atomic: use <linux/atomic.h>
[linux-2.6-block.git] / drivers / net / e100.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
05479938
JB
5
6 This program is free software; you can redistribute it and/or modify it
0abb6eb1
AK
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
05479938 9
0abb6eb1 10 This program is distributed in the hope it will be useful, but WITHOUT
05479938
JB
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
05479938 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
05479938 18
0abb6eb1
AK
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
05479938 21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
0abb6eb1 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
0a0863af 97 * IV. Receive
1da177e4
LT
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
7734f6e6
DA
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
115 *
1da177e4
LT
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
0a0863af 123 * scenario where all Rx resources have been indicated and none re-
1da177e4
LT
124 * placed.
125 *
126 * V. Miscellaneous
127 *
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
133 *
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135 *
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
138 *
139 * TODO:
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
ac7c6669
OM
142 *
143 * FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
72001762
AM
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
1da177e4
LT
148 */
149
fa05e1ad
JP
150#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
151
a6b7a407
AD
152#include <linux/hardirq.h>
153#include <linux/interrupt.h>
1da177e4
LT
154#include <linux/module.h>
155#include <linux/moduleparam.h>
156#include <linux/kernel.h>
157#include <linux/types.h>
d43c36dc 158#include <linux/sched.h>
1da177e4
LT
159#include <linux/slab.h>
160#include <linux/delay.h>
161#include <linux/init.h>
162#include <linux/pci.h>
1e7f0bd8 163#include <linux/dma-mapping.h>
98468efd 164#include <linux/dmapool.h>
1da177e4
LT
165#include <linux/netdevice.h>
166#include <linux/etherdevice.h>
167#include <linux/mii.h>
168#include <linux/if_vlan.h>
169#include <linux/skbuff.h>
170#include <linux/ethtool.h>
171#include <linux/string.h>
9ac32e1b 172#include <linux/firmware.h>
401da6ae 173#include <linux/rtnetlink.h>
1da177e4
LT
174#include <asm/unaligned.h>
175
176
177#define DRV_NAME "e100"
4e1dc97d 178#define DRV_EXT "-NAPI"
b55de80e 179#define DRV_VERSION "3.5.24-k2"DRV_EXT
1da177e4 180#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
4e1dc97d 181#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
1da177e4
LT
182
183#define E100_WATCHDOG_PERIOD (2 * HZ)
184#define E100_NAPI_WEIGHT 16
185
9ac32e1b
JSR
186#define FIRMWARE_D101M "e100/d101m_ucode.bin"
187#define FIRMWARE_D101S "e100/d101s_ucode.bin"
188#define FIRMWARE_D102E "e100/d102e_ucode.bin"
189
1da177e4
LT
190MODULE_DESCRIPTION(DRV_DESCRIPTION);
191MODULE_AUTHOR(DRV_COPYRIGHT);
192MODULE_LICENSE("GPL");
193MODULE_VERSION(DRV_VERSION);
9ac32e1b
JSR
194MODULE_FIRMWARE(FIRMWARE_D101M);
195MODULE_FIRMWARE(FIRMWARE_D101S);
196MODULE_FIRMWARE(FIRMWARE_D102E);
1da177e4
LT
197
198static int debug = 3;
8fb6f732 199static int eeprom_bad_csum_allow = 0;
27345bb6 200static int use_io = 0;
1da177e4 201module_param(debug, int, 0);
8fb6f732 202module_param(eeprom_bad_csum_allow, int, 0);
27345bb6 203module_param(use_io, int, 0);
1da177e4 204MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
8fb6f732 205MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
27345bb6 206MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
1da177e4
LT
207
208#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
a3aa1884 211static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
1da177e4
LT
212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
042e2fb7
MC
242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
b55de80e 247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
1da177e4
LT
248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
042e2fb7 253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
1da177e4
LT
254 { 0, }
255};
256MODULE_DEVICE_TABLE(pci, e100_id_table);
257
258enum mac {
259 mac_82557_D100_A = 0,
260 mac_82557_D100_B = 1,
261 mac_82557_D100_C = 2,
262 mac_82558_D101_A4 = 4,
263 mac_82558_D101_B0 = 5,
264 mac_82559_D101M = 8,
265 mac_82559_D101S = 9,
266 mac_82550_D102 = 12,
267 mac_82550_D102_C = 13,
268 mac_82551_E = 14,
269 mac_82551_F = 15,
270 mac_82551_10 = 16,
271 mac_unknown = 0xFF,
272};
273
274enum phy {
275 phy_100a = 0x000003E0,
276 phy_100c = 0x035002A8,
277 phy_82555_tx = 0x015002A8,
278 phy_nsc_tx = 0x5C002000,
279 phy_82562_et = 0x033002A8,
280 phy_82562_em = 0x032002A8,
281 phy_82562_ek = 0x031002A8,
282 phy_82562_eh = 0x017002A8,
