trivial: fix then -> than typos in comments and documentation
[linux-block.git] / drivers / net / e1000 / e1000_hw.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
0abb6eb1 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
3d41e30a 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
8fc897b0 33
1da177e4
LT
34#include "e1000_hw.h"
35
406874a7
JP
36static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask);
37static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask);
38static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data);
39static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
40static s32 e1000_get_software_semaphore(struct e1000_hw *hw);
35574764
NN
41static void e1000_release_software_semaphore(struct e1000_hw *hw);
42
406874a7
JP
43static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw);
44static s32 e1000_check_downshift(struct e1000_hw *hw);
64798845
JP
45static s32 e1000_check_polarity(struct e1000_hw *hw,
46 e1000_rev_polarity *polarity);
35574764
NN
47static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
48static void e1000_clear_vfta(struct e1000_hw *hw);
406874a7
JP
49static s32 e1000_commit_shadow_ram(struct e1000_hw *hw);
50static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
64798845 51 bool link_up);
406874a7
JP
52static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
53static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
54static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank);
55static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
64798845
JP
56static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
57 u16 *max_length);
406874a7
JP
58static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
59static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
60static s32 e1000_get_software_flag(struct e1000_hw *hw);
61static s32 e1000_ich8_cycle_init(struct e1000_hw *hw);
62static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout);
63static s32 e1000_id_led_init(struct e1000_hw *hw);
64798845
JP
64static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
65 u32 cnf_base_addr,
66 u32 cnf_size);
406874a7 67static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw);
35574764 68static void e1000_init_rx_addrs(struct e1000_hw *hw);
09ae3e88 69static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
c3033b01 70static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
406874a7
JP
71static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
72static s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
64798845
JP
73static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
74 u16 offset, u8 *sum);
75static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw,
76 struct e1000_host_mng_command_header
77 *hdr);
406874a7 78static s32 e1000_mng_write_commit(struct e1000_hw *hw);
64798845
JP
79static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
80 struct e1000_phy_info *phy_info);
81static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
82 struct e1000_phy_info *phy_info);
83static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
84 u16 *data);
85static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
86 u16 *data);
406874a7 87static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
64798845
JP
88static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
89 struct e1000_phy_info *phy_info);
35574764 90static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
406874a7 91static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data);
64798845
JP
92static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index,
93 u8 byte);
406874a7
JP
94static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte);
95static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data);
64798845
JP
96static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
97 u16 *data);
98static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
99 u16 data);
100static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
101 u16 *data);
102static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
103 u16 *data);
35574764 104static void e1000_release_software_flag(struct e1000_hw *hw);
406874a7
JP
105static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
106static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
107static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop);
35574764 108static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
406874a7
JP
109static s32 e1000_wait_autoneg(struct e1000_hw *hw);
110static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
111static s32 e1000_set_phy_type(struct e1000_hw *hw);
1da177e4 112static void e1000_phy_init_script(struct e1000_hw *hw);
406874a7
JP
113static s32 e1000_setup_copper_link(struct e1000_hw *hw);
114static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
115static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
116static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
117static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
118static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
119static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
120static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
64798845 121 u16 count);
406874a7
JP
122static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
123static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
124static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
125 u16 words, u16 *data);
64798845
JP
126static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
127 u16 words, u16 *data);
406874a7
JP
128static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
129static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
130static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
64798845 131static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
406874a7 132static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
64798845 133 u16 phy_data);
406874a7 134static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
64798845 135 u16 *phy_data);
406874a7
JP
136static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
137static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
1da177e4
LT
138static void e1000_release_eeprom(struct e1000_hw *hw);
139static void e1000_standby_eeprom(struct e1000_hw *hw);
406874a7
JP
140static s32 e1000_set_vco_speed(struct e1000_hw *hw);
141static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
142static s32 e1000_set_phy_mode(struct e1000_hw *hw);
143static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer);
144static u8 e1000_calculate_mng_checksum(char *buffer, u32 length);
64798845 145static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex);
406874a7 146static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
78566fec
CL
147static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
148static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
1da177e4
LT
149
150/* IGP cable length table */
151static const
406874a7 152u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
1da177e4
LT
153 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
154 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
155 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
156 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
157 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
158 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
159 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
160 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
161
2d7edb92 162static const
406874a7 163u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
868d5309
MC
164 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
165 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
166 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
167 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
168 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
169 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
170 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
171 104, 109, 114, 118, 121, 124};
2d7edb92 172
78566fec
CL
173static DEFINE_SPINLOCK(e1000_eeprom_lock);
174
1da177e4
LT
175/******************************************************************************
176 * Set the phy type member in the hw struct.
177 *
178 * hw - Struct containing variables accessed by shared code
179 *****************************************************************************/
64798845 180static s32 e1000_set_phy_type(struct e1000_hw *hw)
1da177e4
LT
181{
182 DEBUGFUNC("e1000_set_phy_type");
183
8fc897b0 184 if (hw->mac_type == e1000_undefined)
2d7edb92
MC
185 return -E1000_ERR_PHY_TYPE;
186
8fc897b0 187 switch (hw->phy_id) {
1da177e4
LT
188 case M88E1000_E_PHY_ID:
189 case M88E1000_I_PHY_ID:
190 case M88E1011_I_PHY_ID:
2d7edb92 191 case M88E1111_I_PHY_ID:
1da177e4
LT
192 hw->phy_type = e1000_phy_m88;
193 break;
194 case IGP01E1000_I_PHY_ID:
8fc897b0
AK
195 if (hw->mac_type == e1000_82541 ||
196 hw->mac_type == e1000_82541_rev_2 ||
197 hw->mac_type == e1000_82547 ||
198 hw->mac_type == e1000_82547_rev_2) {
1da177e4
LT
199 hw->phy_type = e1000_phy_igp;
200 break;
201 }
cd94dd0b
AK
202 case IGP03E1000_E_PHY_ID:
203 hw->phy_type = e1000_phy_igp_3;
204 break;
205 case IFE_E_PHY_ID:
206 case IFE_PLUS_E_PHY_ID:
207 case IFE_C_E_PHY_ID:
208 hw->phy_type = e1000_phy_ife;
209 break;
6418ecc6
JK
210 case GG82563_E_PHY_ID:
211 if (hw->mac_type == e1000_80003es2lan) {
212 hw->phy_type = e1000_phy_gg82563;
213 break;
214 }
1da177e4
LT
215 /* Fall Through */
216 default:
217 /* Should never have loaded on this device */
218 hw->phy_type = e1000_phy_undefined;
219 return -E1000_ERR_PHY_TYPE;
220 }
221
222 return E1000_SUCCESS;
223}
224
225/******************************************************************************
226 * IGP phy init script - initializes the GbE PHY
227 *
228 * hw - Struct containing variables accessed by shared code
229 *****************************************************************************/
64798845 230static void e1000_phy_init_script(struct e1000_hw *hw)
1da177e4 231{
406874a7
JP
232 u32 ret_val;
233 u16 phy_saved_data;
1da177e4
LT
234
235 DEBUGFUNC("e1000_phy_init_script");
236
8fc897b0 237 if (hw->phy_init_script) {
f8ec4733 238 msleep(20);
1da177e4
LT
239
240 /* Save off the current value of register 0x2F5B to be restored at
241 * the end of this routine. */
242 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
243
244 /* Disabled the PHY transmitter */
245 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
246
f8ec4733 247 msleep(20);
1da177e4
LT
248
249 e1000_write_phy_reg(hw,0x0000,0x0140);
250
f8ec4733 251 msleep(5);
1da177e4 252
8fc897b0 253 switch (hw->mac_type) {
1da177e4
LT
254 case e1000_82541:
255 case e1000_82547:
256 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
257
258 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
259
260 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
261
262 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
263
264 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
265
266 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
267
268 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
269
270 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
271
272 e1000_write_phy_reg(hw, 0x2010, 0x0008);
273 break;
274
275 case e1000_82541_rev_2:
276 case e1000_82547_rev_2:
277 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
278 break;
279 default:
280 break;
281 }
282
283 e1000_write_phy_reg(hw, 0x0000, 0x3300);
284
f8ec4733 285 msleep(20);
1da177e4
LT
286
287 /* Now enable the transmitter */
288 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
289
8fc897b0 290 if (hw->mac_type == e1000_82547) {
406874a7 291 u16 fused, fine, coarse;
1da177e4
LT
292
293 /* Move to analog registers page */
294 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
295
8fc897b0 296 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
1da177e4
LT
297 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
298
299 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
300 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
301
8fc897b0 302 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
1da177e4
LT
303 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
304 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
8fc897b0 305 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
1da177e4
LT
306 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
307
308 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
309 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
310 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
311
312 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
313 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
314 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
315 }
316 }
317 }
318}
319
320/******************************************************************************
321 * Set the mac type member in the hw struct.
322 *
323 * hw - Struct containing variables accessed by shared code
324 *****************************************************************************/
64798845 325s32 e1000_set_mac_type(struct e1000_hw *hw)
1da177e4 326{
bd2371eb
JG
327 DEBUGFUNC("e1000_set_mac_type");
328
329 switch (hw->device_id) {
330 case E1000_DEV_ID_82542:
331 switch (hw->revision_id) {
332 case E1000_82542_2_0_REV_ID:
333 hw->mac_type = e1000_82542_rev2_0;
334 break;
335 case E1000_82542_2_1_REV_ID:
336 hw->mac_type = e1000_82542_rev2_1;
337 break;
338 default:
339 /* Invalid 82542 revision ID */
340 return -E1000_ERR_MAC_TYPE;
341 }
342 break;
343 case E1000_DEV_ID_82543GC_FIBER:
344 case E1000_DEV_ID_82543GC_COPPER:
345 hw->mac_type = e1000_82543;
346 break;
347 case E1000_DEV_ID_82544EI_COPPER:
348 case E1000_DEV_ID_82544EI_FIBER:
349 case E1000_DEV_ID_82544GC_COPPER:
350 case E1000_DEV_ID_82544GC_LOM:
351 hw->mac_type = e1000_82544;
352 break;
353 case E1000_DEV_ID_82540EM:
354 case E1000_DEV_ID_82540EM_LOM:
355 case E1000_DEV_ID_82540EP:
356 case E1000_DEV_ID_82540EP_LOM:
357 case E1000_DEV_ID_82540EP_LP:
358 hw->mac_type = e1000_82540;
359 break;
360 case E1000_DEV_ID_82545EM_COPPER:
361 case E1000_DEV_ID_82545EM_FIBER:
362 hw->mac_type = e1000_82545;
363 break;
364 case E1000_DEV_ID_82545GM_COPPER:
365 case E1000_DEV_ID_82545GM_FIBER:
366 case E1000_DEV_ID_82545GM_SERDES:
367 hw->mac_type = e1000_82545_rev_3;
368 break;
369 case E1000_DEV_ID_82546EB_COPPER:
370 case E1000_DEV_ID_82546EB_FIBER:
371 case E1000_DEV_ID_82546EB_QUAD_COPPER:
372 hw->mac_type = e1000_82546;
373 break;
374 case E1000_DEV_ID_82546GB_COPPER:
375 case E1000_DEV_ID_82546GB_FIBER:
376 case E1000_DEV_ID_82546GB_SERDES:
377 case E1000_DEV_ID_82546GB_PCIE:
378 case E1000_DEV_ID_82546GB_QUAD_COPPER:
379 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
380 hw->mac_type = e1000_82546_rev_3;
381 break;
382 case E1000_DEV_ID_82541EI:
383 case E1000_DEV_ID_82541EI_MOBILE:
384 case E1000_DEV_ID_82541ER_LOM:
385 hw->mac_type = e1000_82541;
386 break;
387 case E1000_DEV_ID_82541ER:
388 case E1000_DEV_ID_82541GI:
389 case E1000_DEV_ID_82541GI_LF:
390 case E1000_DEV_ID_82541GI_MOBILE:
391 hw->mac_type = e1000_82541_rev_2;
392 break;
393 case E1000_DEV_ID_82547EI:
394 case E1000_DEV_ID_82547EI_MOBILE:
395 hw->mac_type = e1000_82547;
396 break;
397 case E1000_DEV_ID_82547GI:
398 hw->mac_type = e1000_82547_rev_2;
399 break;
400 case E1000_DEV_ID_82571EB_COPPER:
401 case E1000_DEV_ID_82571EB_FIBER:
402 case E1000_DEV_ID_82571EB_SERDES:
ce57a02c
AK
403 case E1000_DEV_ID_82571EB_SERDES_DUAL:
404 case E1000_DEV_ID_82571EB_SERDES_QUAD:
bd2371eb 405 case E1000_DEV_ID_82571EB_QUAD_COPPER:
f4ec7f98 406 case E1000_DEV_ID_82571PT_QUAD_COPPER:
ce57a02c 407 case E1000_DEV_ID_82571EB_QUAD_FIBER:
bd2371eb
JG
408 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
409 hw->mac_type = e1000_82571;
410 break;
411 case E1000_DEV_ID_82572EI_COPPER:
412 case E1000_DEV_ID_82572EI_FIBER:
413 case E1000_DEV_ID_82572EI_SERDES:
414 case E1000_DEV_ID_82572EI:
415 hw->mac_type = e1000_82572;
416 break;
417 case E1000_DEV_ID_82573E:
418 case E1000_DEV_ID_82573E_IAMT:
419 case E1000_DEV_ID_82573L:
420 hw->mac_type = e1000_82573;
421 break;
422 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
423 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
424 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
425 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
426 hw->mac_type = e1000_80003es2lan;
427 break;
428 case E1000_DEV_ID_ICH8_IGP_M_AMT:
429 case E1000_DEV_ID_ICH8_IGP_AMT:
430 case E1000_DEV_ID_ICH8_IGP_C:
431 case E1000_DEV_ID_ICH8_IFE:
432 case E1000_DEV_ID_ICH8_IFE_GT:
433 case E1000_DEV_ID_ICH8_IFE_G:
434 case E1000_DEV_ID_ICH8_IGP_M:
435 hw->mac_type = e1000_ich8lan;
436 break;
437 default:
438 /* Should never have loaded on this device */
439 return -E1000_ERR_MAC_TYPE;
440 }
441
442 switch (hw->mac_type) {
443 case e1000_ich8lan:
c3033b01
JP
444 hw->swfwhw_semaphore_present = true;
445 hw->asf_firmware_present = true;
bd2371eb
JG
446 break;
447 case e1000_80003es2lan:
c3033b01 448 hw->swfw_sync_present = true;
bd2371eb
JG
449 /* fall through */
450 case e1000_82571:
451 case e1000_82572:
452 case e1000_82573:
c3033b01 453 hw->eeprom_semaphore_present = true;
bd2371eb
JG
454 /* fall through */
455 case e1000_82541:
456 case e1000_82547:
457 case e1000_82541_rev_2:
458 case e1000_82547_rev_2:
c3033b01 459 hw->asf_firmware_present = true;
bd2371eb
JG
460 break;
461 default:
462 break;
463 }
464
167fb284
JG
465 /* The 82543 chip does not count tx_carrier_errors properly in
466 * FD mode
467 */
468 if (hw->mac_type == e1000_82543)
c3033b01 469 hw->bad_tx_carr_stats_fd = true;
167fb284 470
0fccd0e9
JG
471 /* capable of receiving management packets to the host */
472 if (hw->mac_type >= e1000_82571)
c3033b01 473 hw->has_manc2h = true;
0fccd0e9 474
bb8e3311
JG
475 /* In rare occasions, ESB2 systems would end up started without
476 * the RX unit being turned on.
477 */
478 if (hw->mac_type == e1000_80003es2lan)
c3033b01 479 hw->rx_needs_kicking = true;
15e376b4
JG
480
481 if (hw->mac_type > e1000_82544)
c3033b01 482 hw->has_smbus = true;
bb8e3311 483
bd2371eb 484 return E1000_SUCCESS;
1da177e4
LT
485}
486
487/*****************************************************************************
488 * Set media type and TBI compatibility.
489 *
490 * hw - Struct containing variables accessed by shared code
491 * **************************************************************************/
64798845 492void e1000_set_media_type(struct e1000_hw *hw)
1da177e4 493{
406874a7 494 u32 status;
1da177e4
LT
495
496 DEBUGFUNC("e1000_set_media_type");
497
8fc897b0 498 if (hw->mac_type != e1000_82543) {
1da177e4 499 /* tbi_compatibility is only valid on 82543 */
c3033b01 500 hw->tbi_compatibility_en = false;
1da177e4
LT
501 }
502
503 switch (hw->device_id) {
504 case E1000_DEV_ID_82545GM_SERDES:
505 case E1000_DEV_ID_82546GB_SERDES:
868d5309 506 case E1000_DEV_ID_82571EB_SERDES:
ce57a02c
AK
507 case E1000_DEV_ID_82571EB_SERDES_DUAL:
508 case E1000_DEV_ID_82571EB_SERDES_QUAD:
868d5309 509 case E1000_DEV_ID_82572EI_SERDES:
6418ecc6 510 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1da177e4
LT
511 hw->media_type = e1000_media_type_internal_serdes;
512 break;
513 default:
3893d547
MC
514 switch (hw->mac_type) {
515 case e1000_82542_rev2_0:
516 case e1000_82542_rev2_1:
517 hw->media_type = e1000_media_type_fiber;
518 break;
cd94dd0b 519 case e1000_ich8lan:
3893d547
MC
520 case e1000_82573:
521 /* The STATUS_TBIMODE bit is reserved or reused for the this
522 * device.
523 */
524 hw->media_type = e1000_media_type_copper;
525 break;
526 default:
1dc32918 527 status = er32(STATUS);
3893d547 528 if (status & E1000_STATUS_TBIMODE) {
1da177e4
LT
529 hw->media_type = e1000_media_type_fiber;
530 /* tbi_compatibility not valid on fiber */
c3033b01 531 hw->tbi_compatibility_en = false;
1da177e4
LT
532 } else {
533 hw->media_type = e1000_media_type_copper;
534 }
3893d547 535 break;
1da177e4
LT
536 }
537 }
538}
539
540/******************************************************************************
541 * Reset the transmit and receive units; mask and clear all interrupts.
542 *
543 * hw - Struct containing variables accessed by shared code
544 *****************************************************************************/
64798845 545s32 e1000_reset_hw(struct e1000_hw *hw)
1da177e4 546{
406874a7
JP
547 u32 ctrl;
548 u32 ctrl_ext;
549 u32 icr;
550 u32 manc;
551 u32 led_ctrl;
552 u32 timeout;
553 u32 extcnf_ctrl;
554 s32 ret_val;
1da177e4
LT
555
556 DEBUGFUNC("e1000_reset_hw");
557
558 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
8fc897b0 559 if (hw->mac_type == e1000_82542_rev2_0) {
1da177e4
LT
560 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
561 e1000_pci_clear_mwi(hw);
562 }
563
8fc897b0 564 if (hw->bus_type == e1000_bus_type_pci_express) {
2d7edb92
MC
565 /* Prevent the PCI-E bus from sticking if there is no TLP connection
566 * on the last TLP read/write transaction when MAC is reset.
567 */
8fc897b0 568 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
2d7edb92
MC
569 DEBUGOUT("PCI-E Master disable polling has failed.\n");
570 }
571 }
572
1da177e4
LT
573 /* Clear interrupt mask to stop board from generating interrupts */
574 DEBUGOUT("Masking off all interrupts\n");
1dc32918 575 ew32(IMC, 0xffffffff);
1da177e4
LT
576
577 /* Disable the Transmit and Receive units. Then delay to allow
578 * any pending transactions to complete before we hit the MAC with
579 * the global reset.
580 */
1dc32918
JP
581 ew32(RCTL, 0);
582 ew32(TCTL, E1000_TCTL_PSP);
583 E1000_WRITE_FLUSH();
1da177e4
LT
584
585 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
c3033b01 586 hw->tbi_compatibility_on = false;
1da177e4
LT
587
588 /* Delay to allow any outstanding PCI transactions to complete before
589 * resetting the device
590 */
f8ec4733 591 msleep(10);
1da177e4 592
1dc32918 593 ctrl = er32(CTRL);
1da177e4
LT
594
595 /* Must reset the PHY before resetting the MAC */
8fc897b0 596 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1dc32918 597 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
f8ec4733 598 msleep(5);
1da177e4
LT
599 }
600
2d7edb92
MC
601 /* Must acquire the MDIO ownership before MAC reset.
602 * Ownership defaults to firmware after a reset. */
8fc897b0 603 if (hw->mac_type == e1000_82573) {
2d7edb92
MC
604 timeout = 10;
605
1dc32918 606 extcnf_ctrl = er32(EXTCNF_CTRL);
2d7edb92
MC
607 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
608
609 do {
1dc32918
JP
610 ew32(EXTCNF_CTRL, extcnf_ctrl);
611 extcnf_ctrl = er32(EXTCNF_CTRL);
2d7edb92 612
8fc897b0 613 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
2d7edb92
MC
614 break;
615 else
616 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
617
f8ec4733 618 msleep(2);
2d7edb92 619 timeout--;
8fc897b0 620 } while (timeout);
2d7edb92
MC
621 }
622
cd94dd0b
AK
623 /* Workaround for ICH8 bit corruption issue in FIFO memory */
624 if (hw->mac_type == e1000_ich8lan) {
625 /* Set Tx and Rx buffer allocation to 8k apiece. */
1dc32918 626 ew32(PBA, E1000_PBA_8K);
cd94dd0b 627 /* Set Packet Buffer Size to 16k. */
1dc32918 628 ew32(PBS, E1000_PBS_16K);
cd94dd0b
AK
629 }
630
1da177e4
LT
631 /* Issue a global reset to the MAC. This will reset the chip's
632 * transmit, receive, DMA, and link units. It will not effect
633 * the current PCI configuration. The global reset bit is self-
634 * clearing, and should clear within a microsecond.
635 */
636 DEBUGOUT("Issuing a global reset to MAC\n");
637
8fc897b0 638 switch (hw->mac_type) {
1da177e4
LT
639 case e1000_82544:
640 case e1000_82540:
641 case e1000_82545:
642 case e1000_82546:
643 case e1000_82541:
644 case e1000_82541_rev_2:
645 /* These controllers can't ack the 64-bit write when issuing the
646 * reset, so use IO-mapping as a workaround to issue the reset */
647 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
648 break;
649 case e1000_82545_rev_3:
650 case e1000_82546_rev_3:
651 /* Reset is performed on a shadow of the control register */
1dc32918 652 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
1da177e4 653 break;
cd94dd0b
AK
654 case e1000_ich8lan:
655 if (!hw->phy_reset_disable &&
656 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
657 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
658 * at the same time to make sure the interface between
659 * MAC and the external PHY is reset.
660 */
661 ctrl |= E1000_CTRL_PHY_RST;
662 }
663
664 e1000_get_software_flag(hw);
1dc32918 665 ew32(CTRL, (ctrl | E1000_CTRL_RST));
f8ec4733 666 msleep(5);
cd94dd0b 667 break;
1da177e4 668 default:
1dc32918 669 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1da177e4
LT
670 break;
671 }
672
673 /* After MAC reset, force reload of EEPROM to restore power-on settings to
674 * device. Later controllers reload the EEPROM automatically, so just wait
675 * for reload to complete.
676 */
8fc897b0 677 switch (hw->mac_type) {
1da177e4
LT
678 case e1000_82542_rev2_0:
679 case e1000_82542_rev2_1:
680 case e1000_82543:
681 case e1000_82544:
682 /* Wait for reset to complete */
683 udelay(10);
1dc32918 684 ctrl_ext = er32(CTRL_EXT);
1da177e4 685 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1dc32918
JP
686 ew32(CTRL_EXT, ctrl_ext);
687 E1000_WRITE_FLUSH();
1da177e4 688 /* Wait for EEPROM reload */
f8ec4733 689 msleep(2);
1da177e4
LT
690 break;
691 case e1000_82541:
692 case e1000_82541_rev_2:
693 case e1000_82547:
694 case e1000_82547_rev_2:
695 /* Wait for EEPROM reload */
f8ec4733 696 msleep(20);
1da177e4 697 break;
2d7edb92 698 case e1000_82573:
c3033b01 699 if (!e1000_is_onboard_nvm_eeprom(hw)) {
fd803241 700 udelay(10);
1dc32918 701 ctrl_ext = er32(CTRL_EXT);
fd803241 702 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1dc32918
JP
703 ew32(CTRL_EXT, ctrl_ext);
704 E1000_WRITE_FLUSH();
fd803241 705 }
2d7edb92 706 /* fall through */
2a88c173
JK
707 default:
708 /* Auto read done will delay 5ms or poll based on mac type */
2d7edb92 709 ret_val = e1000_get_auto_rd_done(hw);
8fc897b0 710 if (ret_val)
2d7edb92
MC
711 return ret_val;
712 break;
1da177e4
LT
713 }
714
715 /* Disable HW ARPs on ASF enabled adapters */
8fc897b0 716 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
1dc32918 717 manc = er32(MANC);
1da177e4 718 manc &= ~(E1000_MANC_ARP_EN);
1dc32918 719 ew32(MANC, manc);
1da177e4
LT
720 }
721
8fc897b0 722 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1da177e4
LT
723 e1000_phy_init_script(hw);
724
725 /* Configure activity LED after PHY reset */
1dc32918 726 led_ctrl = er32(LEDCTL);
1da177e4
LT
727 led_ctrl &= IGP_ACTIVITY_LED_MASK;
728 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1dc32918 729 ew32(LEDCTL, led_ctrl);
1da177e4
LT
730 }
731
732 /* Clear interrupt mask to stop board from generating interrupts */
733 DEBUGOUT("Masking off all interrupts\n");
1dc32918 734 ew32(IMC, 0xffffffff);
1da177e4
LT
735
736 /* Clear any pending interrupt events. */
1dc32918 737 icr = er32(ICR);
1da177e4
LT
738
739 /* If MWI was previously enabled, reenable it. */
8fc897b0 740 if (hw->mac_type == e1000_82542_rev2_0) {
f8ec4733 741 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
1da177e4
LT
742 e1000_pci_set_mwi(hw);
743 }
744
cd94dd0b 745 if (hw->mac_type == e1000_ich8lan) {
1dc32918 746 u32 kab = er32(KABGTXD);
cd94dd0b 747 kab |= E1000_KABGTXD_BGSQLBIAS;
1dc32918 748 ew32(KABGTXD, kab);
cd94dd0b
AK
749 }
750
1da177e4
LT
751 return E1000_SUCCESS;
752}
753
09ae3e88
JK
754/******************************************************************************
755 *
756 * Initialize a number of hardware-dependent bits
757 *
758 * hw: Struct containing variables accessed by shared code
759 *
760 * This function contains hardware limitation workarounds for PCI-E adapters
761 *
762 *****************************************************************************/
64798845 763static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
09ae3e88
JK
764{
765 if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
766 /* Settings common to all PCI-express silicon */
406874a7
JP
767 u32 reg_ctrl, reg_ctrl_ext;
768 u32 reg_tarc0, reg_tarc1;
769 u32 reg_tctl;
770 u32 reg_txdctl, reg_txdctl1;
09ae3e88
JK
771
772 /* link autonegotiation/sync workarounds */
1dc32918 773 reg_tarc0 = er32(TARC0);
09ae3e88
JK
774 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
775
776 /* Enable not-done TX descriptor counting */
1dc32918 777 reg_txdctl = er32(TXDCTL);
09ae3e88 778 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1dc32918
JP
779 ew32(TXDCTL, reg_txdctl);
780 reg_txdctl1 = er32(TXDCTL1);
09ae3e88 781 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1dc32918 782 ew32(TXDCTL1, reg_txdctl1);
09ae3e88
JK
783
784 switch (hw->mac_type) {
785 case e1000_82571:
786 case e1000_82572:
787 /* Clear PHY TX compatible mode bits */
1dc32918 788 reg_tarc1 = er32(TARC1);
09ae3e88
JK
789 reg_tarc1 &= ~((1 << 30)|(1 << 29));
790
791 /* link autonegotiation/sync workarounds */
792 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
793
794 /* TX ring control fixes */
795 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
796
797 /* Multiple read bit is reversed polarity */
1dc32918 798 reg_tctl = er32(TCTL);
09ae3e88
JK
799 if (reg_tctl & E1000_TCTL_MULR)
800 reg_tarc1 &= ~(1 << 28);
801 else
802 reg_tarc1 |= (1 << 28);
803
1dc32918 804 ew32(TARC1, reg_tarc1);
09ae3e88
JK
805 break;
806 case e1000_82573:
1dc32918 807 reg_ctrl_ext = er32(CTRL_EXT);
09ae3e88
JK
808 reg_ctrl_ext &= ~(1 << 23);
809 reg_ctrl_ext |= (1 << 22);
810
811 /* TX byte count fix */
1dc32918 812 reg_ctrl = er32(CTRL);
09ae3e88
JK
813 reg_ctrl &= ~(1 << 29);
814
1dc32918
JP
815 ew32(CTRL_EXT, reg_ctrl_ext);
816 ew32(CTRL, reg_ctrl);
09ae3e88
JK
817 break;
818 case e1000_80003es2lan:
819 /* improve small packet performace for fiber/serdes */
820 if ((hw->media_type == e1000_media_type_fiber) ||
821 (hw->media_type == e1000_media_type_internal_serdes)) {
822 reg_tarc0 &= ~(1 << 20);
823 }
824
825 /* Multiple read bit is reversed polarity */
1dc32918
JP
826 reg_tctl = er32(TCTL);
827 reg_tarc1 = er32(TARC1);
09ae3e88
JK
828 if (reg_tctl & E1000_TCTL_MULR)
829 reg_tarc1 &= ~(1 << 28);
830 else
831 reg_tarc1 |= (1 << 28);
832
1dc32918 833 ew32(TARC1, reg_tarc1);
09ae3e88
JK
834 break;
835 case e1000_ich8lan:
836 /* Reduce concurrent DMA requests to 3 from 4 */
837 if ((hw->revision_id < 3) ||
838 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
839 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
840 reg_tarc0 |= ((1 << 29)|(1 << 28));
841
1dc32918 842 reg_ctrl_ext = er32(CTRL_EXT);
09ae3e88 843 reg_ctrl_ext |= (1 << 22);
1dc32918 844 ew32(CTRL_EXT, reg_ctrl_ext);
09ae3e88
JK
845
846 /* workaround TX hang with TSO=on */
847 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
848
849 /* Multiple read bit is reversed polarity */
1dc32918
JP
850 reg_tctl = er32(TCTL);
851 reg_tarc1 = er32(TARC1);
09ae3e88
JK
852 if (reg_tctl & E1000_TCTL_MULR)
853 reg_tarc1 &= ~(1 << 28);
854 else
855 reg_tarc1 |= (1 << 28);
856
857 /* workaround TX hang with TSO=on */
858 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
859
1dc32918 860 ew32(TARC1, reg_tarc1);
09ae3e88
JK
861 break;
862 default:
863 break;
864 }
865
1dc32918 866 ew32(TARC0, reg_tarc0);
09ae3e88
JK
867 }
868}
869
1da177e4
LT
870/******************************************************************************
871 * Performs basic configuration of the adapter.
872 *
873 * hw - Struct containing variables accessed by shared code
874 *
875 * Assumes that the controller has previously been reset and is in a
876 * post-reset uninitialized state. Initializes the receive address registers,
877 * multicast table, and VLAN filter table. Calls routines to setup link
878 * configuration and flow control settings. Clears all on-chip counters. Leaves
879 * the transmit and receive units disabled and uninitialized.
880 *****************************************************************************/
64798845 881s32 e1000_init_hw(struct e1000_hw *hw)
1da177e4 882{
406874a7
JP
883 u32 ctrl;
884 u32 i;
885 s32 ret_val;
886 u32 mta_size;
887 u32 reg_data;
888 u32 ctrl_ext;
2d7edb92 889
1da177e4
LT
890 DEBUGFUNC("e1000_init_hw");
891
7820d428 892 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
09ae3e88
JK
893 if ((hw->mac_type == e1000_ich8lan) &&
894 ((hw->revision_id < 3) ||
895 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
896 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1dc32918 897 reg_data = er32(STATUS);
09ae3e88 898 reg_data &= ~0x80000000;
1dc32918 899 ew32(STATUS, reg_data);
7820d428
JK
900 }
901
1da177e4
LT
902 /* Initialize Identification LED */
903 ret_val = e1000_id_led_init(hw);
8fc897b0 904 if (ret_val) {
1da177e4
LT
905 DEBUGOUT("Error Initializing Identification LED\n");
906 return ret_val;
907 }
908
909 /* Set the media type and TBI compatibility */
910 e1000_set_media_type(hw);
911
09ae3e88
JK
912 /* Must be called after e1000_set_media_type because media_type is used */
913 e1000_initialize_hardware_bits(hw);
914
1da177e4
LT
915 /* Disabling VLAN filtering. */
916 DEBUGOUT("Initializing the IEEE VLAN\n");
cd94dd0b
AK
917 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
918 if (hw->mac_type != e1000_ich8lan) {
919 if (hw->mac_type < e1000_82545_rev_3)
1dc32918 920 ew32(VET, 0);
cd94dd0b
AK
921 e1000_clear_vfta(hw);
922 }
1da177e4
LT
923
924 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
8fc897b0 925 if (hw->mac_type == e1000_82542_rev2_0) {
1da177e4
LT
926 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
927 e1000_pci_clear_mwi(hw);
1dc32918
JP
928 ew32(RCTL, E1000_RCTL_RST);
929 E1000_WRITE_FLUSH();
f8ec4733 930 msleep(5);
1da177e4
LT
931 }
932
933 /* Setup the receive address. This involves initializing all of the Receive
934 * Address Registers (RARs 0 - 15).
935 */
936 e1000_init_rx_addrs(hw);
937
938 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
8fc897b0 939 if (hw->mac_type == e1000_82542_rev2_0) {
1dc32918
JP
940 ew32(RCTL, 0);
941 E1000_WRITE_FLUSH();
f8ec4733
JG
942 msleep(1);
943 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
1da177e4
LT
944 e1000_pci_set_mwi(hw);
945 }
946
947 /* Zero out the Multicast HASH table */
948 DEBUGOUT("Zeroing the MTA\n");
2d7edb92 949 mta_size = E1000_MC_TBL_SIZE;
cd94dd0b
AK
950 if (hw->mac_type == e1000_ich8lan)
951 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
8fc897b0 952 for (i = 0; i < mta_size; i++) {
1da177e4 953 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
4ca213a6
AK
954 /* use write flush to prevent Memory Write Block (MWB) from
955 * occuring when accessing our register space */
1dc32918 956 E1000_WRITE_FLUSH();
4ca213a6 957 }
1da177e4
LT
958
959 /* Set the PCI priority bit correctly in the CTRL register. This
960 * determines if the adapter gives priority to receives, or if it
2d7edb92
MC
961 * gives equal priority to transmits and receives. Valid only on
962 * 82542 and 82543 silicon.
1da177e4 963 */
8fc897b0 964 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1dc32918
JP
965 ctrl = er32(CTRL);
966 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
1da177e4
LT
967 }
968
8fc897b0 969 switch (hw->mac_type) {
1da177e4
LT
970 case e1000_82545_rev_3:
971 case e1000_82546_rev_3:
972 break;
973 default:
974 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
007755eb
PO
975 if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
976 e1000_pcix_set_mmrbc(hw, 2048);
977 break;
1da177e4
LT
978 }
979
cd94dd0b
AK
980 /* More time needed for PHY to initialize */
981 if (hw->mac_type == e1000_ich8lan)
f8ec4733 982 msleep(15);
cd94dd0b 983
1da177e4
LT
984 /* Call a subroutine to configure the link and setup flow control. */
985 ret_val = e1000_setup_link(hw);
986
987 /* Set the transmit descriptor write-back policy */
8fc897b0 988 if (hw->mac_type > e1000_82544) {
1dc32918 989 ctrl = er32(TXDCTL);
1da177e4 990 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
1dc32918 991 ew32(TXDCTL, ctrl);
1da177e4
LT
992 }
993
2d7edb92 994 if (hw->mac_type == e1000_82573) {
76c224bc 995 e1000_enable_tx_pkt_filtering(hw);
2d7edb92
MC
996 }
997
868d5309
MC
998 switch (hw->mac_type) {
999 default:
1000 break;
6418ecc6
JK
1001 case e1000_80003es2lan:
1002 /* Enable retransmit on late collisions */
1dc32918 1003 reg_data = er32(TCTL);
6418ecc6 1004 reg_data |= E1000_TCTL_RTLC;
1dc32918 1005 ew32(TCTL, reg_data);
6418ecc6
JK
1006
1007 /* Configure Gigabit Carry Extend Padding */
1dc32918 1008 reg_data = er32(TCTL_EXT);
6418ecc6
JK
1009 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1010 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1dc32918 1011 ew32(TCTL_EXT, reg_data);
6418ecc6
JK
1012
1013 /* Configure Transmit Inter-Packet Gap */
1dc32918 1014 reg_data = er32(TIPG);
6418ecc6
JK
1015 reg_data &= ~E1000_TIPG_IPGT_MASK;
1016 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1dc32918 1017 ew32(TIPG, reg_data);
6418ecc6
JK
1018
1019 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1020 reg_data &= ~0x00100000;
1021 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1022 /* Fall through */
868d5309 1023 case e1000_82571:
a7990ba6 1024 case e1000_82572:
cd94dd0b 1025 case e1000_ich8lan:
1dc32918 1026 ctrl = er32(TXDCTL1);
6418ecc6 1027 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
1dc32918 1028 ew32(TXDCTL1, ctrl);
868d5309
MC
1029 break;
1030 }
1031
1032
868d5309 1033 if (hw->mac_type == e1000_82573) {
1dc32918 1034 u32 gcr = er32(GCR);
868d5309 1035 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1dc32918 1036 ew32(GCR, gcr);
868d5309 1037 }
2d7edb92 1038
1da177e4
LT
1039 /* Clear all of the statistics registers (clear on read). It is
1040 * important that we do this after we have tried to establish link
1041 * because the symbol error count will increment wildly if there
1042 * is no link.
1043 */
1044 e1000_clear_hw_cntrs(hw);
1045
cd94dd0b
AK
1046 /* ICH8 No-snoop bits are opposite polarity.
1047 * Set to snoop by default after reset. */
1048 if (hw->mac_type == e1000_ich8lan)
1049 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1050
b7ee49db
JK
1051 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1052 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1dc32918 1053 ctrl_ext = er32(CTRL_EXT);
b7ee49db
JK
1054 /* Relaxed ordering must be disabled to avoid a parity
1055 * error crash in a PCI slot. */
1056 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1dc32918 1057 ew32(CTRL_EXT, ctrl_ext);
b7ee49db
JK
1058 }
1059
1da177e4
LT
1060 return ret_val;
1061}
1062
1063/******************************************************************************
1064 * Adjust SERDES output amplitude based on EEPROM setting.
1065 *
1066 * hw - Struct containing variables accessed by shared code.
1067 *****************************************************************************/
64798845 1068static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
1da177e4 1069{
406874a7
JP
1070 u16 eeprom_data;
1071 s32 ret_val;
1da177e4
LT
1072
1073 DEBUGFUNC("e1000_adjust_serdes_amplitude");
1074
8fc897b0 1075 if (hw->media_type != e1000_media_type_internal_serdes)
1da177e4
LT
1076 return E1000_SUCCESS;
1077
8fc897b0 1078 switch (hw->mac_type) {
1da177e4
LT
1079 case e1000_82545_rev_3:
1080 case e1000_82546_rev_3:
1081 break;
1082 default:
1083 return E1000_SUCCESS;
1084 }
1085
1086 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
1087 if (ret_val) {
1088 return ret_val;
1089 }
1090
8fc897b0 1091 if (eeprom_data != EEPROM_RESERVED_WORD) {
1da177e4 1092 /* Adjust SERDES output amplitude only. */
76c224bc 1093 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
1da177e4 1094 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
8fc897b0 1095 if (ret_val)
1da177e4
LT
1096 return ret_val;
1097 }
1098
1099 return E1000_SUCCESS;
1100}
1101
1102/******************************************************************************
1103 * Configures flow control and link settings.
1104 *
1105 * hw - Struct containing variables accessed by shared code
1106 *
1107 * Determines which flow control settings to use. Calls the apropriate media-
1108 * specific link configuration function. Configures the flow control settings.
1109 * Assuming the adapter has a valid link partner, a valid link should be
1110 * established. Assumes the hardware has previously been reset and the
1111 * transmitter and receiver are not enabled.
1112 *****************************************************************************/
64798845 1113s32 e1000_setup_link(struct e1000_hw *hw)
1da177e4 1114{
406874a7
JP
1115 u32 ctrl_ext;
1116 s32 ret_val;
1117 u16 eeprom_data;
1da177e4
LT
1118
1119 DEBUGFUNC("e1000_setup_link");
1120
526f9957
JK
1121 /* In the case of the phy reset being blocked, we already have a link.
