 count++;
2648345f 2696 count++;
1da177e4
LT
2697#else
2698 if(skb->ip_summed == CHECKSUM_HW)
2699 count++;
2700#endif
2701 count += TXD_USE_COUNT(len, max_txd_pwr);
2702
2703 if(adapter->pcix_82544)
2704 count++;
2705
97338bde
MC
2706 /* work-around for errata 10 and it applies to all controllers
2707 * in PCI-X mode, so add one more descriptor to the count
2708 */
2709 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2710 (len > 2015)))
2711 count++;
2712
1da177e4
LT
2713 nr_frags = skb_shinfo(skb)->nr_frags;
2714 for(f = 0; f < nr_frags; f++)
2715 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2716 max_txd_pwr);
2717 if(adapter->pcix_82544)
2718 count += nr_frags;
2719
868d5309
MC
2720#ifdef NETIF_F_TSO
2721 /* TSO Workaround for 82571/2 Controllers -- if skb->data
2722 * points to just header, pull a few bytes of payload from
2723 * frags into skb->data */
2724 if (skb_shinfo(skb)->tso_size) {
2725 uint8_t hdr_len;
2726 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2727 if (skb->data_len && (hdr_len < (skb->len - skb->data_len)) &&
2728 (adapter->hw.mac_type == e1000_82571 ||
2729 adapter->hw.mac_type == e1000_82572)) {
2730 unsigned int pull_size;
2731 pull_size = min((unsigned int)4, skb->data_len);
2732 if (!__pskb_pull_tail(skb, pull_size)) {
2733 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2734 dev_kfree_skb_any(skb);
2735 return -EFAULT;
2736 }
2737 }
2738 }
2739#endif
2740
2d7edb92
MC
2741 if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2742 e1000_transfer_dhcp_info(adapter, skb);
2743
581d708e
MC
2744 local_irq_save(flags);
2745 if (!spin_trylock(&tx_ring->tx_lock)) {
2746 /* Collision - tell upper layer to requeue */
2747 local_irq_restore(flags);
2748 return NETDEV_TX_LOCKED;
2749 }
1da177e4
LT
2750
2751 /* need: count + 2 desc gap to keep tail from touching
2752 * head, otherwise try next time */
581d708e 2753 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
1da177e4 2754 netif_stop_queue(netdev);
581d708e 2755 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
1da177e4
LT
2756 return NETDEV_TX_BUSY;
2757 }
2758
2759 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2760 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2761 netif_stop_queue(netdev);
2762 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
581d708e 2763 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
1da177e4
LT
2764 return NETDEV_TX_BUSY;
2765 }
2766 }
2767
2768 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2769 tx_flags |= E1000_TX_FLAGS_VLAN;
2770 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2771 }
2772
581d708e 2773 first = tx_ring->next_to_use;
1da177e4 2774
581d708e 2775 tso = e1000_tso(adapter, tx_ring, skb);
1da177e4
LT
2776 if (tso < 0) {
2777 dev_kfree_skb_any(skb);
581d708e 2778 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
1da177e4
LT
2779 return NETDEV_TX_OK;
2780 }
2781
2782 if (likely(tso))
2783 tx_flags |= E1000_TX_FLAGS_TSO;
581d708e 2784 else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
1da177e4
LT
2785 tx_flags |= E1000_TX_FLAGS_CSUM;
2786
2d7edb92 2787 /* Old method was to assume IPv4 packet by default if TSO was enabled.
868d5309 2788 * 82571 hardware supports TSO capabilities for IPv6 as well...
2d7edb92 2789 * no longer assume, we must. */
581d708e 2790 if (likely(skb->protocol == ntohs(ETH_P_IP)))
2d7edb92
MC
2791 tx_flags |= E1000_TX_FLAGS_IPV4;
2792
581d708e
MC
2793 e1000_tx_queue(adapter, tx_ring, tx_flags,
2794 e1000_tx_map(adapter, tx_ring, skb, first,
2795 max_per_txd, nr_frags, mss));
1da177e4
LT
2796
2797 netdev->trans_start = jiffies;
2798
2799 /* Make sure there is space in the ring for the next send. */
581d708e 2800 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
1da177e4
LT
2801 netif_stop_queue(netdev);
2802
581d708e 2803 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
1da177e4
LT
2804 return NETDEV_TX_OK;
2805}
2806
2807/**
2808 * e1000_tx_timeout - Respond to a Tx Hang
2809 * @netdev: network interface device structure
2810 **/
2811
2812static void
2813e1000_tx_timeout(struct net_device *netdev)
2814{
60490fe0 2815 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2816
2817 /* Do the reset outside of interrupt context */
2818 schedule_work(&adapter->tx_timeout_task);
2819}
2820
2821static void
2822e1000_tx_timeout_task(struct net_device *netdev)
2823{
60490fe0 2824 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2825
2826 e1000_down(adapter);
2827 e1000_up(adapter);
2828}
2829
2830/**
2831 * e1000_get_stats - Get System Network Statistics
2832 * @netdev: network interface device structure
2833 *
2834 * Returns the address of the device statistics structure.
2835 * The statistics are actually updated from the timer callback.