b55de80e 283 phy_82552_v = 0xd061004d,
1da177e4
LT
284 phy_unknown = 0xFFFFFFFF,
285};
286
287/* CSR (Control/Status Registers) */
288struct csr {
289 struct {
290 u8 status;
291 u8 stat_ack;
292 u8 cmd_lo;
293 u8 cmd_hi;
294 u32 gen_ptr;
295 } scb;
296 u32 port;
297 u16 flash_ctrl;
298 u8 eeprom_ctrl_lo;
299 u8 eeprom_ctrl_hi;
300 u32 mdi_ctrl;
301 u32 rx_dma_count;
302};
303
304enum scb_status {
7734f6e6 305 rus_no_res = 0x08,
1da177e4
LT
306 rus_ready = 0x10,
307 rus_mask = 0x3C,
308};
309
ca93ca42
JG
310enum ru_state {
311 RU_SUSPENDED = 0,
312 RU_RUNNING = 1,
313 RU_UNINITIALIZED = -1,
314};
315
1da177e4
LT
316enum scb_stat_ack {
317 stat_ack_not_ours = 0x00,
318 stat_ack_sw_gen = 0x04,
319 stat_ack_rnr = 0x10,
320 stat_ack_cu_idle = 0x20,
321 stat_ack_frame_rx = 0x40,
322 stat_ack_cu_cmd_done = 0x80,
323 stat_ack_not_present = 0xFF,
324 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
325 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
326};
327
328enum scb_cmd_hi {
329 irq_mask_none = 0x00,
330 irq_mask_all = 0x01,
331 irq_sw_gen = 0x02,
332};
333
334enum scb_cmd_lo {
335 cuc_nop = 0x00,
336 ruc_start = 0x01,
337 ruc_load_base = 0x06,
338 cuc_start = 0x10,
339 cuc_resume = 0x20,
340 cuc_dump_addr = 0x40,
341 cuc_dump_stats = 0x50,
342 cuc_load_base = 0x60,
343 cuc_dump_reset = 0x70,
344};
345
346enum cuc_dump {
347 cuc_dump_complete = 0x0000A005,
348 cuc_dump_reset_complete = 0x0000A007,
349};
05479938 350
1da177e4
LT
351enum port {
352 software_reset = 0x0000,
353 selftest = 0x0001,
354 selective_reset = 0x0002,
355};
356
357enum eeprom_ctrl_lo {
358 eesk = 0x01,
359 eecs = 0x02,
360 eedi = 0x04,
361 eedo = 0x08,
362};
363
364enum mdi_ctrl {
365 mdi_write = 0x04000000,
366 mdi_read = 0x08000000,
367 mdi_ready = 0x10000000,
368};
369
370enum eeprom_op {
371 op_write = 0x05,
372 op_read = 0x06,
373 op_ewds = 0x10,
374 op_ewen = 0x13,
375};
376
377enum eeprom_offsets {
378 eeprom_cnfg_mdix = 0x03,
72001762 379 eeprom_phy_iface = 0x06,
1da177e4
LT
380 eeprom_id = 0x0A,
381 eeprom_config_asf = 0x0D,
382 eeprom_smbus_addr = 0x90,
383};
384
385enum eeprom_cnfg_mdix {
386 eeprom_mdix_enabled = 0x0080,
387};
388
72001762
AM
389enum eeprom_phy_iface {
390 NoSuchPhy = 0,
391 I82553AB,
392 I82553C,
393 I82503,
394 DP83840,
395 S80C240,
396 S80C24,
397 I82555,
398 DP83840A = 10,
399};
400
1da177e4
LT
401enum eeprom_id {
402 eeprom_id_wol = 0x0020,
403};
404
405enum eeprom_config_asf {
406 eeprom_asf = 0x8000,
407 eeprom_gcl = 0x4000,
408};
409
410enum cb_status {
411 cb_complete = 0x8000,
412 cb_ok = 0x2000,
413};
414
415enum cb_command {
416 cb_nop = 0x0000,
417 cb_iaaddr = 0x0001,
418 cb_config = 0x0002,
419 cb_multi = 0x0003,
420 cb_tx = 0x0004,
421 cb_ucode = 0x0005,
422 cb_dump = 0x0006,
423 cb_tx_sf = 0x0008,
424 cb_cid = 0x1f00,
425 cb_i = 0x2000,
426 cb_s = 0x4000,
427 cb_el = 0x8000,
428};
429
430struct rfd {
aaf918ba
AV
431 __le16 status;
432 __le16 command;
433 __le32 link;
434 __le32 rbd;
435 __le16 actual_size;
436 __le16 size;
1da177e4
LT
437};
438
439struct rx {
440 struct rx *next, *prev;
441 struct sk_buff *skb;
442 dma_addr_t dma_addr;
443};
444
445#if defined(__BIG_ENDIAN_BITFIELD)
446#define X(a,b) b,a
447#else
448#define X(a,b) a,b
449#endif
450struct config {
451/*0*/ u8 X(byte_count:6, pad0:2);
452/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
453/*2*/ u8 adaptive_ifs;
454/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
455 term_write_cache_line:1), pad3:4);
456/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
457/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
458/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
459 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
460 rx_discard_overruns:1), rx_save_bad_frames:1);
461/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
462 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
463 tx_dynamic_tbd:1);
464/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
465/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
466 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
467/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
468 loopback:2);
469/*11*/ u8 X(linear_priority:3, pad11:5);
470/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
471/*13*/ u8 ip_addr_lo;
472/*14*/ u8 ip_addr_hi;
473/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
474 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
475 pad15_2:1), crs_or_cdt:1);
476/*16*/ u8 fc_delay_lo;
477/*17*/ u8 fc_delay_hi;
478/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
479 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
480/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
481 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