1122 * We do not have to set it up again. */
1123 if (e1000_check_phy_reset_block(hw))
1124 return E1000_SUCCESS;
1125
1da177e4
LT
1126 /* Read and store word 0x0F of the EEPROM. This word contains bits
1127 * that determine the hardware's default PAUSE (flow control) mode,
1128 * a bit that determines whether the HW defaults to enabling or
1129 * disabling auto-negotiation, and the direction of the
1130 * SW defined pins. If there is no SW over-ride of the flow
1131 * control setting, then the variable hw->fc will
1132 * be initialized based on a value in the EEPROM.
1133 */
11241b10 1134 if (hw->fc == E1000_FC_DEFAULT) {
fd803241 1135 switch (hw->mac_type) {
cd94dd0b 1136 case e1000_ich8lan:
fd803241 1137 case e1000_82573:
11241b10 1138 hw->fc = E1000_FC_FULL;
fd803241
JK
1139 break;
1140 default:
1141 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1142 1, &eeprom_data);
1143 if (ret_val) {
1144 DEBUGOUT("EEPROM Read Error\n");
1145 return -E1000_ERR_EEPROM;
1146 }
1147 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
11241b10 1148 hw->fc = E1000_FC_NONE;
fd803241
JK
1149 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1150 EEPROM_WORD0F_ASM_DIR)
11241b10 1151 hw->fc = E1000_FC_TX_PAUSE;
fd803241 1152 else
11241b10 1153 hw->fc = E1000_FC_FULL;
fd803241
JK
1154 break;
1155 }
1da177e4
LT
1156 }
1157
1158 /* We want to save off the original Flow Control configuration just
1159 * in case we get disconnected and then reconnected into a different
1160 * hub or switch with different Flow Control capabilities.
1161 */
8fc897b0 1162 if (hw->mac_type == e1000_82542_rev2_0)
11241b10 1163 hw->fc &= (~E1000_FC_TX_PAUSE);
1da177e4 1164
8fc897b0 1165 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
11241b10 1166 hw->fc &= (~E1000_FC_RX_PAUSE);
1da177e4
LT
1167
1168 hw->original_fc = hw->fc;
1169
1170 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1171
1172 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1173 * polarity value for the SW controlled pins, and setup the
1174 * Extended Device Control reg with that info.
1175 * This is needed because one of the SW controlled pins is used for
1176 * signal detection. So this should be done before e1000_setup_pcs_link()
1177 * or e1000_phy_setup() is called.
1178 */
497fce5e 1179 if (hw->mac_type == e1000_82543) {
8fc897b0
AK
1180 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1181 1, &eeprom_data);
1182 if (ret_val) {
1183 DEBUGOUT("EEPROM Read Error\n");
1184 return -E1000_ERR_EEPROM;
1185 }
1da177e4
LT
1186 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1187 SWDPIO__EXT_SHIFT);
1dc32918 1188 ew32(CTRL_EXT, ctrl_ext);
1da177e4
LT
1189 }
1190
1191 /* Call the necessary subroutine to configure the link. */
1192 ret_val = (hw->media_type == e1000_media_type_copper) ?
1193 e1000_setup_copper_link(hw) :
1194 e1000_setup_fiber_serdes_link(hw);
1195
1196 /* Initialize the flow control address, type, and PAUSE timer
1197 * registers to their default values. This is done even if flow
1198 * control is disabled, because it does not hurt anything to
1199 * initialize these registers.
1200 */
1201 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1202
cd94dd0b
AK
1203 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1204 if (hw->mac_type != e1000_ich8lan) {
1dc32918
JP
1205 ew32(FCT, FLOW_CONTROL_TYPE);
1206 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1207 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
cd94dd0b 1208 }
2d7edb92 1209
1dc32918 1210 ew32(FCTTV, hw->fc_pause_time);
1da177e4
LT
1211
1212 /* Set the flow control receive threshold registers. Normally,
1213 * these registers will be set to a default threshold that may be
1214 * adjusted later by the driver's runtime code. However, if the
1215 * ability to transmit pause frames in not enabled, then these
1216 * registers will be set to 0.
1217 */
11241b10 1218 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
1dc32918
JP
1219 ew32(FCRTL, 0);
1220 ew32(FCRTH, 0);
1da177e4
LT
1221 } else {
1222 /* We need to set up the Receive Threshold high and low water marks
1223 * as well as (optionally) enabling the transmission of XON frames.
1224 */
8fc897b0 1225 if (hw->fc_send_xon) {
1dc32918
JP
1226 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1227 ew32(FCRTH, hw->fc_high_water);
1da177e4 1228 } else {
1dc32918
JP
1229 ew32(FCRTL, hw->fc_low_water);
1230 ew32(FCRTH, hw->fc_high_water);
1da177e4
LT
1231 }
1232 }
1233 return ret_val;
1234}
1235
1236/******************************************************************************
1237 * Sets up link for a fiber based or serdes based adapter
1238 *
1239 * hw - Struct containing variables accessed by shared code
1240 *
1241 * Manipulates Physical Coding Sublayer functions in order to configure
1242 * link. Assumes the hardware has been previously reset and the transmitter
1243 * and receiver are not enabled.
1244 *****************************************************************************/
64798845 1245static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1da177e4 1246{
406874a7
JP
1247 u32 ctrl;
1248 u32 status;
1249 u32 txcw = 0;
1250 u32 i;
1251 u32 signal = 0;
1252 s32 ret_val;
1da177e4
LT
1253
1254 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1255
868d5309
MC
1256 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1257 * until explicitly turned off or a power cycle is performed. A read to
1258 * the register does not indicate its status. Therefore, we ensure
1259 * loopback mode is disabled during initialization.
1260 */
1261 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1dc32918 1262 ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK);
868d5309 1263
09ae3e88 1264 /* On adapters with a MAC newer than 82544, SWDP 1 will be
1da177e4
LT
1265 * set when the optics detect a signal. On older adapters, it will be
1266 * cleared when there is a signal. This applies to fiber media only.
09ae3e88
JK
1267 * If we're on serdes media, adjust the output amplitude to value
1268 * set in the EEPROM.
1da177e4 1269 */
1dc32918 1270 ctrl = er32(CTRL);
8fc897b0 1271 if (hw->media_type == e1000_media_type_fiber)
1da177e4
LT
1272 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1273
1274 ret_val = e1000_adjust_serdes_amplitude(hw);
8fc897b0 1275 if (ret_val)
1da177e4
LT
1276 return ret_val;
1277
1278 /* Take the link out of reset */
1279 ctrl &= ~(E1000_CTRL_LRST);
1280
1281 /* Adjust VCO speed to improve BER performance */
1282 ret_val = e1000_set_vco_speed(hw);
8fc897b0 1283 if (ret_val)
1da177e4
LT
1284 return ret_val;
1285
1286 e1000_config_collision_dist(hw);
1287
1288 /* Check for a software override of the flow control settings, and setup
1289 * the device accordingly. If auto-negotiation is enabled, then software
1290 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1291 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1292 * auto-negotiation is disabled, then software will have to manually
1293 * configure the two flow control enable bits in the CTRL register.
1294 *
1295 * The possible values of the "fc" parameter are:
1296 * 0: Flow control is completely disabled
1297 * 1: Rx flow control is enabled (we can receive pause frames, but
1298 * not send pause frames).
1299 * 2: Tx flow control is enabled (we can send pause frames but we do
1300 * not support receiving pause frames).
1301 * 3: Both Rx and TX flow control (symmetric) are enabled.
1302 */
1303 switch (hw->fc) {
11241b10 1304 case E1000_FC_NONE:
1da177e4
LT
1305 /* Flow control is completely disabled by a software over-ride. */
1306 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1307 break;
11241b10 1308 case E1000_FC_RX_PAUSE:
1da177e4
LT
1309 /* RX Flow control is enabled and TX Flow control is disabled by a
1310 * software over-ride. Since there really isn't a way to advertise
1311 * that we are capable of RX Pause ONLY, we will advertise that we
1312 * support both symmetric and asymmetric RX PAUSE. Later, we will
1313 * disable the adapter's ability to send PAUSE frames.
1314 */
1315 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1316 break;
11241b10 1317 case E1000_FC_TX_PAUSE:
1da177e4
LT
1318 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1319 * software over-ride.
1320 */
1321 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1322 break;
11241b10 1323 case E1000_FC_FULL:
1da177e4
LT
1324 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1325 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1326 break;
1327 default:
1328 DEBUGOUT("Flow control param set incorrectly\n");
1329 return -E1000_ERR_CONFIG;
1330 break;
1331 }
1332
1333 /* Since auto-negotiation is enabled, take the link out of reset (the link
1334 * will be in reset, because we previously reset the chip). This will
1335 * restart auto-negotiation. If auto-neogtiation is successful then the
1336 * link-up status bit will be set and the flow control enable bits (RFCE
1337 * and TFCE) will be set according to their negotiated value.
1338 */
1339 DEBUGOUT("Auto-negotiation enabled\n");
1340
1dc32918
JP
1341 ew32(TXCW, txcw);
1342 ew32(CTRL, ctrl);
1343 E1000_WRITE_FLUSH();
1da177e4
LT
1344
1345 hw->txcw = txcw;
f8ec4733 1346 msleep(1);
1da177e4
LT
1347
1348 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1349 * indication in the Device Status Register. Time-out if a link isn't
1350 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1351 * less than 500 milliseconds even if the other end is doing it in SW).
1352 * For internal serdes, we just assume a signal is present, then poll.
1353 */
8fc897b0 1354 if (hw->media_type == e1000_media_type_internal_serdes ||
1dc32918 1355 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1da177e4 1356 DEBUGOUT("Looking for Link\n");
8fc897b0 1357 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
f8ec4733 1358 msleep(10);
1dc32918 1359 status = er32(STATUS);
8fc897b0 1360 if (status & E1000_STATUS_LU) break;
1da177e4 1361 }
8fc897b0 1362 if (i == (LINK_UP_TIMEOUT / 10)) {
1da177e4
LT
1363 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1364 hw->autoneg_failed = 1;
1365 /* AutoNeg failed to achieve a link, so we'll call
1366 * e1000_check_for_link. This routine will force the link up if
1367 * we detect a signal. This will allow us to communicate with
1368 * non-autonegotiating link partners.
1369 */
1370 ret_val = e1000_check_for_link(hw);
8fc897b0 1371 if (ret_val) {
1da177e4
LT
1372 DEBUGOUT("Error while checking for link\n");
1373 return ret_val;
1374 }
1375 hw->autoneg_failed = 0;
1376 } else {
1377 hw->autoneg_failed = 0;
1378 DEBUGOUT("Valid Link Found\n");
1379 }
1380 } else {
1381 DEBUGOUT("No Signal Detected\n");
1382 }
1383 return E1000_SUCCESS;
1384}
1385
1386/******************************************************************************
2d7edb92 1387* Make sure we have a valid PHY and change PHY mode before link setup.
1da177e4
LT
1388*
1389* hw - Struct containing variables accessed by shared code
1390******************************************************************************/
64798845 1391static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1da177e4 1392{
406874a7
JP
1393 u32 ctrl;
1394 s32 ret_val;
1395 u16 phy_data;
1da177e4 1396
2d7edb92 1397 DEBUGFUNC("e1000_copper_link_preconfig");
1da177e4 1398
1dc32918 1399 ctrl = er32(CTRL);
1da177e4
LT
1400 /* With 82543, we need to force speed and duplex on the MAC equal to what
1401 * the PHY speed and duplex configuration is. In addition, we need to
1402 * perform a hardware reset on the PHY to take it out of reset.
1403 */
8fc897b0 1404 if (hw->mac_type > e1000_82543) {
1da177e4
LT
1405 ctrl |= E1000_CTRL_SLU;
1406 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1dc32918 1407 ew32(CTRL, ctrl);
1da177e4
LT
1408 } else {
1409 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1dc32918 1410 ew32(CTRL, ctrl);
2d7edb92 1411 ret_val = e1000_phy_hw_reset(hw);
8fc897b0 1412 if (ret_val)
2d7edb92 1413 return ret_val;
1da177e4
LT
1414 }
1415
1416 /* Make sure we have a valid PHY */
1417 ret_val = e1000_detect_gig_phy(hw);
8fc897b0 1418 if (ret_val) {
1da177e4
LT
1419 DEBUGOUT("Error, did not detect valid phy.\n");
1420 return ret_val;
1421 }
1422 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1423
1424 /* Set PHY to class A mode (if necessary) */
1425 ret_val = e1000_set_phy_mode(hw);
8fc897b0 1426 if (ret_val)
1da177e4
LT
1427 return ret_val;
1428
8fc897b0 1429 if ((hw->mac_type == e1000_82545_rev_3) ||
1da177e4
LT
1430 (hw->mac_type == e1000_82546_rev_3)) {
1431 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1432 phy_data |= 0x00000008;
1433 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1434 }
1435
8fc897b0
AK
1436 if (hw->mac_type <= e1000_82543 ||
1437 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1438 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
c3033b01 1439 hw->phy_reset_disable = false;
1da177e4 1440
2d7edb92
MC
1441 return E1000_SUCCESS;
1442}
1da177e4 1443
1da177e4 1444
2d7edb92
MC
1445/********************************************************************
1446* Copper link setup for e1000_phy_igp series.
1447*
1448* hw - Struct containing variables accessed by shared code
1449*********************************************************************/
64798845 1450static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2d7edb92 1451{
406874a7
JP
1452 u32 led_ctrl;
1453 s32 ret_val;
1454 u16 phy_data;
1da177e4 1455
2d7edb92 1456 DEBUGFUNC("e1000_copper_link_igp_setup");
1da177e4 1457
2d7edb92
MC
1458 if (hw->phy_reset_disable)
1459 return E1000_SUCCESS;
76c224bc 1460
2d7edb92
MC
1461 ret_val = e1000_phy_reset(hw);
1462 if (ret_val) {
1463 DEBUGOUT("Error Resetting the PHY\n");
1464 return ret_val;
1465 }
1da177e4 1466
8fc897b0 1467 /* Wait 15ms for MAC to configure PHY from eeprom settings */
f8ec4733 1468 msleep(15);
cd94dd0b 1469 if (hw->mac_type != e1000_ich8lan) {
2d7edb92 1470 /* Configure activity LED after PHY reset */
1dc32918 1471 led_ctrl = er32(LEDCTL);
2d7edb92
MC
1472 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1473 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1dc32918 1474 ew32(LEDCTL, led_ctrl);
cd94dd0b 1475 }
1da177e4 1476
c9c1b834
JK
1477 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1478 if (hw->phy_type == e1000_phy_igp) {
1479 /* disable lplu d3 during driver init */
c3033b01 1480 ret_val = e1000_set_d3_lplu_state(hw, false);
c9c1b834
JK
1481 if (ret_val) {
1482 DEBUGOUT("Error Disabling LPLU D3\n");
1483 return ret_val;
1484 }
2d7edb92 1485 }
1da177e4 1486
2d7edb92 1487 /* disable lplu d0 during driver init */
c3033b01 1488 ret_val = e1000_set_d0_lplu_state(hw, false);
2d7edb92
MC
1489 if (ret_val) {
1490 DEBUGOUT("Error Disabling LPLU D0\n");
1491 return ret_val;
1492 }
1493 /* Configure mdi-mdix settings */
1494 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1495 if (ret_val)
1496 return ret_val;
1da177e4 1497
2d7edb92
MC
1498 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1499 hw->dsp_config_state = e1000_dsp_config_disabled;
1500 /* Force MDI for earlier revs of the IGP PHY */
1501 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1502 hw->mdix = 1;
1da177e4 1503
2d7edb92
MC
1504 } else {
1505 hw->dsp_config_state = e1000_dsp_config_enabled;
1506 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1da177e4 1507
2d7edb92
MC
1508 switch (hw->mdix) {
1509 case 1:
1510 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1511 break;
1512 case 2:
1513 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1514 break;
1515 case 0:
1516 default:
1517 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1518 break;
1519 }
1520 }
1521 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
8fc897b0 1522 if (ret_val)
2d7edb92 1523 return ret_val;
1da177e4 1524
2d7edb92 1525 /* set auto-master slave resolution settings */
8fc897b0 1526 if (hw->autoneg) {
2d7edb92 1527 e1000_ms_type phy_ms_setting = hw->master_slave;
1da177e4 1528
8fc897b0 1529 if (hw->ffe_config_state == e1000_ffe_config_active)
2d7edb92 1530 hw->ffe_config_state = e1000_ffe_config_enabled;
1da177e4 1531
8fc897b0 1532 if (hw->dsp_config_state == e1000_dsp_config_activated)
2d7edb92 1533 hw->dsp_config_state = e1000_dsp_config_enabled;
1da177e4 1534
2d7edb92
MC
1535 /* when autonegotiation advertisment is only 1000Mbps then we
1536 * should disable SmartSpeed and enable Auto MasterSlave
1537 * resolution as hardware default. */
8fc897b0 1538 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2d7edb92 1539 /* Disable SmartSpeed */
8fc897b0
AK
1540 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1541 &phy_data);
1542 if (ret_val)
1da177e4 1543 return ret_val;
2d7edb92 1544 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
8fc897b0
AK
1545 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1546 phy_data);
1547 if (ret_val)
1da177e4 1548 return ret_val;
2d7edb92
MC
1549 /* Set auto Master/Slave resolution process */
1550 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
8fc897b0 1551 if (ret_val)
2d7edb92
MC
1552 return ret_val;
1553 phy_data &= ~CR_1000T_MS_ENABLE;
1554 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
8fc897b0 1555 if (ret_val)
2d7edb92
MC
1556 return ret_val;
1557 }
1da177e4 1558
2d7edb92 1559 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
8fc897b0 1560 if (ret_val)
2d7edb92 1561 return ret_val;
1da177e4 1562
2d7edb92
MC
1563 /* load defaults for future use */
1564 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1565 ((phy_data & CR_1000T_MS_VALUE) ?
1566 e1000_ms_force_master :
1567 e1000_ms_force_slave) :
1568 e1000_ms_auto;
1da177e4 1569
2d7edb92
MC
1570 switch (phy_ms_setting) {
1571 case e1000_ms_force_master:
1572 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1573 break;
1574 case e1000_ms_force_slave:
1575 phy_data |= CR_1000T_MS_ENABLE;
1576 phy_data &= ~(CR_1000T_MS_VALUE);
1577 break;
1578 case e1000_ms_auto:
1579 phy_data &= ~CR_1000T_MS_ENABLE;
1580 default:
1581 break;
1582 }
1583 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
8fc897b0 1584 if (ret_val)
2d7edb92 1585 return ret_val;
2b02893e 1586 }
1da177e4 1587
2b02893e 1588 return E1000_SUCCESS;
2d7edb92 1589}
1da177e4 1590
6418ecc6
JK
1591/********************************************************************
1592* Copper link setup for e1000_phy_gg82563 series.
1593*
1594* hw - Struct containing variables accessed by shared code
1595*********************************************************************/
64798845 1596static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
6418ecc6 1597{
406874a7
JP
1598 s32 ret_val;
1599 u16 phy_data;
1600 u32 reg_data;
6418ecc6
JK
1601
1602 DEBUGFUNC("e1000_copper_link_ggp_setup");
1603
8fc897b0 1604 if (!hw->phy_reset_disable) {
76c224bc 1605
6418ecc6
JK
1606 /* Enable CRS on TX for half-duplex operation. */
1607 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1608 &phy_data);
8fc897b0 1609 if (ret_val)
6418ecc6
JK
1610 return ret_val;
1611
1612 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1613 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1614 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1615
1616 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1617 phy_data);
8fc897b0 1618 if (ret_val)
6418ecc6
JK
1619 return ret_val;
1620
1621 /* Options:
1622 * MDI/MDI-X = 0 (default)
1623 * 0 - Auto for all speeds
1624 * 1 - MDI mode
1625 * 2 - MDI-X mode
1626 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1627 */
1628 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
8fc897b0 1629 if (ret_val)
6418ecc6
JK
1630 return ret_val;
1631
1632 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1633
1634 switch (hw->mdix) {
1635 case 1:
1636 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1637 break;
1638 case 2:
1639 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1640 break;
1641 case 0:
1642 default:
1643 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1644 break;
1645 }
1646
1647 /* Options:
1648 * disable_polarity_correction = 0 (default)
1649 * Automatic Correction for Reversed Cable Polarity
1650 * 0 - Disabled
1651 * 1 - Enabled
1652 */
1653 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
8fc897b0 1654 if (hw->disable_polarity_correction == 1)
6418ecc6
JK
1655 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1656 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1657
8fc897b0 1658 if (ret_val)
6418ecc6
JK
1659 return ret_val;
1660
1661 /* SW Reset the PHY so all changes take effect */
1662 ret_val = e1000_phy_reset(hw);
1663 if (ret_val) {
1664 DEBUGOUT("Error Resetting the PHY\n");
1665 return ret_val;
1666 }
1667 } /* phy_reset_disable */
1668
1669 if (hw->mac_type == e1000_80003es2lan) {
1670 /* Bypass RX and TX FIFO's */
1671 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1672 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1673 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1674 if (ret_val)
1675 return ret_val;
1676
1677 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1678 if (ret_val)
1679 return ret_val;
1680
1681 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1682 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1683
1684 if (ret_val)
1685 return ret_val;
1686
1dc32918 1687 reg_data = er32(CTRL_EXT);
6418ecc6 1688 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1dc32918 1689 ew32(CTRL_EXT, reg_data);
6418ecc6
JK
1690
1691 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1692 &phy_data);
1693 if (ret_val)
1694 return ret_val;
1695
1696 /* Do not init these registers when the HW is in IAMT mode, since the
1697 * firmware will have already initialized them. We only initialize
1698 * them if the HW is not in IAMT mode.
1699 */
c3033b01 1700 if (!e1000_check_mng_mode(hw)) {
6418ecc6
JK
1701 /* Enable Electrical Idle on the PHY */
1702 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1703 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1704 phy_data);
1705 if (ret_val)
1706 return ret_val;
1707
1708 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1709 &phy_data);
1710 if (ret_val)
1711 return ret_val;
1712
cd94dd0b 1713 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
6418ecc6
JK
1714 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1715 phy_data);
8fc897b0 1716
6418ecc6
JK
1717 if (ret_val)
1718 return ret_val;
1719 }
1720
1721 /* Workaround: Disable padding in Kumeran interface in the MAC
1722 * and in the PHY to avoid CRC errors.
1723 */
1724 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1725 &phy_data);
1726 if (ret_val)
1727 return ret_val;
1728 phy_data |= GG82563_ICR_DIS_PADDING;
1729 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1730 phy_data);
1731 if (ret_val)
1732 return ret_val;
1733 }
1734
1735 return E1000_SUCCESS;
1736}
1da177e4 1737
2d7edb92
MC
1738/********************************************************************
1739* Copper link setup for e1000_phy_m88 series.
1740*
1741* hw - Struct containing variables accessed by shared code
1742*********************************************************************/
64798845 1743static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2d7edb92 1744{
406874a7
JP
1745 s32 ret_val;
1746 u16 phy_data;
1da177e4 1747
2d7edb92 1748 DEBUGFUNC("e1000_copper_link_mgp_setup");
1da177e4 1749
8fc897b0 1750 if (hw->phy_reset_disable)
2d7edb92 1751 return E1000_SUCCESS;
76c224bc 1752
2d7edb92
MC
1753 /* Enable CRS on TX. This must be set for half-duplex operation. */
1754 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
8fc897b0 1755 if (ret_val)
2d7edb92 1756 return ret_val;
1da177e4 1757
2d7edb92 1758 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1da177e4 1759
2d7edb92
MC
1760 /* Options:
1761 * MDI/MDI-X = 0 (default)
1762 * 0 - Auto for all speeds
1763 * 1 - MDI mode
1764 * 2 - MDI-X mode
1765 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1766 */
1767 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1da177e4 1768
2d7edb92
MC
1769 switch (hw->mdix) {
1770 case 1:
1771 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1772 break;
1773 case 2:
1774 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1775 break;
1776 case 3:
1777 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1778 break;
1779 case 0:
1780 default:
1781 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1782 break;
1783 }
1784
1785 /* Options:
1786 * disable_polarity_correction = 0 (default)
1787 * Automatic Correction for Reversed Cable Polarity
1788 * 0 - Disabled
1789 * 1 - Enabled
1da177e4 1790 */
2d7edb92 1791 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
8fc897b0 1792 if (hw->disable_polarity_correction == 1)
2d7edb92 1793 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
ee04022a
AK
1794 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1795 if (ret_val)
2d7edb92
MC
1796 return ret_val;
1797
2d7edb92 1798 if (hw->phy_revision < M88E1011_I_REV_4) {
ee04022a
AK
1799 /* Force TX_CLK in the Extended PHY Specific Control Register
1800 * to 25MHz clock.
1801 */
1802 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1803 if (ret_val)
1804 return ret_val;
1805
1806 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1807
1808 if ((hw->phy_revision == E1000_REVISION_2) &&
1809 (hw->phy_id == M88E1111_I_PHY_ID)) {
1810 /* Vidalia Phy, set the downshift counter to 5x */
1811 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1812 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1813 ret_val = e1000_write_phy_reg(hw,
1814 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1815 if (ret_val)
1816 return ret_val;
1817 } else {
1818 /* Configure Master and Slave downshift values */
1819 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
2d7edb92 1820 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
ee04022a 1821 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
2d7edb92 1822 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
ee04022a
AK
1823 ret_val = e1000_write_phy_reg(hw,
1824 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1825 if (ret_val)
1826 return ret_val;
1827 }
2d7edb92 1828 }
1da177e4 1829
2d7edb92
MC
1830 /* SW Reset the PHY so all changes take effect */
1831 ret_val = e1000_phy_reset(hw);
8fc897b0 1832 if (ret_val) {
2d7edb92
MC
1833 DEBUGOUT("Error Resetting the PHY\n");
1834 return ret_val;
1da177e4
LT
1835 }
1836
2d7edb92 1837 return E1000_SUCCESS;
1da177e4
LT
1838}
1839
2d7edb92
MC
1840/********************************************************************
1841* Setup auto-negotiation and flow control advertisements,
1842* and then perform auto-negotiation.
1da177e4
LT
1843*
1844* hw - Struct containing variables accessed by shared code
2d7edb92 1845*********************************************************************/
64798845 1846static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1da177e4 1847{
406874a7
JP
1848 s32 ret_val;
1849 u16 phy_data;
1da177e4 1850
2d7edb92 1851 DEBUGFUNC("e1000_copper_link_autoneg");
1da177e4 1852
2d7edb92
MC
1853 /* Perform some bounds checking on the hw->autoneg_advertised
1854 * parameter. If this variable is zero, then set it to the default.
1855 */
1856 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1857
1858 /* If autoneg_advertised is zero, we assume it was not defaulted
1859 * by the calling code so we set to advertise full capability.
1860 */
8fc897b0 1861 if (hw->autoneg_advertised == 0)
2d7edb92
MC
1862 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1863
cd94dd0b
AK
1864 /* IFE phy only supports 10/100 */
1865 if (hw->phy_type == e1000_phy_ife)
1866 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1867
2d7edb92
MC
1868 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1869 ret_val = e1000_phy_setup_autoneg(hw);
8fc897b0 1870 if (ret_val) {
2d7edb92
MC
1871 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1872 return ret_val;
1873 }
1874 DEBUGOUT("Restarting Auto-Neg\n");
1875
1876 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1877 * the Auto Neg Restart bit in the PHY control register.
1878 */
1879 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
8fc897b0 1880 if (ret_val)
1da177e4
LT
1881 return ret_val;
1882
2d7edb92
MC
1883 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1884 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
8fc897b0 1885 if (ret_val)
1da177e4
LT
1886 return ret_val;
1887
2d7edb92
MC
1888 /* Does the user want to wait for Auto-Neg to complete here, or
1889 * check at a later time (for example, callback routine).
1890 */
8fc897b0 1891 if (hw->wait_autoneg_complete) {
2d7edb92 1892 ret_val = e1000_wait_autoneg(hw);
8fc897b0 1893 if (ret_val) {
2d7edb92
MC
1894 DEBUGOUT("Error while waiting for autoneg to complete\n");
1895 return ret_val;
1896 }
1897 }
1898
c3033b01 1899 hw->get_link_status = true;
2d7edb92
MC
1900
1901 return E1000_SUCCESS;
1902}
1903
2d7edb92
MC
1904/******************************************************************************
1905* Config the MAC and the PHY after link is up.
1906* 1) Set up the MAC to the current PHY speed/duplex
1907* if we are on 82543. If we
1908* are on newer silicon, we only need to configure
1909* collision distance in the Transmit Control Register.
1910* 2) Set up flow control on the MAC to that established with
1911* the link partner.
76c224bc 1912* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2d7edb92
MC
1913*
1914* hw - Struct containing variables accessed by shared code
1915******************************************************************************/
64798845 1916static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
2d7edb92 1917{
406874a7 1918 s32 ret_val;
2d7edb92 1919 DEBUGFUNC("e1000_copper_link_postconfig");
76c224bc 1920
8fc897b0 1921 if (hw->mac_type >= e1000_82544) {
2d7edb92
MC
1922 e1000_config_collision_dist(hw);
1923 } else {
1924 ret_val = e1000_config_mac_to_phy(hw);
8fc897b0 1925 if (ret_val) {
2d7edb92
MC
1926 DEBUGOUT("Error configuring MAC to PHY settings\n");
1927 return ret_val;
1928 }
1929 }
1930 ret_val = e1000_config_fc_after_link_up(hw);
8fc897b0 1931 if (ret_val) {
2d7edb92
MC
1932 DEBUGOUT("Error Configuring Flow Control\n");
1933 return ret_val;
1934 }
1935
1936 /* Config DSP to improve Giga link quality */
8fc897b0 1937 if (hw->phy_type == e1000_phy_igp) {
c3033b01 1938 ret_val = e1000_config_dsp_after_link_change(hw, true);
8fc897b0 1939 if (ret_val) {
2d7edb92
MC
1940 DEBUGOUT("Error Configuring DSP after link up\n");
1941 return ret_val;
1942 }
1943 }
76c224bc 1944
2d7edb92
MC
1945 return E1000_SUCCESS;
1946}
1947
1948/******************************************************************************
1949* Detects which PHY is present and setup the speed and duplex
1950*
1951* hw - Struct containing variables accessed by shared code
1952******************************************************************************/
64798845 1953static s32 e1000_setup_copper_link(struct e1000_hw *hw)
2d7edb92 1954{
406874a7
JP
1955 s32 ret_val;
1956 u16 i;
1957 u16 phy_data;
1958 u16 reg_data;
2d7edb92
MC
1959
1960 DEBUGFUNC("e1000_setup_copper_link");
1961
cd94dd0b
AK
1962 switch (hw->mac_type) {
1963 case e1000_80003es2lan:
1964 case e1000_ich8lan:
1965 /* Set the mac to wait the maximum time between each
1966 * iteration and increase the max iterations when
1967 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1968 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1969 if (ret_val)
1970 return ret_val;
1971 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1972 if (ret_val)
1973 return ret_val;
1974 reg_data |= 0x3F;
1975 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1976 if (ret_val)
1977 return ret_val;
1978 default:
1979 break;
1980 }
1981
2d7edb92
MC
1982 /* Check if it is a valid PHY and set PHY mode if necessary. */
1983 ret_val = e1000_copper_link_preconfig(hw);
8fc897b0 1984 if (ret_val)
2d7edb92
MC
1985 return ret_val;
1986
6418ecc6
JK
1987 switch (hw->mac_type) {
1988 case e1000_80003es2lan:
cd94dd0b
AK
1989 /* Kumeran registers are written-only */
1990 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
6418ecc6
JK
1991 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1992 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1993 reg_data);
1994 if (ret_val)
1995 return ret_val;
1996 break;
1997 default:
1998 break;
1999 }
2000
2d7edb92 2001 if (hw->phy_type == e1000_phy_igp ||
cd94dd0b 2002 hw->phy_type == e1000_phy_igp_3 ||
2d7edb92
MC
2003 hw->phy_type == e1000_phy_igp_2) {
2004 ret_val = e1000_copper_link_igp_setup(hw);
8fc897b0 2005 if (ret_val)
2d7edb92
MC
2006 return ret_val;
2007 } else if (hw->phy_type == e1000_phy_m88) {
2008 ret_val = e1000_copper_link_mgp_setup(hw);
8fc897b0 2009 if (ret_val)
2d7edb92 2010 return ret_val;
6418ecc6
JK
2011 } else if (hw->phy_type == e1000_phy_gg82563) {
2012 ret_val = e1000_copper_link_ggp_setup(hw);
8fc897b0 2013 if (ret_val)
6418ecc6 2014 return ret_val;
2d7edb92
MC
2015 }
2016
8fc897b0 2017 if (hw->autoneg) {
76c224bc
AK
2018 /* Setup autoneg and flow control advertisement
2019 * and perform autonegotiation */
2d7edb92 2020 ret_val = e1000_copper_link_autoneg(hw);
8fc897b0 2021 if (ret_val)
76c224bc 2022 return ret_val;
2d7edb92
MC
2023 } else {
2024 /* PHY will be set to 10H, 10F, 100H,or 100F
2025 * depending on value from forced_speed_duplex. */
2026 DEBUGOUT("Forcing speed and duplex\n");
2027 ret_val = e1000_phy_force_speed_duplex(hw);
8fc897b0 2028 if (ret_val) {
2d7edb92
MC
2029 DEBUGOUT("Error Forcing Speed and Duplex\n");
2030 return ret_val;
2031 }
2032 }
2033
2034 /* Check link status. Wait up to 100 microseconds for link to become
2035 * valid.
2036 */
8fc897b0 2037 for (i = 0; i < 10; i++) {
2d7edb92 2038 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 2039 if (ret_val)
2d7edb92
MC
2040 return ret_val;
2041 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 2042 if (ret_val)
2d7edb92
MC
2043 return ret_val;
2044
8fc897b0 2045 if (phy_data & MII_SR_LINK_STATUS) {
2d7edb92
MC
2046 /* Config the MAC and PHY after link is up */
2047 ret_val = e1000_copper_link_postconfig(hw);
8fc897b0 2048 if (ret_val)
2d7edb92 2049 return ret_val;
76c224bc 2050
2d7edb92
MC
2051 DEBUGOUT("Valid link established!!!\n");
2052 return E1000_SUCCESS;
2053 }
2054 udelay(10);
2055 }
2056
2057 DEBUGOUT("Unable to establish link!!!\n");
2058 return E1000_SUCCESS;
2059}
2060
6418ecc6
JK
2061/******************************************************************************
2062* Configure the MAC-to-PHY interface for 10/100Mbps
2063*
2064* hw - Struct containing variables accessed by shared code
2065******************************************************************************/
64798845 2066static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex)
6418ecc6 2067{
406874a7
JP
2068 s32 ret_val = E1000_SUCCESS;
2069 u32 tipg;
2070 u16 reg_data;
6418ecc6
JK
2071
2072 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2073
2074 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
2075 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2076 reg_data);
2077 if (ret_val)
2078 return ret_val;
2079
2080 /* Configure Transmit Inter-Packet Gap */
1dc32918 2081 tipg = er32(TIPG);
6418ecc6
JK
2082 tipg &= ~E1000_TIPG_IPGT_MASK;
2083 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
1dc32918 2084 ew32(TIPG, tipg);
6418ecc6 2085
cd94dd0b
AK
2086 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2087
2088 if (ret_val)
2089 return ret_val;
2090
2091 if (duplex == HALF_DUPLEX)
2092 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
2093 else
2094 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2095
2096 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2097
6418ecc6
JK
2098 return ret_val;
2099}
2100
64798845 2101static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
6418ecc6 2102{
406874a7
JP
2103 s32 ret_val = E1000_SUCCESS;
2104 u16 reg_data;
2105 u32 tipg;
6418ecc6
JK
2106
2107 DEBUGFUNC("e1000_configure_kmrn_for_1000");
2108
2109 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2110 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2111 reg_data);
2112 if (ret_val)
2113 return ret_val;
2114
2115 /* Configure Transmit Inter-Packet Gap */
1dc32918 2116 tipg = er32(TIPG);
6418ecc6
JK
2117 tipg &= ~E1000_TIPG_IPGT_MASK;
2118 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1dc32918 2119 ew32(TIPG, tipg);
6418ecc6 2120
cd94dd0b
AK
2121 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2122
2123 if (ret_val)
2124 return ret_val;
2125
2126 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2127 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2128
6418ecc6
JK
2129 return ret_val;
2130}
2131
2d7edb92
MC
2132/******************************************************************************
2133* Configures PHY autoneg and flow control advertisement settings
2134*
2135* hw - Struct containing variables accessed by shared code
2136******************************************************************************/
64798845 2137s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
2d7edb92 2138{
406874a7
JP
2139 s32 ret_val;
2140 u16 mii_autoneg_adv_reg;
2141 u16 mii_1000t_ctrl_reg;
2d7edb92
MC
2142
2143 DEBUGFUNC("e1000_phy_setup_autoneg");
2144
2145 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2146 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
8fc897b0 2147 if (ret_val)
2d7edb92
MC
2148 return ret_val;
2149
cd94dd0b
AK
2150 if (hw->phy_type != e1000_phy_ife) {
2151 /* Read the MII 1000Base-T Control Register (Address 9). */
2152 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2153 if (ret_val)
2154 return ret_val;
2155 } else
2156 mii_1000t_ctrl_reg=0;
2d7edb92
MC
2157
2158 /* Need to parse both autoneg_advertised and fc and set up
2159 * the appropriate PHY registers. First we will parse for
1da177e4
LT
2160 * autoneg_advertised software override. Since we can advertise
2161 * a plethora of combinations, we need to check each bit
2162 * individually.
2163 */
2164
2165 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2166 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2167 * the 1000Base-T Control Register (Address 9).
2168 */
2169 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2170 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2171
2172 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2173
2174 /* Do we want to advertise 10 Mb Half Duplex? */
8fc897b0 2175 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1da177e4
LT
2176 DEBUGOUT("Advertise 10mb Half duplex\n");
2177 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2178 }
2179
2180 /* Do we want to advertise 10 Mb Full Duplex? */
8fc897b0 2181 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1da177e4
LT
2182 DEBUGOUT("Advertise 10mb Full duplex\n");
2183 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2184 }
2185
2186 /* Do we want to advertise 100 Mb Half Duplex? */
8fc897b0 2187 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1da177e4
LT
2188 DEBUGOUT("Advertise 100mb Half duplex\n");
2189 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2190 }
2191
2192 /* Do we want to advertise 100 Mb Full Duplex? */
8fc897b0 2193 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1da177e4
LT
2194 DEBUGOUT("Advertise 100mb Full duplex\n");
2195 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2196 }
2197
2198 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
8fc897b0 2199 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1da177e4
LT
2200 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2201 }
2202
2203 /* Do we want to advertise 1000 Mb Full Duplex? */
8fc897b0 2204 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1da177e4
LT
2205 DEBUGOUT("Advertise 1000mb Full duplex\n");
2206 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
cd94dd0b
AK
2207 if (hw->phy_type == e1000_phy_ife) {
2208 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2209 }
1da177e4
LT
2210 }
2211
2212 /* Check for a software override of the flow control settings, and
2213 * setup the PHY advertisement registers accordingly. If
2214 * auto-negotiation is enabled, then software will have to set the
2215 * "PAUSE" bits to the correct value in the Auto-Negotiation
2216 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2217 *
2218 * The possible values of the "fc" parameter are:
2219 * 0: Flow control is completely disabled
2220 * 1: Rx flow control is enabled (we can receive pause frames
2221 * but not send pause frames).
2222 * 2: Tx flow control is enabled (we can send pause frames
2223 * but we do not support receiving pause frames).
2224 * 3: Both Rx and TX flow control (symmetric) are enabled.
2225 * other: No software override. The flow control configuration
2226 * in the EEPROM is used.
2227 */
2228 switch (hw->fc) {
11241b10 2229 case E1000_FC_NONE: /* 0 */
1da177e4
LT
2230 /* Flow control (RX & TX) is completely disabled by a
2231 * software over-ride.
2232 */
2233 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2234 break;
11241b10 2235 case E1000_FC_RX_PAUSE: /* 1 */
1da177e4
LT
2236 /* RX Flow control is enabled, and TX Flow control is
2237 * disabled, by a software over-ride.
2238 */
2239 /* Since there really isn't a way to advertise that we are
2240 * capable of RX Pause ONLY, we will advertise that we
2241 * support both symmetric and asymmetric RX PAUSE. Later
2242 * (in e1000_config_fc_after_link_up) we will disable the
2243 *hw's ability to send PAUSE frames.
2244 */
2245 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2246 break;
11241b10 2247 case E1000_FC_TX_PAUSE: /* 2 */
1da177e4
LT
2248 /* TX Flow control is enabled, and RX Flow control is
2249 * disabled, by a software over-ride.
2250 */
2251 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2252 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2253 break;
11241b10 2254 case E1000_FC_FULL: /* 3 */
1da177e4
LT
2255 /* Flow control (both RX and TX) is enabled by a software
2256 * over-ride.