2836 **/
2837
2838static struct net_device_stats *
2839e1000_get_stats(struct net_device *netdev)
2840{
60490fe0 2841 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2842
2843 e1000_update_stats(adapter);
2844 return &adapter->net_stats;
2845}
2846
2847/**
2848 * e1000_change_mtu - Change the Maximum Transfer Unit
2849 * @netdev: network interface device structure
2850 * @new_mtu: new value for maximum frame size
2851 *
2852 * Returns 0 on success, negative on failure
2853 **/
2854
2855static int
2856e1000_change_mtu(struct net_device *netdev, int new_mtu)
2857{
60490fe0 2858 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2859 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2860
2861 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2862 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2863 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2864 return -EINVAL;
2865 }
2866
868d5309 2867#define MAX_STD_JUMBO_FRAME_SIZE 9234
2d7edb92 2868 /* might want this to be bigger enum check... */
868d5309
MC
2869 /* 82571 controllers limit jumbo frame size to 10500 bytes */
2870 if ((adapter->hw.mac_type == e1000_82571 ||
2871 adapter->hw.mac_type == e1000_82572) &&
2872 max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2873 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2874 "on 82571 and 82572 controllers.\n");
2875 return -EINVAL;
2876 }
2877
2878 if(adapter->hw.mac_type == e1000_82573 &&
2d7edb92
MC
2879 max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2880 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2881 "on 82573\n");
1da177e4 2882 return -EINVAL;
2d7edb92 2883 }
1da177e4 2884
2d7edb92
MC
2885 if(adapter->hw.mac_type > e1000_82547_rev_2) {
2886 adapter->rx_buffer_len = max_frame;
2887 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
1da177e4 2888 } else {
2d7edb92
MC
2889 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2890 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2891 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2892 "on 82542\n");
2893 return -EINVAL;
2894
2895 } else {
2896 if(max_frame <= E1000_RXBUFFER_2048) {
2897 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2898 } else if(max_frame <= E1000_RXBUFFER_4096) {
2899 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2900 } else if(max_frame <= E1000_RXBUFFER_8192) {
2901 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2902 } else if(max_frame <= E1000_RXBUFFER_16384) {
2903 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2904 }
2905 }
1da177e4
LT
2906 }
2907
2d7edb92
MC
2908 netdev->mtu = new_mtu;
2909
2910 if(netif_running(netdev)) {
1da177e4
LT
2911 e1000_down(adapter);
2912 e1000_up(adapter);
2913 }
2914
1da177e4
LT
2915 adapter->hw.max_frame_size = max_frame;
2916
2917 return 0;
2918}
2919
2920/**
2921 * e1000_update_stats - Update the board statistics counters
2922 * @adapter: board private structure
2923 **/
2924
2925void
2926e1000_update_stats(struct e1000_adapter *adapter)
2927{
2928 struct e1000_hw *hw = &adapter->hw;
2929 unsigned long flags;
2930 uint16_t phy_tmp;
2931
2932#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2933
2934 spin_lock_irqsave(&adapter->stats_lock, flags);
2935
2936 /* these counters are modified from e1000_adjust_tbi_stats,
2937 * called from the interrupt context, so they must only
2938 * be written while holding adapter->stats_lock
2939 */
2940
2941 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2942 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2943 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2944 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2945 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2946 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2947 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2948 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2949 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2950 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2951 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2952 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2953 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2954
2955 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2956 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2957 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2958 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2959 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2960 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2961 adapter->stats.dc += E1000_READ_REG(hw, DC);
2962 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2963 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2964 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2965 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2966 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2967 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2968 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2969 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2970 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2971 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2972 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2973 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2974 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2975 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2976 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2977 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2978 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2979 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2980 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2981 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2982 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2983 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2984 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2985 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2986 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2987 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2988 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2989
2990 /* used for adaptive IFS */
2991
2992 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2993 adapter->stats.tpt += hw->tx_packet_delta;
2994 hw->collision_delta = E1000_READ_REG(hw, COLC);
2995 adapter->stats.colc += hw->collision_delta;
2996
2997 if(hw->mac_type >= e1000_82543) {
2998 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2999 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3000 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3001 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3002 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3003 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3004 }
2d7edb92
MC
3005 if(hw->mac_type > e1000_82547_rev_2) {
3006 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3007 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3008 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3009 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3010 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3011 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3012 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3013 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3014 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3015 }
1da177e4
LT
3016
3017 /* Fill out the OS statistics structure */
3018
3019 adapter->net_stats.rx_packets = adapter->stats.gprc;
3020 adapter->net_stats.tx_packets = adapter->stats.gptc;
3021 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3022 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3023 adapter->net_stats.multicast = adapter->stats.mprc;
3024 adapter->net_stats.collisions = adapter->stats.colc;
3025
3026 /* Rx Errors */
3027
3028 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3029 adapter->stats.crcerrs + adapter->stats.algnerrc +
6d915757
MC
3030 adapter->stats.rlec + adapter->stats.mpc +
3031 adapter->stats.cexterr;
1da177e4
LT
3032 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3033 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3034 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3035 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
3036 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3037
3038 /* Tx Errors */
3039
3040 adapter->net_stats.tx_errors = adapter->stats.ecol +
3041 adapter->stats.latecol;
3042 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3043 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3044 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3045
3046 /* Tx Dropped needs to be maintained elsewhere */
3047
3048 /* Phy Stats */
3049
3050 if(hw->media_type == e1000_media_type_copper) {
3051 if((adapter->link_speed == SPEED_1000) &&
3052 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3053 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3054 adapter->phy_stats.idle_errors += phy_tmp;
3055 }
3056
3057 if((hw->mac_type <= e1000_82546) &&
3058 (hw->phy_type == e1000_phy_m88) &&
3059 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3060 adapter->phy_stats.receive_errors += phy_tmp;
3061 }
3062
3063 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3064}
3065
24025e4e
MC
3066#ifdef CONFIG_E1000_MQ
3067void
3068e1000_rx_schedule(void *data)
3069{
3070 struct net_device *poll_dev, *netdev = data;
3071 struct e1000_adapter *adapter = netdev->priv;
3072 int this_cpu = get_cpu();
3073
3074 poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3075 if (poll_dev == NULL) {
3076 put_cpu();
3077 return;
3078 }
3079
3080 if (likely(netif_rx_schedule_prep(poll_dev)))
3081 __netif_rx_schedule(poll_dev);
3082 else
3083 e1000_irq_enable(adapter);
3084
3085 put_cpu();
3086}
3087#endif
3088
1da177e4
LT
3089/**
3090 * e1000_intr - Interrupt Handler
3091 * @irq: interrupt number
3092 * @data: pointer to a network interface device structure
3093 * @pt_regs: CPU registers structure
3094 **/
3095
3096static irqreturn_t
3097e1000_intr(int irq, void *data, struct pt_regs *regs)
3098{
3099 struct net_device *netdev = data;
60490fe0 3100 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3101 struct e1000_hw *hw = &adapter->hw;
3102 uint32_t icr = E1000_READ_REG(hw, ICR);
166d823d 3103#if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
581d708e 3104 int i;
be2b28ed 3105#endif
1da177e4
LT
3106
3107 if(unlikely(!icr))
3108 return IRQ_NONE; /* Not our interrupt */
3109
3110 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3111 hw->get_link_status = 1;
3112 mod_timer(&adapter->watchdog_timer, jiffies);
3113 }
3114
3115#ifdef CONFIG_E1000_NAPI
581d708e
MC
3116 atomic_inc(&adapter->irq_sem);
3117 E1000_WRITE_REG(hw, IMC, ~0);
3118 E1000_WRITE_FLUSH(hw);
24025e4e
MC
3119#ifdef CONFIG_E1000_MQ
3120 if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3121 cpu_set(adapter->cpu_for_queue[0],
3122 adapter->rx_sched_call_data.cpumask);
3123 for (i = 1; i < adapter->num_queues; i++) {
3124 cpu_set(adapter->cpu_for_queue[i],
3125 adapter->rx_sched_call_data.cpumask);
3126 atomic_inc(&adapter->irq_sem);
3127 }
3128 atomic_set(&adapter->rx_sched_call_data.count, i);
3129 smp_call_async_mask(&adapter->rx_sched_call_data);
3130 } else {
3131 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
1da177e4 3132 }
be2b28ed 3133#else /* if !CONFIG_E1000_MQ */
581d708e
MC
3134 if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3135 __netif_rx_schedule(&adapter->polling_netdev[0]);
3136 else
3137 e1000_irq_enable(adapter);
be2b28ed
JG
3138#endif /* CONFIG_E1000_MQ */
3139
3140#else /* if !CONFIG_E1000_NAPI */
1da177e4
LT
3141 /* Writing IMC and IMS is needed for 82547.
3142 Due to Hub Link bus being occupied, an interrupt
3143 de-assertion message is not able to be sent.
3144 When an interrupt assertion message is generated later,
3145 two messages are re-ordered and sent out.
3146 That causes APIC to think 82547 is in de-assertion
3147 state, while 82547 is in assertion state, resulting
3148 in dead lock. Writing IMC forces 82547 into
3149 de-assertion state.