482 full_duplex_force:1), full_duplex_pin:1);
483/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
484/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
485/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
486 u8 pad_d102[9];
487};
488
489#define E100_MAX_MULTICAST_ADDRS 64
490struct multi {
aaf918ba 491 __le16 count;
1da177e4
LT
492 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
493};
494
495/* Important: keep total struct u32-aligned */
496#define UCODE_SIZE 134
497struct cb {
aaf918ba
AV
498 __le16 status;
499 __le16 command;
500 __le32 link;
1da177e4
LT
501 union {
502 u8 iaaddr[ETH_ALEN];
aaf918ba 503 __le32 ucode[UCODE_SIZE];
1da177e4
LT
504 struct config config;
505 struct multi multi;
506 struct {
507 u32 tbd_array;
508 u16 tcb_byte_count;
509 u8 threshold;
510 u8 tbd_count;
511 struct {
aaf918ba
AV
512 __le32 buf_addr;
513 __le16 size;
1da177e4
LT
514 u16 eol;
515 } tbd;
516 } tcb;
aaf918ba 517 __le32 dump_buffer_addr;
1da177e4
LT
518 } u;
519 struct cb *next, *prev;
520 dma_addr_t dma_addr;
521 struct sk_buff *skb;
522};
523
524enum loopback {
525 lb_none = 0, lb_mac = 1, lb_phy = 3,
526};
527
528struct stats {
aaf918ba 529 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
1da177e4
LT
530 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
531 tx_multiple_collisions, tx_total_collisions;
aaf918ba 532 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
1da177e4
LT
533 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
534 rx_short_frame_errors;
aaf918ba
AV
535 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
536 __le16 xmt_tco_frames, rcv_tco_frames;
537 __le32 complete;
1da177e4
LT
538};
539
540struct mem {
541 struct {
542 u32 signature;
543 u32 result;
544 } selftest;
545 struct stats stats;
546 u8 dump_buf[596];
547};
548
549struct param_range {
550 u32 min;
551 u32 max;
552 u32 count;
553};
554
555struct params {
556 struct param_range rfds;
557 struct param_range cbs;
558};
559
560struct nic {
561 /* Begin: frequently used values: keep adjacent for cache effect */
562 u32 msg_enable ____cacheline_aligned;
563 struct net_device *netdev;
564 struct pci_dev *pdev;
72001762 565 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
1da177e4
LT
566
567 struct rx *rxs ____cacheline_aligned;
568 struct rx *rx_to_use;
569 struct rx *rx_to_clean;
570 struct rfd blank_rfd;
ca93ca42 571 enum ru_state ru_running;
1da177e4
LT
572
573 spinlock_t cb_lock ____cacheline_aligned;
574 spinlock_t cmd_lock;
575 struct csr __iomem *csr;
576 enum scb_cmd_lo cuc_cmd;
577 unsigned int cbs_avail;
bea3348e 578 struct napi_struct napi;
1da177e4
LT
579 struct cb *cbs;
580 struct cb *cb_to_use;
581 struct cb *cb_to_send;
582 struct cb *cb_to_clean;
aaf918ba 583 __le16 tx_command;
1da177e4
LT
584 /* End: frequently used values: keep adjacent for cache effect */
585
586 enum {
587 ich = (1 << 0),
588 promiscuous = (1 << 1),
589 multicast_all = (1 << 2),
590 wol_magic = (1 << 3),
591 ich_10h_workaround = (1 << 4),
592 } flags ____cacheline_aligned;
593
594 enum mac mac;
595 enum phy phy;
596 struct params params;
1da177e4 597 struct timer_list watchdog;
1da177e4 598 struct mii_if_info mii;
2acdb1e0 599 struct work_struct tx_timeout_task;
1da177e4
LT
600 enum loopback loopback;
601
602 struct mem *mem;
603 dma_addr_t dma_addr;
604
98468efd 605 struct pci_pool *cbs_pool;
1da177e4
LT
606 dma_addr_t cbs_dma_addr;
607 u8 adaptive_ifs;
608 u8 tx_threshold;
609 u32 tx_frames;
610 u32 tx_collisions;
611 u32 tx_deferred;
612 u32 tx_single_collisions;
613 u32 tx_multiple_collisions;
614 u32 tx_fc_pause;
615 u32 tx_tco_frames;
616
617 u32 rx_fc_pause;
618 u32 rx_fc_unsupported;
619 u32 rx_tco_frames;
620 u32 rx_over_length_errors;
621
1da177e4 622 u16 eeprom_wc;
aaf918ba 623 __le16 eeprom[256];
ac7c6669 624 spinlock_t mdio_lock;
7e15b0c9 625 const struct firmware *fw;
1da177e4
LT
626};
627
628static inline void e100_write_flush(struct nic *nic)
629{
630 /* Flush previous PCI writes through intermediate bridges
631 * by doing a benign read */
27345bb6 632 (void)ioread8(&nic->csr->scb.status);
1da177e4
LT
633}
634
858119e1 635static void e100_enable_irq(struct nic *nic)
1da177e4
LT
636{
637 unsigned long flags;
638
639 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 640 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
1da177e4 641 e100_write_flush(nic);
ad8c48ad 642 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
643}
644
858119e1 645static void e100_disable_irq(struct nic *nic)
1da177e4
LT
646{
647 unsigned long flags;
648
649 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 650 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
1da177e4 651 e100_write_flush(nic);
ad8c48ad 652 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
653}
654