2257 */
2258 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2259 break;
2260 default:
2261 DEBUGOUT("Flow control param set incorrectly\n");
2262 return -E1000_ERR_CONFIG;
2263 }
2264
2265 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
8fc897b0 2266 if (ret_val)
1da177e4
LT
2267 return ret_val;
2268
2269 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2270
cd94dd0b
AK
2271 if (hw->phy_type != e1000_phy_ife) {
2272 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2273 if (ret_val)
2274 return ret_val;
2275 }
1da177e4
LT
2276
2277 return E1000_SUCCESS;
2278}
2279
2280/******************************************************************************
2281* Force PHY speed and duplex settings to hw->forced_speed_duplex
2282*
2283* hw - Struct containing variables accessed by shared code
2284******************************************************************************/
64798845 2285static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1da177e4 2286{
406874a7
JP
2287 u32 ctrl;
2288 s32 ret_val;
2289 u16 mii_ctrl_reg;
2290 u16 mii_status_reg;
2291 u16 phy_data;
2292 u16 i;
1da177e4
LT
2293
2294 DEBUGFUNC("e1000_phy_force_speed_duplex");
2295
2296 /* Turn off Flow control if we are forcing speed and duplex. */
11241b10 2297 hw->fc = E1000_FC_NONE;
1da177e4
LT
2298
2299 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2300
2301 /* Read the Device Control Register. */
1dc32918 2302 ctrl = er32(CTRL);
1da177e4
LT
2303
2304 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2305 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2306 ctrl &= ~(DEVICE_SPEED_MASK);
2307
2308 /* Clear the Auto Speed Detect Enable bit. */
2309 ctrl &= ~E1000_CTRL_ASDE;
2310
2311 /* Read the MII Control Register. */
2312 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
8fc897b0 2313 if (ret_val)
1da177e4
LT
2314 return ret_val;
2315
2316 /* We need to disable autoneg in order to force link and duplex. */
2317
2318 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2319
2320 /* Are we forcing Full or Half Duplex? */
8fc897b0
AK
2321 if (hw->forced_speed_duplex == e1000_100_full ||
2322 hw->forced_speed_duplex == e1000_10_full) {
1da177e4
LT
2323 /* We want to force full duplex so we SET the full duplex bits in the
2324 * Device and MII Control Registers.
2325 */
2326 ctrl |= E1000_CTRL_FD;
2327 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2328 DEBUGOUT("Full Duplex\n");
2329 } else {
2330 /* We want to force half duplex so we CLEAR the full duplex bits in
2331 * the Device and MII Control Registers.
2332 */
2333 ctrl &= ~E1000_CTRL_FD;
2334 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2335 DEBUGOUT("Half Duplex\n");
2336 }
2337
2338 /* Are we forcing 100Mbps??? */
8fc897b0 2339 if (hw->forced_speed_duplex == e1000_100_full ||
1da177e4
LT
2340 hw->forced_speed_duplex == e1000_100_half) {
2341 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2342 ctrl |= E1000_CTRL_SPD_100;
2343 mii_ctrl_reg |= MII_CR_SPEED_100;
2344 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2345 DEBUGOUT("Forcing 100mb ");
2346 } else {
2347 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2348 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2349 mii_ctrl_reg |= MII_CR_SPEED_10;
2350 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2351 DEBUGOUT("Forcing 10mb ");
2352 }
2353
2354 e1000_config_collision_dist(hw);
2355
2356 /* Write the configured values back to the Device Control Reg. */
1dc32918 2357 ew32(CTRL, ctrl);
1da177e4 2358
6418ecc6
JK
2359 if ((hw->phy_type == e1000_phy_m88) ||
2360 (hw->phy_type == e1000_phy_gg82563)) {
1da177e4 2361 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
8fc897b0 2362 if (ret_val)
1da177e4
LT
2363 return ret_val;
2364
2365 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2366 * forced whenever speed are duplex are forced.
2367 */
2368 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2369 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
8fc897b0 2370 if (ret_val)
1da177e4
LT
2371 return ret_val;
2372
2373 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2374
2375 /* Need to reset the PHY or these changes will be ignored */
2376 mii_ctrl_reg |= MII_CR_RESET;
90fb5135 2377
cd94dd0b
AK
2378 /* Disable MDI-X support for 10/100 */
2379 } else if (hw->phy_type == e1000_phy_ife) {
2380 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2381 if (ret_val)
2382 return ret_val;
2383
2384 phy_data &= ~IFE_PMC_AUTO_MDIX;
2385 phy_data &= ~IFE_PMC_FORCE_MDIX;
2386
2387 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2388 if (ret_val)
2389 return ret_val;
90fb5135 2390
1da177e4
LT
2391 } else {
2392 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2393 * forced whenever speed or duplex are forced.
2394 */
2395 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
8fc897b0 2396 if (ret_val)
1da177e4
LT
2397 return ret_val;
2398
2399 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2400 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2401
2402 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
8fc897b0 2403 if (ret_val)
1da177e4
LT
2404 return ret_val;
2405 }
2406
2407 /* Write back the modified PHY MII control register. */
2408 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
8fc897b0 2409 if (ret_val)
1da177e4
LT
2410 return ret_val;
2411
2412 udelay(1);
2413
2414 /* The wait_autoneg_complete flag may be a little misleading here.
2415 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2416 * But we do want to delay for a period while forcing only so we
2417 * don't generate false No Link messages. So we will wait here
2418 * only if the user has set wait_autoneg_complete to 1, which is
2419 * the default.
2420 */
8fc897b0 2421 if (hw->wait_autoneg_complete) {
1da177e4
LT
2422 /* We will wait for autoneg to complete. */
2423 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2424 mii_status_reg = 0;
2425
2426 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
8fc897b0 2427 for (i = PHY_FORCE_TIME; i > 0; i--) {
1da177e4
LT
2428 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2429 * to be set.
2430 */
2431 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 2432 if (ret_val)
1da177e4
LT
2433 return ret_val;
2434
2435 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 2436 if (ret_val)
1da177e4
LT
2437 return ret_val;
2438
8fc897b0 2439 if (mii_status_reg & MII_SR_LINK_STATUS) break;
f8ec4733 2440 msleep(100);
1da177e4 2441 }
8fc897b0 2442 if ((i == 0) &&
6418ecc6
JK
2443 ((hw->phy_type == e1000_phy_m88) ||
2444 (hw->phy_type == e1000_phy_gg82563))) {
1da177e4
LT
2445 /* We didn't get link. Reset the DSP and wait again for link. */
2446 ret_val = e1000_phy_reset_dsp(hw);
8fc897b0 2447 if (ret_val) {
1da177e4
LT
2448 DEBUGOUT("Error Resetting PHY DSP\n");
2449 return ret_val;
2450 }
2451 }
2452 /* This loop will early-out if the link condition has been met. */
8fc897b0
AK
2453 for (i = PHY_FORCE_TIME; i > 0; i--) {
2454 if (mii_status_reg & MII_SR_LINK_STATUS) break;
f8ec4733 2455 msleep(100);
1da177e4
LT
2456 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2457 * to be set.
2458 */
2459 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 2460 if (ret_val)
1da177e4
LT
2461 return ret_val;
2462
2463 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 2464 if (ret_val)
1da177e4
LT
2465 return ret_val;
2466 }
2467 }
2468
2469 if (hw->phy_type == e1000_phy_m88) {
2470 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2471 * Extended PHY Specific Control Register to 25MHz clock. This value
2472 * defaults back to a 2.5MHz clock when the PHY is reset.
2473 */
2474 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
8fc897b0 2475 if (ret_val)
1da177e4
LT
2476 return ret_val;
2477
2478 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2479 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
8fc897b0 2480 if (ret_val)
1da177e4
LT
2481 return ret_val;
2482
2483 /* In addition, because of the s/w reset above, we need to enable CRS on
2484 * TX. This must be set for both full and half duplex operation.
2485 */
2486 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
8fc897b0 2487 if (ret_val)
1da177e4
LT
2488 return ret_val;
2489
2490 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2491 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
8fc897b0 2492 if (ret_val)
1da177e4
LT
2493 return ret_val;
2494
8fc897b0
AK
2495 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2496 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2497 hw->forced_speed_duplex == e1000_10_half)) {
1da177e4 2498 ret_val = e1000_polarity_reversal_workaround(hw);
8fc897b0 2499 if (ret_val)
1da177e4
LT
2500 return ret_val;
2501 }
6418ecc6
JK
2502 } else if (hw->phy_type == e1000_phy_gg82563) {
2503 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2504 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2505 * we're not in a forced 10/duplex configuration. */
2506 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2507 if (ret_val)
2508 return ret_val;
2509
2510 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2511 if ((hw->forced_speed_duplex == e1000_10_full) ||
2512 (hw->forced_speed_duplex == e1000_10_half))
2513 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2514 else
2515 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2516
2517 /* Also due to the reset, we need to enable CRS on Tx. */
2518 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2519
2520 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2521 if (ret_val)
2522 return ret_val;
1da177e4
LT
2523 }
2524 return E1000_SUCCESS;
2525}
2526
2527/******************************************************************************
2528* Sets the collision distance in the Transmit Control register
2529*
2530* hw - Struct containing variables accessed by shared code
2531*
2532* Link should have been established previously. Reads the speed and duplex
2533* information from the Device Status register.
2534******************************************************************************/
64798845 2535void e1000_config_collision_dist(struct e1000_hw *hw)
1da177e4 2536{
406874a7 2537 u32 tctl, coll_dist;
1da177e4
LT
2538
2539 DEBUGFUNC("e1000_config_collision_dist");
2540
0fadb059
JK
2541 if (hw->mac_type < e1000_82543)
2542 coll_dist = E1000_COLLISION_DISTANCE_82542;
2543 else
2544 coll_dist = E1000_COLLISION_DISTANCE;
2545
1dc32918 2546 tctl = er32(TCTL);
1da177e4
LT
2547
2548 tctl &= ~E1000_TCTL_COLD;
0fadb059 2549 tctl |= coll_dist << E1000_COLD_SHIFT;
1da177e4 2550
1dc32918
JP
2551 ew32(TCTL, tctl);
2552 E1000_WRITE_FLUSH();
1da177e4
LT
2553}
2554
2555/******************************************************************************
2556* Sets MAC speed and duplex settings to reflect the those in the PHY
2557*
2558* hw - Struct containing variables accessed by shared code
2559* mii_reg - data to write to the MII control register
2560*
2561* The contents of the PHY register containing the needed information need to
2562* be passed in.
2563******************************************************************************/
64798845 2564static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1da177e4 2565{
406874a7
JP
2566 u32 ctrl;
2567 s32 ret_val;
2568 u16 phy_data;
1da177e4
LT
2569
2570 DEBUGFUNC("e1000_config_mac_to_phy");
2571
76c224bc 2572 /* 82544 or newer MAC, Auto Speed Detection takes care of
2d7edb92
MC
2573 * MAC speed/duplex configuration.*/
2574 if (hw->mac_type >= e1000_82544)
2575 return E1000_SUCCESS;
2576
1da177e4
LT
2577 /* Read the Device Control Register and set the bits to Force Speed
2578 * and Duplex.
2579 */
1dc32918 2580 ctrl = er32(CTRL);
1da177e4
LT
2581 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2582 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2583
2584 /* Set up duplex in the Device Control and Transmit Control
2585 * registers depending on negotiated values.
2586 */
2d7edb92 2587 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
8fc897b0 2588 if (ret_val)
2d7edb92 2589 return ret_val;
1da177e4 2590
8fc897b0 2591 if (phy_data & M88E1000_PSSR_DPLX)
2d7edb92 2592 ctrl |= E1000_CTRL_FD;
76c224bc 2593 else
2d7edb92 2594 ctrl &= ~E1000_CTRL_FD;
1da177e4 2595
2d7edb92 2596 e1000_config_collision_dist(hw);
1da177e4 2597
2d7edb92
MC
2598 /* Set up speed in the Device Control register depending on
2599 * negotiated values.
2600 */
8fc897b0 2601 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2d7edb92 2602 ctrl |= E1000_CTRL_SPD_1000;
8fc897b0 2603 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2d7edb92 2604 ctrl |= E1000_CTRL_SPD_100;
1da177e4 2605
1da177e4 2606 /* Write the configured values back to the Device Control Reg. */
1dc32918 2607 ew32(CTRL, ctrl);
1da177e4
LT
2608 return E1000_SUCCESS;
2609}
2610
2611/******************************************************************************
2612 * Forces the MAC's flow control settings.
2613 *
2614 * hw - Struct containing variables accessed by shared code
2615 *
2616 * Sets the TFCE and RFCE bits in the device control register to reflect
2617 * the adapter settings. TFCE and RFCE need to be explicitly set by
2618 * software when a Copper PHY is used because autonegotiation is managed
2619 * by the PHY rather than the MAC. Software must also configure these
2620 * bits when link is forced on a fiber connection.
2621 *****************************************************************************/
64798845 2622s32 e1000_force_mac_fc(struct e1000_hw *hw)
1da177e4 2623{
406874a7 2624 u32 ctrl;
1da177e4
LT
2625
2626 DEBUGFUNC("e1000_force_mac_fc");
2627
2628 /* Get the current configuration of the Device Control Register */
1dc32918 2629 ctrl = er32(CTRL);
1da177e4
LT
2630
2631 /* Because we didn't get link via the internal auto-negotiation
2632 * mechanism (we either forced link or we got link via PHY
2633 * auto-neg), we have to manually enable/disable transmit an
2634 * receive flow control.
2635 *
2636 * The "Case" statement below enables/disable flow control
2637 * according to the "hw->fc" parameter.
2638 *
2639 * The possible values of the "fc" parameter are:
2640 * 0: Flow control is completely disabled
2641 * 1: Rx flow control is enabled (we can receive pause
2642 * frames but not send pause frames).
2643 * 2: Tx flow control is enabled (we can send pause frames
2644 * frames but we do not receive pause frames).
2645 * 3: Both Rx and TX flow control (symmetric) is enabled.
2646 * other: No other values should be possible at this point.
2647 */
2648
2649 switch (hw->fc) {
11241b10 2650 case E1000_FC_NONE:
1da177e4
LT
2651 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2652 break;
11241b10 2653 case E1000_FC_RX_PAUSE:
1da177e4
LT
2654 ctrl &= (~E1000_CTRL_TFCE);
2655 ctrl |= E1000_CTRL_RFCE;
2656 break;
11241b10 2657 case E1000_FC_TX_PAUSE:
1da177e4
LT
2658 ctrl &= (~E1000_CTRL_RFCE);
2659 ctrl |= E1000_CTRL_TFCE;
2660 break;
11241b10 2661 case E1000_FC_FULL:
1da177e4
LT
2662 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2663 break;
2664 default:
2665 DEBUGOUT("Flow control param set incorrectly\n");
2666 return -E1000_ERR_CONFIG;
2667 }
2668
2669 /* Disable TX Flow Control for 82542 (rev 2.0) */
8fc897b0 2670 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2671 ctrl &= (~E1000_CTRL_TFCE);
2672
1dc32918 2673 ew32(CTRL, ctrl);
1da177e4
LT
2674 return E1000_SUCCESS;
2675}
2676
2677/******************************************************************************
2678 * Configures flow control settings after link is established
2679 *
2680 * hw - Struct containing variables accessed by shared code
2681 *
2682 * Should be called immediately after a valid link has been established.
2683 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2684 * and autonegotiation is enabled, the MAC flow control settings will be set
2685 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2686 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2687 *****************************************************************************/
64798845 2688static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1da177e4 2689{
406874a7
JP
2690 s32 ret_val;
2691 u16 mii_status_reg;
2692 u16 mii_nway_adv_reg;
2693 u16 mii_nway_lp_ability_reg;
2694 u16 speed;
2695 u16 duplex;
1da177e4
LT
2696
2697 DEBUGFUNC("e1000_config_fc_after_link_up");
2698
2699 /* Check for the case where we have fiber media and auto-neg failed
2700 * so we had to force link. In this case, we need to force the
2701 * configuration of the MAC to match the "fc" parameter.
2702 */
8fc897b0
AK
2703 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2704 ((hw->media_type == e1000_media_type_internal_serdes) &&
2705 (hw->autoneg_failed)) ||
2706 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
1da177e4 2707 ret_val = e1000_force_mac_fc(hw);
8fc897b0 2708 if (ret_val) {
1da177e4
LT
2709 DEBUGOUT("Error forcing flow control settings\n");
2710 return ret_val;
2711 }
2712 }
2713
2714 /* Check for the case where we have copper media and auto-neg is
2715 * enabled. In this case, we need to check and see if Auto-Neg
2716 * has completed, and if so, how the PHY and link partner has
2717 * flow control configured.
2718 */
8fc897b0 2719 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
1da177e4
LT
2720 /* Read the MII Status Register and check to see if AutoNeg
2721 * has completed. We read this twice because this reg has
2722 * some "sticky" (latched) bits.
2723 */
2724 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 2725 if (ret_val)
1da177e4
LT
2726 return ret_val;
2727 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 2728 if (ret_val)
1da177e4
LT
2729 return ret_val;
2730
8fc897b0 2731 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1da177e4
LT
2732 /* The AutoNeg process has completed, so we now need to
2733 * read both the Auto Negotiation Advertisement Register
2734 * (Address 4) and the Auto_Negotiation Base Page Ability
2735 * Register (Address 5) to determine how flow control was
2736 * negotiated.
2737 */
2738 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2739 &mii_nway_adv_reg);
8fc897b0 2740 if (ret_val)
1da177e4
LT
2741 return ret_val;
2742 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2743 &mii_nway_lp_ability_reg);
8fc897b0 2744 if (ret_val)
1da177e4
LT
2745 return ret_val;
2746
2747 /* Two bits in the Auto Negotiation Advertisement Register
2748 * (Address 4) and two bits in the Auto Negotiation Base
2749 * Page Ability Register (Address 5) determine flow control
2750 * for both the PHY and the link partner. The following
2751 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2752 * 1999, describes these PAUSE resolution bits and how flow
2753 * control is determined based upon these settings.
2754 * NOTE: DC = Don't Care
2755 *
2756 * LOCAL DEVICE | LINK PARTNER
2757 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2758 *-------|---------|-------|---------|--------------------
11241b10
JK
2759 * 0 | 0 | DC | DC | E1000_FC_NONE
2760 * 0 | 1 | 0 | DC | E1000_FC_NONE
2761 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2762 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2763 * 1 | 0 | 0 | DC | E1000_FC_NONE
2764 * 1 | DC | 1 | DC | E1000_FC_FULL
2765 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2766 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
1da177e4
LT
2767 *
2768 */
2769 /* Are both PAUSE bits set to 1? If so, this implies
2770 * Symmetric Flow Control is enabled at both ends. The
2771 * ASM_DIR bits are irrelevant per the spec.
2772 *
2773 * For Symmetric Flow Control:
2774 *
2775 * LOCAL DEVICE | LINK PARTNER
2776 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2777 *-------|---------|-------|---------|--------------------
11241b10 2778 * 1 | DC | 1 | DC | E1000_FC_FULL
1da177e4
LT
2779 *
2780 */
8fc897b0
AK
2781 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2782 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1da177e4
LT
2783 /* Now we need to check if the user selected RX ONLY
2784 * of pause frames. In this case, we had to advertise
2785 * FULL flow control because we could not advertise RX
2786 * ONLY. Hence, we must now check to see if we need to
2787 * turn OFF the TRANSMISSION of PAUSE frames.
2788 */
11241b10
JK
2789 if (hw->original_fc == E1000_FC_FULL) {
2790 hw->fc = E1000_FC_FULL;
a42a507c 2791 DEBUGOUT("Flow Control = FULL.\n");
1da177e4 2792 } else {
11241b10 2793 hw->fc = E1000_FC_RX_PAUSE;
a42a507c 2794 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
1da177e4
LT
2795 }
2796 }
2797 /* For receiving PAUSE frames ONLY.
2798 *
2799 * LOCAL DEVICE | LINK PARTNER
2800 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2801 *-------|---------|-------|---------|--------------------
11241b10 2802 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
1da177e4
LT
2803 *
2804 */
8fc897b0
AK
2805 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2806 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2807 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2808 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
11241b10 2809 hw->fc = E1000_FC_TX_PAUSE;
a42a507c 2810 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
1da177e4
LT
2811 }
2812 /* For transmitting PAUSE frames ONLY.
2813 *
2814 * LOCAL DEVICE | LINK PARTNER
2815 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2816 *-------|---------|-------|---------|--------------------
11241b10 2817 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
1da177e4
LT
2818 *
2819 */
8fc897b0
AK
2820 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2821 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2822 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2823 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
11241b10 2824 hw->fc = E1000_FC_RX_PAUSE;
a42a507c 2825 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
1da177e4
LT
2826 }
2827 /* Per the IEEE spec, at this point flow control should be
2828 * disabled. However, we want to consider that we could
2829 * be connected to a legacy switch that doesn't advertise
2830 * desired flow control, but can be forced on the link
2831 * partner. So if we advertised no flow control, that is
2832 * what we will resolve to. If we advertised some kind of
2833 * receive capability (Rx Pause Only or Full Flow Control)
2834 * and the link partner advertised none, we will configure
2835 * ourselves to enable Rx Flow Control only. We can do
2836 * this safely for two reasons: If the link partner really
2837 * didn't want flow control enabled, and we enable Rx, no
2838 * harm done since we won't be receiving any PAUSE frames
2839 * anyway. If the intent on the link partner was to have
2840 * flow control enabled, then by us enabling RX only, we
2841 * can at least receive pause frames and process them.
2842 * This is a good idea because in most cases, since we are
2843 * predominantly a server NIC, more times than not we will
2844 * be asked to delay transmission of packets than asking
2845 * our link partner to pause transmission of frames.
2846 */
11241b10
JK
2847 else if ((hw->original_fc == E1000_FC_NONE ||
2848 hw->original_fc == E1000_FC_TX_PAUSE) ||
8fc897b0 2849 hw->fc_strict_ieee) {
11241b10 2850 hw->fc = E1000_FC_NONE;
a42a507c 2851 DEBUGOUT("Flow Control = NONE.\n");
1da177e4 2852 } else {
11241b10 2853 hw->fc = E1000_FC_RX_PAUSE;
a42a507c 2854 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
1da177e4
LT
2855 }
2856
2857 /* Now we need to do one last check... If we auto-
2858 * negotiated to HALF DUPLEX, flow control should not be
2859 * enabled per IEEE 802.3 spec.
2860 */
2861 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
8fc897b0 2862 if (ret_val) {
1da177e4
LT
2863 DEBUGOUT("Error getting link speed and duplex\n");
2864 return ret_val;
2865 }
2866
8fc897b0 2867 if (duplex == HALF_DUPLEX)
11241b10 2868 hw->fc = E1000_FC_NONE;
1da177e4
LT
2869
2870 /* Now we call a subroutine to actually force the MAC
2871 * controller to use the correct flow control settings.
2872 */
2873 ret_val = e1000_force_mac_fc(hw);
8fc897b0 2874 if (ret_val) {
1da177e4
LT
2875 DEBUGOUT("Error forcing flow control settings\n");
2876 return ret_val;
2877 }
2878 } else {
a42a507c 2879 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
1da177e4
LT
2880 }
2881 }
2882 return E1000_SUCCESS;
2883}
2884
2885/******************************************************************************
2886 * Checks to see if the link status of the hardware has changed.
2887 *
2888 * hw - Struct containing variables accessed by shared code
2889 *
2890 * Called by any function that needs to check the link status of the adapter.
2891 *****************************************************************************/
64798845 2892s32 e1000_check_for_link(struct e1000_hw *hw)
1da177e4 2893{
406874a7
JP
2894 u32 rxcw = 0;
2895 u32 ctrl;
2896 u32 status;
2897 u32 rctl;
2898 u32 icr;
2899 u32 signal = 0;
2900 s32 ret_val;
2901 u16 phy_data;
1da177e4
LT
2902
2903 DEBUGFUNC("e1000_check_for_link");
2904
1dc32918
JP
2905 ctrl = er32(CTRL);
2906 status = er32(STATUS);
1da177e4
LT
2907
2908 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2909 * set when the optics detect a signal. On older adapters, it will be
2910 * cleared when there is a signal. This applies to fiber media only.
2911 */
8fc897b0
AK
2912 if ((hw->media_type == e1000_media_type_fiber) ||
2913 (hw->media_type == e1000_media_type_internal_serdes)) {
1dc32918 2914 rxcw = er32(RXCW);
1da177e4 2915
8fc897b0 2916 if (hw->media_type == e1000_media_type_fiber) {
1da177e4 2917 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
8fc897b0 2918 if (status & E1000_STATUS_LU)
c3033b01 2919 hw->get_link_status = false;
1da177e4
LT
2920 }
2921 }
2922
2923 /* If we have a copper PHY then we only want to go out to the PHY
2924 * registers to see if Auto-Neg has completed and/or if our link
2925 * status has changed. The get_link_status flag will be set if we
2926 * receive a Link Status Change interrupt or we have Rx Sequence
2927 * Errors.
2928 */
8fc897b0 2929 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1da177e4
LT
2930 /* First we want to see if the MII Status Register reports
2931 * link. If so, then we want to get the current speed/duplex
2932 * of the PHY.
2933 * Read the register twice since the link bit is sticky.
2934 */
2935 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 2936 if (ret_val)
1da177e4
LT
2937 return ret_val;
2938 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 2939 if (ret_val)
1da177e4
LT
2940 return ret_val;
2941
8fc897b0 2942 if (phy_data & MII_SR_LINK_STATUS) {
c3033b01 2943 hw->get_link_status = false;
1da177e4
LT
2944 /* Check if there was DownShift, must be checked immediately after
2945 * link-up */
2946 e1000_check_downshift(hw);
2947
2948 /* If we are on 82544 or 82543 silicon and speed/duplex
2949 * are forced to 10H or 10F, then we will implement the polarity
2950 * reversal workaround. We disable interrupts first, and upon
2951 * returning, place the devices interrupt state to its previous
2952 * value except for the link status change interrupt which will
2953 * happen due to the execution of this workaround.
2954 */
2955
8fc897b0
AK
2956 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2957 (!hw->autoneg) &&
2958 (hw->forced_speed_duplex == e1000_10_full ||
2959 hw->forced_speed_duplex == e1000_10_half)) {
1dc32918 2960 ew32(IMC, 0xffffffff);
1da177e4 2961 ret_val = e1000_polarity_reversal_workaround(hw);
1dc32918
JP
2962 icr = er32(ICR);
2963 ew32(ICS, (icr & ~E1000_ICS_LSC));
2964 ew32(IMS, IMS_ENABLE_MASK);
1da177e4
LT
2965 }
2966
2967 } else {
2968 /* No link detected */
c3033b01 2969 e1000_config_dsp_after_link_change(hw, false);
1da177e4
LT
2970 return 0;
2971 }
2972
2973 /* If we are forcing speed/duplex, then we simply return since
2974 * we have already determined whether we have link or not.
2975 */
8fc897b0 2976 if (!hw->autoneg) return -E1000_ERR_CONFIG;
1da177e4
LT
2977
2978 /* optimize the dsp settings for the igp phy */
c3033b01 2979 e1000_config_dsp_after_link_change(hw, true);
1da177e4
LT
2980
2981 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2982 * have Si on board that is 82544 or newer, Auto
2983 * Speed Detection takes care of MAC speed/duplex
2984 * configuration. So we only need to configure Collision
2985 * Distance in the MAC. Otherwise, we need to force
2986 * speed/duplex on the MAC to the current PHY speed/duplex
2987 * settings.
2988 */
8fc897b0 2989 if (hw->mac_type >= e1000_82544)
1da177e4
LT
2990 e1000_config_collision_dist(hw);
2991 else {
2992 ret_val = e1000_config_mac_to_phy(hw);
8fc897b0 2993 if (ret_val) {
1da177e4
LT
2994 DEBUGOUT("Error configuring MAC to PHY settings\n");
2995 return ret_val;
2996 }
2997 }
2998
2999 /* Configure Flow Control now that Auto-Neg has completed. First, we
3000 * need to restore the desired flow control settings because we may
3001 * have had to re-autoneg with a different link partner.
3002 */
3003 ret_val = e1000_config_fc_after_link_up(hw);
8fc897b0 3004 if (ret_val) {
1da177e4
LT
3005 DEBUGOUT("Error configuring flow control\n");
3006 return ret_val;
3007 }
3008
3009 /* At this point we know that we are on copper and we have
3010 * auto-negotiated link. These are conditions for checking the link
3011 * partner capability register. We use the link speed to determine if
3012 * TBI compatibility needs to be turned on or off. If the link is not
3013 * at gigabit speed, then TBI compatibility is not needed. If we are
3014 * at gigabit speed, we turn on TBI compatibility.
3015 */
8fc897b0 3016 if (hw->tbi_compatibility_en) {
406874a7 3017 u16 speed, duplex;
592600a0
AK
3018 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
3019 if (ret_val) {
3020 DEBUGOUT("Error getting link speed and duplex\n");
3021 return ret_val;
3022 }
3023 if (speed != SPEED_1000) {
1da177e4
LT
3024 /* If link speed is not set to gigabit speed, we do not need
3025 * to enable TBI compatibility.
3026 */
8fc897b0 3027 if (hw->tbi_compatibility_on) {
1da177e4 3028 /* If we previously were in the mode, turn it off. */
1dc32918 3029 rctl = er32(RCTL);
1da177e4 3030 rctl &= ~E1000_RCTL_SBP;
1dc32918 3031 ew32(RCTL, rctl);
c3033b01 3032 hw->tbi_compatibility_on = false;
1da177e4
LT
3033 }
3034 } else {
3035 /* If TBI compatibility is was previously off, turn it on. For
3036 * compatibility with a TBI link partner, we will store bad
3037 * packets. Some frames have an additional byte on the end and
3038 * will look like CRC errors to to the hardware.
3039 */
8fc897b0 3040 if (!hw->tbi_compatibility_on) {
c3033b01 3041 hw->tbi_compatibility_on = true;
1dc32918 3042 rctl = er32(RCTL);
1da177e4 3043 rctl |= E1000_RCTL_SBP;
1dc32918 3044 ew32(RCTL, rctl);
1da177e4
LT
3045 }
3046 }
3047 }
3048 }
3049 /* If we don't have link (auto-negotiation failed or link partner cannot
3050 * auto-negotiate), the cable is plugged in (we have signal), and our
3051 * link partner is not trying to auto-negotiate with us (we are receiving
3052 * idles or data), we need to force link up. We also need to give
3053 * auto-negotiation time to complete, in case the cable was just plugged
3054 * in. The autoneg_failed flag does this.
3055 */
8fc897b0 3056 else if ((((hw->media_type == e1000_media_type_fiber) &&
1da177e4 3057 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
8fc897b0
AK
3058 (hw->media_type == e1000_media_type_internal_serdes)) &&
3059 (!(status & E1000_STATUS_LU)) &&
3060 (!(rxcw & E1000_RXCW_C))) {
3061 if (hw->autoneg_failed == 0) {
1da177e4
LT
3062 hw->autoneg_failed = 1;
3063 return 0;
3064 }
a42a507c 3065 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1da177e4
LT
3066
3067 /* Disable auto-negotiation in the TXCW register */
1dc32918 3068 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
1da177e4
LT
3069
3070 /* Force link-up and also force full-duplex. */
1dc32918 3071 ctrl = er32(CTRL);
1da177e4 3072 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1dc32918 3073 ew32(CTRL, ctrl);
1da177e4
LT
3074
3075 /* Configure Flow Control after forcing link up. */
3076 ret_val = e1000_config_fc_after_link_up(hw);
8fc897b0 3077 if (ret_val) {
1da177e4
LT
3078 DEBUGOUT("Error configuring flow control\n");
3079 return ret_val;
3080 }
3081 }
3082 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3083 * auto-negotiation in the TXCW register and disable forced link in the
3084 * Device Control register in an attempt to auto-negotiate with our link
3085 * partner.
3086 */
8fc897b0
AK
3087 else if (((hw->media_type == e1000_media_type_fiber) ||
3088 (hw->media_type == e1000_media_type_internal_serdes)) &&
3089 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
a42a507c 3090 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1dc32918
JP
3091 ew32(TXCW, hw->txcw);
3092 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1da177e4 3093
c3033b01 3094 hw->serdes_link_down = false;
1da177e4
LT
3095 }
3096 /* If we force link for non-auto-negotiation switch, check link status
3097 * based on MAC synchronization for internal serdes media type.
3098 */
8fc897b0 3099 else if ((hw->media_type == e1000_media_type_internal_serdes) &&
1dc32918 3100 !(E1000_TXCW_ANE & er32(TXCW))) {
1da177e4
LT
3101 /* SYNCH bit and IV bit are sticky. */
3102 udelay(10);
1dc32918 3103 if (E1000_RXCW_SYNCH & er32(RXCW)) {
8fc897b0 3104 if (!(rxcw & E1000_RXCW_IV)) {
c3033b01 3105 hw->serdes_link_down = false;
1da177e4
LT
3106 DEBUGOUT("SERDES: Link is up.\n");
3107 }
3108 } else {
c3033b01 3109 hw->serdes_link_down = true;
1da177e4
LT
3110 DEBUGOUT("SERDES: Link is down.\n");
3111 }
3112 }
8fc897b0 3113 if ((hw->media_type == e1000_media_type_internal_serdes) &&
1dc32918
JP
3114 (E1000_TXCW_ANE & er32(TXCW))) {
3115 hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS));
1da177e4
LT
3116 }
3117 return E1000_SUCCESS;
3118}
3119
3120/******************************************************************************
3121 * Detects the current speed and duplex settings of the hardware.
3122 *
3123 * hw - Struct containing variables accessed by shared code
3124 * speed - Speed of the connection
3125 * duplex - Duplex setting of the connection
3126 *****************************************************************************/
64798845 3127s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1da177e4 3128{
406874a7
JP
3129 u32 status;
3130 s32 ret_val;
3131 u16 phy_data;
1da177e4
LT
3132
3133 DEBUGFUNC("e1000_get_speed_and_duplex");
3134
8fc897b0 3135 if (hw->mac_type >= e1000_82543) {
1dc32918 3136 status = er32(STATUS);
8fc897b0 3137 if (status & E1000_STATUS_SPEED_1000) {
1da177e4
LT
3138 *speed = SPEED_1000;
3139 DEBUGOUT("1000 Mbs, ");
8fc897b0 3140 } else if (status & E1000_STATUS_SPEED_100) {
1da177e4
LT
3141 *speed = SPEED_100;
3142 DEBUGOUT("100 Mbs, ");
3143 } else {
3144 *speed = SPEED_10;
3145 DEBUGOUT("10 Mbs, ");
3146 }
3147
8fc897b0 3148 if (status & E1000_STATUS_FD) {
1da177e4 3149 *duplex = FULL_DUPLEX;
a42a507c 3150 DEBUGOUT("Full Duplex\n");
1da177e4
LT
3151 } else {
3152 *duplex = HALF_DUPLEX;
a42a507c 3153 DEBUGOUT(" Half Duplex\n");
1da177e4
LT
3154 }
3155 } else {
a42a507c 3156 DEBUGOUT("1000 Mbs, Full Duplex\n");
1da177e4
LT
3157 *speed = SPEED_1000;
3158 *duplex = FULL_DUPLEX;
3159 }
3160
3161 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3162 * if it is operating at half duplex. Here we set the duplex settings to
3163 * match the duplex in the link partner's capabilities.
3164 */
8fc897b0 3165 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
1da177e4 3166 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
8fc897b0 3167 if (ret_val)
1da177e4
LT
3168 return ret_val;
3169
8fc897b0 3170 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
1da177e4
LT
3171 *duplex = HALF_DUPLEX;
3172 else {
3173 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
8fc897b0 3174 if (ret_val)
1da177e4 3175 return ret_val;
8fc897b0 3176 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
1da177e4
LT
3177 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3178 *duplex = HALF_DUPLEX;
3179 }
3180 }
3181
76c224bc 3182 if ((hw->mac_type == e1000_80003es2lan) &&
6418ecc6
JK
3183 (hw->media_type == e1000_media_type_copper)) {
3184 if (*speed == SPEED_1000)
3185 ret_val = e1000_configure_kmrn_for_1000(hw);
3186 else
cd94dd0b
AK
3187 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3188 if (ret_val)
3189 return ret_val;
3190 }
3191
3192 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3193 ret_val = e1000_kumeran_lock_loss_workaround(hw);
6418ecc6
JK
3194 if (ret_val)
3195 return ret_val;
3196 }
3197
1da177e4
LT
3198 return E1000_SUCCESS;
3199}
3200
3201/******************************************************************************
3202* Blocks until autoneg completes or times out (~4.5 seconds)
3203*
3204* hw - Struct containing variables accessed by shared code
3205******************************************************************************/
64798845 3206static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1da177e4 3207{
406874a7
JP
3208 s32 ret_val;
3209 u16 i;
3210 u16 phy_data;
1da177e4
LT
3211
3212 DEBUGFUNC("e1000_wait_autoneg");
3213 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3214
3215 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
8fc897b0 3216 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
1da177e4
LT
3217 /* Read the MII Status Register and wait for Auto-Neg
3218 * Complete bit to be set.
3219 */
3220 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 3221 if (ret_val)
1da177e4
LT
3222 return ret_val;
3223 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 3224 if (ret_val)
1da177e4 3225 return ret_val;
8fc897b0 3226 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
1da177e4
LT
3227 return E1000_SUCCESS;
3228 }
f8ec4733 3229 msleep(100);
1da177e4
LT
3230 }
3231 return E1000_SUCCESS;
3232}
3233
3234/******************************************************************************
3235* Raises the Management Data Clock
3236*
3237* hw - Struct containing variables accessed by shared code
3238* ctrl - Device control register's current value
3239******************************************************************************/
64798845 3240static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
1da177e4
LT
3241{
3242 /* Raise the clock input to the Management Data Clock (by setting the MDC
3243 * bit), and then delay 10 microseconds.
3244 */
1dc32918
JP
3245 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
3246 E1000_WRITE_FLUSH();
1da177e4
LT
3247 udelay(10);
3248}
3249
3250/******************************************************************************
3251* Lowers the Management Data Clock
3252*
3253* hw - Struct containing variables accessed by shared code
3254* ctrl - Device control register's current value
3255******************************************************************************/
64798845 3256static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
1da177e4
LT
3257{
3258 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3259 * bit), and then delay 10 microseconds.
3260 */
1dc32918
JP
3261 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
3262 E1000_WRITE_FLUSH();
1da177e4
LT
3263 udelay(10);
3264}
3265
3266/******************************************************************************
3267* Shifts data bits out to the PHY
3268*
3269* hw - Struct containing variables accessed by shared code
3270* data - Data to send out to the PHY
3271* count - Number of bits to shift out
3272*
3273* Bits are shifted out in MSB to LSB order.
3274******************************************************************************/
64798845 3275static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
1da177e4 3276{
406874a7
JP
3277 u32 ctrl;
3278 u32 mask;
1da177e4
LT
3279
3280 /* We need to shift "count" number of bits out to the PHY. So, the value
3281 * in the "data" parameter will be shifted out to the PHY one bit at a
3282 * time. In order to do this, "data" must be broken down into bits.
3283 */
3284 mask = 0x01;
3285 mask <<= (count - 1);
3286
1dc32918 3287 ctrl = er32(CTRL);
1da177e4
LT
3288
3289 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3290 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3291
8fc897b0 3292 while (mask) {
1da177e4
LT
3293 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3294 * then raising and lowering the Management Data Clock. A "0" is
3295 * shifted out to the PHY by setting the MDIO bit to "0" and then
3296 * raising and lowering the clock.
3297 */
8fc897b0
AK
3298 if (data & mask)
3299 ctrl |= E1000_CTRL_MDIO;
3300 else
3301 ctrl &= ~E1000_CTRL_MDIO;
1da177e4 3302
1dc32918
JP
3303 ew32(CTRL, ctrl);
3304 E1000_WRITE_FLUSH();
1da177e4
LT
3305
3306 udelay(10);
3307
3308 e1000_raise_mdi_clk(hw, &ctrl);
3309 e1000_lower_mdi_clk(hw, &ctrl);
3310
3311 mask = mask >> 1;
3312 }
3313}
3314
3315/******************************************************************************
3316* Shifts data bits in from the PHY
3317*
3318* hw - Struct containing variables accessed by shared code
3319*
3320* Bits are shifted in in MSB to LSB order.
3321******************************************************************************/
64798845 3322static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
1da177e4 3323{
406874a7
JP
3324 u32 ctrl;
3325 u16 data = 0;
3326 u8 i;
1da177e4
LT
3327
3328 /* In order to read a register from the PHY, we need to shift in a total
3329 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3330 * to avoid contention on the MDIO pin when a read operation is performed.
3331 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3332 * by raising the input to the Management Data Clock (setting the MDC bit),
3333 * and then reading the value of the MDIO bit.