3150 */
3151 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3152 atomic_inc(&adapter->irq_sem);
2648345f 3153 E1000_WRITE_REG(hw, IMC, ~0);
1da177e4
LT
3154 }
3155
3156 for(i = 0; i < E1000_MAX_INTR; i++)
581d708e
MC
3157 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3158 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
1da177e4
LT
3159 break;
3160
3161 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3162 e1000_irq_enable(adapter);
581d708e 3163
be2b28ed 3164#endif /* CONFIG_E1000_NAPI */
1da177e4
LT
3165
3166 return IRQ_HANDLED;
3167}
3168
3169#ifdef CONFIG_E1000_NAPI
3170/**
3171 * e1000_clean - NAPI Rx polling callback
3172 * @adapter: board private structure
3173 **/
3174
3175static int
581d708e 3176e1000_clean(struct net_device *poll_dev, int *budget)
1da177e4 3177{
581d708e
MC
3178 struct e1000_adapter *adapter;
3179 int work_to_do = min(*budget, poll_dev->quota);
3180 int tx_cleaned, i = 0, work_done = 0;
3181
3182 /* Must NOT use netdev_priv macro here. */
3183 adapter = poll_dev->priv;
3184
3185 /* Keep link state information with original netdev */
3186 if (!netif_carrier_ok(adapter->netdev))
3187 goto quit_polling;
2648345f 3188
581d708e
MC
3189 while (poll_dev != &adapter->polling_netdev[i]) {
3190 i++;
3191 if (unlikely(i == adapter->num_queues))
3192 BUG();
3193 }
3194
3195 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3196 adapter->clean_rx(adapter, &adapter->rx_ring[i],
3197 &work_done, work_to_do);
1da177e4
LT
3198
3199 *budget -= work_done;
581d708e 3200 poll_dev->quota -= work_done;
1da177e4 3201
2b02893e 3202 /* If no Tx and not enough Rx work done, exit the polling mode */
581d708e
MC
3203 if((!tx_cleaned && (work_done == 0)) ||
3204 !netif_running(adapter->netdev)) {
3205quit_polling:
3206 netif_rx_complete(poll_dev);
1da177e4
LT
3207 e1000_irq_enable(adapter);
3208 return 0;
3209 }
3210
3211 return 1;
3212}
3213
3214#endif
3215/**
3216 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3217 * @adapter: board private structure
3218 **/
3219
3220static boolean_t
581d708e
MC
3221e1000_clean_tx_irq(struct e1000_adapter *adapter,
3222 struct e1000_tx_ring *tx_ring)
1da177e4 3223{
1da177e4
LT
3224 struct net_device *netdev = adapter->netdev;
3225 struct e1000_tx_desc *tx_desc, *eop_desc;
3226 struct e1000_buffer *buffer_info;
3227 unsigned int i, eop;
3228 boolean_t cleaned = FALSE;
3229
3230 i = tx_ring->next_to_clean;
3231 eop = tx_ring->buffer_info[i].next_to_watch;
3232 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3233
581d708e 3234 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2701234f
MC
3235 /* Premature writeback of Tx descriptors clear (free buffers
3236 * and unmap pci_mapping) previous_buffer_info */
581d708e 3237 if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
2701234f 3238 e1000_unmap_and_free_tx_resource(adapter,
581d708e 3239 &tx_ring->previous_buffer_info);
1da177e4
LT
3240 }
3241
3242 for(cleaned = FALSE; !cleaned; ) {
3243 tx_desc = E1000_TX_DESC(*tx_ring, i);
3244 buffer_info = &tx_ring->buffer_info[i];
3245 cleaned = (i == eop);
3246
2701234f
MC
3247#ifdef NETIF_F_TSO
3248 if (!(netdev->features & NETIF_F_TSO)) {
3249#endif
3250 e1000_unmap_and_free_tx_resource(adapter,
3251 buffer_info);
3252#ifdef NETIF_F_TSO
1da177e4 3253 } else {
2701234f 3254 if (cleaned) {
581d708e 3255 memcpy(&tx_ring->previous_buffer_info,
2701234f
MC
3256 buffer_info,
3257 sizeof(struct e1000_buffer));
3258 memset(buffer_info, 0,
3259 sizeof(struct e1000_buffer));
3260 } else {
3261 e1000_unmap_and_free_tx_resource(
3262 adapter, buffer_info);
3263 }
1da177e4 3264 }
2701234f 3265#endif
1da177e4
LT
3266
3267 tx_desc->buffer_addr = 0;
3268 tx_desc->lower.data = 0;
3269 tx_desc->upper.data = 0;
3270
1da177e4
LT
3271 if(unlikely(++i == tx_ring->count)) i = 0;
3272 }
581d708e
MC
3273
3274 tx_ring->pkt++;
1da177e4
LT
3275
3276 eop = tx_ring->buffer_info[i].next_to_watch;
3277 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3278 }
3279
3280 tx_ring->next_to_clean = i;
3281
581d708e 3282 spin_lock(&tx_ring->tx_lock);
1da177e4
LT
3283
3284 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3285 netif_carrier_ok(netdev)))
3286 netif_wake_queue(netdev);
3287
581d708e 3288 spin_unlock(&tx_ring->tx_lock);
2648345f 3289
581d708e 3290 if (adapter->detect_tx_hung) {
2648345f 3291 /* Detect a transmit hang in hardware, this serializes the
1da177e4
LT
3292 * check with the clearing of time_stamp and movement of i */
3293 adapter->detect_tx_hung = FALSE;
70b8f1e1
MC
3294 if (tx_ring->buffer_info[i].dma &&
3295 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3296 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3297 E1000_STATUS_TXOFF)) {
3298
3299 /* detected Tx unit hang */
3300 i = tx_ring->next_to_clean;
3301 eop = tx_ring->buffer_info[i].next_to_watch;
3302 eop_desc = E1000_TX_DESC(*tx_ring, eop);
c6963ef5 3303 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
70b8f1e1
MC
3304 " TDH <%x>\n"
3305 " TDT <%x>\n"
3306 " next_to_use <%x>\n"
3307 " next_to_clean <%x>\n"
3308 "buffer_info[next_to_clean]\n"
b4ee21f4 3309 " dma <%llx>\n"
70b8f1e1
MC
3310 " time_stamp <%lx>\n"
3311 " next_to_watch <%x>\n"
3312 " jiffies <%lx>\n"
3313 " next_to_watch.status <%x>\n",
581d708e
MC
3314 readl(adapter->hw.hw_addr + tx_ring->tdh),
3315 readl(adapter->hw.hw_addr + tx_ring->tdt),
70b8f1e1
MC
3316 tx_ring->next_to_use,
3317 i,
b4ee21f4 3318 (unsigned long long)tx_ring->buffer_info[i].dma,
70b8f1e1
MC
3319 tx_ring->buffer_info[i].time_stamp,
3320 eop,
3321 jiffies,
3322 eop_desc->upper.fields.status);
1da177e4 3323 netif_stop_queue(netdev);
70b8f1e1 3324 }
1da177e4 3325 }
2701234f 3326#ifdef NETIF_F_TSO
581d708e
MC
3327 if (unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3328 time_after(jiffies, tx_ring->previous_buffer_info.time_stamp + HZ)))
2701234f 3329 e1000_unmap_and_free_tx_resource(
581d708e 3330 adapter, &tx_ring->previous_buffer_info);
2701234f 3331#endif
1da177e4
LT
3332 return cleaned;
3333}
3334
3335/**
3336 * e1000_rx_checksum - Receive Checksum Offload for 82543
2d7edb92
MC
3337 * @adapter: board private structure
3338 * @status_err: receive descriptor status and error fields
3339 * @csum: receive descriptor csum field
3340 * @sk_buff: socket buffer with received data
1da177e4
LT
3341 **/
3342
3343static inline void
3344e1000_rx_checksum(struct e1000_adapter *adapter,
2d7edb92
MC
3345 uint32_t status_err, uint32_t csum,
3346 struct sk_buff *skb)
1da177e4 3347{
2d7edb92
MC
3348 uint16_t status = (uint16_t)status_err;
3349 uint8_t errors = (uint8_t)(status_err >> 24);
3350 skb->ip_summed = CHECKSUM_NONE;
3351
1da177e4 3352 /* 82543 or newer only */
2d7edb92 3353 if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
1da177e4 3354 /* Ignore Checksum bit is set */
2d7edb92
MC
3355 if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3356 /* TCP/UDP checksum error bit is set */
3357 if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
1da177e4 3358 /* let the stack verify checksum errors */
1da177e4 3359 adapter->hw_csum_err++;
2d7edb92
MC
3360 return;
3361 }
3362 /* TCP/UDP Checksum has not been calculated */
3363 if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3364 if(!(status & E1000_RXD_STAT_TCPCS))
3365 return;
1da177e4 3366 } else {
2d7edb92
MC
3367 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3368 return;
3369 }
3370 /* It must be a TCP or UDP packet with a valid checksum */
3371 if (likely(status & E1000_RXD_STAT_TCPCS)) {
1da177e4
LT
3372 /* TCP checksum is good */
3373 skb->ip_summed = CHECKSUM_UNNECESSARY;
2d7edb92
MC
3374 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3375 /* IP fragment with UDP payload */
3376 /* Hardware complements the payload checksum, so we undo it
3377 * and then put the value in host order for further stack use.