655static void e100_hw_reset(struct nic *nic)
656{
657 /* Put CU and RU into idle with a selective reset to get
658 * device off of PCI bus */
27345bb6 659 iowrite32(selective_reset, &nic->csr->port);
1da177e4
LT
660 e100_write_flush(nic); udelay(20);
661
662 /* Now fully reset device */
27345bb6 663 iowrite32(software_reset, &nic->csr->port);
1da177e4
LT
664 e100_write_flush(nic); udelay(20);
665
666 /* Mask off our interrupt line - it's unmasked after reset */
667 e100_disable_irq(nic);
668}
669
670static int e100_self_test(struct nic *nic)
671{
672 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
673
674 /* Passing the self-test is a pretty good indication
675 * that the device can DMA to/from host memory */
676
677 nic->mem->selftest.signature = 0;
678 nic->mem->selftest.result = 0xFFFFFFFF;
679
27345bb6 680 iowrite32(selftest | dma_addr, &nic->csr->port);
1da177e4
LT
681 e100_write_flush(nic);
682 /* Wait 10 msec for self-test to complete */
683 msleep(10);
684
685 /* Interrupts are enabled after self-test */
686 e100_disable_irq(nic);
687
688 /* Check results of self-test */
f26251eb 689 if (nic->mem->selftest.result != 0) {
fa05e1ad
JP
690 netif_err(nic, hw, nic->netdev,
691 "Self-test failed: result=0x%08X\n",
692 nic->mem->selftest.result);
1da177e4
LT
693 return -ETIMEDOUT;
694 }
f26251eb 695 if (nic->mem->selftest.signature == 0) {
fa05e1ad 696 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
1da177e4
LT
697 return -ETIMEDOUT;
698 }
699
700 return 0;
701}
702
aaf918ba 703static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
1da177e4
LT
704{
705 u32 cmd_addr_data[3];
706 u8 ctrl;
707 int i, j;
708
709 /* Three cmds: write/erase enable, write data, write/erase disable */
710 cmd_addr_data[0] = op_ewen << (addr_len - 2);
711 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
aaf918ba 712 le16_to_cpu(data);
1da177e4
LT
713 cmd_addr_data[2] = op_ewds << (addr_len - 2);
714
715 /* Bit-bang cmds to write word to eeprom */
f26251eb 716 for (j = 0; j < 3; j++) {
1da177e4
LT
717
718 /* Chip select */
27345bb6 719 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
720 e100_write_flush(nic); udelay(4);
721
f26251eb 722 for (i = 31; i >= 0; i--) {
1da177e4
LT
723 ctrl = (cmd_addr_data[j] & (1 << i)) ?
724 eecs | eedi : eecs;
27345bb6 725 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
726 e100_write_flush(nic); udelay(4);
727
27345bb6 728 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
729 e100_write_flush(nic); udelay(4);
730 }
731 /* Wait 10 msec for cmd to complete */
732 msleep(10);
733
734 /* Chip deselect */
27345bb6 735 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
736 e100_write_flush(nic); udelay(4);
737 }
738};
739
740/* General technique stolen from the eepro100 driver - very clever */
aaf918ba 741static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
1da177e4
LT
742{
743 u32 cmd_addr_data;
744 u16 data = 0;
745 u8 ctrl;
746 int i;
747
748 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
749
750 /* Chip select */
27345bb6 751 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
752 e100_write_flush(nic); udelay(4);
753
754 /* Bit-bang to read word from eeprom */
f26251eb 755 for (i = 31; i >= 0; i--) {
1da177e4 756 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
27345bb6 757 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4 758 e100_write_flush(nic); udelay(4);
05479938 759
27345bb6 760 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4 761 e100_write_flush(nic); udelay(4);
05479938 762
1da177e4
LT
763 /* Eeprom drives a dummy zero to EEDO after receiving
764 * complete address. Use this to adjust addr_len. */
27345bb6 765 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
f26251eb 766 if (!(ctrl & eedo) && i > 16) {
1da177e4
LT
767 *addr_len -= (i - 16);
768 i = 17;
769 }
05479938 770
1da177e4
LT
771 data = (data << 1) | (ctrl & eedo ? 1 : 0);
772 }
773
774 /* Chip deselect */
27345bb6 775 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
776 e100_write_flush(nic); udelay(4);
777
aaf918ba 778 return cpu_to_le16(data);
1da177e4
LT
779};
780
781/* Load entire EEPROM image into driver cache and validate checksum */
782static int e100_eeprom_load(struct nic *nic)
783{
784 u16 addr, addr_len = 8, checksum = 0;
785
786 /* Try reading with an 8-bit addr len to discover actual addr len */
787 e100_eeprom_read(nic, &addr_len, 0);
788 nic->eeprom_wc = 1 << addr_len;
789
f26251eb 790 for (addr = 0; addr < nic->eeprom_wc; addr++) {
1da177e4 791 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
f26251eb 792 if (addr < nic->eeprom_wc - 1)
aaf918ba 793 checksum += le16_to_cpu(nic->eeprom[addr]);
1da177e4
LT
794 }
795
796 /* The checksum, stored in the last word, is calculated such that