3334 */
1dc32918 3335 ctrl = er32(CTRL);
1da177e4
LT
3336
3337 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3338 ctrl &= ~E1000_CTRL_MDIO_DIR;
3339 ctrl &= ~E1000_CTRL_MDIO;
3340
1dc32918
JP
3341 ew32(CTRL, ctrl);
3342 E1000_WRITE_FLUSH();
1da177e4
LT
3343
3344 /* Raise and Lower the clock before reading in the data. This accounts for
3345 * the turnaround bits. The first clock occurred when we clocked out the
3346 * last bit of the Register Address.
3347 */
3348 e1000_raise_mdi_clk(hw, &ctrl);
3349 e1000_lower_mdi_clk(hw, &ctrl);
3350
8fc897b0 3351 for (data = 0, i = 0; i < 16; i++) {
1da177e4
LT
3352 data = data << 1;
3353 e1000_raise_mdi_clk(hw, &ctrl);
1dc32918 3354 ctrl = er32(CTRL);
1da177e4 3355 /* Check to see if we shifted in a "1". */
8fc897b0
AK
3356 if (ctrl & E1000_CTRL_MDIO)
3357 data |= 1;
1da177e4
LT
3358 e1000_lower_mdi_clk(hw, &ctrl);
3359 }
3360
3361 e1000_raise_mdi_clk(hw, &ctrl);
3362 e1000_lower_mdi_clk(hw, &ctrl);
3363
3364 return data;
3365}
3366
64798845 3367static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
6418ecc6 3368{
406874a7
JP
3369 u32 swfw_sync = 0;
3370 u32 swmask = mask;
3371 u32 fwmask = mask << 16;
3372 s32 timeout = 200;
6418ecc6
JK
3373
3374 DEBUGFUNC("e1000_swfw_sync_acquire");
3375
cd94dd0b
AK
3376 if (hw->swfwhw_semaphore_present)
3377 return e1000_get_software_flag(hw);
3378
6418ecc6
JK
3379 if (!hw->swfw_sync_present)
3380 return e1000_get_hw_eeprom_semaphore(hw);
3381
8fc897b0 3382 while (timeout) {
6418ecc6
JK
3383 if (e1000_get_hw_eeprom_semaphore(hw))
3384 return -E1000_ERR_SWFW_SYNC;
3385
1dc32918 3386 swfw_sync = er32(SW_FW_SYNC);
6418ecc6
JK
3387 if (!(swfw_sync & (fwmask | swmask))) {
3388 break;
3389 }
3390
3391 /* firmware currently using resource (fwmask) */
3392 /* or other software thread currently using resource (swmask) */
3393 e1000_put_hw_eeprom_semaphore(hw);
f8ec4733 3394 mdelay(5);
6418ecc6
JK
3395 timeout--;
3396 }
3397
3398 if (!timeout) {
3399 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3400 return -E1000_ERR_SWFW_SYNC;
3401 }
3402
3403 swfw_sync |= swmask;
1dc32918 3404 ew32(SW_FW_SYNC, swfw_sync);
6418ecc6
JK
3405
3406 e1000_put_hw_eeprom_semaphore(hw);
3407 return E1000_SUCCESS;
3408}
3409
64798845 3410static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask)
6418ecc6 3411{
406874a7
JP
3412 u32 swfw_sync;
3413 u32 swmask = mask;
6418ecc6
JK
3414
3415 DEBUGFUNC("e1000_swfw_sync_release");
3416
cd94dd0b
AK
3417 if (hw->swfwhw_semaphore_present) {
3418 e1000_release_software_flag(hw);
3419 return;
3420 }
3421
6418ecc6
JK
3422 if (!hw->swfw_sync_present) {
3423 e1000_put_hw_eeprom_semaphore(hw);
3424 return;
3425 }
3426
3427 /* if (e1000_get_hw_eeprom_semaphore(hw))
3428 * return -E1000_ERR_SWFW_SYNC; */
3429 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3430 /* empty */
3431
1dc32918 3432 swfw_sync = er32(SW_FW_SYNC);
6418ecc6 3433 swfw_sync &= ~swmask;
1dc32918 3434 ew32(SW_FW_SYNC, swfw_sync);
6418ecc6
JK
3435
3436 e1000_put_hw_eeprom_semaphore(hw);
3437}
3438
1da177e4
LT
3439/*****************************************************************************
3440* Reads the value from a PHY register, if the value is on a specific non zero
3441* page, sets the page first.
3442* hw - Struct containing variables accessed by shared code
3443* reg_addr - address of the PHY register to read
3444******************************************************************************/
64798845 3445s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
1da177e4 3446{
406874a7
JP
3447 u32 ret_val;
3448 u16 swfw;
1da177e4
LT
3449
3450 DEBUGFUNC("e1000_read_phy_reg");
3451
6418ecc6 3452 if ((hw->mac_type == e1000_80003es2lan) &&
1dc32918 3453 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
6418ecc6
JK
3454 swfw = E1000_SWFW_PHY1_SM;
3455 } else {
3456 swfw = E1000_SWFW_PHY0_SM;
3457 }
3458 if (e1000_swfw_sync_acquire(hw, swfw))
3459 return -E1000_ERR_SWFW_SYNC;
3460
cd94dd0b
AK
3461 if ((hw->phy_type == e1000_phy_igp ||
3462 hw->phy_type == e1000_phy_igp_3 ||
2d7edb92 3463 hw->phy_type == e1000_phy_igp_2) &&
1da177e4
LT
3464 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3465 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
406874a7 3466 (u16)reg_addr);
8fc897b0 3467 if (ret_val) {
6418ecc6 3468 e1000_swfw_sync_release(hw, swfw);
1da177e4
LT
3469 return ret_val;
3470 }
6418ecc6
JK
3471 } else if (hw->phy_type == e1000_phy_gg82563) {
3472 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3473 (hw->mac_type == e1000_80003es2lan)) {
3474 /* Select Configuration Page */
3475 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3476 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
406874a7 3477 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
6418ecc6
JK
3478 } else {
3479 /* Use Alternative Page Select register to access
3480 * registers 30 and 31
3481 */
3482 ret_val = e1000_write_phy_reg_ex(hw,
3483 GG82563_PHY_PAGE_SELECT_ALT,
406874a7 3484 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
6418ecc6
JK
3485 }
3486
3487 if (ret_val) {
3488 e1000_swfw_sync_release(hw, swfw);
3489 return ret_val;
3490 }
3491 }
1da177e4
LT
3492 }
3493
3494 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3495 phy_data);
3496
6418ecc6 3497 e1000_swfw_sync_release(hw, swfw);
1da177e4
LT
3498 return ret_val;
3499}
3500
64798845
JP
3501static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
3502 u16 *phy_data)
1da177e4 3503{
406874a7
JP
3504 u32 i;
3505 u32 mdic = 0;
3506 const u32 phy_addr = 1;
1da177e4
LT
3507
3508 DEBUGFUNC("e1000_read_phy_reg_ex");
3509
8fc897b0 3510 if (reg_addr > MAX_PHY_REG_ADDRESS) {
1da177e4
LT
3511 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3512 return -E1000_ERR_PARAM;
3513 }
3514
8fc897b0 3515 if (hw->mac_type > e1000_82543) {
1da177e4
LT
3516 /* Set up Op-code, Phy Address, and register address in the MDI
3517 * Control register. The MAC will take care of interfacing with the
3518 * PHY to retrieve the desired data.
3519 */
3520 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3521 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3522 (E1000_MDIC_OP_READ));
3523
1dc32918 3524 ew32(MDIC, mdic);
1da177e4
LT
3525
3526 /* Poll the ready bit to see if the MDI read completed */
8fc897b0 3527 for (i = 0; i < 64; i++) {
1da177e4 3528 udelay(50);
1dc32918 3529 mdic = er32(MDIC);
8fc897b0 3530 if (mdic & E1000_MDIC_READY) break;
1da177e4 3531 }
8fc897b0 3532 if (!(mdic & E1000_MDIC_READY)) {
1da177e4
LT
3533 DEBUGOUT("MDI Read did not complete\n");
3534 return -E1000_ERR_PHY;
3535 }
8fc897b0 3536 if (mdic & E1000_MDIC_ERROR) {
1da177e4
LT
3537 DEBUGOUT("MDI Error\n");
3538 return -E1000_ERR_PHY;
3539 }
e982f17c 3540 *phy_data = (u16)mdic;
1da177e4
LT
3541 } else {
3542 /* We must first send a preamble through the MDIO pin to signal the
3543 * beginning of an MII instruction. This is done by sending 32
3544 * consecutive "1" bits.
3545 */
3546 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3547
3548 /* Now combine the next few fields that are required for a read
3549 * operation. We use this method instead of calling the
3550 * e1000_shift_out_mdi_bits routine five different times. The format of
3551 * a MII read instruction consists of a shift out of 14 bits and is
3552 * defined as follows:
3553 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3554 * followed by a shift in of 18 bits. This first two bits shifted in
3555 * are TurnAround bits used to avoid contention on the MDIO pin when a
3556 * READ operation is performed. These two bits are thrown away
3557 * followed by a shift in of 16 bits which contains the desired data.
3558 */
3559 mdic = ((reg_addr) | (phy_addr << 5) |
3560 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3561
3562 e1000_shift_out_mdi_bits(hw, mdic, 14);
3563
3564 /* Now that we've shifted out the read command to the MII, we need to
3565 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3566 * register address.
3567 */
3568 *phy_data = e1000_shift_in_mdi_bits(hw);
3569 }
3570 return E1000_SUCCESS;
3571}
3572
3573/******************************************************************************
3574* Writes a value to a PHY register
3575*
3576* hw - Struct containing variables accessed by shared code
3577* reg_addr - address of the PHY register to write
3578* data - data to write to the PHY
3579******************************************************************************/
64798845 3580s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
1da177e4 3581{
406874a7
JP
3582 u32 ret_val;
3583 u16 swfw;
1da177e4
LT
3584
3585 DEBUGFUNC("e1000_write_phy_reg");
3586
6418ecc6 3587 if ((hw->mac_type == e1000_80003es2lan) &&
1dc32918 3588 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
6418ecc6
JK
3589 swfw = E1000_SWFW_PHY1_SM;
3590 } else {
3591 swfw = E1000_SWFW_PHY0_SM;
3592 }
3593 if (e1000_swfw_sync_acquire(hw, swfw))
3594 return -E1000_ERR_SWFW_SYNC;
3595
cd94dd0b
AK
3596 if ((hw->phy_type == e1000_phy_igp ||
3597 hw->phy_type == e1000_phy_igp_3 ||
2d7edb92 3598 hw->phy_type == e1000_phy_igp_2) &&
1da177e4
LT
3599 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3600 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
406874a7 3601 (u16)reg_addr);
8fc897b0 3602 if (ret_val) {
6418ecc6 3603 e1000_swfw_sync_release(hw, swfw);
1da177e4
LT
3604 return ret_val;
3605 }
6418ecc6
JK
3606 } else if (hw->phy_type == e1000_phy_gg82563) {
3607 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3608 (hw->mac_type == e1000_80003es2lan)) {
3609 /* Select Configuration Page */
3610 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3611 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
406874a7 3612 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
6418ecc6
JK
3613 } else {
3614 /* Use Alternative Page Select register to access
3615 * registers 30 and 31
3616 */
3617 ret_val = e1000_write_phy_reg_ex(hw,
3618 GG82563_PHY_PAGE_SELECT_ALT,
406874a7 3619 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
6418ecc6
JK
3620 }
3621
3622 if (ret_val) {
3623 e1000_swfw_sync_release(hw, swfw);
3624 return ret_val;
3625 }
3626 }
1da177e4
LT
3627 }
3628
3629 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3630 phy_data);
3631
6418ecc6 3632 e1000_swfw_sync_release(hw, swfw);
1da177e4
LT
3633 return ret_val;
3634}
3635
64798845
JP
3636static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
3637 u16 phy_data)
1da177e4 3638{
406874a7
JP
3639 u32 i;
3640 u32 mdic = 0;
3641 const u32 phy_addr = 1;
1da177e4
LT
3642
3643 DEBUGFUNC("e1000_write_phy_reg_ex");
3644
8fc897b0 3645 if (reg_addr > MAX_PHY_REG_ADDRESS) {
1da177e4
LT
3646 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3647 return -E1000_ERR_PARAM;
3648 }
3649
8fc897b0 3650 if (hw->mac_type > e1000_82543) {
1da177e4
LT
3651 /* Set up Op-code, Phy Address, register address, and data intended
3652 * for the PHY register in the MDI Control register. The MAC will take
3653 * care of interfacing with the PHY to send the desired data.
3654 */
e982f17c 3655 mdic = (((u32)phy_data) |
1da177e4
LT
3656 (reg_addr << E1000_MDIC_REG_SHIFT) |
3657 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3658 (E1000_MDIC_OP_WRITE));
3659
1dc32918 3660 ew32(MDIC, mdic);
1da177e4
LT
3661
3662 /* Poll the ready bit to see if the MDI read completed */
8fc897b0 3663 for (i = 0; i < 641; i++) {
1da177e4 3664 udelay(5);
1dc32918 3665 mdic = er32(MDIC);
8fc897b0 3666 if (mdic & E1000_MDIC_READY) break;
1da177e4 3667 }
8fc897b0 3668 if (!(mdic & E1000_MDIC_READY)) {
1da177e4
LT
3669 DEBUGOUT("MDI Write did not complete\n");
3670 return -E1000_ERR_PHY;
3671 }
3672 } else {
3673 /* We'll need to use the SW defined pins to shift the write command
3674 * out to the PHY. We first send a preamble to the PHY to signal the
3675 * beginning of the MII instruction. This is done by sending 32
3676 * consecutive "1" bits.
3677 */
3678 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3679
3680 /* Now combine the remaining required fields that will indicate a
3681 * write operation. We use this method instead of calling the
3682 * e1000_shift_out_mdi_bits routine for each field in the command. The
3683 * format of a MII write instruction is as follows:
3684 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3685 */
3686 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3687 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3688 mdic <<= 16;
e982f17c 3689 mdic |= (u32)phy_data;
1da177e4
LT
3690
3691 e1000_shift_out_mdi_bits(hw, mdic, 32);
3692 }
3693
3694 return E1000_SUCCESS;
3695}
3696
64798845 3697static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data)
6418ecc6 3698{
406874a7
JP
3699 u32 reg_val;
3700 u16 swfw;
6418ecc6
JK
3701 DEBUGFUNC("e1000_read_kmrn_reg");
3702
3703 if ((hw->mac_type == e1000_80003es2lan) &&
1dc32918 3704 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
6418ecc6
JK
3705 swfw = E1000_SWFW_PHY1_SM;
3706 } else {
3707 swfw = E1000_SWFW_PHY0_SM;
3708 }
3709 if (e1000_swfw_sync_acquire(hw, swfw))
3710 return -E1000_ERR_SWFW_SYNC;
3711
3712 /* Write register address */
3713 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3714 E1000_KUMCTRLSTA_OFFSET) |
3715 E1000_KUMCTRLSTA_REN;
1dc32918 3716 ew32(KUMCTRLSTA, reg_val);
6418ecc6
JK
3717 udelay(2);
3718
3719 /* Read the data returned */
1dc32918 3720 reg_val = er32(KUMCTRLSTA);
406874a7 3721 *data = (u16)reg_val;
6418ecc6
JK
3722
3723 e1000_swfw_sync_release(hw, swfw);
3724 return E1000_SUCCESS;
3725}
3726
64798845 3727static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data)
6418ecc6 3728{
406874a7
JP
3729 u32 reg_val;
3730 u16 swfw;
6418ecc6
JK
3731 DEBUGFUNC("e1000_write_kmrn_reg");
3732
3733 if ((hw->mac_type == e1000_80003es2lan) &&
1dc32918 3734 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
6418ecc6
JK
3735 swfw = E1000_SWFW_PHY1_SM;
3736 } else {
3737 swfw = E1000_SWFW_PHY0_SM;
3738 }
3739 if (e1000_swfw_sync_acquire(hw, swfw))
3740 return -E1000_ERR_SWFW_SYNC;
3741
3742 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3743 E1000_KUMCTRLSTA_OFFSET) | data;
1dc32918 3744 ew32(KUMCTRLSTA, reg_val);
6418ecc6
JK
3745 udelay(2);
3746
3747 e1000_swfw_sync_release(hw, swfw);
3748 return E1000_SUCCESS;
3749}
2d7edb92 3750
1da177e4
LT
3751/******************************************************************************
3752* Returns the PHY to the power-on reset state
3753*
3754* hw - Struct containing variables accessed by shared code
3755******************************************************************************/
64798845 3756s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1da177e4 3757{
406874a7
JP
3758 u32 ctrl, ctrl_ext;
3759 u32 led_ctrl;
3760 s32 ret_val;
3761 u16 swfw;
1da177e4
LT
3762
3763 DEBUGFUNC("e1000_phy_hw_reset");
3764
2d7edb92
MC
3765 /* In the case of the phy reset being blocked, it's not an error, we
3766 * simply return success without performing the reset. */
3767 ret_val = e1000_check_phy_reset_block(hw);
3768 if (ret_val)
3769 return E1000_SUCCESS;
3770
1da177e4
LT
3771 DEBUGOUT("Resetting Phy...\n");
3772
8fc897b0 3773 if (hw->mac_type > e1000_82543) {
6418ecc6 3774 if ((hw->mac_type == e1000_80003es2lan) &&
1dc32918 3775 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
6418ecc6
JK
3776 swfw = E1000_SWFW_PHY1_SM;
3777 } else {
3778 swfw = E1000_SWFW_PHY0_SM;
3779 }
3780 if (e1000_swfw_sync_acquire(hw, swfw)) {
2a88c173 3781 DEBUGOUT("Unable to acquire swfw sync\n");
6418ecc6
JK
3782 return -E1000_ERR_SWFW_SYNC;
3783 }
1da177e4
LT
3784 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3785 * bit. Then, take it out of reset.
76c224bc 3786 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
fd803241 3787 * and deassert. For e1000_82571 hardware and later, we instead delay
0f15a8fa 3788 * for 50us between and 10ms after the deassertion.
1da177e4 3789 */
1dc32918
JP
3790 ctrl = er32(CTRL);
3791 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3792 E1000_WRITE_FLUSH();
76c224bc
AK
3793
3794 if (hw->mac_type < e1000_82571)
f8ec4733 3795 msleep(10);
b55ccb35
JK
3796 else
3797 udelay(100);
76c224bc 3798
1dc32918
JP
3799 ew32(CTRL, ctrl);
3800 E1000_WRITE_FLUSH();
76c224bc 3801
fd803241 3802 if (hw->mac_type >= e1000_82571)
f8ec4733 3803 mdelay(10);
35574764 3804
6418ecc6 3805 e1000_swfw_sync_release(hw, swfw);
1da177e4
LT
3806 } else {
3807 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3808 * bit to put the PHY into reset. Then, take it out of reset.
3809 */
1dc32918 3810 ctrl_ext = er32(CTRL_EXT);
1da177e4
LT
3811 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3812 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
1dc32918
JP
3813 ew32(CTRL_EXT, ctrl_ext);
3814 E1000_WRITE_FLUSH();
f8ec4733 3815 msleep(10);
1da177e4 3816 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
1dc32918
JP
3817 ew32(CTRL_EXT, ctrl_ext);
3818 E1000_WRITE_FLUSH();
1da177e4
LT
3819 }
3820 udelay(150);
3821
8fc897b0 3822 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1da177e4 3823 /* Configure activity LED after PHY reset */
1dc32918 3824 led_ctrl = er32(LEDCTL);
1da177e4
LT
3825 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3826 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1dc32918 3827 ew32(LEDCTL, led_ctrl);
1da177e4 3828 }
2d7edb92
MC
3829
3830 /* Wait for FW to finish PHY configuration. */
3831 ret_val = e1000_get_phy_cfg_done(hw);
8fc897b0
AK
3832 if (ret_val != E1000_SUCCESS)
3833 return ret_val;
6418ecc6 3834 e1000_release_software_semaphore(hw);
2d7edb92 3835
8fc897b0
AK
3836 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3837 ret_val = e1000_init_lcd_from_nvm(hw);
3838
2d7edb92 3839 return ret_val;
1da177e4
LT
3840}
3841
3842/******************************************************************************
3843* Resets the PHY
3844*
3845* hw - Struct containing variables accessed by shared code
3846*
0779bf2d 3847* Sets bit 15 of the MII Control register
1da177e4 3848******************************************************************************/
64798845 3849s32 e1000_phy_reset(struct e1000_hw *hw)
1da177e4 3850{
406874a7
JP
3851 s32 ret_val;
3852 u16 phy_data;
1da177e4
LT
3853
3854 DEBUGFUNC("e1000_phy_reset");
3855
2d7edb92
MC
3856 /* In the case of the phy reset being blocked, it's not an error, we
3857 * simply return success without performing the reset. */
3858 ret_val = e1000_check_phy_reset_block(hw);
3859 if (ret_val)
3860 return E1000_SUCCESS;
3861
2a88c173
JK
3862 switch (hw->phy_type) {
3863 case e1000_phy_igp:
3864 case e1000_phy_igp_2:
3865 case e1000_phy_igp_3:
3866 case e1000_phy_ife:
2d7edb92 3867 ret_val = e1000_phy_hw_reset(hw);
8fc897b0 3868 if (ret_val)
2d7edb92
MC
3869 return ret_val;
3870 break;
3871 default:
1da177e4 3872 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
8fc897b0 3873 if (ret_val)
1da177e4
LT
3874 return ret_val;
3875
3876 phy_data |= MII_CR_RESET;
3877 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
8fc897b0 3878 if (ret_val)
1da177e4
LT
3879 return ret_val;
3880
3881 udelay(1);
2d7edb92
MC
3882 break;
3883 }
1da177e4 3884
8fc897b0 3885 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
1da177e4
LT
3886 e1000_phy_init_script(hw);
3887
3888 return E1000_SUCCESS;
3889}
3890
d37ea5d5
AK
3891/******************************************************************************
3892* Work-around for 82566 power-down: on D3 entry-
3893* 1) disable gigabit link
3894* 2) write VR power-down enable
3895* 3) read it back
3896* if successful continue, else issue LCD reset and repeat
3897*
3898* hw - struct containing variables accessed by shared code
3899******************************************************************************/
64798845 3900void e1000_phy_powerdown_workaround(struct e1000_hw *hw)
d37ea5d5 3901{
406874a7
JP
3902 s32 reg;
3903 u16 phy_data;
3904 s32 retry = 0;
d37ea5d5
AK
3905
3906 DEBUGFUNC("e1000_phy_powerdown_workaround");
3907
3908 if (hw->phy_type != e1000_phy_igp_3)
3909 return;
3910
3911 do {
3912 /* Disable link */
1dc32918
JP
3913 reg = er32(PHY_CTRL);
3914 ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
d37ea5d5
AK
3915 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3916
070f6ffb 3917 /* Write VR power-down enable - bits 9:8 should be 10b */
d37ea5d5 3918 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
070f6ffb
JK
3919 phy_data |= (1 << 9);
3920 phy_data &= ~(1 << 8);
3921 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
d37ea5d5
AK
3922
3923 /* Read it back and test */
3924 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
070f6ffb 3925 if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
d37ea5d5
AK
3926 break;
3927
3928 /* Issue PHY reset and repeat at most one more time */
1dc32918
JP
3929 reg = er32(CTRL);
3930 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
d37ea5d5
AK
3931 retry++;
3932 } while (retry);
3933
3934 return;
3935
3936}
3937
3938/******************************************************************************
3939* Work-around for 82566 Kumeran PCS lock loss:
3940* On link status change (i.e. PCI reset, speed change) and link is up and
3941* speed is gigabit-
3942* 0) if workaround is optionally disabled do nothing
3943* 1) wait 1ms for Kumeran link to come up
3944* 2) check Kumeran Diagnostic register PCS lock loss bit
3945* 3) if not set the link is locked (all is good), otherwise...
3946* 4) reset the PHY
3947* 5) repeat up to 10 times
3948* Note: this is only called for IGP3 copper when speed is 1gb.
3949*
3950* hw - struct containing variables accessed by shared code
3951******************************************************************************/
64798845 3952static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
d37ea5d5 3953{
406874a7
JP
3954 s32 ret_val;
3955 s32 reg;
3956 s32 cnt;
3957 u16 phy_data;
d37ea5d5
AK
3958
3959 if (hw->kmrn_lock_loss_workaround_disabled)
3960 return E1000_SUCCESS;
3961
8fc897b0
AK
3962 /* Make sure link is up before proceeding. If not just return.
3963 * Attempting this while link is negotiating fouled up link
d37ea5d5
AK
3964 * stability */
3965 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3966 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3967
3968 if (phy_data & MII_SR_LINK_STATUS) {
3969 for (cnt = 0; cnt < 10; cnt++) {
3970 /* read once to clear */
3971 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3972 if (ret_val)
3973 return ret_val;
3974 /* and again to get new status */
3975 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3976 if (ret_val)
3977 return ret_val;
3978
3979 /* check for PCS lock */
3980 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3981 return E1000_SUCCESS;
3982
3983 /* Issue PHY reset */
3984 e1000_phy_hw_reset(hw);
f8ec4733 3985 mdelay(5);
d37ea5d5
AK
3986 }
3987 /* Disable GigE link negotiation */
1dc32918
JP
3988 reg = er32(PHY_CTRL);
3989 ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
d37ea5d5
AK
3990 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3991
3992 /* unable to acquire PCS lock */
3993 return E1000_ERR_PHY;
3994 }
3995
3996 return E1000_SUCCESS;
3997}
3998
1da177e4
LT
3999/******************************************************************************
4000* Probes the expected PHY address for known PHY IDs
4001*
4002* hw - Struct containing variables accessed by shared code
4003******************************************************************************/
64798845 4004static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
1da177e4 4005{
406874a7
JP
4006 s32 phy_init_status, ret_val;
4007 u16 phy_id_high, phy_id_low;
c3033b01 4008 bool match = false;
1da177e4
LT
4009
4010 DEBUGFUNC("e1000_detect_gig_phy");
4011
2a88c173
JK
4012 if (hw->phy_id != 0)
4013 return E1000_SUCCESS;
4014
868d5309
MC
4015 /* The 82571 firmware may still be configuring the PHY. In this
4016 * case, we cannot access the PHY until the configuration is done. So
4017 * we explicitly set the PHY values. */
cd94dd0b
AK
4018 if (hw->mac_type == e1000_82571 ||
4019 hw->mac_type == e1000_82572) {
868d5309
MC
4020 hw->phy_id = IGP01E1000_I_PHY_ID;
4021 hw->phy_type = e1000_phy_igp_2;
4022 return E1000_SUCCESS;
4023 }
4024
6418ecc6
JK
4025 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4026 * around that forces PHY page 0 to be set or the reads fail. The rest of
4027 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4028 * So for ESB-2 we need to have this set so our reads won't fail. If the
4029 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4030 * this out as well. */
4031 if (hw->mac_type == e1000_80003es2lan)
4032 hw->phy_type = e1000_phy_gg82563;
4033
1da177e4
LT
4034 /* Read the PHY ID Registers to identify which PHY is onboard. */
4035 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
cd94dd0b 4036 if (ret_val)
1da177e4
LT
4037 return ret_val;
4038
e982f17c 4039 hw->phy_id = (u32)(phy_id_high << 16);
1da177e4
LT
4040 udelay(20);
4041 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
8fc897b0 4042 if (ret_val)
1da177e4
LT
4043 return ret_val;
4044
e982f17c
JP
4045 hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
4046 hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
1da177e4 4047
8fc897b0 4048 switch (hw->mac_type) {
1da177e4 4049 case e1000_82543:
c3033b01 4050 if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
1da177e4
LT
4051 break;
4052 case e1000_82544:
c3033b01 4053 if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
1da177e4
LT
4054 break;
4055 case e1000_82540:
4056 case e1000_82545:
4057 case e1000_82545_rev_3:
4058 case e1000_82546:
4059 case e1000_82546_rev_3:
c3033b01 4060 if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
1da177e4
LT
4061 break;
4062 case e1000_82541:
4063 case e1000_82541_rev_2:
4064 case e1000_82547:
4065 case e1000_82547_rev_2:
c3033b01 4066 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
1da177e4 4067 break;
2d7edb92 4068 case e1000_82573:
c3033b01 4069 if (hw->phy_id == M88E1111_I_PHY_ID) match = true;
2d7edb92 4070 break;
6418ecc6 4071 case e1000_80003es2lan:
c3033b01 4072 if (hw->phy_id == GG82563_E_PHY_ID) match = true;
6418ecc6 4073 break;
cd94dd0b 4074 case e1000_ich8lan:
c3033b01
JP
4075 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true;
4076 if (hw->phy_id == IFE_E_PHY_ID) match = true;
4077 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true;
4078 if (hw->phy_id == IFE_C_E_PHY_ID) match = true;
cd94dd0b 4079 break;
1da177e4
LT
4080 default:
4081 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4082 return -E1000_ERR_CONFIG;
4083 }
4084 phy_init_status = e1000_set_phy_type(hw);
4085
4086 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4087 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4088 return E1000_SUCCESS;
4089 }
4090 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4091 return -E1000_ERR_PHY;
4092}
4093
4094/******************************************************************************
4095* Resets the PHY's DSP
4096*
4097* hw - Struct containing variables accessed by shared code
4098******************************************************************************/
64798845 4099static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
1da177e4 4100{
406874a7 4101 s32 ret_val;
1da177e4
LT
4102 DEBUGFUNC("e1000_phy_reset_dsp");
4103
4104 do {
6418ecc6
JK
4105 if (hw->phy_type != e1000_phy_gg82563) {
4106 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
8fc897b0 4107 if (ret_val) break;
6418ecc6 4108 }
1da177e4 4109 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
8fc897b0 4110 if (ret_val) break;
1da177e4 4111 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
8fc897b0 4112 if (ret_val) break;
1da177e4 4113 ret_val = E1000_SUCCESS;
8fc897b0 4114 } while (0);
1da177e4
LT
4115
4116 return ret_val;
4117}
4118
4119/******************************************************************************
4120* Get PHY information from various PHY registers for igp PHY only.
4121*
4122* hw - Struct containing variables accessed by shared code
4123* phy_info - PHY information structure
4124******************************************************************************/
64798845
JP
4125static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
4126 struct e1000_phy_info *phy_info)
1da177e4 4127{
406874a7
JP
4128 s32 ret_val;
4129 u16 phy_data, min_length, max_length, average;
70c6f30a 4130 e1000_rev_polarity polarity;
1da177e4
LT
4131
4132 DEBUGFUNC("e1000_phy_igp_get_info");
4133
4134 /* The downshift status is checked only once, after link is established,
4135 * and it stored in the hw->speed_downgraded parameter. */
2d7edb92 4136 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
1da177e4
LT
4137
4138 /* IGP01E1000 does not need to support it. */
4139 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4140
4141 /* IGP01E1000 always correct polarity reversal */
4142 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4143
4144 /* Check polarity status */
4145 ret_val = e1000_check_polarity(hw, &polarity);
8fc897b0 4146 if (ret_val)
1da177e4
LT
4147 return ret_val;
4148
4149 phy_info->cable_polarity = polarity;
4150
4151 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
8fc897b0 4152 if (ret_val)
1da177e4
LT
4153 return ret_val;
4154
70c6f30a
JK
4155 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4156 IGP01E1000_PSSR_MDIX_SHIFT);
1da177e4 4157
8fc897b0 4158 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
1da177e4
LT
4159 IGP01E1000_PSSR_SPEED_1000MBPS) {
4160 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4161 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
8fc897b0 4162 if (ret_val)
1da177e4
LT
4163 return ret_val;
4164
70c6f30a
JK
4165 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4166 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4167 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4168 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4169 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4170 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1da177e4
LT
4171
4172 /* Get cable length */
4173 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
8fc897b0 4174 if (ret_val)
1da177e4
LT
4175 return ret_val;
4176
2d7edb92 4177 /* Translate to old method */
1da177e4
LT
4178 average = (max_length + min_length) / 2;
4179
8fc897b0 4180 if (average <= e1000_igp_cable_length_50)
1da177e4 4181 phy_info->cable_length = e1000_cable_length_50;
8fc897b0 4182 else if (average <= e1000_igp_cable_length_80)
1da177e4 4183 phy_info->cable_length = e1000_cable_length_50_80;
8fc897b0 4184 else if (average <= e1000_igp_cable_length_110)
1da177e4 4185 phy_info->cable_length = e1000_cable_length_80_110;
8fc897b0 4186 else if (average <= e1000_igp_cable_length_140)
1da177e4
LT
4187 phy_info->cable_length = e1000_cable_length_110_140;
4188 else
4189 phy_info->cable_length = e1000_cable_length_140;
4190 }
4191
4192 return E1000_SUCCESS;
4193}
4194
d37ea5d5
AK
4195/******************************************************************************
4196* Get PHY information from various PHY registers for ife PHY only.
4197*
4198* hw - Struct containing variables accessed by shared code
4199* phy_info - PHY information structure
4200******************************************************************************/
64798845
JP
4201static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
4202 struct e1000_phy_info *phy_info)
d37ea5d5 4203{
406874a7
JP
4204 s32 ret_val;
4205 u16 phy_data;
70c6f30a 4206 e1000_rev_polarity polarity;
d37ea5d5
AK
4207
4208 DEBUGFUNC("e1000_phy_ife_get_info");
4209
4210 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4211 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4212
4213 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4214 if (ret_val)
4215 return ret_val;
4216 phy_info->polarity_correction =
70c6f30a
JK
4217 ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4218 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4219 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
d37ea5d5
AK
4220
4221 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4222 ret_val = e1000_check_polarity(hw, &polarity);
4223 if (ret_val)
4224 return ret_val;
4225 } else {
4226 /* Polarity is forced. */
70c6f30a
JK
4227 polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4228 IFE_PSC_FORCE_POLARITY_SHIFT) ?
4229 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
d37ea5d5
AK
4230 }
4231 phy_info->cable_polarity = polarity;
4232
4233 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4234 if (ret_val)
4235 return ret_val;
4236
70c6f30a
JK
4237 phy_info->mdix_mode = (e1000_auto_x_mode)
4238 ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4239 IFE_PMC_MDIX_MODE_SHIFT);
d37ea5d5
AK
4240
4241 return E1000_SUCCESS;
4242}
4243
1da177e4
LT
4244/******************************************************************************
4245* Get PHY information from various PHY registers fot m88 PHY only.
4246*
4247* hw - Struct containing variables accessed by shared code
4248* phy_info - PHY information structure
4249******************************************************************************/
64798845
JP
4250static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
4251 struct e1000_phy_info *phy_info)
1da177e4 4252{
406874a7
JP
4253 s32 ret_val;
4254 u16 phy_data;
70c6f30a 4255 e1000_rev_polarity polarity;
1da177e4
LT
4256
4257 DEBUGFUNC("e1000_phy_m88_get_info");
4258
4259 /* The downshift status is checked only once, after link is established,
4260 * and it stored in the hw->speed_downgraded parameter. */
2d7edb92 4261 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
1da177e4
LT
4262
4263 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
8fc897b0 4264 if (ret_val)
1da177e4
LT
4265 return ret_val;
4266
4267 phy_info->extended_10bt_distance =
70c6f30a
JK
4268 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4269 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4270 e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4271
1da177e4 4272 phy_info->polarity_correction =
70c6f30a
JK
4273 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4274 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4275 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
1da177e4
LT
4276
4277 /* Check polarity status */
4278 ret_val = e1000_check_polarity(hw, &polarity);
8fc897b0 4279 if (ret_val)
76c224bc 4280 return ret_val;
1da177e4
LT
4281 phy_info->cable_polarity = polarity;
4282
4283 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
8fc897b0 4284 if (ret_val)
1da177e4
LT
4285 return ret_val;
4286
70c6f30a
JK
4287 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4288 M88E1000_PSSR_MDIX_SHIFT);
1da177e4
LT
4289
4290 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4291 /* Cable Length Estimation and Local/Remote Receiver Information
4292 * are only valid at 1000 Mbps.
4293 */
6418ecc6 4294 if (hw->phy_type != e1000_phy_gg82563) {
70c6f30a 4295 phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6418ecc6
JK
4296 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4297 } else {
4298 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4299 &phy_data);
4300 if (ret_val)
4301 return ret_val;
4302
70c6f30a 4303 phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
6418ecc6 4304 }
1da177e4
LT
4305
4306 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
8fc897b0 4307 if (ret_val)
1da177e4
LT
4308 return ret_val;
4309
70c6f30a
JK
4310 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4311 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4312 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4313 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4314 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4315 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1da177e4 4316
1da177e4
LT
4317 }
4318
4319 return E1000_SUCCESS;
4320}
4321
4322/******************************************************************************
4323* Get PHY information from various PHY registers
4324*
4325* hw - Struct containing variables accessed by shared code
4326* phy_info - PHY information structure
4327******************************************************************************/
64798845 4328s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
1da177e4 4329{
406874a7
JP
4330 s32 ret_val;
4331 u16 phy_data;
1da177e4
LT
4332
4333 DEBUGFUNC("e1000_phy_get_info");
4334
4335 phy_info->cable_length = e1000_cable_length_undefined;
4336 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4337 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4338 phy_info->downshift = e1000_downshift_undefined;
4339 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4340 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4341 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4342 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4343
8fc897b0 4344 if (hw->media_type != e1000_media_type_copper) {
1da177e4
LT
4345 DEBUGOUT("PHY info is only valid for copper media\n");
4346 return -E1000_ERR_CONFIG;
4347 }
4348
4349 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 4350 if (ret_val)
1da177e4
LT
4351 return ret_val;
4352
4353 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
8fc897b0 4354 if (ret_val)
1da177e4
LT
4355 return ret_val;
4356
8fc897b0 4357 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
1da177e4
LT
4358 DEBUGOUT("PHY info is only valid if link is up\n");
4359 return -E1000_ERR_CONFIG;
4360 }
4361
cd94dd0b
AK
4362 if (hw->phy_type == e1000_phy_igp ||
4363 hw->phy_type == e1000_phy_igp_3 ||
2d7edb92 4364 hw->phy_type == e1000_phy_igp_2)
1da177e4 4365 return e1000_phy_igp_get_info(hw, phy_info);
cd94dd0b
AK
4366 else if (hw->phy_type == e1000_phy_ife)
4367 return e1000_phy_ife_get_info(hw, phy_info);
1da177e4
LT
4368 else
4369 return e1000_phy_m88_get_info(hw, phy_info);
4370}
4371
64798845 4372s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
1da177e4
LT
4373{
4374 DEBUGFUNC("e1000_validate_mdi_settings");
4375
8fc897b0 4376 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
1da177e4
LT
4377 DEBUGOUT("Invalid MDI setting detected\n");
4378 hw->mdix = 1;
4379 return -E1000_ERR_CONFIG;
4380 }
4381 return E1000_SUCCESS;
4382}
4383
4384
4385/******************************************************************************
4386 * Sets up eeprom variables in the hw struct. Must be called after mac_type
0f15a8fa
JK
4387 * is configured. Additionally, if this is ICH8, the flash controller GbE
4388 * registers must be mapped, or this will crash.