3378 */
3379 csum = ntohl(csum ^ 0xFFFF);
3380 skb->csum = csum;
3381 skb->ip_summed = CHECKSUM_HW;
1da177e4 3382 }
2d7edb92 3383 adapter->hw_csum_good++;
1da177e4
LT
3384}
3385
3386/**
2d7edb92 3387 * e1000_clean_rx_irq - Send received data up the network stack; legacy
1da177e4
LT
3388 * @adapter: board private structure
3389 **/
3390
3391static boolean_t
3392#ifdef CONFIG_E1000_NAPI
581d708e
MC
3393e1000_clean_rx_irq(struct e1000_adapter *adapter,
3394 struct e1000_rx_ring *rx_ring,
3395 int *work_done, int work_to_do)
1da177e4 3396#else
581d708e
MC
3397e1000_clean_rx_irq(struct e1000_adapter *adapter,
3398 struct e1000_rx_ring *rx_ring)
1da177e4
LT
3399#endif
3400{
1da177e4
LT
3401 struct net_device *netdev = adapter->netdev;
3402 struct pci_dev *pdev = adapter->pdev;
3403 struct e1000_rx_desc *rx_desc;
3404 struct e1000_buffer *buffer_info;
3405 struct sk_buff *skb;
3406 unsigned long flags;
3407 uint32_t length;
3408 uint8_t last_byte;
3409 unsigned int i;
3410 boolean_t cleaned = FALSE;
3411
3412 i = rx_ring->next_to_clean;
3413 rx_desc = E1000_RX_DESC(*rx_ring, i);
3414
3415 while(rx_desc->status & E1000_RXD_STAT_DD) {
3416 buffer_info = &rx_ring->buffer_info[i];
3417#ifdef CONFIG_E1000_NAPI
3418 if(*work_done >= work_to_do)
3419 break;
3420 (*work_done)++;
3421#endif
3422 cleaned = TRUE;
3423
3424 pci_unmap_single(pdev,
3425 buffer_info->dma,
3426 buffer_info->length,
3427 PCI_DMA_FROMDEVICE);
3428
3429 skb = buffer_info->skb;
3430 length = le16_to_cpu(rx_desc->length);
3431
3432 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3433 /* All receives must fit into a single buffer */
3434 E1000_DBG("%s: Receive packet consumed multiple"
2648345f 3435 " buffers\n", netdev->name);
1da177e4
LT
3436 dev_kfree_skb_irq(skb);
3437 goto next_desc;
3438 }
3439
3440 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3441 last_byte = *(skb->data + length - 1);
3442 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3443 rx_desc->errors, length, last_byte)) {
3444 spin_lock_irqsave(&adapter->stats_lock, flags);
3445 e1000_tbi_adjust_stats(&adapter->hw,
3446 &adapter->stats,
3447 length, skb->data);
3448 spin_unlock_irqrestore(&adapter->stats_lock,
3449 flags);
3450 length--;
3451 } else {
3452 dev_kfree_skb_irq(skb);
3453 goto next_desc;
3454 }
3455 }
3456
3457 /* Good Receive */
3458 skb_put(skb, length - ETHERNET_FCS_SIZE);
3459
3460 /* Receive Checksum Offload */
2d7edb92
MC
3461 e1000_rx_checksum(adapter,
3462 (uint32_t)(rx_desc->status) |
3463 ((uint32_t)(rx_desc->errors) << 24),
3464 rx_desc->csum, skb);
1da177e4
LT
3465 skb->protocol = eth_type_trans(skb, netdev);
3466#ifdef CONFIG_E1000_NAPI
3467 if(unlikely(adapter->vlgrp &&
3468 (rx_desc->status & E1000_RXD_STAT_VP))) {
3469 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2d7edb92
MC
3470 le16_to_cpu(rx_desc->special) &
3471 E1000_RXD_SPC_VLAN_MASK);
1da177e4
LT
3472 } else {
3473 netif_receive_skb(skb);
3474 }
3475#else /* CONFIG_E1000_NAPI */
3476 if(unlikely(adapter->vlgrp &&
3477 (rx_desc->status & E1000_RXD_STAT_VP))) {
3478 vlan_hwaccel_rx(skb, adapter->vlgrp,
3479 le16_to_cpu(rx_desc->special) &
3480 E1000_RXD_SPC_VLAN_MASK);
3481 } else {
3482 netif_rx(skb);
3483 }
3484#endif /* CONFIG_E1000_NAPI */
3485 netdev->last_rx = jiffies;
581d708e 3486 rx_ring->pkt++;
1da177e4
LT
3487
3488next_desc:
3489 rx_desc->status = 0;
3490 buffer_info->skb = NULL;
3491 if(unlikely(++i == rx_ring->count)) i = 0;
3492
3493 rx_desc = E1000_RX_DESC(*rx_ring, i);
3494 }
1da177e4 3495 rx_ring->next_to_clean = i;
581d708e 3496 adapter->alloc_rx_buf(adapter, rx_ring);
2d7edb92
MC
3497
3498 return cleaned;
3499}
3500
3501/**
3502 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3503 * @adapter: board private structure
3504 **/
3505
3506static boolean_t
3507#ifdef CONFIG_E1000_NAPI
581d708e
MC
3508e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3509 struct e1000_rx_ring *rx_ring,
3510 int *work_done, int work_to_do)
2d7edb92 3511#else
581d708e
MC
3512e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3513 struct e1000_rx_ring *rx_ring)
2d7edb92
MC
3514#endif
3515{
2d7edb92
MC
3516 union e1000_rx_desc_packet_split *rx_desc;
3517 struct net_device *netdev = adapter->netdev;
3518 struct pci_dev *pdev = adapter->pdev;
3519 struct e1000_buffer *buffer_info;
3520 struct e1000_ps_page *ps_page;
3521 struct e1000_ps_page_dma *ps_page_dma;
3522 struct sk_buff *skb;
3523 unsigned int i, j;
3524 uint32_t length, staterr;
3525 boolean_t cleaned = FALSE;
3526
3527 i = rx_ring->next_to_clean;
3528 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
683a38f3 3529 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
2d7edb92
MC
3530
3531 while(staterr & E1000_RXD_STAT_DD) {
3532 buffer_info = &rx_ring->buffer_info[i];
3533 ps_page = &rx_ring->ps_page[i];
3534 ps_page_dma = &rx_ring->ps_page_dma[i];
3535#ifdef CONFIG_E1000_NAPI
3536 if(unlikely(*work_done >= work_to_do))
3537 break;
3538 (*work_done)++;
3539#endif
3540 cleaned = TRUE;
3541 pci_unmap_single(pdev, buffer_info->dma,
3542 buffer_info->length,
3543 PCI_DMA_FROMDEVICE);
3544
3545 skb = buffer_info->skb;
3546
3547 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3548 E1000_DBG("%s: Packet Split buffers didn't pick up"
3549 " the full packet\n", netdev->name);
3550 dev_kfree_skb_irq(skb);
3551 goto next_desc;
3552 }
1da177e4 3553
2d7edb92
MC
3554 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3555 dev_kfree_skb_irq(skb);
3556 goto next_desc;
3557 }
3558
3559 length = le16_to_cpu(rx_desc->wb.middle.length0);
3560
3561 if(unlikely(!length)) {
3562 E1000_DBG("%s: Last part of the packet spanning"
3563 " multiple descriptors\n", netdev->name);
3564 dev_kfree_skb_irq(skb);
3565 goto next_desc;
3566 }
3567
3568 /* Good Receive */
3569 skb_put(skb, length);
3570
e4c811c9 3571 for(j = 0; j < adapter->rx_ps_pages; j++) {
2d7edb92
MC
3572 if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3573 break;
3574
3575 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3576 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3577 ps_page_dma->ps_page_dma[j] = 0;