797 * the sum of words should be 0xBABA */
aaf918ba 798 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
fa05e1ad 799 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
8fb6f732
DM
800 if (!eeprom_bad_csum_allow)
801 return -EAGAIN;
1da177e4
LT
802 }
803
804 return 0;
805}
806
807/* Save (portion of) driver EEPROM cache to device and update checksum */
808static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
809{
810 u16 addr, addr_len = 8, checksum = 0;
811
812 /* Try reading with an 8-bit addr len to discover actual addr len */
813 e100_eeprom_read(nic, &addr_len, 0);
814 nic->eeprom_wc = 1 << addr_len;
815
f26251eb 816 if (start + count >= nic->eeprom_wc)
1da177e4
LT
817 return -EINVAL;
818
f26251eb 819 for (addr = start; addr < start + count; addr++)
1da177e4
LT
820 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
821
822 /* The checksum, stored in the last word, is calculated such that
823 * the sum of words should be 0xBABA */
f26251eb 824 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
aaf918ba
AV
825 checksum += le16_to_cpu(nic->eeprom[addr]);
826 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
1da177e4
LT
827 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
828 nic->eeprom[nic->eeprom_wc - 1]);
829
830 return 0;
831}
832
962082b6 833#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
e6280f26 834#define E100_WAIT_SCB_FAST 20 /* delay like the old code */
858119e1 835static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
1da177e4
LT
836{
837 unsigned long flags;
838 unsigned int i;
839 int err = 0;
840
841 spin_lock_irqsave(&nic->cmd_lock, flags);
842
843 /* Previous command is accepted when SCB clears */
f26251eb
BA
844 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
845 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
1da177e4
LT
846 break;
847 cpu_relax();
f26251eb 848 if (unlikely(i > E100_WAIT_SCB_FAST))
1da177e4
LT
849 udelay(5);
850 }
f26251eb 851 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
1da177e4
LT
852 err = -EAGAIN;
853 goto err_unlock;
854 }
855
f26251eb 856 if (unlikely(cmd != cuc_resume))
27345bb6
JB
857 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
858 iowrite8(cmd, &nic->csr->scb.cmd_lo);
1da177e4
LT
859
860err_unlock:
861 spin_unlock_irqrestore(&nic->cmd_lock, flags);
862
863 return err;
864}
865
858119e1 866static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
1da177e4
LT
867 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
868{
869 struct cb *cb;
870 unsigned long flags;
871 int err = 0;
872
873 spin_lock_irqsave(&nic->cb_lock, flags);
874
f26251eb 875 if (unlikely(!nic->cbs_avail)) {
1da177e4
LT
876 err = -ENOMEM;
877 goto err_unlock;
878 }
879
880 cb = nic->cb_to_use;
881 nic->cb_to_use = cb->next;
882 nic->cbs_avail--;
883 cb->skb = skb;
884
f26251eb 885 if (unlikely(!nic->cbs_avail))
1da177e4
LT
886 err = -ENOSPC;
887
888 cb_prepare(nic, cb, skb);
889
890 /* Order is important otherwise we'll be in a race with h/w:
891 * set S-bit in current first, then clear S-bit in previous. */
892 cb->command |= cpu_to_le16(cb_s);
893 wmb();
894 cb->prev->command &= cpu_to_le16(~cb_s);
895
f26251eb
BA
896 while (nic->cb_to_send != nic->cb_to_use) {
897 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
1da177e4
LT
898 nic->cb_to_send->dma_addr))) {
899 /* Ok, here's where things get sticky. It's
900 * possible that we can't schedule the command
901 * because the controller is too busy, so
902 * let's just queue the command and try again
903 * when another command is scheduled. */
f26251eb 904 if (err == -ENOSPC) {
962082b6
MC
905 //request a reset
906 schedule_work(&nic->tx_timeout_task);
907 }
1da177e4
LT
908 break;
909 } else {
910 nic->cuc_cmd = cuc_resume;
911 nic->cb_to_send = nic->cb_to_send->next;
912 }
913 }
914
915err_unlock:
916 spin_unlock_irqrestore(&nic->cb_lock, flags);
917
918 return err;
919}
920
72001762
AM
921static int mdio_read(struct net_device *netdev, int addr, int reg)
922{
923 struct nic *nic = netdev_priv(netdev);
924 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
925}
926
927static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
928{
929 struct nic *nic = netdev_priv(netdev);
930
931 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
932}
933
934/* the standard mdio_ctrl() function for usual MII-compliant hardware */
935static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
1da177e4
LT
936{
937 u32 data_out = 0;
938 unsigned int i;
ac7c6669 939 unsigned long flags;
1da177e4 940
ac7c6669
OM
941
942 /*
943 * Stratus87247: we shouldn't be writing the MDI control
944 * register until the Ready bit shows True. Also, since
945 * manipulation of the MDI control registers is a multi-step
946 * procedure it should be done under lock.