1da177e4
LT
4389 *
4390 * hw - Struct containing variables accessed by shared code
4391 *****************************************************************************/
64798845 4392s32 e1000_init_eeprom_params(struct e1000_hw *hw)
1da177e4
LT
4393{
4394 struct e1000_eeprom_info *eeprom = &hw->eeprom;
1dc32918 4395 u32 eecd = er32(EECD);
406874a7
JP
4396 s32 ret_val = E1000_SUCCESS;
4397 u16 eeprom_size;
1da177e4
LT
4398
4399 DEBUGFUNC("e1000_init_eeprom_params");
4400
4401 switch (hw->mac_type) {
4402 case e1000_82542_rev2_0:
4403 case e1000_82542_rev2_1:
4404 case e1000_82543:
4405 case e1000_82544:
4406 eeprom->type = e1000_eeprom_microwire;
4407 eeprom->word_size = 64;
4408 eeprom->opcode_bits = 3;
4409 eeprom->address_bits = 6;
4410 eeprom->delay_usec = 50;
c3033b01
JP
4411 eeprom->use_eerd = false;
4412 eeprom->use_eewr = false;
1da177e4
LT
4413 break;
4414 case e1000_82540:
4415 case e1000_82545:
4416 case e1000_82545_rev_3:
4417 case e1000_82546:
4418 case e1000_82546_rev_3:
4419 eeprom->type = e1000_eeprom_microwire;
4420 eeprom->opcode_bits = 3;
4421 eeprom->delay_usec = 50;
8fc897b0 4422 if (eecd & E1000_EECD_SIZE) {
1da177e4
LT
4423 eeprom->word_size = 256;
4424 eeprom->address_bits = 8;
4425 } else {
4426 eeprom->word_size = 64;
4427 eeprom->address_bits = 6;
4428 }
c3033b01
JP
4429 eeprom->use_eerd = false;
4430 eeprom->use_eewr = false;
1da177e4
LT
4431 break;
4432 case e1000_82541:
4433 case e1000_82541_rev_2:
4434 case e1000_82547:
4435 case e1000_82547_rev_2:
4436 if (eecd & E1000_EECD_TYPE) {
4437 eeprom->type = e1000_eeprom_spi;
4438 eeprom->opcode_bits = 8;
4439 eeprom->delay_usec = 1;
4440 if (eecd & E1000_EECD_ADDR_BITS) {
4441 eeprom->page_size = 32;
4442 eeprom->address_bits = 16;
4443 } else {
4444 eeprom->page_size = 8;
4445 eeprom->address_bits = 8;
4446 }
4447 } else {
4448 eeprom->type = e1000_eeprom_microwire;
4449 eeprom->opcode_bits = 3;
4450 eeprom->delay_usec = 50;
4451 if (eecd & E1000_EECD_ADDR_BITS) {
4452 eeprom->word_size = 256;
4453 eeprom->address_bits = 8;
4454 } else {
4455 eeprom->word_size = 64;
4456 eeprom->address_bits = 6;
4457 }
4458 }
c3033b01
JP
4459 eeprom->use_eerd = false;
4460 eeprom->use_eewr = false;
2d7edb92 4461 break;
868d5309
MC
4462 case e1000_82571:
4463 case e1000_82572:
4464 eeprom->type = e1000_eeprom_spi;
4465 eeprom->opcode_bits = 8;
4466 eeprom->delay_usec = 1;
4467 if (eecd & E1000_EECD_ADDR_BITS) {
4468 eeprom->page_size = 32;
4469 eeprom->address_bits = 16;
4470 } else {
4471 eeprom->page_size = 8;
4472 eeprom->address_bits = 8;
4473 }
c3033b01
JP
4474 eeprom->use_eerd = false;
4475 eeprom->use_eewr = false;
868d5309 4476 break;
2d7edb92
MC
4477 case e1000_82573:
4478 eeprom->type = e1000_eeprom_spi;
4479 eeprom->opcode_bits = 8;
4480 eeprom->delay_usec = 1;
4481 if (eecd & E1000_EECD_ADDR_BITS) {
4482 eeprom->page_size = 32;
4483 eeprom->address_bits = 16;
4484 } else {
4485 eeprom->page_size = 8;
4486 eeprom->address_bits = 8;
4487 }
c3033b01
JP
4488 eeprom->use_eerd = true;
4489 eeprom->use_eewr = true;
4490 if (!e1000_is_onboard_nvm_eeprom(hw)) {
2d7edb92
MC
4491 eeprom->type = e1000_eeprom_flash;
4492 eeprom->word_size = 2048;
4493
4494 /* Ensure that the Autonomous FLASH update bit is cleared due to
4495 * Flash update issue on parts which use a FLASH for NVM. */
4496 eecd &= ~E1000_EECD_AUPDEN;
1dc32918 4497 ew32(EECD, eecd);
2d7edb92 4498 }
1da177e4 4499 break;
6418ecc6
JK
4500 case e1000_80003es2lan:
4501 eeprom->type = e1000_eeprom_spi;
4502 eeprom->opcode_bits = 8;
4503 eeprom->delay_usec = 1;
4504 if (eecd & E1000_EECD_ADDR_BITS) {
4505 eeprom->page_size = 32;
4506 eeprom->address_bits = 16;
4507 } else {
4508 eeprom->page_size = 8;
4509 eeprom->address_bits = 8;
4510 }
c3033b01
JP
4511 eeprom->use_eerd = true;
4512 eeprom->use_eewr = false;
6418ecc6 4513 break;
cd94dd0b 4514 case e1000_ich8lan:
35574764 4515 {
406874a7
JP
4516 s32 i = 0;
4517 u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
cd94dd0b
AK
4518
4519 eeprom->type = e1000_eeprom_ich8;
c3033b01
JP
4520 eeprom->use_eerd = false;
4521 eeprom->use_eewr = false;
cd94dd0b
AK
4522 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4523
4524 /* Zero the shadow RAM structure. But don't load it from NVM
4525 * so as to save time for driver init */
4526 if (hw->eeprom_shadow_ram != NULL) {
4527 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
c3033b01 4528 hw->eeprom_shadow_ram[i].modified = false;
cd94dd0b
AK
4529 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4530 }
4531 }
4532
2df7d59f
JK
4533 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
4534 ICH_FLASH_SECTOR_SIZE;
4535
4536 hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
4537 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
4538
4539 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
cd94dd0b 4540
406874a7 4541 hw->flash_bank_size /= 2 * sizeof(u16);
cd94dd0b
AK
4542
4543 break;
35574764 4544 }
1da177e4
LT
4545 default:
4546 break;
4547 }
4548
4549 if (eeprom->type == e1000_eeprom_spi) {
2d7edb92
MC
4550 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4551 * 32KB (incremented by powers of 2).
4552 */
8fc897b0 4553 if (hw->mac_type <= e1000_82547_rev_2) {
2d7edb92
MC
4554 /* Set to default value for initial eeprom read. */
4555 eeprom->word_size = 64;
4556 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
8fc897b0 4557 if (ret_val)
2d7edb92
MC
4558 return ret_val;
4559 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4560 /* 256B eeprom size was not supported in earlier hardware, so we
4561 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4562 * is never the result used in the shifting logic below. */
8fc897b0 4563 if (eeprom_size)
2d7edb92
MC
4564 eeprom_size++;
4565 } else {
406874a7 4566 eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
2d7edb92 4567 E1000_EECD_SIZE_EX_SHIFT);
1da177e4 4568 }
2d7edb92
MC
4569
4570 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
1da177e4 4571 }
2d7edb92 4572 return ret_val;
1da177e4
LT
4573}
4574
4575/******************************************************************************
4576 * Raises the EEPROM's clock input.
4577 *
4578 * hw - Struct containing variables accessed by shared code
4579 * eecd - EECD's current value
4580 *****************************************************************************/
64798845 4581static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
1da177e4
LT
4582{
4583 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4584 * wait <delay> microseconds.
4585 */
4586 *eecd = *eecd | E1000_EECD_SK;
1dc32918
JP
4587 ew32(EECD, *eecd);
4588 E1000_WRITE_FLUSH();
1da177e4
LT
4589 udelay(hw->eeprom.delay_usec);
4590}
4591
4592/******************************************************************************
4593 * Lowers the EEPROM's clock input.
4594 *
4595 * hw - Struct containing variables accessed by shared code
4596 * eecd - EECD's current value
4597 *****************************************************************************/
64798845 4598static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
1da177e4
LT
4599{
4600 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4601 * wait 50 microseconds.
4602 */
4603 *eecd = *eecd & ~E1000_EECD_SK;
1dc32918
JP
4604 ew32(EECD, *eecd);
4605 E1000_WRITE_FLUSH();
1da177e4
LT
4606 udelay(hw->eeprom.delay_usec);
4607}
4608
4609/******************************************************************************
4610 * Shift data bits out to the EEPROM.
4611 *
4612 * hw - Struct containing variables accessed by shared code
4613 * data - data to send to the EEPROM
4614 * count - number of bits to shift out
4615 *****************************************************************************/
64798845 4616static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
1da177e4
LT
4617{
4618 struct e1000_eeprom_info *eeprom = &hw->eeprom;
406874a7
JP
4619 u32 eecd;
4620 u32 mask;
1da177e4
LT
4621
4622 /* We need to shift "count" bits out to the EEPROM. So, value in the
4623 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4624 * In order to do this, "data" must be broken down into bits.
4625 */
4626 mask = 0x01 << (count - 1);
1dc32918 4627 eecd = er32(EECD);
1da177e4
LT
4628 if (eeprom->type == e1000_eeprom_microwire) {
4629 eecd &= ~E1000_EECD_DO;
4630 } else if (eeprom->type == e1000_eeprom_spi) {
4631 eecd |= E1000_EECD_DO;
4632 }
4633 do {
4634 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4635 * and then raising and then lowering the clock (the SK bit controls
4636 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4637 * by setting "DI" to "0" and then raising and then lowering the clock.
4638 */
4639 eecd &= ~E1000_EECD_DI;
4640
8fc897b0 4641 if (data & mask)
1da177e4
LT
4642 eecd |= E1000_EECD_DI;
4643
1dc32918
JP
4644 ew32(EECD, eecd);
4645 E1000_WRITE_FLUSH();
1da177e4
LT
4646
4647 udelay(eeprom->delay_usec);
4648
4649 e1000_raise_ee_clk(hw, &eecd);
4650 e1000_lower_ee_clk(hw, &eecd);
4651
4652 mask = mask >> 1;
4653
8fc897b0 4654 } while (mask);
1da177e4
LT
4655
4656 /* We leave the "DI" bit set to "0" when we leave this routine. */
4657 eecd &= ~E1000_EECD_DI;
1dc32918 4658 ew32(EECD, eecd);
1da177e4
LT
4659}
4660
4661/******************************************************************************
4662 * Shift data bits in from the EEPROM
4663 *
4664 * hw - Struct containing variables accessed by shared code
4665 *****************************************************************************/
64798845 4666static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
1da177e4 4667{
406874a7
JP
4668 u32 eecd;
4669 u32 i;
4670 u16 data;
1da177e4
LT
4671
4672 /* In order to read a register from the EEPROM, we need to shift 'count'
4673 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4674 * input to the EEPROM (setting the SK bit), and then reading the value of
4675 * the "DO" bit. During this "shifting in" process the "DI" bit should
4676 * always be clear.
4677 */
4678
1dc32918 4679 eecd = er32(EECD);
1da177e4
LT
4680
4681 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4682 data = 0;
4683
8fc897b0 4684 for (i = 0; i < count; i++) {
1da177e4
LT
4685 data = data << 1;
4686 e1000_raise_ee_clk(hw, &eecd);
4687
1dc32918 4688 eecd = er32(EECD);
1da177e4
LT
4689
4690 eecd &= ~(E1000_EECD_DI);
8fc897b0 4691 if (eecd & E1000_EECD_DO)
1da177e4
LT
4692 data |= 1;
4693
4694 e1000_lower_ee_clk(hw, &eecd);
4695 }
4696
4697 return data;
4698}
4699
4700/******************************************************************************
4701 * Prepares EEPROM for access
4702 *
4703 * hw - Struct containing variables accessed by shared code
4704 *
4705 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4706 * function should be called before issuing a command to the EEPROM.
4707 *****************************************************************************/
64798845 4708static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
1da177e4
LT
4709{
4710 struct e1000_eeprom_info *eeprom = &hw->eeprom;
406874a7 4711 u32 eecd, i=0;
1da177e4
LT
4712
4713 DEBUGFUNC("e1000_acquire_eeprom");
4714
6418ecc6
JK
4715 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4716 return -E1000_ERR_SWFW_SYNC;
1dc32918 4717 eecd = er32(EECD);
1da177e4 4718
2d7edb92 4719 if (hw->mac_type != e1000_82573) {
868d5309 4720 /* Request EEPROM Access */
8fc897b0 4721 if (hw->mac_type > e1000_82544) {
868d5309 4722 eecd |= E1000_EECD_REQ;
1dc32918
JP
4723 ew32(EECD, eecd);
4724 eecd = er32(EECD);
8fc897b0 4725 while ((!(eecd & E1000_EECD_GNT)) &&
868d5309
MC
4726 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4727 i++;
4728 udelay(5);
1dc32918 4729 eecd = er32(EECD);
868d5309 4730 }
8fc897b0 4731 if (!(eecd & E1000_EECD_GNT)) {
868d5309 4732 eecd &= ~E1000_EECD_REQ;
1dc32918 4733 ew32(EECD, eecd);
868d5309 4734 DEBUGOUT("Could not acquire EEPROM grant\n");
6418ecc6 4735 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
868d5309
MC
4736 return -E1000_ERR_EEPROM;
4737 }
1da177e4
LT
4738 }
4739 }
4740
4741 /* Setup EEPROM for Read/Write */
4742
4743 if (eeprom->type == e1000_eeprom_microwire) {
4744 /* Clear SK and DI */
4745 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
1dc32918 4746 ew32(EECD, eecd);
1da177e4
LT
4747
4748 /* Set CS */
4749 eecd |= E1000_EECD_CS;
1dc32918 4750 ew32(EECD, eecd);
1da177e4
LT
4751 } else if (eeprom->type == e1000_eeprom_spi) {
4752 /* Clear SK and CS */
4753 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1dc32918 4754 ew32(EECD, eecd);
1da177e4
LT
4755 udelay(1);
4756 }
4757
4758 return E1000_SUCCESS;
4759}
4760
4761/******************************************************************************
4762 * Returns EEPROM to a "standby" state
4763 *
4764 * hw - Struct containing variables accessed by shared code
4765 *****************************************************************************/
64798845 4766static void e1000_standby_eeprom(struct e1000_hw *hw)
1da177e4
LT
4767{
4768 struct e1000_eeprom_info *eeprom = &hw->eeprom;
406874a7 4769 u32 eecd;
1da177e4 4770
1dc32918 4771 eecd = er32(EECD);
1da177e4 4772
8fc897b0 4773 if (eeprom->type == e1000_eeprom_microwire) {
1da177e4 4774 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1dc32918
JP
4775 ew32(EECD, eecd);
4776 E1000_WRITE_FLUSH();
1da177e4
LT
4777 udelay(eeprom->delay_usec);
4778
4779 /* Clock high */
4780 eecd |= E1000_EECD_SK;
1dc32918
JP
4781 ew32(EECD, eecd);
4782 E1000_WRITE_FLUSH();
1da177e4
LT
4783 udelay(eeprom->delay_usec);
4784
4785 /* Select EEPROM */
4786 eecd |= E1000_EECD_CS;
1dc32918
JP
4787 ew32(EECD, eecd);
4788 E1000_WRITE_FLUSH();
1da177e4
LT
4789 udelay(eeprom->delay_usec);
4790
4791 /* Clock low */
4792 eecd &= ~E1000_EECD_SK;
1dc32918
JP
4793 ew32(EECD, eecd);
4794 E1000_WRITE_FLUSH();
1da177e4 4795 udelay(eeprom->delay_usec);
8fc897b0 4796 } else if (eeprom->type == e1000_eeprom_spi) {
1da177e4
LT
4797 /* Toggle CS to flush commands */
4798 eecd |= E1000_EECD_CS;
1dc32918
JP
4799 ew32(EECD, eecd);
4800 E1000_WRITE_FLUSH();
1da177e4
LT
4801 udelay(eeprom->delay_usec);
4802 eecd &= ~E1000_EECD_CS;
1dc32918
JP
4803 ew32(EECD, eecd);
4804 E1000_WRITE_FLUSH();
1da177e4
LT
4805 udelay(eeprom->delay_usec);
4806 }
4807}
4808
4809/******************************************************************************
4810 * Terminates a command by inverting the EEPROM's chip select pin
4811 *
4812 * hw - Struct containing variables accessed by shared code
4813 *****************************************************************************/
64798845 4814static void e1000_release_eeprom(struct e1000_hw *hw)
1da177e4 4815{
406874a7 4816 u32 eecd;
1da177e4
LT
4817
4818 DEBUGFUNC("e1000_release_eeprom");
4819
1dc32918 4820 eecd = er32(EECD);
1da177e4
LT
4821
4822 if (hw->eeprom.type == e1000_eeprom_spi) {
4823 eecd |= E1000_EECD_CS; /* Pull CS high */
4824 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4825
1dc32918 4826 ew32(EECD, eecd);
1da177e4
LT
4827
4828 udelay(hw->eeprom.delay_usec);
8fc897b0 4829 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
1da177e4
LT
4830 /* cleanup eeprom */
4831
4832 /* CS on Microwire is active-high */
4833 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4834
1dc32918 4835 ew32(EECD, eecd);
1da177e4
LT
4836
4837 /* Rising edge of clock */
4838 eecd |= E1000_EECD_SK;
1dc32918
JP
4839 ew32(EECD, eecd);
4840 E1000_WRITE_FLUSH();
1da177e4
LT
4841 udelay(hw->eeprom.delay_usec);
4842
4843 /* Falling edge of clock */
4844 eecd &= ~E1000_EECD_SK;
1dc32918
JP
4845 ew32(EECD, eecd);
4846 E1000_WRITE_FLUSH();
1da177e4
LT
4847 udelay(hw->eeprom.delay_usec);
4848 }
4849
4850 /* Stop requesting EEPROM access */
8fc897b0 4851 if (hw->mac_type > e1000_82544) {
1da177e4 4852 eecd &= ~E1000_EECD_REQ;
1dc32918 4853 ew32(EECD, eecd);
1da177e4 4854 }
2d7edb92 4855
6418ecc6 4856 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
1da177e4
LT
4857}
4858
4859/******************************************************************************
4860 * Reads a 16 bit word from the EEPROM.
4861 *
4862 * hw - Struct containing variables accessed by shared code
4863 *****************************************************************************/
64798845 4864static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
1da177e4 4865{
406874a7
JP
4866 u16 retry_count = 0;
4867 u8 spi_stat_reg;
1da177e4
LT
4868
4869 DEBUGFUNC("e1000_spi_eeprom_ready");
4870
4871 /* Read "Status Register" repeatedly until the LSB is cleared. The
4872 * EEPROM will signal that the command has been completed by clearing
4873 * bit 0 of the internal status register. If it's not cleared within
4874 * 5 milliseconds, then error out.
4875 */
4876 retry_count = 0;
4877 do {
4878 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4879 hw->eeprom.opcode_bits);
406874a7 4880 spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
1da177e4
LT
4881 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4882 break;
4883
4884 udelay(5);
4885 retry_count += 5;
4886
4887 e1000_standby_eeprom(hw);
8fc897b0 4888 } while (retry_count < EEPROM_MAX_RETRY_SPI);
1da177e4
LT
4889
4890 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4891 * only 0-5mSec on 5V devices)
4892 */
8fc897b0 4893 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
1da177e4
LT
4894 DEBUGOUT("SPI EEPROM Status error\n");
4895 return -E1000_ERR_EEPROM;
4896 }
4897
4898 return E1000_SUCCESS;
4899}
4900
4901/******************************************************************************
4902 * Reads a 16 bit word from the EEPROM.
4903 *
4904 * hw - Struct containing variables accessed by shared code
4905 * offset - offset of word in the EEPROM to read
4906 * data - word read from the EEPROM
4907 * words - number of words to read
4908 *****************************************************************************/
64798845 4909s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
78566fec
CL
4910{
4911 s32 ret;
4912 spin_lock(&e1000_eeprom_lock);
4913 ret = e1000_do_read_eeprom(hw, offset, words, data);
4914 spin_unlock(&e1000_eeprom_lock);
4915 return ret;
4916}
4917
4918static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1da177e4
LT
4919{
4920 struct e1000_eeprom_info *eeprom = &hw->eeprom;
406874a7 4921 u32 i = 0;
1da177e4
LT
4922
4923 DEBUGFUNC("e1000_read_eeprom");
2d7edb92 4924
2a88c173
JK
4925 /* If eeprom is not yet detected, do so now */
4926 if (eeprom->word_size == 0)
4927 e1000_init_eeprom_params(hw);
4928
1da177e4
LT
4929 /* A check for invalid values: offset too large, too many words, and not
4930 * enough words.
4931 */
8fc897b0 4932 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
1da177e4 4933 (words == 0)) {
2a88c173 4934 DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
1da177e4
LT
4935 return -E1000_ERR_EEPROM;
4936 }
4937
2a88c173
JK
4938 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4939 * directly. In this case, we need to acquire the EEPROM so that
4940 * FW or other port software does not interrupt.
4941 */
c3033b01 4942 if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) {
2a88c173
JK
4943 /* Prepare the EEPROM for bit-bang reading */
4944 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4945 return -E1000_ERR_EEPROM;
2d7edb92
MC
4946 }
4947
2a88c173 4948 /* Eerd register EEPROM access requires no eeprom aquire/release */
c3033b01 4949 if (eeprom->use_eerd)
2a88c173 4950 return e1000_read_eeprom_eerd(hw, offset, words, data);
1da177e4 4951
2a88c173 4952 /* ICH EEPROM access is done via the ICH flash controller */
cd94dd0b
AK
4953 if (eeprom->type == e1000_eeprom_ich8)
4954 return e1000_read_eeprom_ich8(hw, offset, words, data);
4955
2a88c173
JK
4956 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
4957 * acquired the EEPROM at this point, so any returns should relase it */
cd94dd0b 4958 if (eeprom->type == e1000_eeprom_spi) {
406874a7
JP
4959 u16 word_in;
4960 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
1da177e4 4961
8fc897b0 4962 if (e1000_spi_eeprom_ready(hw)) {
1da177e4
LT
4963 e1000_release_eeprom(hw);
4964 return -E1000_ERR_EEPROM;
4965 }
4966
4967 e1000_standby_eeprom(hw);
4968
4969 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
8fc897b0 4970 if ((eeprom->address_bits == 8) && (offset >= 128))
1da177e4
LT
4971 read_opcode |= EEPROM_A8_OPCODE_SPI;
4972
4973 /* Send the READ command (opcode + addr) */
4974 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
406874a7 4975 e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
1da177e4
LT
4976
4977 /* Read the data. The address of the eeprom internally increments with
4978 * each byte (spi) being read, saving on the overhead of eeprom setup
4979 * and tear-down. The address counter will roll over if reading beyond
4980 * the size of the eeprom, thus allowing the entire memory to be read
4981 * starting from any offset. */
4982 for (i = 0; i < words; i++) {
4983 word_in = e1000_shift_in_ee_bits(hw, 16);
4984 data[i] = (word_in >> 8) | (word_in << 8);
4985 }
8fc897b0 4986 } else if (eeprom->type == e1000_eeprom_microwire) {
1da177e4
LT
4987 for (i = 0; i < words; i++) {
4988 /* Send the READ command (opcode + addr) */
4989 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
4990 eeprom->opcode_bits);
406874a7 4991 e1000_shift_out_ee_bits(hw, (u16)(offset + i),
1da177e4
LT
4992 eeprom->address_bits);
4993
4994 /* Read the data. For microwire, each word requires the overhead
4995 * of eeprom setup and tear-down. */
4996 data[i] = e1000_shift_in_ee_bits(hw, 16);
4997 e1000_standby_eeprom(hw);
4998 }
4999 }
5000
5001 /* End this read operation */
5002 e1000_release_eeprom(hw);
5003
5004 return E1000_SUCCESS;
5005}
5006
5007/******************************************************************************
2d7edb92 5008 * Reads a 16 bit word from the EEPROM using the EERD register.
1da177e4
LT
5009 *
5010 * hw - Struct containing variables accessed by shared code
2d7edb92
MC
5011 * offset - offset of word in the EEPROM to read
5012 * data - word read from the EEPROM
5013 * words - number of words to read
1da177e4 5014 *****************************************************************************/
64798845
JP
5015static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
5016 u16 *data)
1da177e4 5017{
406874a7
JP
5018 u32 i, eerd = 0;
5019 s32 error = 0;
1da177e4 5020
2d7edb92
MC
5021 for (i = 0; i < words; i++) {
5022 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
5023 E1000_EEPROM_RW_REG_START;
1da177e4 5024
1dc32918 5025 ew32(EERD, eerd);
2d7edb92 5026 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
76c224bc 5027
8fc897b0 5028 if (error) {
2d7edb92 5029 break;
1da177e4 5030 }
1dc32918 5031 data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
76c224bc 5032
1da177e4 5033 }
76c224bc 5034
2d7edb92 5035 return error;
1da177e4
LT
5036}
5037
5038/******************************************************************************
2d7edb92 5039 * Writes a 16 bit word from the EEPROM using the EEWR register.
1da177e4
LT
5040 *
5041 * hw - Struct containing variables accessed by shared code
2d7edb92
MC
5042 * offset - offset of word in the EEPROM to read
5043 * data - word read from the EEPROM
5044 * words - number of words to read
1da177e4 5045 *****************************************************************************/
64798845
JP
5046static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
5047 u16 *data)
1da177e4 5048{
406874a7
JP
5049 u32 register_value = 0;
5050 u32 i = 0;
5051 s32 error = 0;
1da177e4 5052
6418ecc6
JK
5053 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5054 return -E1000_ERR_SWFW_SYNC;
5055
2d7edb92 5056 for (i = 0; i < words; i++) {
76c224bc
AK
5057 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5058 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
2d7edb92 5059 E1000_EEPROM_RW_REG_START;
1da177e4 5060
2d7edb92 5061 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
8fc897b0 5062 if (error) {
2d7edb92 5063 break;
76c224bc 5064 }
2d7edb92 5065
1dc32918 5066 ew32(EEWR, register_value);
76c224bc 5067
2d7edb92 5068 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
76c224bc 5069
8fc897b0 5070 if (error) {
2d7edb92 5071 break;
76c224bc 5072 }
2d7edb92 5073 }
76c224bc 5074
6418ecc6 5075 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
2d7edb92
MC
5076 return error;
5077}
5078
5079/******************************************************************************
5080 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5081 *
5082 * hw - Struct containing variables accessed by shared code
5083 *****************************************************************************/
64798845 5084static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
2d7edb92 5085{
406874a7
JP
5086 u32 attempts = 100000;
5087 u32 i, reg = 0;
5088 s32 done = E1000_ERR_EEPROM;
2d7edb92 5089
8fc897b0
AK
5090 for (i = 0; i < attempts; i++) {
5091 if (eerd == E1000_EEPROM_POLL_READ)
1dc32918 5092 reg = er32(EERD);
76c224bc 5093 else
1dc32918 5094 reg = er32(EEWR);
2d7edb92 5095
8fc897b0 5096 if (reg & E1000_EEPROM_RW_REG_DONE) {
2d7edb92
MC
5097 done = E1000_SUCCESS;
5098 break;
5099 }
5100 udelay(5);
5101 }
5102
5103 return done;
5104}
5105
5106/***************************************************************************
5107* Description: Determines if the onboard NVM is FLASH or EEPROM.
5108*
5109* hw - Struct containing variables accessed by shared code
5110****************************************************************************/
64798845 5111static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
2d7edb92 5112{
406874a7 5113 u32 eecd = 0;
2d7edb92 5114
6418ecc6
JK
5115 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5116
cd94dd0b 5117 if (hw->mac_type == e1000_ich8lan)
c3033b01 5118 return false;
cd94dd0b
AK
5119
5120 if (hw->mac_type == e1000_82573) {
1dc32918 5121 eecd = er32(EECD);
2d7edb92
MC
5122
5123 /* Isolate bits 15 & 16 */
5124 eecd = ((eecd >> 15) & 0x03);
5125
5126 /* If both bits are set, device is Flash type */
8fc897b0 5127 if (eecd == 0x03) {
c3033b01 5128 return false;
2d7edb92
MC
5129 }
5130 }
c3033b01 5131 return true;
2d7edb92
MC
5132}
5133
5134/******************************************************************************
5135 * Verifies that the EEPROM has a valid checksum
5136 *
5137 * hw - Struct containing variables accessed by shared code
5138 *
5139 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5140 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5141 * valid.
5142 *****************************************************************************/
64798845 5143s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
2d7edb92 5144{
406874a7
JP
5145 u16 checksum = 0;
5146 u16 i, eeprom_data;
2d7edb92
MC
5147
5148 DEBUGFUNC("e1000_validate_eeprom_checksum");
5149
c3033b01 5150 if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) {
2d7edb92
MC
5151 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5152 * 10h-12h. Checksum may need to be fixed. */
5153 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5154 if ((eeprom_data & 0x10) == 0) {
5155 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5156 * has already been fixed. If the checksum is still wrong and this
5157 * bit is a 1, we need to return bad checksum. Otherwise, we need
5158 * to set this bit to a 1 and update the checksum. */
5159 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5160 if ((eeprom_data & 0x8000) == 0) {
5161 eeprom_data |= 0x8000;
5162 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5163 e1000_update_eeprom_checksum(hw);
5164 }
5165 }
5166 }
5167
cd94dd0b
AK
5168 if (hw->mac_type == e1000_ich8lan) {
5169 /* Drivers must allocate the shadow ram structure for the
5170 * EEPROM checksum to be updated. Otherwise, this bit as well
5171 * as the checksum must both be set correctly for this
5172 * validation to pass.
5173 */
5174 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5175 if ((eeprom_data & 0x40) == 0) {
5176 eeprom_data |= 0x40;
5177 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5178 e1000_update_eeprom_checksum(hw);
5179 }
5180 }
5181
5182 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5183 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
2d7edb92
MC
5184 DEBUGOUT("EEPROM Read Error\n");
5185 return -E1000_ERR_EEPROM;
5186 }
5187 checksum += eeprom_data;
5188 }
5189
e982f17c 5190 if (checksum == (u16)EEPROM_SUM)
2d7edb92
MC
5191 return E1000_SUCCESS;
5192 else {
5193 DEBUGOUT("EEPROM Checksum Invalid\n");
5194 return -E1000_ERR_EEPROM;
5195 }
5196}
5197
5198/******************************************************************************
5199 * Calculates the EEPROM checksum and writes it to the EEPROM
5200 *
5201 * hw - Struct containing variables accessed by shared code
5202 *
5203 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5204 * Writes the difference to word offset 63 of the EEPROM.
5205 *****************************************************************************/
64798845 5206s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
2d7edb92 5207{
406874a7
JP
5208 u32 ctrl_ext;
5209 u16 checksum = 0;
5210 u16 i, eeprom_data;
2d7edb92
MC
5211
5212 DEBUGFUNC("e1000_update_eeprom_checksum");
5213
8fc897b0
AK
5214 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5215 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
2d7edb92
MC
5216 DEBUGOUT("EEPROM Read Error\n");
5217 return -E1000_ERR_EEPROM;
5218 }
5219 checksum += eeprom_data;
5220 }
e982f17c 5221 checksum = (u16)EEPROM_SUM - checksum;
8fc897b0 5222 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
1da177e4
LT
5223 DEBUGOUT("EEPROM Write Error\n");
5224 return -E1000_ERR_EEPROM;
2d7edb92
MC
5225 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5226 e1000_commit_shadow_ram(hw);
cd94dd0b
AK
5227 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5228 e1000_commit_shadow_ram(hw);
5229 /* Reload the EEPROM, or else modifications will not appear
5230 * until after next adapter reset. */
1dc32918 5231 ctrl_ext = er32(CTRL_EXT);
cd94dd0b 5232 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1dc32918 5233 ew32(CTRL_EXT, ctrl_ext);
f8ec4733 5234 msleep(10);
1da177e4
LT
5235 }
5236 return E1000_SUCCESS;
5237}
5238
5239/******************************************************************************
5240 * Parent function for writing words to the different EEPROM types.
5241 *
5242 * hw - Struct containing variables accessed by shared code
5243 * offset - offset within the EEPROM to be written to
5244 * words - number of words to write
5245 * data - 16 bit word to be written to the EEPROM
5246 *
5247 * If e1000_update_eeprom_checksum is not called after this function, the
5248 * EEPROM will most likely contain an invalid checksum.
5249 *****************************************************************************/
64798845 5250s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
78566fec
CL
5251{
5252 s32 ret;
5253 spin_lock(&e1000_eeprom_lock);
5254 ret = e1000_do_write_eeprom(hw, offset, words, data);
5255 spin_unlock(&e1000_eeprom_lock);
5256 return ret;
5257}
5258
5259
5260static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1da177e4
LT
5261{
5262 struct e1000_eeprom_info *eeprom = &hw->eeprom;
406874a7 5263 s32 status = 0;
1da177e4
LT
5264
5265 DEBUGFUNC("e1000_write_eeprom");
5266
2a88c173
JK
5267 /* If eeprom is not yet detected, do so now */
5268 if (eeprom->word_size == 0)
5269 e1000_init_eeprom_params(hw);
5270
1da177e4
LT
5271 /* A check for invalid values: offset too large, too many words, and not
5272 * enough words.
5273 */
8fc897b0 5274 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
1da177e4
LT
5275 (words == 0)) {
5276 DEBUGOUT("\"words\" parameter out of bounds\n");
5277 return -E1000_ERR_EEPROM;
5278 }
5279
868d5309 5280 /* 82573 writes only through eewr */
c3033b01 5281 if (eeprom->use_eewr)
2d7edb92
MC
5282 return e1000_write_eeprom_eewr(hw, offset, words, data);
5283
cd94dd0b
AK
5284 if (eeprom->type == e1000_eeprom_ich8)
5285 return e1000_write_eeprom_ich8(hw, offset, words, data);
5286
1da177e4
LT
5287 /* Prepare the EEPROM for writing */
5288 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5289 return -E1000_ERR_EEPROM;
5290
8fc897b0 5291 if (eeprom->type == e1000_eeprom_microwire) {
1da177e4
LT
5292 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5293 } else {
5294 status = e1000_write_eeprom_spi(hw, offset, words, data);
f8ec4733 5295 msleep(10);
1da177e4
LT
5296 }
5297
5298 /* Done with writing */
5299 e1000_release_eeprom(hw);
5300
5301 return status;
5302}
5303
5304/******************************************************************************
5305 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5306 *
5307 * hw - Struct containing variables accessed by shared code
5308 * offset - offset within the EEPROM to be written to
5309 * words - number of words to write
5310 * data - pointer to array of 8 bit words to be written to the EEPROM
5311 *
5312 *****************************************************************************/
64798845
JP
5313static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
5314 u16 *data)
1da177e4
LT
5315{
5316 struct e1000_eeprom_info *eeprom = &hw->eeprom;
406874a7 5317 u16 widx = 0;
1da177e4
LT
5318
5319 DEBUGFUNC("e1000_write_eeprom_spi");
5320
5321 while (widx < words) {
406874a7 5322 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
1da177e4 5323
8fc897b0 5324 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
1da177e4
LT
5325
5326 e1000_standby_eeprom(hw);
5327
5328 /* Send the WRITE ENABLE command (8 bit opcode ) */
5329 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5330 eeprom->opcode_bits);
5331
5332 e1000_standby_eeprom(hw);
5333
5334 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
8fc897b0 5335 if ((eeprom->address_bits == 8) && (offset >= 128))
1da177e4
LT
5336 write_opcode |= EEPROM_A8_OPCODE_SPI;
5337
5338 /* Send the Write command (8-bit opcode + addr) */
5339 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5340
406874a7 5341 e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
1da177e4
LT
5342 eeprom->address_bits);
5343
5344 /* Send the data */
5345
5346 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5347 while (widx < words) {
406874a7 5348 u16 word_out = data[widx];
1da177e4
LT
5349 word_out = (word_out >> 8) | (word_out << 8);
5350 e1000_shift_out_ee_bits(hw, word_out, 16);
5351 widx++;
5352
5353 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5354 * operation, while the smaller eeproms are capable of an 8-byte
5355 * PAGE WRITE operation. Break the inner loop to pass new address
5356 */
8fc897b0 5357 if ((((offset + widx)*2) % eeprom->page_size) == 0) {
1da177e4
LT
5358 e1000_standby_eeprom(hw);
5359 break;
5360 }
5361 }
5362 }
5363
5364 return E1000_SUCCESS;
5365}
5366
5367/******************************************************************************
5368 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5369 *
5370 * hw - Struct containing variables accessed by shared code
5371 * offset - offset within the EEPROM to be written to
5372 * words - number of words to write
5373 * data - pointer to array of 16 bit words to be written to the EEPROM
5374 *
5375 *****************************************************************************/
64798845
JP
5376static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
5377 u16 words, u16 *data)
1da177e4
LT
5378{
5379 struct e1000_eeprom_info *eeprom = &hw->eeprom;
406874a7
JP
5380 u32 eecd;
5381 u16 words_written = 0;
5382 u16 i = 0;
1da177e4
LT
5383
5384 DEBUGFUNC("e1000_write_eeprom_microwire");
5385
5386 /* Send the write enable command to the EEPROM (3-bit opcode plus
5387 * 6/8-bit dummy address beginning with 11). It's less work to include
5388 * the 11 of the dummy address as part of the opcode than it is to shift
5389 * it over the correct number of bits for the address. This puts the
5390 * EEPROM into write/erase mode.
5391 */
5392 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
406874a7 5393 (u16)(eeprom->opcode_bits + 2));
1da177e4 5394
406874a7 5395 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
1da177e4
LT
5396
5397 /* Prepare the EEPROM */
5398 e1000_standby_eeprom(hw);
5399
5400 while (words_written < words) {
5401 /* Send the Write command (3-bit opcode + addr) */
5402 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5403 eeprom->opcode_bits);
5404
406874a7 5405 e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
1da177e4
LT
5406 eeprom->address_bits);
5407
5408 /* Send the data */
5409 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5410
5411 /* Toggle the CS line. This in effect tells the EEPROM to execute
5412 * the previous command.
5413 */
5414 e1000_standby_eeprom(hw);
5415
5416 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5417 * signal that the command has been completed by raising the DO signal.
5418 * If DO does not go high in 10 milliseconds, then error out.
5419 */
8fc897b0 5420 for (i = 0; i < 200; i++) {
1dc32918 5421 eecd = er32(EECD);
8fc897b0 5422 if (eecd & E1000_EECD_DO) break;
1da177e4
LT
5423 udelay(50);
5424 }
8fc897b0 5425 if (i == 200) {
1da177e4
LT
5426 DEBUGOUT("EEPROM Write did not complete\n");
5427 return -E1000_ERR_EEPROM;
5428 }
5429
5430 /* Recover from write */
5431 e1000_standby_eeprom(hw);
5432
5433 words_written++;
5434 }
5435
5436 /* Send the write disable command to the EEPROM (3-bit opcode plus
5437 * 6/8-bit dummy address beginning with 10). It's less work to include
5438 * the 10 of the dummy address as part of the opcode than it is to shift
5439 * it over the correct number of bits for the address. This takes the
5440 * EEPROM out of write/erase mode.
5441 */
5442 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
406874a7 5443 (u16)(eeprom->opcode_bits + 2));
1da177e4 5444
406874a7 5445 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
1da177e4
LT
5446
5447 return E1000_SUCCESS;
5448}
5449
2d7edb92
MC
5450/******************************************************************************
5451 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5452 * in the eeprom cache and the non modified values in the currently active bank
5453 * to the new bank.
5454 *
5455 * hw - Struct containing variables accessed by shared code
5456 * offset - offset of word in the EEPROM to read
5457 * data - word read from the EEPROM
5458 * words - number of words to read
5459 *****************************************************************************/
64798845 5460static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
2d7edb92 5461{
406874a7
JP
5462 u32 attempts = 100000;
5463 u32 eecd = 0;
5464 u32 flop = 0;
5465 u32 i = 0;
5466 s32 error = E1000_SUCCESS;
5467 u32 old_bank_offset = 0;
5468 u32 new_bank_offset = 0;
5469 u8 low_byte = 0;
5470 u8 high_byte = 0;
c3033b01 5471 bool sector_write_failed = false;
2d7edb92
MC
5472
5473 if (hw->mac_type == e1000_82573) {
cd94dd0b 5474 /* The flop register will be used to determine if flash type is STM */
1dc32918 5475 flop = er32(FLOP);
2d7edb92 5476 for (i=0; i < attempts; i++) {
1dc32918 5477 eecd = er32(EECD);
2d7edb92
MC
5478 if ((eecd & E1000_EECD_FLUPD) == 0) {
5479 break;
5480 }
5481 udelay(5);
5482 }
5483
5484 if (i == attempts) {
5485 return -E1000_ERR_EEPROM;
5486 }
5487
96838a40 5488 /* If STM opcode located in bits 15:8 of flop, reset firmware */
2d7edb92 5489 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
1dc32918 5490 ew32(HICR, E1000_HICR_FW_RESET);
2d7edb92
MC
5491 }
5492
5493 /* Perform the flash update */
1dc32918 5494 ew32(EECD, eecd | E1000_EECD_FLUPD);
2d7edb92 5495
96838a40 5496 for (i=0; i < attempts; i++) {
1dc32918 5497 eecd = er32(EECD);
2d7edb92
MC
5498 if ((eecd & E1000_EECD_FLUPD) == 0) {
5499 break;
5500 }
5501 udelay(5);
5502 }
5503
5504 if (i == attempts) {
5505 return -E1000_ERR_EEPROM;
5506 }
5507 }
5508
cd94dd0b
AK
5509 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5510 /* We're writing to the opposite bank so if we're on bank 1,
5511 * write to bank 0 etc. We also need to erase the segment that
5512 * is going to be written */
1dc32918 5513 if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
cd94dd0b
AK
5514 new_bank_offset = hw->flash_bank_size * 2;
5515 old_bank_offset = 0;
5516 e1000_erase_ich8_4k_segment(hw, 1);
5517 } else {
5518 old_bank_offset = hw->flash_bank_size * 2;
5519 new_bank_offset = 0;
5520 e1000_erase_ich8_4k_segment(hw, 0);
5521 }
5522
c3033b01 5523 sector_write_failed = false;
2a88c173
JK
5524 /* Loop for every byte in the shadow RAM,
5525 * which is in units of words. */
5526 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5527 /* Determine whether to write the value stored
5528 * in the other NVM bank or a modified value stored
5529 * in the shadow RAM */
c3033b01 5530 if (hw->eeprom_shadow_ram[i].modified) {
406874a7 5531 low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word;
2a88c173
JK
5532 udelay(100);
5533 error = e1000_verify_write_ich8_byte(hw,
5534 (i << 1) + new_bank_offset, low_byte);
5535
5536 if (error != E1000_SUCCESS)
c3033b01 5537 sector_write_failed = true;
2a88c173 5538 else {
cd94dd0b 5539 high_byte =
406874a7 5540 (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
cd94dd0b 5541 udelay(100);
2a88c173
JK
5542 }
5543 } else {
5544 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5545 &low_byte);
5546 udelay(100);
5547 error = e1000_verify_write_ich8_byte(hw,
5548 (i << 1) + new_bank_offset, low_byte);
5549
5550 if (error != E1000_SUCCESS)
c3033b01 5551 sector_write_failed = true;
2a88c173 5552 else {
cd94dd0b
AK
5553 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5554 &high_byte);
2a88c173 5555 udelay(100);
cd94dd0b 5556 }
2a88c173 5557 }
cd94dd0b 5558
c3033b01 5559 /* If the write of the low byte was successful, go ahead and
2a88c173
JK
5560 * write the high byte while checking to make sure that if it
5561 * is the signature byte, then it is handled properly */
c3033b01 5562 if (!sector_write_failed) {
cd94dd0b
AK
5563 /* If the word is 0x13, then make sure the signature bits
5564 * (15:14) are 11b until the commit has completed.