3578 skb_shinfo(skb)->frags[j].page =
3579 ps_page->ps_page[j];
3580 ps_page->ps_page[j] = NULL;
3581 skb_shinfo(skb)->frags[j].page_offset = 0;
3582 skb_shinfo(skb)->frags[j].size = length;
3583 skb_shinfo(skb)->nr_frags++;
3584 skb->len += length;
3585 skb->data_len += length;
3586 }
3587
3588 e1000_rx_checksum(adapter, staterr,
3589 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3590 skb->protocol = eth_type_trans(skb, netdev);
3591
2d7edb92 3592 if(likely(rx_desc->wb.upper.header_status &
e4c811c9
MC
3593 E1000_RXDPS_HDRSTAT_HDRSP)) {
3594 adapter->rx_hdr_split++;
3595#ifdef HAVE_RX_ZERO_COPY
2d7edb92
MC
3596 skb_shinfo(skb)->zero_copy = TRUE;
3597#endif
e4c811c9 3598 }
2d7edb92
MC
3599#ifdef CONFIG_E1000_NAPI
3600 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3601 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
683a38f3
MC
3602 le16_to_cpu(rx_desc->wb.middle.vlan) &
3603 E1000_RXD_SPC_VLAN_MASK);
2d7edb92
MC
3604 } else {
3605 netif_receive_skb(skb);
3606 }
3607#else /* CONFIG_E1000_NAPI */
3608 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3609 vlan_hwaccel_rx(skb, adapter->vlgrp,
683a38f3
MC
3610 le16_to_cpu(rx_desc->wb.middle.vlan) &
3611 E1000_RXD_SPC_VLAN_MASK);
2d7edb92
MC
3612 } else {
3613 netif_rx(skb);
3614 }
3615#endif /* CONFIG_E1000_NAPI */
3616 netdev->last_rx = jiffies;
581d708e 3617 rx_ring->pkt++;
2d7edb92
MC
3618
3619next_desc:
3620 rx_desc->wb.middle.status_error &= ~0xFF;
3621 buffer_info->skb = NULL;
3622 if(unlikely(++i == rx_ring->count)) i = 0;
3623
3624 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
683a38f3 3625 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
2d7edb92
MC
3626 }
3627 rx_ring->next_to_clean = i;
581d708e 3628 adapter->alloc_rx_buf(adapter, rx_ring);
1da177e4
LT
3629
3630 return cleaned;
3631}
3632
3633/**
2d7edb92 3634 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
1da177e4
LT
3635 * @adapter: address of board private structure
3636 **/
3637
3638static void
581d708e
MC
3639e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3640 struct e1000_rx_ring *rx_ring)
1da177e4 3641{
1da177e4
LT
3642 struct net_device *netdev = adapter->netdev;
3643 struct pci_dev *pdev = adapter->pdev;
3644 struct e1000_rx_desc *rx_desc;
3645 struct e1000_buffer *buffer_info;
3646 struct sk_buff *skb;
2648345f
MC
3647 unsigned int i;
3648 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
1da177e4
LT
3649
3650 i = rx_ring->next_to_use;
3651 buffer_info = &rx_ring->buffer_info[i];
3652
3653 while(!buffer_info->skb) {
1da177e4 3654 skb = dev_alloc_skb(bufsz);
2648345f 3655
1da177e4
LT
3656 if(unlikely(!skb)) {
3657 /* Better luck next round */
3658 break;
3659 }
3660
2648345f 3661 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
3662 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3663 struct sk_buff *oldskb = skb;
2648345f
MC
3664 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3665 "at %p\n", bufsz, skb->data);
3666 /* Try again, without freeing the previous */
1da177e4 3667 skb = dev_alloc_skb(bufsz);
2648345f 3668 /* Failed allocation, critical failure */
1da177e4
LT
3669 if (!skb) {
3670 dev_kfree_skb(oldskb);
3671 break;
3672 }
2648345f 3673
1da177e4
LT
3674 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3675 /* give up */
3676 dev_kfree_skb(skb);
3677 dev_kfree_skb(oldskb);
3678 break; /* while !buffer_info->skb */
3679 } else {
2648345f 3680 /* Use new allocation */
1da177e4
LT
3681 dev_kfree_skb(oldskb);
3682 }
3683 }
1da177e4
LT
3684 /* Make buffer alignment 2 beyond a 16 byte boundary
3685 * this will result in a 16 byte aligned IP header after
3686 * the 14 byte MAC header is removed
3687 */
3688 skb_reserve(skb, NET_IP_ALIGN);
3689
3690 skb->dev = netdev;
3691
3692 buffer_info->skb = skb;
3693 buffer_info->length = adapter->rx_buffer_len;
3694 buffer_info->dma = pci_map_single(pdev,
3695 skb->data,
3696 adapter->rx_buffer_len,
3697 PCI_DMA_FROMDEVICE);
3698
2648345f
MC
3699 /* Fix for errata 23, can't cross 64kB boundary */
3700 if (!e1000_check_64k_bound(adapter,
3701 (void *)(unsigned long)buffer_info->dma,
3702 adapter->rx_buffer_len)) {
3703 DPRINTK(RX_ERR, ERR,
3704 "dma align check failed: %u bytes at %p\n",
3705 adapter->rx_buffer_len,
3706 (void *)(unsigned long)buffer_info->dma);
1da177e4
LT
3707 dev_kfree_skb(skb);
3708 buffer_info->skb = NULL;
3709
2648345f 3710 pci_unmap_single(pdev, buffer_info->dma,
1da177e4
LT
3711 adapter->rx_buffer_len,
3712 PCI_DMA_FROMDEVICE);
3713
3714 break; /* while !buffer_info->skb */
3715 }
1da177e4
LT
3716 rx_desc = E1000_RX_DESC(*rx_ring, i);
3717 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3718
3719 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3720 /* Force memory writes to complete before letting h/w
3721 * know there are new descriptors to fetch. (Only
3722 * applicable for weak-ordered memory model archs,
3723 * such as IA-64). */
3724 wmb();
581d708e 3725 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
1da177e4
LT
3726 }
3727
3728 if(unlikely(++i == rx_ring->count)) i = 0;
3729 buffer_info = &rx_ring->buffer_info[i];
3730 }
3731
3732 rx_ring->next_to_use = i;
3733}
3734
2d7edb92
MC
3735/**
3736 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3737 * @adapter: address of board private structure
3738 **/
3739
3740static void
581d708e
MC
3741e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3742 struct e1000_rx_ring *rx_ring)
2d7edb92 3743{
2d7edb92
MC
3744 struct net_device *netdev = adapter->netdev;
3745 struct pci_dev *pdev = adapter->pdev;
3746 union e1000_rx_desc_packet_split *rx_desc;
3747 struct e1000_buffer *buffer_info;
3748 struct e1000_ps_page *ps_page;
3749 struct e1000_ps_page_dma *ps_page_dma;
3750 struct sk_buff *skb;
3751 unsigned int i, j;
3752
3753 i = rx_ring->next_to_use;
3754 buffer_info = &rx_ring->buffer_info[i];
3755 ps_page = &rx_ring->ps_page[i];
3756 ps_page_dma = &rx_ring->ps_page_dma[i];
3757
3758 while(!buffer_info->skb) {
3759 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3760
3761 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
e4c811c9