947 */
948 spin_lock_irqsave(&nic->mdio_lock, flags);
949 for (i = 100; i; --i) {
27345bb6 950 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
ac7c6669
OM
951 break;
952 udelay(20);
953 }
954 if (unlikely(!i)) {
fa05e1ad 955 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
ac7c6669
OM
956 spin_unlock_irqrestore(&nic->mdio_lock, flags);
957 return 0; /* No way to indicate timeout error */
958 }
27345bb6 959 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
1da177e4 960
ac7c6669 961 for (i = 0; i < 100; i++) {
1da177e4 962 udelay(20);
27345bb6 963 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
1da177e4
LT
964 break;
965 }
ac7c6669 966 spin_unlock_irqrestore(&nic->mdio_lock, flags);
fa05e1ad
JP
967 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
968 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
969 dir == mdi_read ? "READ" : "WRITE",
970 addr, reg, data, data_out);
1da177e4
LT
971 return (u16)data_out;
972}
973
72001762
AM
974/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
975static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
976 u32 addr,
977 u32 dir,
978 u32 reg,
979 u16 data)
980{
981 if ((reg == MII_BMCR) && (dir == mdi_write)) {
982 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
983 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
984 MII_ADVERTISE);
985
986 /*
987 * Workaround Si issue where sometimes the part will not
988 * autoneg to 100Mbps even when advertised.
989 */
990 if (advert & ADVERTISE_100FULL)
991 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
992 else if (advert & ADVERTISE_100HALF)
993 data |= BMCR_SPEED100;
994 }
995 }
996 return mdio_ctrl_hw(nic, addr, dir, reg, data);
1da177e4
LT
997}
998
72001762
AM
999/* Fully software-emulated mdio_ctrl() function for cards without
1000 * MII-compliant PHYs.
1001 * For now, this is mainly geared towards 80c24 support; in case of further
1002 * requirements for other types (i82503, ...?) either extend this mechanism
1003 * or split it, whichever is cleaner.
1004 */
1005static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1006 u32 addr,
1007 u32 dir,
1008 u32 reg,
1009 u16 data)
1010{
1011 /* might need to allocate a netdev_priv'ed register array eventually
1012 * to be able to record state changes, but for now
1013 * some fully hardcoded register handling ought to be ok I guess. */
1014
1015 if (dir == mdi_read) {
1016 switch (reg) {
1017 case MII_BMCR:
1018 /* Auto-negotiation, right? */
1019 return BMCR_ANENABLE |
1020 BMCR_FULLDPLX;
1021 case MII_BMSR:
1022 return BMSR_LSTATUS /* for mii_link_ok() */ |
1023 BMSR_ANEGCAPABLE |
1024 BMSR_10FULL;
1025 case MII_ADVERTISE:
1026 /* 80c24 is a "combo card" PHY, right? */
1027 return ADVERTISE_10HALF |
1028 ADVERTISE_10FULL;
1029 default:
fa05e1ad
JP
1030 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1031 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1032 dir == mdi_read ? "READ" : "WRITE",
1033 addr, reg, data);
72001762
AM
1034 return 0xFFFF;
1035 }
1036 } else {
1037 switch (reg) {
1038 default:
fa05e1ad
JP
1039 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 dir == mdi_read ? "READ" : "WRITE",
1042 addr, reg, data);
72001762
AM
1043 return 0xFFFF;
1044 }
b55de80e 1045 }
72001762
AM
1046}
1047static inline int e100_phy_supports_mii(struct nic *nic)
1048{
1049 /* for now, just check it by comparing whether we
1050 are using MII software emulation.
1051 */
1052 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1da177e4
LT
1053}
1054
1055static void e100_get_defaults(struct nic *nic)
1056{
2afecc04
JB
1057 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1058 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1da177e4 1059
1da177e4 1060 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
44c10138 1061 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
f26251eb 1062 if (nic->mac == mac_unknown)
1da177e4
LT
1063 nic->mac = mac_82557_D100_A;
1064
1065 nic->params.rfds = rfds;
1066 nic->params.cbs = cbs;
1067
1068 /* Quadwords to DMA into FIFO before starting frame transmit */
1069 nic->tx_threshold = 0xE0;
1070
0a0863af 1071 /* no interrupt for every tx completion, delay = 256us if not 557 */
962082b6
MC
1072 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1073 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1da177e4
LT
1074
1075 /* Template for a freshly allocated RFD */
7734f6e6 1076 nic->blank_rfd.command = 0;
1172899a 1077 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1da177e4
LT
1078 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1079
1080 /* MII setup */
1081 nic->mii.phy_id_mask = 0x1F;
1082 nic->mii.reg_num_mask = 0x1F;
1083 nic->mii.dev = nic->netdev;
1084 nic->mii.mdio_read = mdio_read;
1085 nic->mii.mdio_write = mdio_write;
1086}
1087
1088static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1089{
1090 struct config *config = &cb->u.config;
1091 u8 *c = (u8 *)config;
1092
1093 cb->command = cpu_to_le16(cb_config);
1094
1095 memset(config, 0, sizeof(struct config));
1096
1097 config->byte_count = 0x16; /* bytes in this struct */
1098 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1099 config->direct_rx_dma = 0x1; /* reserved */
1100 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1101 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1102 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1103 config->tx_underrun_retry = 0x3; /* # of underrun retries */
72001762
AM
1104 if (e100_phy_supports_mii(nic))
1105 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1da177e4
LT
1106 config->pad10 = 0x6;