5565 * This will allow us to write 10b which indicates the
5566 * signature is valid. We want to do this after the write
5567 * has completed so that we don't mark the segment valid
5568 * while the write is still in progress */
2df7d59f
JK
5569 if (i == E1000_ICH_NVM_SIG_WORD)
5570 high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
cd94dd0b
AK
5571
5572 error = e1000_verify_write_ich8_byte(hw,
2a88c173 5573 (i << 1) + new_bank_offset + 1, high_byte);
cd94dd0b 5574 if (error != E1000_SUCCESS)
c3033b01 5575 sector_write_failed = true;
cd94dd0b 5576
2a88c173
JK
5577 } else {
5578 /* If the write failed then break from the loop and
5579 * return an error */
5580 break;
cd94dd0b 5581 }
2a88c173 5582 }
cd94dd0b 5583
2a88c173
JK
5584 /* Don't bother writing the segment valid bits if sector
5585 * programming failed. */
c3033b01 5586 if (!sector_write_failed) {
2a88c173
JK
5587 /* Finally validate the new segment by setting bit 15:14
5588 * to 10b in word 0x13 , this can be done without an
5589 * erase as well since these bits are 11 to start with
5590 * and we need to change bit 14 to 0b */
5591 e1000_read_ich8_byte(hw,
2df7d59f 5592 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
2a88c173
JK
5593 &high_byte);
5594 high_byte &= 0xBF;
5595 error = e1000_verify_write_ich8_byte(hw,
2df7d59f 5596 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
2a88c173
JK
5597 /* And invalidate the previously valid segment by setting
5598 * its signature word (0x13) high_byte to 0b. This can be
5599 * done without an erase because flash erase sets all bits
5600 * to 1's. We can write 1's to 0's without an erase */
5601 if (error == E1000_SUCCESS) {
cd94dd0b 5602 error = e1000_verify_write_ich8_byte(hw,
2df7d59f 5603 E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
2a88c173 5604 }
cd94dd0b 5605
2a88c173
JK
5606 /* Clear the now not used entry in the cache */
5607 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
c3033b01 5608 hw->eeprom_shadow_ram[i].modified = false;
2a88c173 5609 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
cd94dd0b 5610 }
2a88c173 5611 }
cd94dd0b
AK
5612 }
5613
2d7edb92
MC
5614 return error;
5615}
5616
1da177e4
LT
5617/******************************************************************************
5618 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5619 * second function of dual function devices
5620 *
5621 * hw - Struct containing variables accessed by shared code
5622 *****************************************************************************/
64798845 5623s32 e1000_read_mac_addr(struct e1000_hw *hw)
1da177e4 5624{
406874a7
JP
5625 u16 offset;
5626 u16 eeprom_data, i;
1da177e4
LT
5627
5628 DEBUGFUNC("e1000_read_mac_addr");
5629
8fc897b0 5630 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1da177e4 5631 offset = i >> 1;
8fc897b0 5632 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1da177e4
LT
5633 DEBUGOUT("EEPROM Read Error\n");
5634 return -E1000_ERR_EEPROM;
5635 }
e982f17c
JP
5636 hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
5637 hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8);
1da177e4 5638 }
96838a40 5639
868d5309
MC
5640 switch (hw->mac_type) {
5641 default:
5642 break;
5643 case e1000_82546:
5644 case e1000_82546_rev_3:
5645 case e1000_82571:
6418ecc6 5646 case e1000_80003es2lan:
1dc32918 5647 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1da177e4 5648 hw->perm_mac_addr[5] ^= 0x01;
868d5309
MC
5649 break;
5650 }
1da177e4 5651
8fc897b0 5652 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
1da177e4
LT
5653 hw->mac_addr[i] = hw->perm_mac_addr[i];
5654 return E1000_SUCCESS;
5655}
5656
5657/******************************************************************************
5658 * Initializes receive address filters.
5659 *
5660 * hw - Struct containing variables accessed by shared code
5661 *
5662 * Places the MAC address in receive address register 0 and clears the rest
5663 * of the receive addresss registers. Clears the multicast table. Assumes
5664 * the receiver is in reset when the routine is called.
5665 *****************************************************************************/
64798845 5666static void e1000_init_rx_addrs(struct e1000_hw *hw)
1da177e4 5667{
406874a7
JP
5668 u32 i;
5669 u32 rar_num;
1da177e4
LT
5670
5671 DEBUGFUNC("e1000_init_rx_addrs");
5672
5673 /* Setup the receive address. */
5674 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5675
5676 e1000_rar_set(hw, hw->mac_addr, 0);
5677
2d7edb92 5678 rar_num = E1000_RAR_ENTRIES;
868d5309
MC
5679
5680 /* Reserve a spot for the Locally Administered Address to work around
5681 * an 82571 issue in which a reset on one port will reload the MAC on
5682 * the other port. */
c3033b01 5683 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present))
868d5309 5684 rar_num -= 1;
cd94dd0b
AK
5685 if (hw->mac_type == e1000_ich8lan)
5686 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5687
1da177e4
LT
5688 /* Zero out the other 15 receive addresses. */
5689 DEBUGOUT("Clearing RAR[1-15]\n");
8fc897b0 5690 for (i = 1; i < rar_num; i++) {
1da177e4 5691 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1dc32918 5692 E1000_WRITE_FLUSH();
1da177e4 5693 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1dc32918 5694 E1000_WRITE_FLUSH();
1da177e4
LT
5695 }
5696}
5697
1da177e4
LT
5698/******************************************************************************
5699 * Hashes an address to determine its location in the multicast table
5700 *
5701 * hw - Struct containing variables accessed by shared code
5702 * mc_addr - the multicast address to hash
5703 *****************************************************************************/
64798845 5704u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
1da177e4 5705{
406874a7 5706 u32 hash_value = 0;
1da177e4
LT
5707
5708 /* The portion of the address that is used for the hash table is
5709 * determined by the mc_filter_type setting.
5710 */
5711 switch (hw->mc_filter_type) {
5712 /* [0] [1] [2] [3] [4] [5]
5713 * 01 AA 00 12 34 56
5714 * LSB MSB
5715 */
5716 case 0:
cd94dd0b
AK
5717 if (hw->mac_type == e1000_ich8lan) {
5718 /* [47:38] i.e. 0x158 for above example address */
e982f17c 5719 hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2));
cd94dd0b
AK
5720 } else {
5721 /* [47:36] i.e. 0x563 for above example address */
e982f17c 5722 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
cd94dd0b 5723 }
1da177e4
LT
5724 break;
5725 case 1:
cd94dd0b
AK
5726 if (hw->mac_type == e1000_ich8lan) {
5727 /* [46:37] i.e. 0x2B1 for above example address */
e982f17c 5728 hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3));
cd94dd0b
AK
5729 } else {
5730 /* [46:35] i.e. 0xAC6 for above example address */
e982f17c 5731 hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
cd94dd0b 5732 }
1da177e4
LT
5733 break;
5734 case 2:
cd94dd0b
AK
5735 if (hw->mac_type == e1000_ich8lan) {
5736 /*[45:36] i.e. 0x163 for above example address */
e982f17c 5737 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
cd94dd0b
AK
5738 } else {
5739 /* [45:34] i.e. 0x5D8 for above example address */
e982f17c 5740 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
cd94dd0b 5741 }
1da177e4
LT
5742 break;
5743 case 3:
cd94dd0b
AK
5744 if (hw->mac_type == e1000_ich8lan) {
5745 /* [43:34] i.e. 0x18D for above example address */
e982f17c 5746 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
cd94dd0b
AK
5747 } else {
5748 /* [43:32] i.e. 0x634 for above example address */
e982f17c 5749 hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
cd94dd0b 5750 }
1da177e4
LT
5751 break;
5752 }
5753
5754 hash_value &= 0xFFF;
cd94dd0b
AK
5755 if (hw->mac_type == e1000_ich8lan)
5756 hash_value &= 0x3FF;
2d7edb92 5757
1da177e4
LT
5758 return hash_value;
5759}
5760
5761/******************************************************************************
5762 * Sets the bit in the multicast table corresponding to the hash value.
5763 *
5764 * hw - Struct containing variables accessed by shared code
5765 * hash_value - Multicast address hash value
5766 *****************************************************************************/
64798845 5767void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
1da177e4 5768{
406874a7
JP
5769 u32 hash_bit, hash_reg;
5770 u32 mta;
5771 u32 temp;
1da177e4
LT
5772
5773 /* The MTA is a register array of 128 32-bit registers.
5774 * It is treated like an array of 4096 bits. We want to set
5775 * bit BitArray[hash_value]. So we figure out what register
5776 * the bit is in, read it, OR in the new bit, then write
5777 * back the new value. The register is determined by the
5778 * upper 7 bits of the hash value and the bit within that
5779 * register are determined by the lower 5 bits of the value.
5780 */
5781 hash_reg = (hash_value >> 5) & 0x7F;
cd94dd0b
AK
5782 if (hw->mac_type == e1000_ich8lan)
5783 hash_reg &= 0x1F;
90fb5135 5784
1da177e4
LT
5785 hash_bit = hash_value & 0x1F;
5786
5787 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5788
5789 mta |= (1 << hash_bit);
5790
5791 /* If we are on an 82544 and we are trying to write an odd offset
5792 * in the MTA, save off the previous entry before writing and
5793 * restore the old value after writing.
5794 */
8fc897b0 5795 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
1da177e4
LT
5796 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5797 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
1dc32918 5798 E1000_WRITE_FLUSH();
1da177e4 5799 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
1dc32918 5800 E1000_WRITE_FLUSH();
1da177e4
LT
5801 } else {
5802 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
1dc32918 5803 E1000_WRITE_FLUSH();
1da177e4
LT
5804 }
5805}
5806
5807/******************************************************************************
5808 * Puts an ethernet address into a receive address register.
5809 *
5810 * hw - Struct containing variables accessed by shared code
5811 * addr - Address to put into receive address register
5812 * index - Receive address register to write
5813 *****************************************************************************/
64798845 5814void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
1da177e4 5815{
406874a7 5816 u32 rar_low, rar_high;
1da177e4
LT
5817
5818 /* HW expects these in little endian so we reverse the byte order
5819 * from network order (big endian) to little endian
5820 */
e982f17c
JP
5821 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
5822 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
5823 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1da177e4 5824
8df06e50
JK
5825 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5826 * unit hang.
5827 *
5828 * Description:
5829 * If there are any Rx frames queued up or otherwise present in the HW
5830 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5831 * hang. To work around this issue, we have to disable receives and
5832 * flush out all Rx frames before we enable RSS. To do so, we modify we
5833 * redirect all Rx traffic to manageability and then reset the HW.
5834 * This flushes away Rx frames, and (since the redirections to
5835 * manageability persists across resets) keeps new ones from coming in
5836 * while we work. Then, we clear the Address Valid AV bit for all MAC
5837 * addresses and undo the re-direction to manageability.
5838 * Now, frames are coming in again, but the MAC won't accept them, so
5839 * far so good. We now proceed to initialize RSS (if necessary) and
5840 * configure the Rx unit. Last, we re-enable the AV bits and continue
5841 * on our merry way.
5842 */
5843 switch (hw->mac_type) {
5844 case e1000_82571:
5845 case e1000_82572:
6418ecc6 5846 case e1000_80003es2lan:
c3033b01 5847 if (hw->leave_av_bit_off)
8df06e50
JK
5848 break;
5849 default:
5850 /* Indicate to hardware the Address is Valid. */
5851 rar_high |= E1000_RAH_AV;
5852 break;
5853 }
1da177e4
LT
5854
5855 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
1dc32918 5856 E1000_WRITE_FLUSH();
1da177e4 5857 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
1dc32918 5858 E1000_WRITE_FLUSH();
1da177e4
LT
5859}
5860
5861/******************************************************************************
5862 * Writes a value to the specified offset in the VLAN filter table.
5863 *
5864 * hw - Struct containing variables accessed by shared code
5865 * offset - Offset in VLAN filer table to write
5866 * value - Value to write into VLAN filter table
5867 *****************************************************************************/
64798845 5868void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
1da177e4 5869{
406874a7 5870 u32 temp;
1da177e4 5871
cd94dd0b
AK
5872 if (hw->mac_type == e1000_ich8lan)
5873 return;
5874
5875 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
1da177e4
LT
5876 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5877 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
1dc32918 5878 E1000_WRITE_FLUSH();
1da177e4 5879 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
1dc32918 5880 E1000_WRITE_FLUSH();
1da177e4
LT
5881 } else {
5882 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
1dc32918 5883 E1000_WRITE_FLUSH();
1da177e4
LT
5884 }
5885}
5886
5887/******************************************************************************
5888 * Clears the VLAN filer table
5889 *
5890 * hw - Struct containing variables accessed by shared code
5891 *****************************************************************************/
64798845 5892static void e1000_clear_vfta(struct e1000_hw *hw)
1da177e4 5893{
406874a7
JP
5894 u32 offset;
5895 u32 vfta_value = 0;
5896 u32 vfta_offset = 0;
5897 u32 vfta_bit_in_reg = 0;
2d7edb92 5898
cd94dd0b
AK
5899 if (hw->mac_type == e1000_ich8lan)
5900 return;
5901
2d7edb92
MC
5902 if (hw->mac_type == e1000_82573) {
5903 if (hw->mng_cookie.vlan_id != 0) {
5904 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5905 * ID. The following operations determine which 32b entry
5906 * (i.e. offset) into the array we want to set the VLAN ID
5907 * (i.e. bit) of the manageability unit. */
5908 vfta_offset = (hw->mng_cookie.vlan_id >>
5909 E1000_VFTA_ENTRY_SHIFT) &
5910 E1000_VFTA_ENTRY_MASK;
5911 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5912 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5913 }
5914 }
5915 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5916 /* If the offset we want to clear is the same offset of the
5917 * manageability VLAN ID, then clear all bits except that of the
5918 * manageability unit */
5919 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5920 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
1dc32918 5921 E1000_WRITE_FLUSH();
2d7edb92 5922 }
1da177e4
LT
5923}
5924
64798845 5925static s32 e1000_id_led_init(struct e1000_hw *hw)
1da177e4 5926{
406874a7
JP
5927 u32 ledctl;
5928 const u32 ledctl_mask = 0x000000FF;
5929 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
5930 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
5931 u16 eeprom_data, i, temp;
5932 const u16 led_mask = 0x0F;
1da177e4
LT
5933
5934 DEBUGFUNC("e1000_id_led_init");
5935
8fc897b0 5936 if (hw->mac_type < e1000_82540) {
1da177e4
LT
5937 /* Nothing to do */
5938 return E1000_SUCCESS;
5939 }
5940
1dc32918 5941 ledctl = er32(LEDCTL);
1da177e4
LT
5942 hw->ledctl_default = ledctl;
5943 hw->ledctl_mode1 = hw->ledctl_default;
5944 hw->ledctl_mode2 = hw->ledctl_default;
5945
8fc897b0 5946 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
1da177e4
LT
5947 DEBUGOUT("EEPROM Read Error\n");
5948 return -E1000_ERR_EEPROM;
5949 }
cd94dd0b
AK
5950
5951 if ((hw->mac_type == e1000_82573) &&
5952 (eeprom_data == ID_LED_RESERVED_82573))
5953 eeprom_data = ID_LED_DEFAULT_82573;
5954 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
5955 (eeprom_data == ID_LED_RESERVED_FFFF)) {
5956 if (hw->mac_type == e1000_ich8lan)
5957 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
5958 else
5959 eeprom_data = ID_LED_DEFAULT;
5960 }
90fb5135 5961
cd94dd0b 5962 for (i = 0; i < 4; i++) {
1da177e4 5963 temp = (eeprom_data >> (i << 2)) & led_mask;
8fc897b0 5964 switch (temp) {
1da177e4
LT
5965 case ID_LED_ON1_DEF2:
5966 case ID_LED_ON1_ON2:
5967 case ID_LED_ON1_OFF2:
5968 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5969 hw->ledctl_mode1 |= ledctl_on << (i << 3);
5970 break;
5971 case ID_LED_OFF1_DEF2:
5972 case ID_LED_OFF1_ON2:
5973 case ID_LED_OFF1_OFF2:
5974 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5975 hw->ledctl_mode1 |= ledctl_off << (i << 3);
5976 break;
5977 default:
5978 /* Do nothing */
5979 break;
5980 }
8fc897b0 5981 switch (temp) {
1da177e4
LT
5982 case ID_LED_DEF1_ON2:
5983 case ID_LED_ON1_ON2:
5984 case ID_LED_OFF1_ON2:
5985 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5986 hw->ledctl_mode2 |= ledctl_on << (i << 3);
5987 break;
5988 case ID_LED_DEF1_OFF2:
5989 case ID_LED_ON1_OFF2:
5990 case ID_LED_OFF1_OFF2:
5991 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5992 hw->ledctl_mode2 |= ledctl_off << (i << 3);
5993 break;
5994 default:
5995 /* Do nothing */
5996 break;
5997 }
5998 }
5999 return E1000_SUCCESS;
6000}
6001
6002/******************************************************************************
6003 * Prepares SW controlable LED for use and saves the current state of the LED.
6004 *
6005 * hw - Struct containing variables accessed by shared code
6006 *****************************************************************************/
64798845 6007s32 e1000_setup_led(struct e1000_hw *hw)
1da177e4 6008{
406874a7
JP
6009 u32 ledctl;
6010 s32 ret_val = E1000_SUCCESS;
1da177e4
LT
6011
6012 DEBUGFUNC("e1000_setup_led");
6013
8fc897b0 6014 switch (hw->mac_type) {
1da177e4
LT
6015 case e1000_82542_rev2_0:
6016 case e1000_82542_rev2_1:
6017 case e1000_82543:
6018 case e1000_82544:
6019 /* No setup necessary */
6020 break;
6021 case e1000_82541:
6022 case e1000_82547:
6023 case e1000_82541_rev_2:
6024 case e1000_82547_rev_2:
6025 /* Turn off PHY Smart Power Down (if enabled) */
6026 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6027 &hw->phy_spd_default);
8fc897b0 6028 if (ret_val)
1da177e4
LT
6029 return ret_val;
6030 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
406874a7 6031 (u16)(hw->phy_spd_default &
1da177e4 6032 ~IGP01E1000_GMII_SPD));
8fc897b0 6033 if (ret_val)
1da177e4
LT
6034 return ret_val;
6035 /* Fall Through */
6036 default:
8fc897b0 6037 if (hw->media_type == e1000_media_type_fiber) {
1dc32918 6038 ledctl = er32(LEDCTL);
1da177e4
LT
6039 /* Save current LEDCTL settings */
6040 hw->ledctl_default = ledctl;
6041 /* Turn off LED0 */
6042 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6043 E1000_LEDCTL_LED0_BLINK |
6044 E1000_LEDCTL_LED0_MODE_MASK);
6045 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6046 E1000_LEDCTL_LED0_MODE_SHIFT);
1dc32918 6047 ew32(LEDCTL, ledctl);
8fc897b0 6048 } else if (hw->media_type == e1000_media_type_copper)
1dc32918 6049 ew32(LEDCTL, hw->ledctl_mode1);
1da177e4
LT
6050 break;
6051 }
6052
6053 return E1000_SUCCESS;
6054}
6055
8fc897b0 6056
f1b3a853
AK
6057/******************************************************************************
6058 * Used on 82571 and later Si that has LED blink bits.
6059 * Callers must use their own timer and should have already called
6060 * e1000_id_led_init()
6061 * Call e1000_cleanup led() to stop blinking
6062 *
6063 * hw - Struct containing variables accessed by shared code
6064 *****************************************************************************/
64798845 6065s32 e1000_blink_led_start(struct e1000_hw *hw)
f1b3a853 6066{
406874a7
JP
6067 s16 i;
6068 u32 ledctl_blink = 0;
f1b3a853
AK
6069
6070 DEBUGFUNC("e1000_id_led_blink_on");
6071
6072 if (hw->mac_type < e1000_82571) {
6073 /* Nothing to do */
6074 return E1000_SUCCESS;
6075 }
6076 if (hw->media_type == e1000_media_type_fiber) {
6077 /* always blink LED0 for PCI-E fiber */
6078 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6079 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6080 } else {
6081 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6082 ledctl_blink = hw->ledctl_mode2;
6083 for (i=0; i < 4; i++)
6084 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6085 E1000_LEDCTL_MODE_LED_ON)
6086 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6087 }
6088
1dc32918 6089 ew32(LEDCTL, ledctl_blink);
f1b3a853
AK
6090
6091 return E1000_SUCCESS;
6092}
6093
1da177e4
LT
6094/******************************************************************************
6095 * Restores the saved state of the SW controlable LED.
6096 *
6097 * hw - Struct containing variables accessed by shared code
6098 *****************************************************************************/
64798845 6099s32 e1000_cleanup_led(struct e1000_hw *hw)
1da177e4 6100{
406874a7 6101 s32 ret_val = E1000_SUCCESS;
1da177e4
LT
6102
6103 DEBUGFUNC("e1000_cleanup_led");
6104
8fc897b0 6105 switch (hw->mac_type) {
1da177e4
LT
6106 case e1000_82542_rev2_0:
6107 case e1000_82542_rev2_1:
6108 case e1000_82543:
6109 case e1000_82544:
6110 /* No cleanup necessary */
6111 break;
6112 case e1000_82541:
6113 case e1000_82547:
6114 case e1000_82541_rev_2:
6115 case e1000_82547_rev_2:
6116 /* Turn on PHY Smart Power Down (if previously enabled) */
6117 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6118 hw->phy_spd_default);
8fc897b0 6119 if (ret_val)
1da177e4
LT
6120 return ret_val;
6121 /* Fall Through */
6122 default:
cd94dd0b
AK
6123 if (hw->phy_type == e1000_phy_ife) {
6124 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6125 break;
6126 }
1da177e4 6127 /* Restore LEDCTL settings */
1dc32918 6128 ew32(LEDCTL, hw->ledctl_default);
1da177e4
LT
6129 break;
6130 }
6131
6132 return E1000_SUCCESS;
6133}
6134
6135/******************************************************************************
6136 * Turns on the software controllable LED
6137 *
6138 * hw - Struct containing variables accessed by shared code
6139 *****************************************************************************/
64798845 6140s32 e1000_led_on(struct e1000_hw *hw)
1da177e4 6141{
1dc32918 6142 u32 ctrl = er32(CTRL);
1da177e4
LT
6143
6144 DEBUGFUNC("e1000_led_on");
6145
8fc897b0 6146 switch (hw->mac_type) {
1da177e4
LT
6147 case e1000_82542_rev2_0:
6148 case e1000_82542_rev2_1:
6149 case e1000_82543:
6150 /* Set SW Defineable Pin 0 to turn on the LED */
6151 ctrl |= E1000_CTRL_SWDPIN0;
6152 ctrl |= E1000_CTRL_SWDPIO0;
6153 break;
6154 case e1000_82544:
8fc897b0 6155 if (hw->media_type == e1000_media_type_fiber) {
1da177e4
LT
6156 /* Set SW Defineable Pin 0 to turn on the LED */
6157 ctrl |= E1000_CTRL_SWDPIN0;
6158 ctrl |= E1000_CTRL_SWDPIO0;
6159 } else {
6160 /* Clear SW Defineable Pin 0 to turn on the LED */
6161 ctrl &= ~E1000_CTRL_SWDPIN0;
6162 ctrl |= E1000_CTRL_SWDPIO0;
6163 }
6164 break;
6165 default:
8fc897b0 6166 if (hw->media_type == e1000_media_type_fiber) {
1da177e4
LT
6167 /* Clear SW Defineable Pin 0 to turn on the LED */
6168 ctrl &= ~E1000_CTRL_SWDPIN0;
6169 ctrl |= E1000_CTRL_SWDPIO0;
cd94dd0b
AK
6170 } else if (hw->phy_type == e1000_phy_ife) {
6171 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6172 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6173 } else if (hw->media_type == e1000_media_type_copper) {
1dc32918 6174 ew32(LEDCTL, hw->ledctl_mode2);
1da177e4
LT
6175 return E1000_SUCCESS;
6176 }
6177 break;
6178 }
6179
1dc32918 6180 ew32(CTRL, ctrl);
1da177e4
LT
6181
6182 return E1000_SUCCESS;
6183}
6184
6185/******************************************************************************
6186 * Turns off the software controllable LED
6187 *
6188 * hw - Struct containing variables accessed by shared code
6189 *****************************************************************************/
64798845 6190s32 e1000_led_off(struct e1000_hw *hw)
1da177e4 6191{
1dc32918 6192 u32 ctrl = er32(CTRL);
1da177e4
LT
6193
6194 DEBUGFUNC("e1000_led_off");
6195
8fc897b0 6196 switch (hw->mac_type) {
1da177e4
LT
6197 case e1000_82542_rev2_0:
6198 case e1000_82542_rev2_1:
6199 case e1000_82543:
6200 /* Clear SW Defineable Pin 0 to turn off the LED */
6201 ctrl &= ~E1000_CTRL_SWDPIN0;
6202 ctrl |= E1000_CTRL_SWDPIO0;
6203 break;
6204 case e1000_82544:
8fc897b0 6205 if (hw->media_type == e1000_media_type_fiber) {
1da177e4
LT
6206 /* Clear SW Defineable Pin 0 to turn off the LED */
6207 ctrl &= ~E1000_CTRL_SWDPIN0;
6208 ctrl |= E1000_CTRL_SWDPIO0;
6209 } else {
6210 /* Set SW Defineable Pin 0 to turn off the LED */
6211 ctrl |= E1000_CTRL_SWDPIN0;
6212 ctrl |= E1000_CTRL_SWDPIO0;
6213 }
6214 break;
6215 default:
8fc897b0 6216 if (hw->media_type == e1000_media_type_fiber) {
1da177e4
LT
6217 /* Set SW Defineable Pin 0 to turn off the LED */
6218 ctrl |= E1000_CTRL_SWDPIN0;
6219 ctrl |= E1000_CTRL_SWDPIO0;
cd94dd0b
AK
6220 } else if (hw->phy_type == e1000_phy_ife) {
6221 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6222 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6223 } else if (hw->media_type == e1000_media_type_copper) {
1dc32918 6224 ew32(LEDCTL, hw->ledctl_mode1);
1da177e4
LT
6225 return E1000_SUCCESS;
6226 }
6227 break;
6228 }
6229
1dc32918 6230 ew32(CTRL, ctrl);
1da177e4
LT
6231
6232 return E1000_SUCCESS;
6233}
6234
6235/******************************************************************************
6236 * Clears all hardware statistics counters.
6237 *
6238 * hw - Struct containing variables accessed by shared code
6239 *****************************************************************************/
64798845 6240static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
1da177e4 6241{
406874a7 6242 volatile u32 temp;
1da177e4 6243
1dc32918
JP
6244 temp = er32(CRCERRS);
6245 temp = er32(SYMERRS);
6246 temp = er32(MPC);
6247 temp = er32(SCC);
6248 temp = er32(ECOL);
6249 temp = er32(MCC);
6250 temp = er32(LATECOL);
6251 temp = er32(COLC);
6252 temp = er32(DC);
6253 temp = er32(SEC);
6254 temp = er32(RLEC);
6255 temp = er32(XONRXC);
6256 temp = er32(XONTXC);
6257 temp = er32(XOFFRXC);
6258 temp = er32(XOFFTXC);
6259 temp = er32(FCRUC);
cd94dd0b
AK
6260
6261 if (hw->mac_type != e1000_ich8lan) {
1dc32918
JP
6262 temp = er32(PRC64);
6263 temp = er32(PRC127);
6264 temp = er32(PRC255);
6265 temp = er32(PRC511);
6266 temp = er32(PRC1023);
6267 temp = er32(PRC1522);
6268 }
6269
6270 temp = er32(GPRC);
6271 temp = er32(BPRC);
6272 temp = er32(MPRC);
6273 temp = er32(GPTC);
6274 temp = er32(GORCL);
6275 temp = er32(GORCH);
6276 temp = er32(GOTCL);
6277 temp = er32(GOTCH);
6278 temp = er32(RNBC);
6279 temp = er32(RUC);
6280 temp = er32(RFC);
6281 temp = er32(ROC);
6282 temp = er32(RJC);
6283 temp = er32(TORL);
6284 temp = er32(TORH);
6285 temp = er32(TOTL);
6286 temp = er32(TOTH);
6287 temp = er32(TPR);
6288 temp = er32(TPT);
cd94dd0b
AK
6289
6290 if (hw->mac_type != e1000_ich8lan) {
1dc32918
JP
6291 temp = er32(PTC64);
6292 temp = er32(PTC127);
6293 temp = er32(PTC255);
6294 temp = er32(PTC511);
6295 temp = er32(PTC1023);
6296 temp = er32(PTC1522);
cd94dd0b
AK
6297 }
6298
1dc32918
JP
6299 temp = er32(MPTC);
6300 temp = er32(BPTC);
1da177e4 6301
8fc897b0 6302 if (hw->mac_type < e1000_82543) return;
1da177e4 6303
1dc32918
JP
6304 temp = er32(ALGNERRC);
6305 temp = er32(RXERRC);
6306 temp = er32(TNCRS);
6307 temp = er32(CEXTERR);
6308 temp = er32(TSCTC);
6309 temp = er32(TSCTFC);
1da177e4 6310
8fc897b0 6311 if (hw->mac_type <= e1000_82544) return;
1da177e4 6312
1dc32918
JP
6313 temp = er32(MGTPRC);
6314 temp = er32(MGTPDC);
6315 temp = er32(MGTPTC);
2d7edb92 6316
8fc897b0 6317 if (hw->mac_type <= e1000_82547_rev_2) return;
2d7edb92 6318
1dc32918
JP
6319 temp = er32(IAC);
6320 temp = er32(ICRXOC);
cd94dd0b
AK
6321
6322 if (hw->mac_type == e1000_ich8lan) return;
6323
1dc32918
JP
6324 temp = er32(ICRXPTC);
6325 temp = er32(ICRXATC);
6326 temp = er32(ICTXPTC);
6327 temp = er32(ICTXATC);
6328 temp = er32(ICTXQEC);
6329 temp = er32(ICTXQMTC);
6330 temp = er32(ICRXDMTC);
1da177e4
LT
6331}
6332
6333/******************************************************************************
6334 * Resets Adaptive IFS to its default state.
6335 *
6336 * hw - Struct containing variables accessed by shared code
6337 *
6338 * Call this after e1000_init_hw. You may override the IFS defaults by setting
c3033b01 6339 * hw->ifs_params_forced to true. However, you must initialize hw->
1da177e4
LT
6340 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6341 * before calling this function.
6342 *****************************************************************************/
64798845 6343void e1000_reset_adaptive(struct e1000_hw *hw)
1da177e4
LT
6344{
6345 DEBUGFUNC("e1000_reset_adaptive");
6346
8fc897b0
AK
6347 if (hw->adaptive_ifs) {
6348 if (!hw->ifs_params_forced) {
1da177e4
LT
6349 hw->current_ifs_val = 0;
6350 hw->ifs_min_val = IFS_MIN;
6351 hw->ifs_max_val = IFS_MAX;
6352 hw->ifs_step_size = IFS_STEP;
6353 hw->ifs_ratio = IFS_RATIO;
6354 }
c3033b01 6355 hw->in_ifs_mode = false;
1dc32918 6356 ew32(AIT, 0);
1da177e4
LT
6357 } else {
6358 DEBUGOUT("Not in Adaptive IFS mode!\n");
6359 }
6360}
6361
6362/******************************************************************************
6363 * Called during the callback/watchdog routine to update IFS value based on
6364 * the ratio of transmits to collisions.
6365 *
6366 * hw - Struct containing variables accessed by shared code
6367 * tx_packets - Number of transmits since last callback
6368 * total_collisions - Number of collisions since last callback
6369 *****************************************************************************/
64798845 6370void e1000_update_adaptive(struct e1000_hw *hw)
1da177e4
LT
6371{
6372 DEBUGFUNC("e1000_update_adaptive");
6373
8fc897b0
AK
6374 if (hw->adaptive_ifs) {
6375 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6376 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
c3033b01 6377 hw->in_ifs_mode = true;
8fc897b0
AK
6378 if (hw->current_ifs_val < hw->ifs_max_val) {
6379 if (hw->current_ifs_val == 0)
1da177e4
LT
6380 hw->current_ifs_val = hw->ifs_min_val;
6381 else
6382 hw->current_ifs_val += hw->ifs_step_size;
1dc32918 6383 ew32(AIT, hw->current_ifs_val);
1da177e4
LT
6384 }
6385 }
6386 } else {
8fc897b0 6387 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
1da177e4 6388 hw->current_ifs_val = 0;
c3033b01 6389 hw->in_ifs_mode = false;
1dc32918 6390 ew32(AIT, 0);
1da177e4
LT
6391 }
6392 }
6393 } else {
6394 DEBUGOUT("Not in Adaptive IFS mode!\n");
6395 }
6396}
6397
6398/******************************************************************************
6399 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6400 *
6401 * hw - Struct containing variables accessed by shared code
6402 * frame_len - The length of the frame in question
6403 * mac_addr - The Ethernet destination address of the frame in question
6404 *****************************************************************************/
64798845
JP
6405void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
6406 u32 frame_len, u8 *mac_addr)
1da177e4 6407{
406874a7 6408 u64 carry_bit;
1da177e4
LT
6409
6410 /* First adjust the frame length. */
6411 frame_len--;
6412 /* We need to adjust the statistics counters, since the hardware
6413 * counters overcount this packet as a CRC error and undercount
6414 * the packet as a good packet
6415 */
6416 /* This packet should not be counted as a CRC error. */
6417 stats->crcerrs--;
6418 /* This packet does count as a Good Packet Received. */
6419 stats->gprc++;
6420
6421 /* Adjust the Good Octets received counters */
6422 carry_bit = 0x80000000 & stats->gorcl;
6423 stats->gorcl += frame_len;
6424 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6425 * Received Count) was one before the addition,
6426 * AND it is zero after, then we lost the carry out,
6427 * need to add one to Gorch (Good Octets Received Count High).
6428 * This could be simplified if all environments supported
6429 * 64-bit integers.
6430 */
8fc897b0 6431 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
1da177e4
LT
6432 stats->gorch++;
6433 /* Is this a broadcast or multicast? Check broadcast first,
6434 * since the test for a multicast frame will test positive on
6435 * a broadcast frame.
6436 */
e982f17c 6437 if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff))
1da177e4
LT
6438 /* Broadcast packet */
6439 stats->bprc++;
8fc897b0 6440 else if (*mac_addr & 0x01)
1da177e4
LT
6441 /* Multicast packet */
6442 stats->mprc++;
6443
8fc897b0 6444 if (frame_len == hw->max_frame_size) {
1da177e4
LT
6445 /* In this case, the hardware has overcounted the number of
6446 * oversize frames.
6447 */
8fc897b0 6448 if (stats->roc > 0)
1da177e4
LT
6449 stats->roc--;
6450 }
6451
6452 /* Adjust the bin counters when the extra byte put the frame in the
6453 * wrong bin. Remember that the frame_len was adjusted above.
6454 */
8fc897b0 6455 if (frame_len == 64) {
1da177e4
LT
6456 stats->prc64++;
6457 stats->prc127--;
8fc897b0 6458 } else if (frame_len == 127) {
1da177e4
LT
6459 stats->prc127++;
6460 stats->prc255--;
8fc897b0 6461 } else if (frame_len == 255) {
1da177e4
LT
6462 stats->prc255++;
6463 stats->prc511--;
8fc897b0 6464 } else if (frame_len == 511) {
1da177e4
LT
6465 stats->prc511++;
6466 stats->prc1023--;
8fc897b0 6467 } else if (frame_len == 1023) {
1da177e4
LT
6468 stats->prc1023++;
6469 stats->prc1522--;
8fc897b0 6470 } else if (frame_len == 1522) {
1da177e4
LT
6471 stats->prc1522++;
6472 }
6473}
6474
6475/******************************************************************************
6476 * Gets the current PCI bus type, speed, and width of the hardware
6477 *
6478 * hw - Struct containing variables accessed by shared code
6479 *****************************************************************************/
64798845 6480void e1000_get_bus_info(struct e1000_hw *hw)
1da177e4 6481{
406874a7
JP
6482 s32 ret_val;
6483 u16 pci_ex_link_status;
6484 u32 status;
1da177e4
LT
6485
6486 switch (hw->mac_type) {
6487 case e1000_82542_rev2_0:
6488 case e1000_82542_rev2_1:
c3813ae6 6489 hw->bus_type = e1000_bus_type_pci;
1da177e4
LT
6490 hw->bus_speed = e1000_bus_speed_unknown;
6491 hw->bus_width = e1000_bus_width_unknown;
6492 break;
caeccb68 6493 case e1000_82571:
868d5309 6494 case e1000_82572:
2d7edb92 6495 case e1000_82573:
caeccb68 6496 case e1000_80003es2lan:
fd803241
JK
6497 hw->bus_type = e1000_bus_type_pci_express;
6498 hw->bus_speed = e1000_bus_speed_2500;
caeccb68
JK
6499 ret_val = e1000_read_pcie_cap_reg(hw,
6500 PCI_EX_LINK_STATUS,
6501 &pci_ex_link_status);
6502 if (ret_val)
6503 hw->bus_width = e1000_bus_width_unknown;
6504 else
6505 hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
6506 PCI_EX_LINK_WIDTH_SHIFT;
fd803241 6507 break;
cd94dd0b 6508 case e1000_ich8lan:
2d7edb92
MC
6509 hw->bus_type = e1000_bus_type_pci_express;
6510 hw->bus_speed = e1000_bus_speed_2500;
caeccb68 6511 hw->bus_width = e1000_bus_width_pciex_1;
2d7edb92 6512 break;
1da177e4 6513 default:
1dc32918 6514 status = er32(STATUS);
1da177e4
LT
6515 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6516 e1000_bus_type_pcix : e1000_bus_type_pci;
6517
8fc897b0 6518 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
1da177e4
LT
6519 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6520 e1000_bus_speed_66 : e1000_bus_speed_120;
8fc897b0 6521 } else if (hw->bus_type == e1000_bus_type_pci) {
1da177e4
LT
6522 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6523 e1000_bus_speed_66 : e1000_bus_speed_33;
6524 } else {
6525 switch (status & E1000_STATUS_PCIX_SPEED) {
6526 case E1000_STATUS_PCIX_SPEED_66:
6527 hw->bus_speed = e1000_bus_speed_66;
6528 break;
6529 case E1000_STATUS_PCIX_SPEED_100:
6530 hw->bus_speed = e1000_bus_speed_100;
6531 break;
6532 case E1000_STATUS_PCIX_SPEED_133:
6533 hw->bus_speed = e1000_bus_speed_133;
6534 break;
6535 default:
6536 hw->bus_speed = e1000_bus_speed_reserved;
6537 break;
6538 }
6539 }
6540 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6541 e1000_bus_width_64 : e1000_bus_width_32;
6542 break;
6543 }
6544}
1da177e4
LT
6545
6546/******************************************************************************
6547 * Writes a value to one of the devices registers using port I/O (as opposed to
6548 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6549 *
6550 * hw - Struct containing variables accessed by shared code
6551 * offset - offset to write to
6552 * value - value to write
6553 *****************************************************************************/
64798845 6554static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
1da177e4
LT
6555{
6556 unsigned long io_addr = hw->io_base;
6557 unsigned long io_data = hw->io_base + 4;
6558
6559 e1000_io_write(hw, io_addr, offset);
6560 e1000_io_write(hw, io_data, value);
6561}
6562
1da177e4
LT
6563/******************************************************************************
6564 * Estimates the cable length.