MC
3762 if (j < adapter->rx_ps_pages) {
3763 if (likely(!ps_page->ps_page[j])) {
3764 ps_page->ps_page[j] =
3765 alloc_page(GFP_ATOMIC);
3766 if (unlikely(!ps_page->ps_page[j]))
3767 goto no_buffers;
3768 ps_page_dma->ps_page_dma[j] =
3769 pci_map_page(pdev,
3770 ps_page->ps_page[j],
3771 0, PAGE_SIZE,
3772 PCI_DMA_FROMDEVICE);
3773 }
3774 /* Refresh the desc even if buffer_addrs didn't
3775 * change because each write-back erases
3776 * this info.
3777 */
3778 rx_desc->read.buffer_addr[j+1] =
3779 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3780 } else
3781 rx_desc->read.buffer_addr[j+1] = ~0;
2d7edb92
MC
3782 }
3783
3784 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3785
3786 if(unlikely(!skb))
3787 break;
3788
3789 /* Make buffer alignment 2 beyond a 16 byte boundary
3790 * this will result in a 16 byte aligned IP header after
3791 * the 14 byte MAC header is removed
3792 */
3793 skb_reserve(skb, NET_IP_ALIGN);
3794
3795 skb->dev = netdev;
3796
3797 buffer_info->skb = skb;
3798 buffer_info->length = adapter->rx_ps_bsize0;
3799 buffer_info->dma = pci_map_single(pdev, skb->data,
3800 adapter->rx_ps_bsize0,
3801 PCI_DMA_FROMDEVICE);
3802
3803 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3804
3805 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3806 /* Force memory writes to complete before letting h/w
3807 * know there are new descriptors to fetch. (Only
3808 * applicable for weak-ordered memory model archs,
3809 * such as IA-64). */
3810 wmb();
3811 /* Hardware increments by 16 bytes, but packet split
3812 * descriptors are 32 bytes...so we increment tail
3813 * twice as much.
3814 */
581d708e 3815 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
2d7edb92
MC
3816 }
3817
3818 if(unlikely(++i == rx_ring->count)) i = 0;
3819 buffer_info = &rx_ring->buffer_info[i];
3820 ps_page = &rx_ring->ps_page[i];
3821 ps_page_dma = &rx_ring->ps_page_dma[i];
3822 }
3823
3824no_buffers:
3825 rx_ring->next_to_use = i;
3826}
3827
1da177e4
LT
3828/**
3829 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3830 * @adapter:
3831 **/
3832
3833static void
3834e1000_smartspeed(struct e1000_adapter *adapter)
3835{
3836 uint16_t phy_status;
3837 uint16_t phy_ctrl;
3838
3839 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3840 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3841 return;
3842
3843 if(adapter->smartspeed == 0) {
3844 /* If Master/Slave config fault is asserted twice,
3845 * we assume back-to-back */
3846 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3847 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3848 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3849 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3850 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3851 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3852 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3853 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3854 phy_ctrl);
3855 adapter->smartspeed++;
3856 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3857 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3858 &phy_ctrl)) {
3859 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3860 MII_CR_RESTART_AUTO_NEG);
3861 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3862 phy_ctrl);
3863 }
3864 }
3865 return;
3866 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3867 /* If still no link, perhaps using 2/3 pair cable */
3868 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3869 phy_ctrl |= CR_1000T_MS_ENABLE;
3870 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3871 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3872 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3873 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3874 MII_CR_RESTART_AUTO_NEG);
3875 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3876 }
3877 }
3878 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3879 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3880 adapter->smartspeed = 0;
3881}
3882
3883/**
3884 * e1000_ioctl -
3885 * @netdev:
3886 * @ifreq:
3887 * @cmd:
3888 **/
3889
3890static int
3891e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3892{
3893 switch (cmd) {
3894 case SIOCGMIIPHY:
3895 case SIOCGMIIREG:
3896 case SIOCSMIIREG:
3897 return e1000_mii_ioctl(netdev, ifr, cmd);
3898 default:
3899 return -EOPNOTSUPP;
3900 }
3901}
3902
3903/**
3904 * e1000_mii_ioctl -
3905 * @netdev:
3906 * @ifreq:
3907 * @cmd:
3908 **/
3909
3910static int
3911e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3912{
60490fe0 3913 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3914 struct mii_ioctl_data *data = if_mii(ifr);
3915 int retval;
3916 uint16_t mii_reg;
3917 uint16_t spddplx;
97876fc6 3918 unsigned long flags;
1da177e4
LT
3919
3920 if(adapter->hw.media_type != e1000_media_type_copper)
3921 return -EOPNOTSUPP;
3922
3923 switch (cmd) {
3924 case SIOCGMIIPHY:
3925 data->phy_id = adapter->hw.phy_addr;
3926 break;
3927 case SIOCGMIIREG:
97876fc6 3928 if(!capable(CAP_NET_ADMIN))
1da177e4 3929 return -EPERM;
97876fc6
MC
3930 spin_lock_irqsave(&adapter->stats_lock, flags);
3931 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3932 &data->val_out)) {
3933 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 3934 return -EIO;
97876fc6
MC
3935 }
3936 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
3937 break;
3938 case SIOCSMIIREG:
97876fc6 3939 if(!capable(CAP_NET_ADMIN))
1da177e4 3940 return -EPERM;
97876fc6 3941 if(data->reg_num & ~(0x1F))
1da177e4
LT
3942 return -EFAULT;
3943 mii_reg = data->val_in;
97876fc6
MC
3944 spin_lock_irqsave(&adapter->stats_lock, flags);
3945 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3946 mii_reg)) {
3947 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 3948 return -EIO;
97876fc6
MC
3949 }
3950 if(adapter->hw.phy_type == e1000_phy_m88) {
1da177e4
LT
3951 switch (data->reg_num) {
3952 case PHY_CTRL:
3953 if(mii_reg & MII_CR_POWER_DOWN)
3954 break;
3955 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3956 adapter->hw.autoneg = 1;
3957 adapter->hw.autoneg_advertised = 0x2F;