1107 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1108 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1109 config->ifs = 0x6; /* x16 = inter frame spacing */
1110 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1111 config->pad15_1 = 0x1;
1112 config->pad15_2 = 0x1;
1113 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1114 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1115 config->tx_padding = 0x1; /* 1=pad short frames */
1116 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1117 config->pad18 = 0x1;
1118 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1119 config->pad20_1 = 0x1F;
1120 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1121 config->pad21_1 = 0x5;
1122
1123 config->adaptive_ifs = nic->adaptive_ifs;
1124 config->loopback = nic->loopback;
1125
f26251eb 1126 if (nic->mii.force_media && nic->mii.full_duplex)
1da177e4
LT
1127 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1128
f26251eb 1129 if (nic->flags & promiscuous || nic->loopback) {
1da177e4
LT
1130 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1131 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1132 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1133 }
1134
f26251eb 1135 if (nic->flags & multicast_all)
1da177e4
LT
1136 config->multicast_all = 0x1; /* 1=accept, 0=no */
1137
6bdacb1a 1138 /* disable WoL when up */
f26251eb 1139 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1da177e4
LT
1140 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1141
f26251eb 1142 if (nic->mac >= mac_82558_D101_A4) {
1da177e4
LT
1143 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1144 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1145 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1146 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
44e4925e 1147 if (nic->mac >= mac_82559_D101M) {
1da177e4 1148 config->tno_intr = 0x1; /* TCO stats enable */
44e4925e
DG
1149 /* Enable TCO in extended config */
1150 if (nic->mac >= mac_82551_10) {
1151 config->byte_count = 0x20; /* extended bytes */
1152 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1153 }
1154 } else {
1da177e4 1155 config->standard_stat_counter = 0x0;
44e4925e 1156 }
1da177e4
LT
1157 }
1158
fa05e1ad
JP
1159 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1160 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1161 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1162 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1163 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1164 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1165 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1166 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1167 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1da177e4
LT
1168}
1169
2afecc04
JB
1170/*************************************************************************
1171* CPUSaver parameters
1172*
1173* All CPUSaver parameters are 16-bit literals that are part of a
1174* "move immediate value" instruction. By changing the value of
1175* the literal in the instruction before the code is loaded, the
1176* driver can change the algorithm.
1177*
0779bf2d 1178* INTDELAY - This loads the dead-man timer with its initial value.
05479938 1179* When this timer expires the interrupt is asserted, and the
2afecc04
JB
1180* timer is reset each time a new packet is received. (see
1181* BUNDLEMAX below to set the limit on number of chained packets)
1182* The current default is 0x600 or 1536. Experiments show that
1183* the value should probably stay within the 0x200 - 0x1000.
1184*
05479938 1185* BUNDLEMAX -
2afecc04
JB
1186* This sets the maximum number of frames that will be bundled. In
1187* some situations, such as the TCP windowing algorithm, it may be
1188* better to limit the growth of the bundle size than let it go as
1189* high as it can, because that could cause too much added latency.
1190* The default is six, because this is the number of packets in the
1191* default TCP window size. A value of 1 would make CPUSaver indicate
1192* an interrupt for every frame received. If you do not want to put
1193* a limit on the bundle size, set this value to xFFFF.
1194*
05479938 1195* BUNDLESMALL -
2afecc04
JB
1196* This contains a bit-mask describing the minimum size frame that
1197* will be bundled. The default masks the lower 7 bits, which means
1198* that any frame less than 128 bytes in length will not be bundled,
1199* but will instead immediately generate an interrupt. This does
1200* not affect the current bundle in any way. Any frame that is 128
1201* bytes or large will be bundled normally. This feature is meant
1202* to provide immediate indication of ACK frames in a TCP environment.
1203* Customers were seeing poor performance when a machine with CPUSaver
1204* enabled was sending but not receiving. The delay introduced when
1205* the ACKs were received was enough to reduce total throughput, because
1206* the sender would sit idle until the ACK was finally seen.
1207*
1208* The current default is 0xFF80, which masks out the lower 7 bits.
1209* This means that any frame which is x7F (127) bytes or smaller
05479938 1210* will cause an immediate interrupt. Because this value must be a
2afecc04
JB
1211* bit mask, there are only a few valid values that can be used. To
1212* turn this feature off, the driver can write the value xFFFF to the
1213* lower word of this instruction (in the same way that the other
1214* parameters are used). Likewise, a value of 0xF800 (2047) would
1215* cause an interrupt to be generated for every frame, because all
1216* standard Ethernet frames are <= 2047 bytes in length.