6565 *
6566 * hw - Struct containing variables accessed by shared code
6567 * min_length - The estimated minimum length
6568 * max_length - The estimated maximum length
6569 *
6570 * returns: - E1000_ERR_XXX
6571 * E1000_SUCCESS
6572 *
6573 * This function always returns a ranged length (minimum & maximum).
6574 * So for M88 phy's, this function interprets the one value returned from the
6575 * register to the minimum and maximum range.
6576 * For IGP phy's, the function calculates the range by the AGC registers.
6577 *****************************************************************************/
64798845
JP
6578static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
6579 u16 *max_length)
1da177e4 6580{
406874a7
JP
6581 s32 ret_val;
6582 u16 agc_value = 0;
6583 u16 i, phy_data;
6584 u16 cable_length;
1da177e4
LT
6585
6586 DEBUGFUNC("e1000_get_cable_length");
6587
6588 *min_length = *max_length = 0;
6589
6590 /* Use old method for Phy older than IGP */
8fc897b0 6591 if (hw->phy_type == e1000_phy_m88) {
2d7edb92 6592
1da177e4
LT
6593 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6594 &phy_data);
8fc897b0 6595 if (ret_val)
1da177e4
LT
6596 return ret_val;
6597 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6598 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6599
6600 /* Convert the enum value to ranged values */
6601 switch (cable_length) {
6602 case e1000_cable_length_50:
6603 *min_length = 0;
6604 *max_length = e1000_igp_cable_length_50;
6605 break;
6606 case e1000_cable_length_50_80:
6607 *min_length = e1000_igp_cable_length_50;
6608 *max_length = e1000_igp_cable_length_80;
6609 break;
6610 case e1000_cable_length_80_110:
6611 *min_length = e1000_igp_cable_length_80;
6612 *max_length = e1000_igp_cable_length_110;
6613 break;
6614 case e1000_cable_length_110_140:
6615 *min_length = e1000_igp_cable_length_110;
6616 *max_length = e1000_igp_cable_length_140;
6617 break;
6618 case e1000_cable_length_140:
6619 *min_length = e1000_igp_cable_length_140;
6620 *max_length = e1000_igp_cable_length_170;
6621 break;
6622 default:
6623 return -E1000_ERR_PHY;
6624 break;
6625 }
6418ecc6
JK
6626 } else if (hw->phy_type == e1000_phy_gg82563) {
6627 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6628 &phy_data);
6629 if (ret_val)
6630 return ret_val;
6631 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6632
6633 switch (cable_length) {
6634 case e1000_gg_cable_length_60:
6635 *min_length = 0;
6636 *max_length = e1000_igp_cable_length_60;
6637 break;
6638 case e1000_gg_cable_length_60_115:
6639 *min_length = e1000_igp_cable_length_60;
6640 *max_length = e1000_igp_cable_length_115;
6641 break;
6642 case e1000_gg_cable_length_115_150:
6643 *min_length = e1000_igp_cable_length_115;
6644 *max_length = e1000_igp_cable_length_150;
6645 break;
6646 case e1000_gg_cable_length_150:
6647 *min_length = e1000_igp_cable_length_150;
6648 *max_length = e1000_igp_cable_length_180;
6649 break;
6650 default:
6651 return -E1000_ERR_PHY;
6652 break;
6653 }
8fc897b0 6654 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
406874a7
JP
6655 u16 cur_agc_value;
6656 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6657 u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
1da177e4
LT
6658 {IGP01E1000_PHY_AGC_A,
6659 IGP01E1000_PHY_AGC_B,
6660 IGP01E1000_PHY_AGC_C,
6661 IGP01E1000_PHY_AGC_D};
6662 /* Read the AGC registers for all channels */
8fc897b0 6663 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
1da177e4
LT
6664
6665 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
8fc897b0 6666 if (ret_val)
1da177e4
LT
6667 return ret_val;
6668
cd94dd0b 6669 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
1da177e4 6670
cd94dd0b
AK
6671 /* Value bound check. */
6672 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6673 (cur_agc_value == 0))
1da177e4
LT
6674 return -E1000_ERR_PHY;
6675
cd94dd0b 6676 agc_value += cur_agc_value;
1da177e4
LT
6677
6678 /* Update minimal AGC value. */
cd94dd0b
AK
6679 if (min_agc_value > cur_agc_value)
6680 min_agc_value = cur_agc_value;
1da177e4
LT
6681 }
6682
6683 /* Remove the minimal AGC result for length < 50m */
cd94dd0b
AK
6684 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6685 agc_value -= min_agc_value;
1da177e4
LT
6686
6687 /* Get the average length of the remaining 3 channels */
6688 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6689 } else {
6690 /* Get the average length of all the 4 channels. */
6691 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6692 }
6693
6694 /* Set the range of the calculated length. */
6695 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6696 IGP01E1000_AGC_RANGE) > 0) ?
6697 (e1000_igp_cable_length_table[agc_value] -
6698 IGP01E1000_AGC_RANGE) : 0;
6699 *max_length = e1000_igp_cable_length_table[agc_value] +
6700 IGP01E1000_AGC_RANGE;
cd94dd0b
AK
6701 } else if (hw->phy_type == e1000_phy_igp_2 ||
6702 hw->phy_type == e1000_phy_igp_3) {
406874a7
JP
6703 u16 cur_agc_index, max_agc_index = 0;
6704 u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6705 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
868d5309
MC
6706 {IGP02E1000_PHY_AGC_A,
6707 IGP02E1000_PHY_AGC_B,
6708 IGP02E1000_PHY_AGC_C,
6709 IGP02E1000_PHY_AGC_D};
6710 /* Read the AGC registers for all channels */
6711 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6712 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6713 if (ret_val)
6714 return ret_val;
6715
8fc897b0 6716 /* Getting bits 15:9, which represent the combination of course and
868d5309
MC
6717 * fine gain values. The result is a number that can be put into
6718 * the lookup table to obtain the approximate cable length. */
cd94dd0b
AK
6719 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6720 IGP02E1000_AGC_LENGTH_MASK;
868d5309 6721
cd94dd0b
AK
6722 /* Array index bound check. */
6723 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6724 (cur_agc_index == 0))
6725 return -E1000_ERR_PHY;
868d5309 6726
cd94dd0b
AK
6727 /* Remove min & max AGC values from calculation. */
6728 if (e1000_igp_2_cable_length_table[min_agc_index] >
6729 e1000_igp_2_cable_length_table[cur_agc_index])
6730 min_agc_index = cur_agc_index;
6731 if (e1000_igp_2_cable_length_table[max_agc_index] <
6732 e1000_igp_2_cable_length_table[cur_agc_index])
6733 max_agc_index = cur_agc_index;
6734
6735 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
868d5309
MC
6736 }
6737
cd94dd0b
AK
6738 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6739 e1000_igp_2_cable_length_table[max_agc_index]);
868d5309
MC
6740 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6741
6742 /* Calculate cable length with the error range of +/- 10 meters. */
6743 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6744 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6745 *max_length = agc_value + IGP02E1000_AGC_RANGE;
1da177e4
LT
6746 }
6747
6748 return E1000_SUCCESS;
6749}
6750
6751/******************************************************************************
6752 * Check the cable polarity
6753 *
6754 * hw - Struct containing variables accessed by shared code
6755 * polarity - output parameter : 0 - Polarity is not reversed
6756 * 1 - Polarity is reversed.
6757 *
6758 * returns: - E1000_ERR_XXX
6759 * E1000_SUCCESS
6760 *
025dfdaf 6761 * For phy's older than IGP, this function simply reads the polarity bit in the
1da177e4
LT
6762 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6763 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6764 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6765 * IGP01E1000_PHY_PCS_INIT_REG.
6766 *****************************************************************************/
64798845
JP
6767static s32 e1000_check_polarity(struct e1000_hw *hw,
6768 e1000_rev_polarity *polarity)
1da177e4 6769{
406874a7
JP
6770 s32 ret_val;
6771 u16 phy_data;
1da177e4
LT
6772
6773 DEBUGFUNC("e1000_check_polarity");
6774
6418ecc6
JK
6775 if ((hw->phy_type == e1000_phy_m88) ||
6776 (hw->phy_type == e1000_phy_gg82563)) {
1da177e4
LT
6777 /* return the Polarity bit in the Status register. */
6778 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6779 &phy_data);
8fc897b0 6780 if (ret_val)
1da177e4 6781 return ret_val;
70c6f30a
JK
6782 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6783 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6784 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6785
cd94dd0b
AK
6786 } else if (hw->phy_type == e1000_phy_igp ||
6787 hw->phy_type == e1000_phy_igp_3 ||
2d7edb92 6788 hw->phy_type == e1000_phy_igp_2) {
1da177e4
LT
6789 /* Read the Status register to check the speed */
6790 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6791 &phy_data);
8fc897b0 6792 if (ret_val)
1da177e4
LT
6793 return ret_val;
6794
6795 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6796 * find the polarity status */
8fc897b0 6797 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
1da177e4
LT
6798 IGP01E1000_PSSR_SPEED_1000MBPS) {
6799
6800 /* Read the GIG initialization PCS register (0x00B4) */
6801 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6802 &phy_data);
8fc897b0 6803 if (ret_val)
1da177e4
LT
6804 return ret_val;
6805
6806 /* Check the polarity bits */
70c6f30a
JK
6807 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6808 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
1da177e4
LT
6809 } else {
6810 /* For 10 Mbps, read the polarity bit in the status register. (for
6811 * 100 Mbps this bit is always 0) */
70c6f30a
JK
6812 *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6813 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
1da177e4 6814 }
cd94dd0b
AK
6815 } else if (hw->phy_type == e1000_phy_ife) {
6816 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6817 &phy_data);
6818 if (ret_val)
6819 return ret_val;
70c6f30a
JK
6820 *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6821 IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6822 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
1da177e4
LT
6823 }
6824 return E1000_SUCCESS;
6825}
6826
6827/******************************************************************************
6828 * Check if Downshift occured
6829 *
6830 * hw - Struct containing variables accessed by shared code
6831 * downshift - output parameter : 0 - No Downshift ocured.
6832 * 1 - Downshift ocured.
6833 *
6834 * returns: - E1000_ERR_XXX
76c224bc 6835 * E1000_SUCCESS
1da177e4 6836 *
025dfdaf 6837 * For phy's older than IGP, this function reads the Downshift bit in the Phy
1da177e4
LT
6838 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6839 * Link Health register. In IGP this bit is latched high, so the driver must
6840 * read it immediately after link is established.
6841 *****************************************************************************/
64798845 6842static s32 e1000_check_downshift(struct e1000_hw *hw)
1da177e4 6843{
406874a7
JP
6844 s32 ret_val;
6845 u16 phy_data;
1da177e4
LT
6846
6847 DEBUGFUNC("e1000_check_downshift");
6848
cd94dd0b
AK
6849 if (hw->phy_type == e1000_phy_igp ||
6850 hw->phy_type == e1000_phy_igp_3 ||
2d7edb92 6851 hw->phy_type == e1000_phy_igp_2) {
1da177e4
LT
6852 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6853 &phy_data);
8fc897b0 6854 if (ret_val)
1da177e4
LT
6855 return ret_val;
6856
6857 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6418ecc6
JK
6858 } else if ((hw->phy_type == e1000_phy_m88) ||
6859 (hw->phy_type == e1000_phy_gg82563)) {
1da177e4
LT
6860 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6861 &phy_data);
8fc897b0 6862 if (ret_val)
1da177e4
LT
6863 return ret_val;
6864
6865 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6866 M88E1000_PSSR_DOWNSHIFT_SHIFT;
cd94dd0b
AK
6867 } else if (hw->phy_type == e1000_phy_ife) {
6868 /* e1000_phy_ife supports 10/100 speed only */
c3033b01 6869 hw->speed_downgraded = false;
1da177e4 6870 }
2d7edb92 6871
1da177e4
LT
6872 return E1000_SUCCESS;
6873}
6874
6875/*****************************************************************************
6876 *
6877 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6878 * gigabit link is achieved to improve link quality.
6879 *
6880 * hw: Struct containing variables accessed by shared code
6881 *
6882 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6883 * E1000_SUCCESS at any other case.
6884 *
6885 ****************************************************************************/
6886
64798845 6887static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
1da177e4 6888{
406874a7
JP
6889 s32 ret_val;
6890 u16 phy_data, phy_saved_data, speed, duplex, i;
6891 u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
1da177e4
LT
6892 {IGP01E1000_PHY_AGC_PARAM_A,
6893 IGP01E1000_PHY_AGC_PARAM_B,
6894 IGP01E1000_PHY_AGC_PARAM_C,
6895 IGP01E1000_PHY_AGC_PARAM_D};
406874a7 6896 u16 min_length, max_length;
1da177e4
LT
6897
6898 DEBUGFUNC("e1000_config_dsp_after_link_change");
6899
8fc897b0 6900 if (hw->phy_type != e1000_phy_igp)
1da177e4
LT
6901 return E1000_SUCCESS;
6902
8fc897b0 6903 if (link_up) {
1da177e4 6904 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
8fc897b0 6905 if (ret_val) {
1da177e4
LT
6906 DEBUGOUT("Error getting link speed and duplex\n");
6907 return ret_val;
6908 }
6909
8fc897b0 6910 if (speed == SPEED_1000) {
1da177e4 6911
cd94dd0b
AK
6912 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
6913 if (ret_val)
6914 return ret_val;
1da177e4 6915
8fc897b0 6916 if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
1da177e4
LT
6917 min_length >= e1000_igp_cable_length_50) {
6918
8fc897b0 6919 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
1da177e4
LT
6920 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
6921 &phy_data);
8fc897b0 6922 if (ret_val)
1da177e4
LT
6923 return ret_val;
6924
6925 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6926
6927 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
6928 phy_data);
8fc897b0 6929 if (ret_val)
1da177e4
LT
6930 return ret_val;
6931 }
6932 hw->dsp_config_state = e1000_dsp_config_activated;
6933 }
6934
8fc897b0 6935 if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
1da177e4
LT
6936 (min_length < e1000_igp_cable_length_50)) {
6937
406874a7
JP
6938 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
6939 u32 idle_errs = 0;
1da177e4
LT
6940
6941 /* clear previous idle error counts */
6942 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6943 &phy_data);
8fc897b0 6944 if (ret_val)
1da177e4
LT
6945 return ret_val;
6946
8fc897b0 6947 for (i = 0; i < ffe_idle_err_timeout; i++) {
1da177e4
LT
6948 udelay(1000);
6949 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6950 &phy_data);
8fc897b0 6951 if (ret_val)
1da177e4
LT
6952 return ret_val;
6953
6954 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
8fc897b0 6955 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
1da177e4
LT
6956 hw->ffe_config_state = e1000_ffe_config_active;
6957
6958 ret_val = e1000_write_phy_reg(hw,
6959 IGP01E1000_PHY_DSP_FFE,
6960 IGP01E1000_PHY_DSP_FFE_CM_CP);
8fc897b0 6961 if (ret_val)
1da177e4
LT
6962 return ret_val;
6963 break;
6964 }
6965
8fc897b0 6966 if (idle_errs)
1da177e4
LT
6967 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
6968 }
6969 }
6970 }
6971 } else {
8fc897b0 6972 if (hw->dsp_config_state == e1000_dsp_config_activated) {
1da177e4
LT
6973 /* Save off the current value of register 0x2F5B to be restored at
6974 * the end of the routines. */
6975 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
6976
8fc897b0 6977 if (ret_val)
1da177e4
LT
6978 return ret_val;
6979
6980 /* Disable the PHY transmitter */
6981 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
6982
8fc897b0 6983 if (ret_val)
1da177e4
LT
6984 return ret_val;
6985
f8ec4733 6986 mdelay(20);
1da177e4
LT
6987
6988 ret_val = e1000_write_phy_reg(hw, 0x0000,
6989 IGP01E1000_IEEE_FORCE_GIGA);
8fc897b0 6990 if (ret_val)
1da177e4 6991 return ret_val;
8fc897b0 6992 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
1da177e4 6993 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
8fc897b0 6994 if (ret_val)
1da177e4
LT
6995 return ret_val;
6996
6997 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6998 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
6999
7000 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
8fc897b0 7001 if (ret_val)
1da177e4
LT
7002 return ret_val;
7003 }
7004
7005 ret_val = e1000_write_phy_reg(hw, 0x0000,
7006 IGP01E1000_IEEE_RESTART_AUTONEG);
8fc897b0 7007 if (ret_val)
1da177e4
LT
7008 return ret_val;
7009
f8ec4733 7010 mdelay(20);
1da177e4
LT
7011
7012 /* Now enable the transmitter */
7013 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7014
8fc897b0 7015 if (ret_val)
1da177e4
LT
7016 return ret_val;
7017
7018 hw->dsp_config_state = e1000_dsp_config_enabled;
7019 }
7020
8fc897b0 7021 if (hw->ffe_config_state == e1000_ffe_config_active) {
1da177e4
LT
7022 /* Save off the current value of register 0x2F5B to be restored at
7023 * the end of the routines. */
7024 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7025
8fc897b0 7026 if (ret_val)
1da177e4
LT
7027 return ret_val;
7028
7029 /* Disable the PHY transmitter */
7030 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7031
8fc897b0 7032 if (ret_val)
1da177e4
LT
7033 return ret_val;
7034
f8ec4733 7035 mdelay(20);
1da177e4
LT
7036
7037 ret_val = e1000_write_phy_reg(hw, 0x0000,
7038 IGP01E1000_IEEE_FORCE_GIGA);
8fc897b0 7039 if (ret_val)
1da177e4
LT
7040 return ret_val;
7041 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7042 IGP01E1000_PHY_DSP_FFE_DEFAULT);
8fc897b0 7043 if (ret_val)
1da177e4
LT
7044 return ret_val;
7045
7046 ret_val = e1000_write_phy_reg(hw, 0x0000,
7047 IGP01E1000_IEEE_RESTART_AUTONEG);
8fc897b0 7048 if (ret_val)
1da177e4
LT
7049 return ret_val;
7050
f8ec4733 7051 mdelay(20);
1da177e4
LT
7052
7053 /* Now enable the transmitter */
7054 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7055
8fc897b0 7056 if (ret_val)
1da177e4
LT
7057 return ret_val;
7058
7059 hw->ffe_config_state = e1000_ffe_config_enabled;
7060 }
7061 }
7062 return E1000_SUCCESS;
7063}
7064
7065/*****************************************************************************
7066 * Set PHY to class A mode
7067 * Assumes the following operations will follow to enable the new class mode.
7068 * 1. Do a PHY soft reset
7069 * 2. Restart auto-negotiation or force link.
7070 *
7071 * hw - Struct containing variables accessed by shared code
7072 ****************************************************************************/
64798845 7073static s32 e1000_set_phy_mode(struct e1000_hw *hw)
1da177e4 7074{
406874a7
JP
7075 s32 ret_val;
7076 u16 eeprom_data;
1da177e4
LT
7077
7078 DEBUGFUNC("e1000_set_phy_mode");
7079
8fc897b0
AK
7080 if ((hw->mac_type == e1000_82545_rev_3) &&
7081 (hw->media_type == e1000_media_type_copper)) {
1da177e4 7082 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
8fc897b0 7083 if (ret_val) {
1da177e4
LT
7084 return ret_val;
7085 }
7086
8fc897b0
AK
7087 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7088 (eeprom_data & EEPROM_PHY_CLASS_A)) {
1da177e4 7089 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
8fc897b0 7090 if (ret_val)
1da177e4
LT
7091 return ret_val;
7092 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
8fc897b0 7093 if (ret_val)
1da177e4
LT
7094 return ret_val;
7095
c3033b01 7096 hw->phy_reset_disable = false;
1da177e4
LT
7097 }
7098 }
7099
7100 return E1000_SUCCESS;
7101}
7102
7103/*****************************************************************************
7104 *
7105 * This function sets the lplu state according to the active flag. When
7106 * activating lplu this function also disables smart speed and vise versa.
7107 * lplu will not be activated unless the device autonegotiation advertisment
7108 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7109 * hw: Struct containing variables accessed by shared code
7110 * active - true to enable lplu false to disable lplu.
7111 *
7112 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7113 * E1000_SUCCESS at any other case.
7114 *
7115 ****************************************************************************/
7116
64798845 7117static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1da177e4 7118{
406874a7
JP
7119 u32 phy_ctrl = 0;
7120 s32 ret_val;
7121 u16 phy_data;
1da177e4
LT
7122 DEBUGFUNC("e1000_set_d3_lplu_state");
7123
cd94dd0b
AK
7124 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7125 && hw->phy_type != e1000_phy_igp_3)
1da177e4
LT
7126 return E1000_SUCCESS;
7127
7128 /* During driver activity LPLU should not be used or it will attain link
7129 * from the lowest speeds starting from 10Mbps. The capability is used for
7130 * Dx transitions and states */
cd94dd0b 7131 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
2d7edb92 7132 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
cd94dd0b 7133 if (ret_val)
2d7edb92 7134 return ret_val;
cd94dd0b
AK
7135 } else if (hw->mac_type == e1000_ich8lan) {
7136 /* MAC writes into PHY register based on the state transition
7137 * and start auto-negotiation. SW driver can overwrite the settings
7138 * in CSR PHY power control E1000_PHY_CTRL register. */
1dc32918 7139 phy_ctrl = er32(PHY_CTRL);
2d7edb92
MC
7140 } else {
7141 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
8fc897b0 7142 if (ret_val)
1da177e4 7143 return ret_val;
2d7edb92
MC
7144 }
7145
8fc897b0
AK
7146 if (!active) {
7147 if (hw->mac_type == e1000_82541_rev_2 ||
7148 hw->mac_type == e1000_82547_rev_2) {
2d7edb92
MC
7149 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7150 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
8fc897b0 7151 if (ret_val)
2d7edb92
MC
7152 return ret_val;
7153 } else {
cd94dd0b
AK
7154 if (hw->mac_type == e1000_ich8lan) {
7155 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1dc32918 7156 ew32(PHY_CTRL, phy_ctrl);
cd94dd0b 7157 } else {
2d7edb92
MC
7158 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7159 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7160 phy_data);
7161 if (ret_val)
7162 return ret_val;
cd94dd0b 7163 }
2d7edb92 7164 }
1da177e4
LT
7165
7166 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7167 * Dx states where the power conservation is most important. During
7168 * driver activity we should enable SmartSpeed, so performance is
7169 * maintained. */
7170 if (hw->smart_speed == e1000_smart_speed_on) {
7171 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7172 &phy_data);
8fc897b0 7173 if (ret_val)
1da177e4
LT
7174 return ret_val;
7175
7176 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7177 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7178 phy_data);
8fc897b0 7179 if (ret_val)
1da177e4
LT
7180 return ret_val;
7181 } else if (hw->smart_speed == e1000_smart_speed_off) {
7182 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7183 &phy_data);
35574764 7184 if (ret_val)
1da177e4
LT
7185 return ret_val;
7186
7187 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7188 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7189 phy_data);
8fc897b0 7190 if (ret_val)
1da177e4
LT
7191 return ret_val;
7192 }
7193
8fc897b0
AK
7194 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7195 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7196 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
1da177e4 7197
8fc897b0 7198 if (hw->mac_type == e1000_82541_rev_2 ||
cd94dd0b 7199 hw->mac_type == e1000_82547_rev_2) {
2d7edb92
MC
7200 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7201 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
8fc897b0 7202 if (ret_val)
2d7edb92
MC
7203 return ret_val;
7204 } else {
cd94dd0b
AK
7205 if (hw->mac_type == e1000_ich8lan) {
7206 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1dc32918 7207 ew32(PHY_CTRL, phy_ctrl);
cd94dd0b 7208 } else {
2d7edb92
MC
7209 phy_data |= IGP02E1000_PM_D3_LPLU;
7210 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7211 phy_data);
7212 if (ret_val)
7213 return ret_val;
cd94dd0b 7214 }
2d7edb92
MC
7215 }
7216
7217 /* When LPLU is enabled we should disable SmartSpeed */
7218 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
8fc897b0 7219 if (ret_val)
2d7edb92
MC
7220 return ret_val;
7221
7222 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7223 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
8fc897b0 7224 if (ret_val)
2d7edb92
MC
7225 return ret_val;
7226
7227 }
7228 return E1000_SUCCESS;
7229}
7230
7231/*****************************************************************************
7232 *
7233 * This function sets the lplu d0 state according to the active flag. When
7234 * activating lplu this function also disables smart speed and vise versa.
7235 * lplu will not be activated unless the device autonegotiation advertisment
7236 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7237 * hw: Struct containing variables accessed by shared code
7238 * active - true to enable lplu false to disable lplu.
7239 *
7240 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7241 * E1000_SUCCESS at any other case.
7242 *
7243 ****************************************************************************/
7244
64798845 7245static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2d7edb92 7246{
406874a7
JP
7247 u32 phy_ctrl = 0;
7248 s32 ret_val;
7249 u16 phy_data;
2d7edb92
MC
7250 DEBUGFUNC("e1000_set_d0_lplu_state");
7251
8fc897b0 7252 if (hw->mac_type <= e1000_82547_rev_2)
2d7edb92
MC
7253 return E1000_SUCCESS;
7254
cd94dd0b 7255 if (hw->mac_type == e1000_ich8lan) {
1dc32918 7256 phy_ctrl = er32(PHY_CTRL);
cd94dd0b 7257 } else {
2d7edb92 7258 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
8fc897b0 7259 if (ret_val)
1da177e4 7260 return ret_val;
cd94dd0b 7261 }
1da177e4 7262
2d7edb92 7263 if (!active) {
cd94dd0b
AK
7264 if (hw->mac_type == e1000_ich8lan) {
7265 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1dc32918 7266 ew32(PHY_CTRL, phy_ctrl);
cd94dd0b 7267 } else {
2d7edb92
MC
7268 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7269 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7270 if (ret_val)
7271 return ret_val;
cd94dd0b 7272 }
2d7edb92
MC
7273
7274 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7275 * Dx states where the power conservation is most important. During
7276 * driver activity we should enable SmartSpeed, so performance is
7277 * maintained. */
7278 if (hw->smart_speed == e1000_smart_speed_on) {
7279 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7280 &phy_data);
8fc897b0 7281 if (ret_val)
2d7edb92
MC
7282 return ret_val;
7283
7284 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7285 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7286 phy_data);
8fc897b0 7287 if (ret_val)
2d7edb92
MC
7288 return ret_val;
7289 } else if (hw->smart_speed == e1000_smart_speed_off) {
7290 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7291 &phy_data);
35574764 7292 if (ret_val)
2d7edb92
MC
7293 return ret_val;
7294
7295 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7296 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7297 phy_data);
8fc897b0 7298 if (ret_val)
2d7edb92
MC
7299 return ret_val;
7300 }
7301
7302
7303 } else {
76c224bc 7304
cd94dd0b
AK
7305 if (hw->mac_type == e1000_ich8lan) {
7306 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1dc32918 7307 ew32(PHY_CTRL, phy_ctrl);
cd94dd0b 7308 } else {
76c224bc 7309 phy_data |= IGP02E1000_PM_D0_LPLU;
2d7edb92
MC
7310 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7311 if (ret_val)
7312 return ret_val;
cd94dd0b 7313 }
2d7edb92 7314
1da177e4
LT
7315 /* When LPLU is enabled we should disable SmartSpeed */
7316 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
8fc897b0 7317 if (ret_val)
1da177e4
LT
7318 return ret_val;
7319
7320 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7321 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
8fc897b0 7322 if (ret_val)
1da177e4
LT
7323 return ret_val;
7324
7325 }
7326 return E1000_SUCCESS;
7327}
7328
7329/******************************************************************************
7330 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7331 *
7332 * hw - Struct containing variables accessed by shared code
7333 *****************************************************************************/
64798845 7334static s32 e1000_set_vco_speed(struct e1000_hw *hw)
1da177e4 7335{
406874a7
JP
7336 s32 ret_val;
7337 u16 default_page = 0;
7338 u16 phy_data;
1da177e4
LT
7339
7340 DEBUGFUNC("e1000_set_vco_speed");
7341
8fc897b0 7342 switch (hw->mac_type) {
1da177e4
LT
7343 case e1000_82545_rev_3:
7344 case e1000_82546_rev_3:
7345 break;
7346 default:
7347 return E1000_SUCCESS;
7348 }
7349
7350 /* Set PHY register 30, page 5, bit 8 to 0 */
7351
7352 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
8fc897b0 7353 if (ret_val)
1da177e4
LT
7354 return ret_val;
7355
7356 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
8fc897b0 7357 if (ret_val)
1da177e4
LT
7358 return ret_val;
7359
7360 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
8fc897b0 7361 if (ret_val)
1da177e4
LT
7362 return ret_val;
7363
7364 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7365 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
8fc897b0 7366 if (ret_val)
1da177e4
LT
7367 return ret_val;
7368
7369 /* Set PHY register 30, page 4, bit 11 to 1 */
7370
7371 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
8fc897b0 7372 if (ret_val)
1da177e4
LT
7373 return ret_val;
7374
7375 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
8fc897b0 7376 if (ret_val)
1da177e4
LT
7377 return ret_val;
7378
7379 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7380 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
8fc897b0 7381 if (ret_val)
1da177e4
LT
7382 return ret_val;
7383
7384 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
8fc897b0 7385 if (ret_val)
1da177e4
LT
7386 return ret_val;
7387
7388 return E1000_SUCCESS;
7389}
7390
1da177e4 7391
2d7edb92
MC
7392/*****************************************************************************
7393 * This function reads the cookie from ARC ram.
7394 *
7395 * returns: - E1000_SUCCESS .
7396 ****************************************************************************/
64798845 7397static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer)
2d7edb92 7398{
406874a7
JP
7399 u8 i;
7400 u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7401 u8 length = E1000_MNG_DHCP_COOKIE_LENGTH;
1da177e4 7402
2d7edb92
MC
7403 length = (length >> 2);
7404 offset = (offset >> 2);
1da177e4 7405
2d7edb92 7406 for (i = 0; i < length; i++) {
e982f17c 7407 *((u32 *)buffer + i) =
2d7edb92
MC
7408 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7409 }
7410 return E1000_SUCCESS;
7411}
7412
7413
7414/*****************************************************************************
7415 * This function checks whether the HOST IF is enabled for command operaton
7416 * and also checks whether the previous command is completed.
7417 * It busy waits in case of previous command is not completed.
7418 *
76c224bc 7419 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
2d7edb92
MC
7420 * timeout
7421 * - E1000_SUCCESS for success.
7422 ****************************************************************************/
64798845 7423static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2d7edb92 7424{
406874a7
JP
7425 u32 hicr;
7426 u8 i;
2d7edb92
MC
7427
7428 /* Check that the host interface is enabled. */
1dc32918 7429 hicr = er32(HICR);
2d7edb92
MC
7430 if ((hicr & E1000_HICR_EN) == 0) {
7431 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7432 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7433 }
7434 /* check the previous command is completed */
7435 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
1dc32918 7436 hicr = er32(HICR);
2d7edb92
MC
7437 if (!(hicr & E1000_HICR_C))
7438 break;
f8ec4733 7439 mdelay(1);
2d7edb92
MC
7440 }
7441
76c224bc 7442 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
2d7edb92
MC
7443 DEBUGOUT("Previous command timeout failed .\n");
7444 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7445 }
7446 return E1000_SUCCESS;
7447}
7448
7449/*****************************************************************************
7450 * This function writes the buffer content at the offset given on the host if.
7451 * It also does alignment considerations to do the writes in most efficient way.
7452 * Also fills up the sum of the buffer in *buffer parameter.
7453 *
7454 * returns - E1000_SUCCESS for success.
7455 ****************************************************************************/
64798845
JP
7456static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
7457 u16 offset, u8 *sum)
2d7edb92 7458{
406874a7
JP
7459 u8 *tmp;
7460 u8 *bufptr = buffer;
7461 u32 data = 0;
7462 u16 remaining, i, j, prev_bytes;
2d7edb92
MC
7463
7464 /* sum = only sum of the data and it is not checksum */
7465
7466 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7467 return -E1000_ERR_PARAM;
7468 }
7469
406874a7 7470 tmp = (u8 *)&data;
2d7edb92
MC
7471 prev_bytes = offset & 0x3;
7472 offset &= 0xFFFC;
7473 offset >>= 2;
7474
7475 if (prev_bytes) {
7476 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
406874a7 7477 for (j = prev_bytes; j < sizeof(u32); j++) {
2d7edb92
MC
7478 *(tmp + j) = *bufptr++;
7479 *sum += *(tmp + j);
7480 }
7481 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7482 length -= j - prev_bytes;
7483 offset++;
7484 }
7485
7486 remaining = length & 0x3;
7487 length -= remaining;
7488
7489 /* Calculate length in DWORDs */
7490 length >>= 2;
7491
7492 /* The device driver writes the relevant command block into the
7493 * ram area. */
7494 for (i = 0; i < length; i++) {
406874a7 7495 for (j = 0; j < sizeof(u32); j++) {
2d7edb92
MC
7496 *(tmp + j) = *bufptr++;
7497 *sum += *(tmp + j);
7498 }
7499
7500 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7501 }
7502 if (remaining) {
406874a7 7503 for (j = 0; j < sizeof(u32); j++) {
2d7edb92
MC
7504 if (j < remaining)
7505 *(tmp + j) = *bufptr++;
7506 else
7507 *(tmp + j) = 0;
7508
7509 *sum += *(tmp + j);
7510 }
7511 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7512 }
7513
7514 return E1000_SUCCESS;
7515}
7516
7517
7518/*****************************************************************************
7519 * This function writes the command header after does the checksum calculation.
7520 *
7521 * returns - E1000_SUCCESS for success.
7522 ****************************************************************************/
64798845
JP
7523static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
7524 struct e1000_host_mng_command_header *hdr)
2d7edb92 7525{
406874a7
JP
7526 u16 i;
7527 u8 sum;
7528 u8 *buffer;
2d7edb92
MC
7529
7530 /* Write the whole command header structure which includes sum of
7531 * the buffer */
7532
406874a7 7533 u16 length = sizeof(struct e1000_host_mng_command_header);
2d7edb92
MC
7534
7535 sum = hdr->checksum;
7536 hdr->checksum = 0;
7537
e982f17c 7538 buffer = (u8 *)hdr;
2d7edb92 7539 i = length;
8fc897b0 7540 while (i--)
2d7edb92
MC
7541 sum += buffer[i];
7542
7543 hdr->checksum = 0 - sum;
7544
7545 length >>= 2;
7546 /* The device driver writes the relevant command block into the ram area. */
4ca213a6 7547 for (i = 0; i < length; i++) {
e982f17c 7548 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i));
1dc32918 7549 E1000_WRITE_FLUSH();
4ca213a6 7550 }
2d7edb92
MC
7551
7552 return E1000_SUCCESS;
7553}
7554
7555
7556/*****************************************************************************
7557 * This function indicates to ARC that a new command is pending which completes
7558 * one write operation by the driver.
7559 *
7560 * returns - E1000_SUCCESS for success.
7561 ****************************************************************************/
64798845 7562static s32 e1000_mng_write_commit(struct e1000_hw *hw)
2d7edb92 7563{
406874a7 7564 u32 hicr;
2d7edb92 7565
1dc32918 7566 hicr = er32(HICR);
2d7edb92 7567 /* Setting this bit tells the ARC that a new command is pending. */
1dc32918 7568 ew32(HICR, hicr | E1000_HICR_C);
2d7edb92
MC
7569
7570 return E1000_SUCCESS;
7571}
7572
7573
7574/*****************************************************************************
7575 * This function checks the mode of the firmware.
7576 *
c3033b01 7577 * returns - true when the mode is IAMT or false.
2d7edb92 7578 ****************************************************************************/
64798845 7579bool e1000_check_mng_mode(struct e1000_hw *hw)
2d7edb92 7580{
406874a7 7581 u32 fwsm;
2d7edb92 7582
1dc32918 7583 fwsm = er32(FWSM);
2d7edb92 7584
cd94dd0b
AK
7585 if (hw->mac_type == e1000_ich8lan) {
7586 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7587 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
c3033b01 7588 return true;
cd94dd0b
AK
7589 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7590 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
c3033b01 7591 return true;
2d7edb92 7592
c3033b01 7593 return false;
2d7edb92
MC
7594}
7595
7596
7597/*****************************************************************************
7598 * This function writes the dhcp info .
7599 ****************************************************************************/
64798845 7600s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2d7edb92 7601{
406874a7 7602 s32 ret_val;
2d7edb92
MC
7603 struct e1000_host_mng_command_header hdr;
7604
7605 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7606 hdr.command_length = length;
7607 hdr.reserved1 = 0;
7608 hdr.reserved2 = 0;
7609 hdr.checksum = 0;
7610
7611 ret_val = e1000_mng_enable_host_if(hw);
7612 if (ret_val == E1000_SUCCESS) {
7613 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7614 &(hdr.checksum));
7615 if (ret_val == E1000_SUCCESS) {
7616 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7617 if (ret_val == E1000_SUCCESS)
7618 ret_val = e1000_mng_write_commit(hw);
7619 }
7620 }
7621 return ret_val;
7622}
7623
7624
7625/*****************************************************************************
7626 * This function calculates the checksum.
7627 *
7628 * returns - checksum of buffer contents.
7629 ****************************************************************************/
64798845 7630static u8 e1000_calculate_mng_checksum(char *buffer, u32 length)
2d7edb92 7631{
406874a7
JP
7632 u8 sum = 0;
7633 u32 i;
2d7edb92
MC
7634
7635 if (!buffer)
7636 return 0;
7637
7638 for (i=0; i < length; i++)
7639 sum += buffer[i];
7640
e982f17c 7641 return (u8)(0 - sum);
2d7edb92
MC
7642}
7643
7644/*****************************************************************************
7645 * This function checks whether tx pkt filtering needs to be enabled or not.
7646 *
c3033b01 7647 * returns - true for packet filtering or false.
2d7edb92 7648 ****************************************************************************/
64798845 7649bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
2d7edb92
MC
7650{
7651 /* called in init as well as watchdog timer functions */
7652
406874a7 7653 s32 ret_val, checksum;
c3033b01 7654 bool tx_filter = false;
2d7edb92 7655 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
406874a7 7656 u8 *buffer = (u8 *) &(hw->mng_cookie);
2d7edb92
MC
7657
7658 if (e1000_check_mng_mode(hw)) {
7659 ret_val = e1000_mng_enable_host_if(hw);
7660 if (ret_val == E1000_SUCCESS) {
7661 ret_val = e1000_host_if_read_cookie(hw, buffer);
7662 if (ret_val == E1000_SUCCESS) {
7663 checksum = hdr->checksum;
7664 hdr->checksum = 0;
7665 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7666 checksum == e1000_calculate_mng_checksum((char *)buffer,
7667 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7668 if (hdr->status &
7669 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
c3033b01 7670 tx_filter = true;
2d7edb92 7671 } else
c3033b01 7672 tx_filter = true;
2d7edb92 7673 } else
c3033b01 7674 tx_filter = true;
2d7edb92
MC
7675 }
7676 }
7677
7678 hw->tx_pkt_filtering = tx_filter;
7679 return tx_filter;
7680}
7681
7682/******************************************************************************
7683 * Verifies the hardware needs to allow ARPs to be processed by the host
7684 *
7685 * hw - Struct containing variables accessed by shared code
7686 *
c3033b01 7687 * returns: - true/false
2d7edb92
MC
7688 *
7689 *****************************************************************************/
64798845 7690u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
2d7edb92 7691{
406874a7
JP
7692 u32 manc;
7693 u32 fwsm, factps;
2d7edb92
MC
7694
7695 if (hw->asf_firmware_present) {
1dc32918 7696 manc = er32(MANC);
2d7edb92
MC
7697
7698 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7699 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
c3033b01
JP
7700 return false;
7701 if (e1000_arc_subsystem_valid(hw)) {
1dc32918
JP
7702 fwsm = er32(FWSM);
7703 factps = er32(FACTPS);
2d7edb92 7704
0fccd0e9
JG
7705 if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
7706 e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
c3033b01 7707 return true;
2d7edb92
MC
7708 } else
7709 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
c3033b01 7710 return true;
2d7edb92 7711 }
c3033b01 7712 return false;
2d7edb92
MC
7713}
7714
64798845 7715static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
2d7edb92 7716{
406874a7
JP
7717 s32 ret_val;
7718 u16 mii_status_reg;
7719 u16 i;
2d7edb92
MC
7720
7721 /* Polarity reversal workaround for forced 10F/10H links. */
7722
7723 /* Disable the transmitter on the PHY */
7724
7725 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
8fc897b0 7726 if (ret_val)
1da177e4
LT
7727 return ret_val;
7728 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
8fc897b0 7729 if (ret_val)
1da177e4
LT
7730 return ret_val;
7731
7732 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
8fc897b0 7733 if (ret_val)
1da177e4
LT
7734 return ret_val;
7735
7736 /* This loop will early-out if the NO link condition has been met. */
8fc897b0 7737 for (i = PHY_FORCE_TIME; i > 0; i--) {
1da177e4
LT
7738 /* Read the MII Status Register and wait for Link Status bit
7739 * to be clear.