3958 } else {
3959 if (mii_reg & 0x40)
3960 spddplx = SPEED_1000;
3961 else if (mii_reg & 0x2000)
3962 spddplx = SPEED_100;
3963 else
3964 spddplx = SPEED_10;
3965 spddplx += (mii_reg & 0x100)
3966 ? FULL_DUPLEX :
3967 HALF_DUPLEX;
3968 retval = e1000_set_spd_dplx(adapter,
3969 spddplx);
97876fc6
MC
3970 if(retval) {
3971 spin_unlock_irqrestore(
3972 &adapter->stats_lock,
3973 flags);
1da177e4 3974 return retval;
97876fc6 3975 }
1da177e4
LT
3976 }
3977 if(netif_running(adapter->netdev)) {
3978 e1000_down(adapter);
3979 e1000_up(adapter);
3980 } else
3981 e1000_reset(adapter);
3982 break;
3983 case M88E1000_PHY_SPEC_CTRL:
3984 case M88E1000_EXT_PHY_SPEC_CTRL:
97876fc6
MC
3985 if(e1000_phy_reset(&adapter->hw)) {
3986 spin_unlock_irqrestore(
3987 &adapter->stats_lock, flags);
1da177e4 3988 return -EIO;
97876fc6 3989 }
1da177e4
LT
3990 break;
3991 }
3992 } else {
3993 switch (data->reg_num) {
3994 case PHY_CTRL:
3995 if(mii_reg & MII_CR_POWER_DOWN)
3996 break;
3997 if(netif_running(adapter->netdev)) {
3998 e1000_down(adapter);
3999 e1000_up(adapter);
4000 } else
4001 e1000_reset(adapter);
4002 break;
4003 }
4004 }
97876fc6 4005 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
4006 break;
4007 default:
4008 return -EOPNOTSUPP;
4009 }
4010 return E1000_SUCCESS;
4011}
4012
4013void
4014e1000_pci_set_mwi(struct e1000_hw *hw)
4015{
4016 struct e1000_adapter *adapter = hw->back;
2648345f 4017 int ret_val = pci_set_mwi(adapter->pdev);
1da177e4 4018
2648345f
MC
4019 if(ret_val)
4020 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
1da177e4
LT
4021}
4022
4023void
4024e1000_pci_clear_mwi(struct e1000_hw *hw)
4025{
4026 struct e1000_adapter *adapter = hw->back;
4027
4028 pci_clear_mwi(adapter->pdev);
4029}
4030
4031void
4032e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4033{
4034 struct e1000_adapter *adapter = hw->back;
4035
4036 pci_read_config_word(adapter->pdev, reg, value);
4037}
4038
4039void
4040e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4041{
4042 struct e1000_adapter *adapter = hw->back;
4043
4044 pci_write_config_word(adapter->pdev, reg, *value);
4045}
4046
4047uint32_t
4048e1000_io_read(struct e1000_hw *hw, unsigned long port)
4049{
4050 return inl(port);
4051}
4052
4053void
4054e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4055{
4056 outl(value, port);
4057}
4058
4059static void
4060e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4061{
60490fe0 4062 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
4063 uint32_t ctrl, rctl;
4064
4065 e1000_irq_disable(adapter);
4066 adapter->vlgrp = grp;
4067
4068 if(grp) {
4069 /* enable VLAN tag insert/strip */
4070 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4071 ctrl |= E1000_CTRL_VME;
4072 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4073
4074 /* enable VLAN receive filtering */
4075 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4076 rctl |= E1000_RCTL_VFE;
4077 rctl &= ~E1000_RCTL_CFIEN;
4078 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2d7edb92 4079 e1000_update_mng_vlan(adapter);
1da177e4
LT
4080 } else {
4081 /* disable VLAN tag insert/strip */
4082 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4083 ctrl &= ~E1000_CTRL_VME;
4084 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4085
4086 /* disable VLAN filtering */
4087 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4088 rctl &= ~E1000_RCTL_VFE;
4089 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2d7edb92
MC
4090 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4091 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4092 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4093 }
1da177e4
LT
4094 }
4095
4096 e1000_irq_enable(adapter);
4097}
4098
4099static void
4100e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4101{
60490fe0 4102 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 4103 uint32_t vfta, index;
2d7edb92
MC
4104 if((adapter->hw.mng_cookie.status &
4105 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4106 (vid == adapter->mng_vlan_id))
4107 return;
1da177e4
LT
4108 /* add VID to filter table */
4109 index = (vid >> 5) & 0x7F;
4110 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4111 vfta |= (1 << (vid & 0x1F));
4112 e1000_write_vfta(&adapter->hw, index, vfta);
4113}
4114
4115static void
4116e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4117{
60490fe0 4118 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
4119 uint32_t vfta, index;
4120
4121 e1000_irq_disable(adapter);
4122
4123 if(adapter->vlgrp)
4124 adapter->vlgrp->vlan_devices[vid] = NULL;
4125
4126 e1000_irq_enable(adapter);
4127
2d7edb92
MC
4128 if((adapter->hw.mng_cookie.status &
4129 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4130 (vid == adapter->mng_vlan_id))
4131 return;
1da177e4
LT
4132 /* remove VID from filter table */
4133 index = (vid >> 5) & 0x7F;
4134 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4135 vfta &= ~(1 << (vid & 0x1F));
4136 e1000_write_vfta(&adapter->hw, index, vfta);
4137}
4138
4139static void
4140e1000_restore_vlan(struct e1000_adapter *adapter)
4141{
4142 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4143
4144 if(adapter->vlgrp) {
4145 uint16_t vid;
4146 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4147 if(!adapter->vlgrp->vlan_devices[vid])
4148 continue;
4149 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4150 }
4151 }
4152}
4153
4154int
4155e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4156{
4157 adapter->hw.autoneg = 0;
4158
6921368f
MC
4159 /* Fiber NICs only allow 1000 gbps Full duplex */
4160 if((adapter->hw.media_type == e1000_media_type_fiber) &&
4161 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4162 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4163 return -EINVAL;
4164 }
4165
1da177e4
LT
4166 switch(spddplx) {
4167 case SPEED_10 + DUPLEX_HALF:
4168 adapter->hw.forced_speed_duplex = e1000_10_half;
4169 break;
4170 case SPEED_10 + DUPLEX_FULL:
4171 adapter->hw.forced_speed_duplex = e1000_10_full;
4172 break;
4173 case SPEED_100 + DUPLEX_HALF:
4174 adapter->hw.forced_speed_duplex = e1000_100_half;
4175 break;
4176 case SPEED_100 + DUPLEX_FULL:
4177 adapter->hw.forced_speed_duplex = e1000_100_full;
4178 break;
4179 case SPEED_1000 + DUPLEX_FULL:
4180 adapter->hw.autoneg = 1;
4181 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4182 break;
4183 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4184 default:
2648345f 4185 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
1da177e4
LT
4186 return -EINVAL;
4187 }
4188 return 0;
4189}
4190
1da177e4 4191static int
829ca9a3 4192e1000_suspend(struct pci_dev *pdev, pm_message_t state)
1da177e4
LT
4193{
4194 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 4195 struct e1000_adapter *adapter = netdev_priv(netdev);
2d7edb92 4196 uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
1da177e4
LT
4197 uint32_t wufc = adapter->wol;
4198
4199 netif_device_detach(netdev);
4200
4201 if(netif_running(netdev))
4202 e1000_down(adapter);
4203
4204 status = E1000_READ_REG(&adapter->hw, STATUS);
4205 if(status & E1000_STATUS_LU)
4206 wufc &= ~E1000_WUFC_LNKC;
4207
4208 if(wufc) {
4209 e1000_setup_rctl(adapter);
4210 e1000_set_multi(netdev);
4211
4212 /* turn on all-multi mode if wake on multicast is enabled */
4213 if(adapter->wol & E1000_WUFC_MC) {
4214 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4215 rctl |= E1000_RCTL_MPE;
4216 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4217 }
4218
4219 if(adapter->hw.mac_type >= e1000_82540) {
4220 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4221 /* advertise wake from D3Cold */
4222 #define E1000_CTRL_ADVD3WUC 0x00100000
4223 /* phy power management enable */
4224 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4225 ctrl |= E1000_CTRL_ADVD3WUC |
4226 E1000_CTRL_EN_PHY_PWR_MGMT;
4227 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4228 }
4229
4230 if(adapter->hw.media_type == e1000_media_type_fiber ||
4231 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4232 /* keep the laser running in D3 */
4233 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4234 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4235 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4236 }
4237
2d7edb92
MC
4238 /* Allow time for pending master requests to run */
4239 e1000_disable_pciex_master(&adapter->hw);
4240
1da177e4
LT
4241 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4242 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4243 pci_enable_wake(pdev, 3, 1);
4244 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4245 } else {
4246 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4247 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4248 pci_enable_wake(pdev, 3, 0);
4249 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4250 }
4251
4252 pci_save_state(pdev);
4253
4254 if(adapter->hw.mac_type >= e1000_82540 &&
4255 adapter->hw.media_type == e1000_media_type_copper) {
4256 manc = E1000_READ_REG(&adapter->hw, MANC);
4257 if(manc & E1000_MANC_SMBUS_EN) {
4258 manc |= E1000_MANC_ARP_EN;
4259 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4260 pci_enable_wake(pdev, 3, 1);
4261 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4262 }
4263 }
4264
2d7edb92 4265 switch(adapter->hw.mac_type) {
868d5309
MC
4266 case e1000_82571:
4267 case e1000_82572:
4268 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4269 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4270 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4271 break;
2d7edb92
MC
4272 case e1000_82573:
4273 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4274 E1000_WRITE_REG(&adapter->hw, SWSM,
4275 swsm & ~E1000_SWSM_DRV_LOAD);
4276 break;
4277 default:
4278 break;
4279 }
4280
1da177e4 4281 pci_disable_device(pdev);
829ca9a3 4282 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1da177e4
LT
4283
4284 return 0;
4285}
4286
4287#ifdef CONFIG_PM
4288static int
4289e1000_resume(struct pci_dev *pdev)
4290{
4291 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 4292 struct e1000_adapter *adapter = netdev_priv(netdev);
2b02893e 4293 uint32_t manc, ret_val, swsm;
868d5309 4294 uint32_t ctrl_ext;
1da177e4 4295
829ca9a3 4296 pci_set_power_state(pdev, PCI_D0);
1da177e4 4297 pci_restore_state(pdev);
2b02893e 4298 ret_val = pci_enable_device(pdev);
a4cb847d 4299 pci_set_master(pdev);
1da177e4 4300
829ca9a3
PM
4301 pci_enable_wake(pdev, PCI_D3hot, 0);
4302 pci_enable_wake(pdev, PCI_D3cold, 0);
1da177e4
LT
4303
4304 e1000_reset(adapter);
4305 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4306
4307 if(netif_running(netdev))
4308 e1000_up(adapter);
4309
4310 netif_device_attach(netdev);
4311
4312 if(adapter->hw.mac_type >= e1000_82540 &&
4313 adapter->hw.media_type == e1000_media_type_copper) {
4314 manc = E1000_READ_REG(&adapter->hw, MANC);
4315 manc &= ~(E1000_MANC_ARP_EN);
4316 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4317 }
4318
2d7edb92 4319 switch(adapter->hw.mac_type) {
868d5309
MC
4320 case e1000_82571:
4321 case e1000_82572:
4322 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4323 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4324 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4325 break;
2d7edb92
MC
4326 case e1000_82573:
4327 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4328 E1000_WRITE_REG(&adapter->hw, SWSM,
4329 swsm | E1000_SWSM_DRV_LOAD);
4330 break;
4331 default:
4332 break;
4333 }
4334
1da177e4
LT
4335 return 0;
4336}
4337#endif
1da177e4
LT
4338#ifdef CONFIG_NET_POLL_CONTROLLER
4339/*
4340 * Polling 'interrupt' - used by things like netconsole to send skbs
4341 * without having to re-enable interrupts. It's not called while
4342 * the interrupt routine is executing.
4343 */
4344static void
2648345f 4345e1000_netpoll(struct net_device *netdev)
1da177e4 4346{
60490fe0 4347 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
4348 disable_irq(adapter->pdev->irq);
4349 e1000_intr(adapter->pdev->irq, netdev, NULL);
c4cfe567 4350 e1000_clean_tx_irq(adapter, adapter->tx_ring);
1da177e4
LT
4351 enable_irq(adapter->pdev->irq);
4352}
4353#endif
4354
4355/* e1000_main.c */