7740 */
7741
7742 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 7743 if (ret_val)
1da177e4
LT
7744 return ret_val;
7745
7746 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 7747 if (ret_val)
1da177e4
LT
7748 return ret_val;
7749
8fc897b0 7750 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
f8ec4733 7751 mdelay(100);
1da177e4
LT
7752 }
7753
7754 /* Recommended delay time after link has been lost */
f8ec4733 7755 mdelay(1000);
1da177e4
LT
7756
7757 /* Now we will re-enable th transmitter on the PHY */
7758
7759 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
8fc897b0 7760 if (ret_val)
1da177e4 7761 return ret_val;
f8ec4733 7762 mdelay(50);
1da177e4 7763 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
8fc897b0 7764 if (ret_val)
1da177e4 7765 return ret_val;
f8ec4733 7766 mdelay(50);
1da177e4 7767 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
8fc897b0 7768 if (ret_val)
1da177e4 7769 return ret_val;
f8ec4733 7770 mdelay(50);
1da177e4 7771 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
8fc897b0 7772 if (ret_val)
1da177e4
LT
7773 return ret_val;
7774
7775 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
8fc897b0 7776 if (ret_val)
1da177e4
LT
7777 return ret_val;
7778
7779 /* This loop will early-out if the link condition has been met. */
8fc897b0 7780 for (i = PHY_FORCE_TIME; i > 0; i--) {
1da177e4
LT
7781 /* Read the MII Status Register and wait for Link Status bit
7782 * to be set.
7783 */
7784
7785 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 7786 if (ret_val)
1da177e4
LT
7787 return ret_val;
7788
7789 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
8fc897b0 7790 if (ret_val)
1da177e4
LT
7791 return ret_val;
7792
8fc897b0 7793 if (mii_status_reg & MII_SR_LINK_STATUS) break;
f8ec4733 7794 mdelay(100);
1da177e4
LT
7795 }
7796 return E1000_SUCCESS;
7797}
7798
2d7edb92
MC
7799/***************************************************************************
7800 *
7801 * Disables PCI-Express master access.
7802 *
7803 * hw: Struct containing variables accessed by shared code
7804 *
7805 * returns: - none.
7806 *
7807 ***************************************************************************/
64798845 7808static void e1000_set_pci_express_master_disable(struct e1000_hw *hw)
2d7edb92 7809{
406874a7 7810 u32 ctrl;
2d7edb92
MC
7811
7812 DEBUGFUNC("e1000_set_pci_express_master_disable");
7813
7814 if (hw->bus_type != e1000_bus_type_pci_express)
7815 return;
7816
1dc32918 7817 ctrl = er32(CTRL);
2d7edb92 7818 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1dc32918 7819 ew32(CTRL, ctrl);
2d7edb92
MC
7820}
7821
2d7edb92
MC
7822/*******************************************************************************
7823 *
7824 * Disables PCI-Express master access and verifies there are no pending requests
7825 *
7826 * hw: Struct containing variables accessed by shared code
7827 *
7828 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7829 * caused the master requests to be disabled.
7830 * E1000_SUCCESS master requests disabled.
7831 *
7832 ******************************************************************************/
64798845 7833s32 e1000_disable_pciex_master(struct e1000_hw *hw)
2d7edb92 7834{
406874a7 7835 s32 timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
2d7edb92
MC
7836
7837 DEBUGFUNC("e1000_disable_pciex_master");
7838
7839 if (hw->bus_type != e1000_bus_type_pci_express)
7840 return E1000_SUCCESS;
7841
7842 e1000_set_pci_express_master_disable(hw);
7843
8fc897b0 7844 while (timeout) {
1dc32918 7845 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
2d7edb92
MC
7846 break;
7847 else
7848 udelay(100);
7849 timeout--;
7850 }
7851
8fc897b0 7852 if (!timeout) {
2d7edb92
MC
7853 DEBUGOUT("Master requests are pending.\n");
7854 return -E1000_ERR_MASTER_REQUESTS_PENDING;
7855 }
7856
7857 return E1000_SUCCESS;
7858}
7859
7860/*******************************************************************************
7861 *
7862 * Check for EEPROM Auto Read bit done.
7863 *
7864 * hw: Struct containing variables accessed by shared code
7865 *
7866 * returns: - E1000_ERR_RESET if fail to reset MAC
7867 * E1000_SUCCESS at any other case.
7868 *
7869 ******************************************************************************/
64798845 7870static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
2d7edb92 7871{
406874a7 7872 s32 timeout = AUTO_READ_DONE_TIMEOUT;
2d7edb92
MC
7873
7874 DEBUGFUNC("e1000_get_auto_rd_done");
7875
7876 switch (hw->mac_type) {
7877 default:
f8ec4733 7878 msleep(5);
2d7edb92 7879 break;
868d5309
MC
7880 case e1000_82571:
7881 case e1000_82572:
2d7edb92 7882 case e1000_82573:
6418ecc6 7883 case e1000_80003es2lan:
cd94dd0b
AK
7884 case e1000_ich8lan:
7885 while (timeout) {
1dc32918 7886 if (er32(EECD) & E1000_EECD_AUTO_RD)
cd94dd0b 7887 break;
f8ec4733 7888 else msleep(1);
2d7edb92
MC
7889 timeout--;
7890 }
7891
8fc897b0 7892 if (!timeout) {
2d7edb92
MC
7893 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
7894 return -E1000_ERR_RESET;
7895 }
7896 break;
7897 }
7898
fd803241
JK
7899 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
7900 * Need to wait for PHY configuration completion before accessing NVM
7901 * and PHY. */
7902 if (hw->mac_type == e1000_82573)
f8ec4733 7903 msleep(25);
fd803241 7904
2d7edb92
MC
7905 return E1000_SUCCESS;
7906}
7907
7908/***************************************************************************
7909 * Checks if the PHY configuration is done
7910 *
7911 * hw: Struct containing variables accessed by shared code
7912 *
7913 * returns: - E1000_ERR_RESET if fail to reset MAC
7914 * E1000_SUCCESS at any other case.
7915 *
7916 ***************************************************************************/
64798845 7917static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2d7edb92 7918{
406874a7
JP
7919 s32 timeout = PHY_CFG_TIMEOUT;
7920 u32 cfg_mask = E1000_EEPROM_CFG_DONE;
868d5309 7921
2d7edb92
MC
7922 DEBUGFUNC("e1000_get_phy_cfg_done");
7923
868d5309
MC
7924 switch (hw->mac_type) {
7925 default:
f8ec4733 7926 mdelay(10);
868d5309 7927 break;
6418ecc6
JK
7928 case e1000_80003es2lan:
7929 /* Separate *_CFG_DONE_* bit for each port */
1dc32918 7930 if (er32(STATUS) & E1000_STATUS_FUNC_1)
6418ecc6
JK
7931 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
7932 /* Fall Through */
868d5309
MC
7933 case e1000_82571:
7934 case e1000_82572:
7935 while (timeout) {
1dc32918 7936 if (er32(EEMNGCTL) & cfg_mask)
868d5309
MC
7937 break;
7938 else
f8ec4733 7939 msleep(1);
868d5309
MC
7940 timeout--;
7941 }
868d5309
MC
7942 if (!timeout) {
7943 DEBUGOUT("MNG configuration cycle has not completed.\n");
7944 return -E1000_ERR_RESET;
7945 }
7946 break;
7947 }
2d7edb92
MC
7948
7949 return E1000_SUCCESS;
7950}
7951
7952/***************************************************************************
7953 *
7954 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
7955 * adapter or Eeprom access.
7956 *
7957 * hw: Struct containing variables accessed by shared code
7958 *
7959 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
7960 * E1000_SUCCESS at any other case.
7961 *
7962 ***************************************************************************/
64798845 7963static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
2d7edb92 7964{
406874a7
JP
7965 s32 timeout;
7966 u32 swsm;
2d7edb92
MC
7967
7968 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
7969
8fc897b0 7970 if (!hw->eeprom_semaphore_present)
2d7edb92
MC
7971 return E1000_SUCCESS;
7972
6418ecc6
JK
7973 if (hw->mac_type == e1000_80003es2lan) {
7974 /* Get the SW semaphore. */
7975 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
7976 return -E1000_ERR_EEPROM;
7977 }
2d7edb92
MC
7978
7979 /* Get the FW semaphore. */
7980 timeout = hw->eeprom.word_size + 1;
8fc897b0 7981 while (timeout) {
1dc32918 7982 swsm = er32(SWSM);
2d7edb92 7983 swsm |= E1000_SWSM_SWESMBI;
1dc32918 7984 ew32(SWSM, swsm);
2d7edb92 7985 /* if we managed to set the bit we got the semaphore. */
1dc32918 7986 swsm = er32(SWSM);
8fc897b0 7987 if (swsm & E1000_SWSM_SWESMBI)
2d7edb92
MC
7988 break;
7989
7990 udelay(50);
7991 timeout--;
7992 }
7993
8fc897b0 7994 if (!timeout) {
2d7edb92
MC
7995 /* Release semaphores */
7996 e1000_put_hw_eeprom_semaphore(hw);
7997 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
7998 return -E1000_ERR_EEPROM;
7999 }
8000
8001 return E1000_SUCCESS;
8002}
8003
8004/***************************************************************************
8005 * This function clears HW semaphore bits.
8006 *
8007 * hw: Struct containing variables accessed by shared code
8008 *
8009 * returns: - None.
8010 *
8011 ***************************************************************************/
64798845 8012static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
2d7edb92 8013{
406874a7 8014 u32 swsm;
2d7edb92
MC
8015
8016 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8017
8fc897b0 8018 if (!hw->eeprom_semaphore_present)
2d7edb92
MC
8019 return;
8020
1dc32918 8021 swsm = er32(SWSM);
6418ecc6
JK
8022 if (hw->mac_type == e1000_80003es2lan) {
8023 /* Release both semaphores. */
8024 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8025 } else
868d5309 8026 swsm &= ~(E1000_SWSM_SWESMBI);
1dc32918 8027 ew32(SWSM, swsm);
2d7edb92
MC
8028}
8029
6418ecc6
JK
8030/***************************************************************************
8031 *
8032 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8033 *
8034 * hw: Struct containing variables accessed by shared code
8035 *
8036 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8037 * E1000_SUCCESS at any other case.
8038 *
8039 ***************************************************************************/
64798845 8040static s32 e1000_get_software_semaphore(struct e1000_hw *hw)
6418ecc6 8041{
406874a7
JP
8042 s32 timeout = hw->eeprom.word_size + 1;
8043 u32 swsm;
6418ecc6
JK
8044
8045 DEBUGFUNC("e1000_get_software_semaphore");
8046
35574764 8047 if (hw->mac_type != e1000_80003es2lan) {
6418ecc6 8048 return E1000_SUCCESS;
35574764 8049 }
6418ecc6 8050
8fc897b0 8051 while (timeout) {
1dc32918 8052 swsm = er32(SWSM);
6418ecc6 8053 /* If SMBI bit cleared, it is now set and we hold the semaphore */
8fc897b0 8054 if (!(swsm & E1000_SWSM_SMBI))
6418ecc6 8055 break;
f8ec4733 8056 mdelay(1);
6418ecc6
JK
8057 timeout--;
8058 }
8059
8fc897b0 8060 if (!timeout) {
6418ecc6
JK
8061 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8062 return -E1000_ERR_RESET;
8063 }
8064
8065 return E1000_SUCCESS;
8066}
8067
8068/***************************************************************************
8069 *
8070 * Release semaphore bit (SMBI).
8071 *
8072 * hw: Struct containing variables accessed by shared code
8073 *
8074 ***************************************************************************/
64798845 8075static void e1000_release_software_semaphore(struct e1000_hw *hw)
6418ecc6 8076{
406874a7 8077 u32 swsm;
6418ecc6
JK
8078
8079 DEBUGFUNC("e1000_release_software_semaphore");
8080
35574764 8081 if (hw->mac_type != e1000_80003es2lan) {
6418ecc6 8082 return;
35574764 8083 }
6418ecc6 8084
1dc32918 8085 swsm = er32(SWSM);
6418ecc6
JK
8086 /* Release the SW semaphores.*/
8087 swsm &= ~E1000_SWSM_SMBI;
1dc32918 8088 ew32(SWSM, swsm);
6418ecc6
JK
8089}
8090
2d7edb92
MC
8091/******************************************************************************
8092 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8093 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8094 * the caller to figure out how to deal with it.
8095 *
8096 * hw - Struct containing variables accessed by shared code
8097 *
8098 * returns: - E1000_BLK_PHY_RESET
8099 * E1000_SUCCESS
8100 *
8101 *****************************************************************************/
64798845 8102s32 e1000_check_phy_reset_block(struct e1000_hw *hw)
2d7edb92 8103{
406874a7
JP
8104 u32 manc = 0;
8105 u32 fwsm = 0;
cd94dd0b
AK
8106
8107 if (hw->mac_type == e1000_ich8lan) {
1dc32918 8108 fwsm = er32(FWSM);
cd94dd0b
AK
8109 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8110 : E1000_BLK_PHY_RESET;
8111 }
96838a40
JB
8112
8113 if (hw->mac_type > e1000_82547_rev_2)
1dc32918 8114 manc = er32(MANC);
2d7edb92 8115 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
35574764 8116 E1000_BLK_PHY_RESET : E1000_SUCCESS;
2d7edb92
MC
8117}
8118
64798845 8119static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw)
2d7edb92 8120{
406874a7 8121 u32 fwsm;
2d7edb92
MC
8122
8123 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8124 * may not be provided a DMA clock when no manageability features are
8125 * enabled. We do not want to perform any reads/writes to these registers
8126 * if this is the case. We read FWSM to determine the manageability mode.
8127 */
8128 switch (hw->mac_type) {
868d5309
MC
8129 case e1000_82571:
8130 case e1000_82572:
2d7edb92 8131 case e1000_82573:
6418ecc6 8132 case e1000_80003es2lan:
1dc32918 8133 fwsm = er32(FWSM);
8fc897b0 8134 if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
c3033b01 8135 return true;
2d7edb92 8136 break;
cd94dd0b 8137 case e1000_ich8lan:
c3033b01 8138 return true;
2d7edb92
MC
8139 default:
8140 break;
8141 }
c3033b01 8142 return false;
2d7edb92
MC
8143}
8144
8145
d37ea5d5
AK
8146/******************************************************************************
8147 * Configure PCI-Ex no-snoop
8148 *
8149 * hw - Struct containing variables accessed by shared code.
8150 * no_snoop - Bitmap of no-snoop events.
8151 *
8152 * returns: E1000_SUCCESS
8153 *
8154 *****************************************************************************/
64798845 8155static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop)
d37ea5d5 8156{
406874a7 8157 u32 gcr_reg = 0;
d37ea5d5
AK
8158
8159 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8160
8161 if (hw->bus_type == e1000_bus_type_unknown)
8162 e1000_get_bus_info(hw);
8163
8164 if (hw->bus_type != e1000_bus_type_pci_express)
8165 return E1000_SUCCESS;
8166
8167 if (no_snoop) {
1dc32918 8168 gcr_reg = er32(GCR);
d37ea5d5
AK
8169 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8170 gcr_reg |= no_snoop;
1dc32918 8171 ew32(GCR, gcr_reg);
d37ea5d5
AK
8172 }
8173 if (hw->mac_type == e1000_ich8lan) {
406874a7 8174 u32 ctrl_ext;
d37ea5d5 8175
1dc32918 8176 ew32(GCR, PCI_EX_82566_SNOOP_ALL);
d37ea5d5 8177
1dc32918 8178 ctrl_ext = er32(CTRL_EXT);
d37ea5d5 8179 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1dc32918 8180 ew32(CTRL_EXT, ctrl_ext);
d37ea5d5
AK
8181 }
8182
8183 return E1000_SUCCESS;
8184}
8185
8186/***************************************************************************
8187 *
8188 * Get software semaphore FLAG bit (SWFLAG).
8189 * SWFLAG is used to synchronize the access to all shared resource between
8190 * SW, FW and HW.
8191 *
8192 * hw: Struct containing variables accessed by shared code
8193 *
8194 ***************************************************************************/
64798845 8195static s32 e1000_get_software_flag(struct e1000_hw *hw)
d37ea5d5 8196{
406874a7
JP
8197 s32 timeout = PHY_CFG_TIMEOUT;
8198 u32 extcnf_ctrl;
d37ea5d5
AK
8199
8200 DEBUGFUNC("e1000_get_software_flag");
8201
8202 if (hw->mac_type == e1000_ich8lan) {
8203 while (timeout) {
1dc32918 8204 extcnf_ctrl = er32(EXTCNF_CTRL);
d37ea5d5 8205 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1dc32918 8206 ew32(EXTCNF_CTRL, extcnf_ctrl);
d37ea5d5 8207
1dc32918 8208 extcnf_ctrl = er32(EXTCNF_CTRL);
d37ea5d5
AK
8209 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8210 break;
f8ec4733 8211 mdelay(1);
d37ea5d5
AK
8212 timeout--;
8213 }
8214
8215 if (!timeout) {
8216 DEBUGOUT("FW or HW locks the resource too long.\n");
8217 return -E1000_ERR_CONFIG;
8218 }
8219 }
8220
8221 return E1000_SUCCESS;
8222}
8223
8224/***************************************************************************
8225 *
8226 * Release software semaphore FLAG bit (SWFLAG).
8227 * SWFLAG is used to synchronize the access to all shared resource between
8228 * SW, FW and HW.
8229 *
8230 * hw: Struct containing variables accessed by shared code
8231 *
8232 ***************************************************************************/
64798845 8233static void e1000_release_software_flag(struct e1000_hw *hw)
d37ea5d5 8234{
406874a7 8235 u32 extcnf_ctrl;
d37ea5d5
AK
8236
8237 DEBUGFUNC("e1000_release_software_flag");
8238
8239 if (hw->mac_type == e1000_ich8lan) {
1dc32918 8240 extcnf_ctrl= er32(EXTCNF_CTRL);
d37ea5d5 8241 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1dc32918 8242 ew32(EXTCNF_CTRL, extcnf_ctrl);
d37ea5d5
AK
8243 }
8244
8245 return;
8246}
8247
d37ea5d5
AK
8248/******************************************************************************
8249 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8250 * register.
8251 *
8252 * hw - Struct containing variables accessed by shared code
8253 * offset - offset of word in the EEPROM to read
8254 * data - word read from the EEPROM
8255 * words - number of words to read
8256 *****************************************************************************/
64798845
JP
8257static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
8258 u16 *data)
d37ea5d5 8259{
406874a7
JP
8260 s32 error = E1000_SUCCESS;
8261 u32 flash_bank = 0;
8262 u32 act_offset = 0;
8263 u32 bank_offset = 0;
8264 u16 word = 0;
8265 u16 i = 0;
d37ea5d5
AK
8266
8267 /* We need to know which is the valid flash bank. In the event
8268 * that we didn't allocate eeprom_shadow_ram, we may not be
8269 * managing flash_bank. So it cannot be trusted and needs
8270 * to be updated with each read.
8271 */
8272 /* Value of bit 22 corresponds to the flash bank we're on. */
1dc32918 8273 flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
d37ea5d5
AK
8274
8275 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8276 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8277
8278 error = e1000_get_software_flag(hw);
8279 if (error != E1000_SUCCESS)
8280 return error;
8281
8282 for (i = 0; i < words; i++) {
8283 if (hw->eeprom_shadow_ram != NULL &&
c3033b01 8284 hw->eeprom_shadow_ram[offset+i].modified) {
d37ea5d5
AK
8285 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8286 } else {
8287 /* The NVM part needs a byte offset, hence * 2 */
8288 act_offset = bank_offset + ((offset + i) * 2);
8289 error = e1000_read_ich8_word(hw, act_offset, &word);
8290 if (error != E1000_SUCCESS)
8291 break;
8292 data[i] = word;
8293 }
8294 }
8295
8296 e1000_release_software_flag(hw);
8297
8298 return error;
8299}
8300
8301/******************************************************************************
8302 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8303 * register. Actually, writes are written to the shadow ram cache in the hw
8304 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8305 * the NVM, which occurs when the NVM checksum is updated.
8306 *
8307 * hw - Struct containing variables accessed by shared code
8308 * offset - offset of word in the EEPROM to write
8309 * words - number of words to write
8310 * data - words to write to the EEPROM
8311 *****************************************************************************/
64798845
JP
8312static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
8313 u16 *data)
d37ea5d5 8314{
406874a7
JP
8315 u32 i = 0;
8316 s32 error = E1000_SUCCESS;
d37ea5d5
AK
8317
8318 error = e1000_get_software_flag(hw);
8319 if (error != E1000_SUCCESS)
8320 return error;
8321
8322 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8323 * allocated. Subsequent reads to the modified words are read from
8324 * this cached structure as well. Writes will only go into this
8325 * cached structure unless it's followed by a call to
8326 * e1000_update_eeprom_checksum() where it will commit the changes
8327 * and clear the "modified" field.
8328 */
8329 if (hw->eeprom_shadow_ram != NULL) {
8330 for (i = 0; i < words; i++) {
8331 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
c3033b01 8332 hw->eeprom_shadow_ram[offset+i].modified = true;
d37ea5d5
AK
8333 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8334 } else {
8335 error = -E1000_ERR_EEPROM;
8336 break;
8337 }
8338 }
8339 } else {
8340 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8341 * as they don't perform any NVM writes. An attempt in doing so
8342 * will result in this error.
8343 */
8344 error = -E1000_ERR_EEPROM;
8345 }
8346
8347 e1000_release_software_flag(hw);
8348
8349 return error;
8350}
8351
8352/******************************************************************************
8353 * This function does initial flash setup so that a new read/write/erase cycle
8354 * can be started.
8355 *
8356 * hw - The pointer to the hw structure
8357 ****************************************************************************/
64798845 8358static s32 e1000_ich8_cycle_init(struct e1000_hw *hw)
d37ea5d5
AK
8359{
8360 union ich8_hws_flash_status hsfsts;
406874a7
JP
8361 s32 error = E1000_ERR_EEPROM;
8362 s32 i = 0;
d37ea5d5
AK
8363
8364 DEBUGFUNC("e1000_ich8_cycle_init");
8365
2df7d59f 8366 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
d37ea5d5
AK
8367
8368 /* May be check the Flash Des Valid bit in Hw status */
8369 if (hsfsts.hsf_status.fldesvalid == 0) {
8370 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8371 return error;
8372 }
8373
8374 /* Clear FCERR in Hw status by writing 1 */
8375 /* Clear DAEL in Hw status by writing a 1 */
8376 hsfsts.hsf_status.flcerr = 1;
8377 hsfsts.hsf_status.dael = 1;
8378
2df7d59f 8379 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
d37ea5d5
AK
8380
8381 /* Either we should have a hardware SPI cycle in progress bit to check
8382 * against, in order to start a new cycle or FDONE bit should be changed
8383 * in the hardware so that it is 1 after harware reset, which can then be
8384 * used as an indication whether a cycle is in progress or has been
8385 * completed .. we should also have some software semaphore mechanism to
8386 * guard FDONE or the cycle in progress bit so that two threads access to
8387 * those bits can be sequentiallized or a way so that 2 threads dont
8388 * start the cycle at the same time */
8389
8390 if (hsfsts.hsf_status.flcinprog == 0) {
8391 /* There is no cycle running at present, so we can start a cycle */
8392 /* Begin by setting Flash Cycle Done. */
8393 hsfsts.hsf_status.flcdone = 1;
2df7d59f 8394 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
d37ea5d5
AK
8395 error = E1000_SUCCESS;
8396 } else {
8397 /* otherwise poll for sometime so the current cycle has a chance
8398 * to end before giving up. */
2df7d59f
JK
8399 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
8400 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
d37ea5d5
AK
8401 if (hsfsts.hsf_status.flcinprog == 0) {
8402 error = E1000_SUCCESS;
8403 break;
8404 }
8405 udelay(1);
8406 }
8407 if (error == E1000_SUCCESS) {
8408 /* Successful in waiting for previous cycle to timeout,
8409 * now set the Flash Cycle Done. */
8410 hsfsts.hsf_status.flcdone = 1;
2df7d59f 8411 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
d37ea5d5
AK
8412 } else {
8413 DEBUGOUT("Flash controller busy, cannot get access");
8414 }
8415 }
8416 return error;
8417}
8418
8419/******************************************************************************
8420 * This function starts a flash cycle and waits for its completion
8421 *
8422 * hw - The pointer to the hw structure
8423 ****************************************************************************/
64798845 8424static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout)
d37ea5d5
AK
8425{
8426 union ich8_hws_flash_ctrl hsflctl;
8427 union ich8_hws_flash_status hsfsts;
406874a7
JP
8428 s32 error = E1000_ERR_EEPROM;
8429 u32 i = 0;
d37ea5d5
AK
8430
8431 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2df7d59f 8432 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
d37ea5d5 8433 hsflctl.hsf_ctrl.flcgo = 1;
2df7d59f 8434 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
d37ea5d5
AK
8435
8436 /* wait till FDONE bit is set to 1 */
8437 do {
2df7d59f 8438 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
d37ea5d5
AK
8439 if (hsfsts.hsf_status.flcdone == 1)
8440 break;
8441 udelay(1);
8442 i++;
8443 } while (i < timeout);
8444 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8445 error = E1000_SUCCESS;
8446 }
8447 return error;
8448}
8449
8450/******************************************************************************
8451 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8452 *
8453 * hw - The pointer to the hw structure
8454 * index - The index of the byte or word to read.
8455 * size - Size of data to read, 1=byte 2=word
8456 * data - Pointer to the word to store the value read.
8457 *****************************************************************************/
64798845
JP
8458static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
8459 u16 *data)
d37ea5d5
AK
8460{
8461 union ich8_hws_flash_status hsfsts;
8462 union ich8_hws_flash_ctrl hsflctl;
406874a7
JP
8463 u32 flash_linear_address;
8464 u32 flash_data = 0;
8465 s32 error = -E1000_ERR_EEPROM;
8466 s32 count = 0;
d37ea5d5
AK
8467
8468 DEBUGFUNC("e1000_read_ich8_data");
8469
abec42a4 8470 if (size < 1 || size > 2 || data == NULL ||
2df7d59f 8471 index > ICH_FLASH_LINEAR_ADDR_MASK)
d37ea5d5
AK
8472 return error;
8473
2df7d59f 8474 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
d37ea5d5
AK
8475 hw->flash_base_addr;
8476
8477 do {
8478 udelay(1);
8479 /* Steps */
8480 error = e1000_ich8_cycle_init(hw);
8481 if (error != E1000_SUCCESS)
8482 break;
8483
2df7d59f 8484 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
d37ea5d5
AK
8485 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8486 hsflctl.hsf_ctrl.fldbcount = size - 1;
2df7d59f
JK
8487 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
8488 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
d37ea5d5
AK
8489
8490 /* Write the last 24 bits of index into Flash Linear address field in
8491 * Flash Address */
8492 /* TODO: TBD maybe check the index against the size of flash */
8493
2df7d59f 8494 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
d37ea5d5 8495
2df7d59f 8496 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
d37ea5d5
AK
8497
8498 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8499 * sequence a few more times, else read in (shift in) the Flash Data0,
8500 * the order is least significant byte first msb to lsb */
8501 if (error == E1000_SUCCESS) {
2df7d59f 8502 flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
d37ea5d5 8503 if (size == 1) {
406874a7 8504 *data = (u8)(flash_data & 0x000000FF);
d37ea5d5 8505 } else if (size == 2) {
406874a7 8506 *data = (u16)(flash_data & 0x0000FFFF);
d37ea5d5
AK
8507 }
8508 break;
8509 } else {
8510 /* If we've gotten here, then things are probably completely hosed,
8511 * but if the error condition is detected, it won't hurt to give
2df7d59f 8512 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
d37ea5d5 8513 */
2df7d59f 8514 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
d37ea5d5
AK
8515 if (hsfsts.hsf_status.flcerr == 1) {
8516 /* Repeat for some time before giving up. */
8517 continue;
8518 } else if (hsfsts.hsf_status.flcdone == 0) {
8519 DEBUGOUT("Timeout error - flash cycle did not complete.");
8520 break;
8521 }
8522 }
2df7d59f 8523 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
d37ea5d5
AK
8524
8525 return error;
8526}
8527
8528/******************************************************************************
8529 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8530 *
8531 * hw - The pointer to the hw structure
8532 * index - The index of the byte/word to read.
8533 * size - Size of data to read, 1=byte 2=word
8534 * data - The byte(s) to write to the NVM.
8535 *****************************************************************************/
64798845
JP
8536static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
8537 u16 data)
d37ea5d5
AK
8538{
8539 union ich8_hws_flash_status hsfsts;
8540 union ich8_hws_flash_ctrl hsflctl;
406874a7
JP
8541 u32 flash_linear_address;
8542 u32 flash_data = 0;
8543 s32 error = -E1000_ERR_EEPROM;
8544 s32 count = 0;
d37ea5d5
AK
8545
8546 DEBUGFUNC("e1000_write_ich8_data");
8547
8548 if (size < 1 || size > 2 || data > size * 0xff ||
2df7d59f 8549 index > ICH_FLASH_LINEAR_ADDR_MASK)
d37ea5d5
AK
8550 return error;
8551
2df7d59f 8552 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
d37ea5d5
AK
8553 hw->flash_base_addr;
8554
8555 do {
8556 udelay(1);
8557 /* Steps */
8558 error = e1000_ich8_cycle_init(hw);
8559 if (error != E1000_SUCCESS)
8560 break;
8561
2df7d59f 8562 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
d37ea5d5
AK
8563 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8564 hsflctl.hsf_ctrl.fldbcount = size -1;
2df7d59f
JK
8565 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
8566 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
d37ea5d5
AK
8567
8568 /* Write the last 24 bits of index into Flash Linear address field in
8569 * Flash Address */
2df7d59f 8570 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
d37ea5d5
AK
8571
8572 if (size == 1)
406874a7 8573 flash_data = (u32)data & 0x00FF;
d37ea5d5 8574 else
406874a7 8575 flash_data = (u32)data;
d37ea5d5 8576
2df7d59f 8577 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
d37ea5d5
AK
8578
8579 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8580 * sequence a few more times else done */
2df7d59f 8581 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
d37ea5d5
AK
8582 if (error == E1000_SUCCESS) {
8583 break;
8584 } else {
8585 /* If we're here, then things are most likely completely hosed,
8586 * but if the error condition is detected, it won't hurt to give
2df7d59f 8587 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
d37ea5d5 8588 */
2df7d59f 8589 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
d37ea5d5
AK
8590 if (hsfsts.hsf_status.flcerr == 1) {
8591 /* Repeat for some time before giving up. */
8592 continue;
8593 } else if (hsfsts.hsf_status.flcdone == 0) {
8594 DEBUGOUT("Timeout error - flash cycle did not complete.");
8595 break;
8596 }
8597 }
2df7d59f 8598 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
d37ea5d5
AK
8599
8600 return error;
8601}
8602
8603/******************************************************************************
8604 * Reads a single byte from the NVM using the ICH8 flash access registers.
8605 *
8606 * hw - pointer to e1000_hw structure
8607 * index - The index of the byte to read.
8608 * data - Pointer to a byte to store the value read.
8609 *****************************************************************************/
64798845 8610static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data)
d37ea5d5 8611{
406874a7
JP
8612 s32 status = E1000_SUCCESS;
8613 u16 word = 0;
d37ea5d5
AK
8614
8615 status = e1000_read_ich8_data(hw, index, 1, &word);
8616 if (status == E1000_SUCCESS) {
406874a7 8617 *data = (u8)word;
d37ea5d5
AK
8618 }
8619
8620 return status;
8621}
8622
8623/******************************************************************************
8624 * Writes a single byte to the NVM using the ICH8 flash access registers.
8625 * Performs verification by reading back the value and then going through
8626 * a retry algorithm before giving up.
8627 *
8628 * hw - pointer to e1000_hw structure
8629 * index - The index of the byte to write.
8630 * byte - The byte to write to the NVM.
8631 *****************************************************************************/
64798845 8632static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte)
d37ea5d5 8633{
406874a7
JP
8634 s32 error = E1000_SUCCESS;
8635 s32 program_retries = 0;
d37ea5d5 8636
2a88c173 8637 DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
d37ea5d5 8638
2a88c173
JK
8639 error = e1000_write_ich8_byte(hw, index, byte);
8640
8641 if (error != E1000_SUCCESS) {
8642 for (program_retries = 0; program_retries < 100; program_retries++) {
8643 DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
8644 error = e1000_write_ich8_byte(hw, index, byte);
8645 udelay(100);
8646 if (error == E1000_SUCCESS)
8647 break;
8648 }
d37ea5d5 8649 }
2a88c173 8650
d37ea5d5
AK
8651 if (program_retries == 100)
8652 error = E1000_ERR_EEPROM;
8653
8654 return error;
8655}
8656
8657/******************************************************************************
8658 * Writes a single byte to the NVM using the ICH8 flash access registers.
8659 *
8660 * hw - pointer to e1000_hw structure
8661 * index - The index of the byte to read.
8662 * data - The byte to write to the NVM.
8663 *****************************************************************************/
64798845 8664static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data)
d37ea5d5 8665{
406874a7
JP
8666 s32 status = E1000_SUCCESS;
8667 u16 word = (u16)data;
d37ea5d5
AK
8668
8669 status = e1000_write_ich8_data(hw, index, 1, word);
8670
8671 return status;
8672}
8673
8674/******************************************************************************
8675 * Reads a word from the NVM using the ICH8 flash access registers.
8676 *
8677 * hw - pointer to e1000_hw structure
8678 * index - The starting byte index of the word to read.
8679 * data - Pointer to a word to store the value read.
8680 *****************************************************************************/
64798845 8681static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data)
d37ea5d5 8682{
406874a7 8683 s32 status = E1000_SUCCESS;
d37ea5d5
AK
8684 status = e1000_read_ich8_data(hw, index, 2, data);
8685 return status;
8686}
8687
8688/******************************************************************************
2a88c173
JK
8689 * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8690 * based.
d37ea5d5
AK
8691 *
8692 * hw - pointer to e1000_hw structure
2a88c173 8693 * bank - 0 for first bank, 1 for second bank
d37ea5d5 8694 *
2a88c173
JK
8695 * Note that this function may actually erase as much as 8 or 64 KBytes. The
8696 * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8697 * bank size may be 4, 8 or 64 KBytes
d37ea5d5 8698 *****************************************************************************/
64798845 8699static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank)
d37ea5d5
AK
8700{
8701 union ich8_hws_flash_status hsfsts;
8702 union ich8_hws_flash_ctrl hsflctl;
406874a7
JP
8703 u32 flash_linear_address;
8704 s32 count = 0;
8705 s32 error = E1000_ERR_EEPROM;
8706 s32 iteration;
8707 s32 sub_sector_size = 0;
8708 s32 bank_size;
8709 s32 j = 0;
8710 s32 error_flag = 0;
d37ea5d5 8711
2df7d59f 8712 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
d37ea5d5
AK
8713
8714 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8715 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8716 * consecutive sectors. The start index for the nth Hw sector can be
2a88c173 8717 * calculated as bank * 4096 + n * 256
d37ea5d5
AK
8718 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8719 * The start index for the nth Hw sector can be calculated
2a88c173
JK
8720 * as bank * 4096
8721 * 10: The HW sector is 8K bytes
8722 * 11: The Hw sector size is 64K bytes */
d37ea5d5
AK
8723 if (hsfsts.hsf_status.berasesz == 0x0) {
8724 /* Hw sector size 256 */
2df7d59f
JK
8725 sub_sector_size = ICH_FLASH_SEG_SIZE_256;
8726 bank_size = ICH_FLASH_SECTOR_SIZE;
8727 iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
d37ea5d5 8728 } else if (hsfsts.hsf_status.berasesz == 0x1) {
2df7d59f 8729 bank_size = ICH_FLASH_SEG_SIZE_4K;
d37ea5d5
AK
8730 iteration = 1;
8731 } else if (hsfsts.hsf_status.berasesz == 0x3) {
2df7d59f 8732 bank_size = ICH_FLASH_SEG_SIZE_64K;
d37ea5d5
AK
8733 iteration = 1;
8734 } else {
8735 return error;
8736 }
8737
8738 for (j = 0; j < iteration ; j++) {
8739 do {
8740 count++;
8741 /* Steps */
8742 error = e1000_ich8_cycle_init(hw);
8743 if (error != E1000_SUCCESS) {
8744 error_flag = 1;
8745 break;
8746 }
8747
8748 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8749 * Control */
2df7d59f
JK
8750 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8751 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
8752 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
d37ea5d5
AK
8753
8754 /* Write the last 24 bits of an index within the block into Flash
8755 * Linear address field in Flash Address. This probably needs to
2a88c173
JK
8756 * be calculated here based off the on-chip erase sector size and
8757 * the software bank size (4, 8 or 64 KBytes) */
8758 flash_linear_address = bank * bank_size + j * sub_sector_size;
d37ea5d5 8759 flash_linear_address += hw->flash_base_addr;
2df7d59f 8760 flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
d37ea5d5 8761
2df7d59f 8762 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
d37ea5d5 8763
2df7d59f 8764 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
d37ea5d5
AK
8765 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8766 * sequence a few more times else Done */
8767 if (error == E1000_SUCCESS) {
8768 break;
8769 } else {
2df7d59f 8770 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
d37ea5d5
AK
8771 if (hsfsts.hsf_status.flcerr == 1) {
8772 /* repeat for some time before giving up */
8773 continue;
8774 } else if (hsfsts.hsf_status.flcdone == 0) {
8775 error_flag = 1;
8776 break;
8777 }
8778 }
2df7d59f 8779 } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
d37ea5d5
AK
8780 if (error_flag == 1)
8781 break;
8782 }
8783 if (error_flag != 1)
8784 error = E1000_SUCCESS;
8785 return error;
8786}
8787
64798845
JP
8788static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8789 u32 cnf_base_addr,
8790 u32 cnf_size)
d37ea5d5 8791{
406874a7
JP
8792 u32 ret_val = E1000_SUCCESS;
8793 u16 word_addr, reg_data, reg_addr;
8794 u16 i;
d37ea5d5
AK
8795
8796 /* cnf_base_addr is in DWORD */
406874a7 8797 word_addr = (u16)(cnf_base_addr << 1);
d37ea5d5
AK
8798
8799 /* cnf_size is returned in size of dwords */
8800 for (i = 0; i < cnf_size; i++) {
8801 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8802 if (ret_val)
8803 return ret_val;
8804
8805 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8806 if (ret_val)
8807 return ret_val;
8808
8809 ret_val = e1000_get_software_flag(hw);
8810 if (ret_val != E1000_SUCCESS)
8811 return ret_val;
8812
406874a7 8813 ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data);
d37ea5d5
AK
8814
8815 e1000_release_software_flag(hw);
8816 }
8817
8818 return ret_val;
8819}
8820
8821
2a88c173
JK
8822/******************************************************************************
8823 * This function initializes the PHY from the NVM on ICH8 platforms. This
8824 * is needed due to an issue where the NVM configuration is not properly
8825 * autoloaded after power transitions. Therefore, after each PHY reset, we
8826 * will load the configuration data out of the NVM manually.
8827 *
8828 * hw: Struct containing variables accessed by shared code
8829 *****************************************************************************/
64798845 8830static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
d37ea5d5 8831{
406874a7 8832 u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop;
d37ea5d5
AK
8833
8834 if (hw->phy_type != e1000_phy_igp_3)
8835 return E1000_SUCCESS;
8836
8837 /* Check if SW needs configure the PHY */
1dc32918 8838 reg_data = er32(FEXTNVM);
d37ea5d5
AK
8839 if (!(reg_data & FEXTNVM_SW_CONFIG))
8840 return E1000_SUCCESS;
8841
8842 /* Wait for basic configuration completes before proceeding*/
8843 loop = 0;
8844 do {
1dc32918 8845 reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE;
d37ea5d5
AK
8846 udelay(100);
8847 loop++;
8848 } while ((!reg_data) && (loop < 50));
8849
8850 /* Clear the Init Done bit for the next init event */
1dc32918 8851 reg_data = er32(STATUS);
d37ea5d5 8852 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
1dc32918 8853 ew32(STATUS, reg_data);
d37ea5d5
AK
8854
8855 /* Make sure HW does not configure LCD from PHY extended configuration
8856 before SW configuration */
1dc32918 8857 reg_data = er32(EXTCNF_CTRL);
d37ea5d5 8858 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
1dc32918 8859 reg_data = er32(EXTCNF_SIZE);
d37ea5d5
AK
8860 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
8861 cnf_size >>= 16;
8862 if (cnf_size) {
1dc32918 8863 reg_data = er32(EXTCNF_CTRL);
d37ea5d5
AK
8864 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
8865 /* cnf_base_addr is in DWORD */
8866 cnf_base_addr >>= 16;
8867
8868 /* Configure LCD from extended configuration region. */
8869 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
8870 cnf_size);
8871 if (ret_val)
8872 return ret_val;
8873 }
8874 }
8875
8876 return E1000_SUCCESS;
8877}
8878