1217*************************************************************************/
1218
05479938 1219/* if you wish to disable the ucode functionality, while maintaining the
2afecc04
JB
1220 * workarounds it provides, set the following defines to:
1221 * BUNDLESMALL 0
1222 * BUNDLEMAX 1
1223 * INTDELAY 1
1224 */
1225#define BUNDLESMALL 1
1226#define BUNDLEMAX (u16)6
1227#define INTDELAY (u16)1536 /* 0x600 */
1228
9ac32e1b
JSR
1229/* Initialize firmware */
1230static const struct firmware *e100_request_firmware(struct nic *nic)
1231{
1232 const char *fw_name;
7e15b0c9 1233 const struct firmware *fw = nic->fw;
9ac32e1b 1234 u8 timer, bundle, min_size;
7e15b0c9 1235 int err = 0;
9ac32e1b 1236
2afecc04
JB
1237 /* do not load u-code for ICH devices */
1238 if (nic->flags & ich)
9ac32e1b 1239 return NULL;
2afecc04 1240
44c10138 1241 /* Search for ucode match against h/w revision */
9ac32e1b
JSR
1242 if (nic->mac == mac_82559_D101M)
1243 fw_name = FIRMWARE_D101M;
1244 else if (nic->mac == mac_82559_D101S)
1245 fw_name = FIRMWARE_D101S;
1246 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1247 fw_name = FIRMWARE_D102E;
1248 else /* No ucode on other devices */
1249 return NULL;
1250
7e15b0c9
DG
1251 /* If the firmware has not previously been loaded, request a pointer
1252 * to it. If it was previously loaded, we are reinitializing the
1253 * adapter, possibly in a resume from hibernate, in which case
1254 * request_firmware() cannot be used.
1255 */
1256 if (!fw)
1257 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1258
9ac32e1b 1259 if (err) {
fa05e1ad
JP
1260 netif_err(nic, probe, nic->netdev,
1261 "Failed to load firmware \"%s\": %d\n",
1262 fw_name, err);
9ac32e1b
JSR
1263 return ERR_PTR(err);
1264 }
7e15b0c9 1265
9ac32e1b
JSR
1266 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1267 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1268 if (fw->size != UCODE_SIZE * 4 + 3) {
fa05e1ad
JP
1269 netif_err(nic, probe, nic->netdev,
1270 "Firmware \"%s\" has wrong size %zu\n",
1271 fw_name, fw->size);
9ac32e1b
JSR
1272 release_firmware(fw);
1273 return ERR_PTR(-EINVAL);
2afecc04
JB
1274 }
1275
9ac32e1b
JSR
1276 /* Read timer, bundle and min_size from end of firmware blob */
1277 timer = fw->data[UCODE_SIZE * 4];
1278 bundle = fw->data[UCODE_SIZE * 4 + 1];
1279 min_size = fw->data[UCODE_SIZE * 4 + 2];
1280
1281 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1282 min_size >= UCODE_SIZE) {
fa05e1ad
JP
1283 netif_err(nic, probe, nic->netdev,
1284 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1285 fw_name, timer, bundle, min_size);
9ac32e1b
JSR
1286 release_firmware(fw);
1287 return ERR_PTR(-EINVAL);
1288 }
7e15b0c9
DG
1289
1290 /* OK, firmware is validated and ready to use. Save a pointer
1291 * to it in the nic */
1292 nic->fw = fw;
9ac32e1b 1293 return fw;
24180333
JB
1294}
1295
9ac32e1b
JSR
1296static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1297 struct sk_buff *skb)
24180333 1298{
9ac32e1b
JSR
1299 const struct firmware *fw = (void *)skb;
1300 u8 timer, bundle, min_size;
1301
1302 /* It's not a real skb; we just abused the fact that e100_exec_cb
1303 will pass it through to here... */
1304 cb->skb = NULL;
1305
1306 /* firmware is stored as little endian already */
1307 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1308
1309 /* Read timer, bundle and min_size from end of firmware blob */
1310 timer = fw->data[UCODE_SIZE * 4];
1311 bundle = fw->data[UCODE_SIZE * 4 + 1];
1312 min_size = fw->data[UCODE_SIZE * 4 + 2];
1313
1314 /* Insert user-tunable settings in cb->u.ucode */
1315 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1316 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1317 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1318 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1319 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1320 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1321
1322 cb->command = cpu_to_le16(cb_ucode | cb_el);
1323}
1324
1325static inline int e100_load_ucode_wait(struct nic *nic)
1326{
1327 const struct firmware *fw;
24180333
JB
1328 int err = 0, counter = 50;
1329 struct cb *cb = nic->cb_to_clean;
1330
9ac32e1b
JSR
1331 fw = e100_request_firmware(nic);
1332 /* If it's NULL, then no ucode is required */
1333 if (!fw || IS_ERR(fw))
1334 return PTR_ERR(fw);
1335
1336 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
fa05e1ad
JP
1337 netif_err(nic, probe, nic->netdev,
1338 "ucode cmd failed with error %d\n", err);
05479938 1339
24180333
JB
1340 /* must restart cuc */
1341 nic->cuc_cmd = cuc_start;
1342
1343 /* wait for completion */
1344 e100_write_flush(nic);
1345 udelay(10);
1346
1347 /* wait for possibly (ouch) 500ms */
1348 while (!(cb->status & cpu_to_le16(cb_complete))) {
1349 msleep(10);
1350 if (!--counter) break;
1351 }
05479938 1352
3a4fa0a2 1353 /* ack any interrupts, something could have been set */
27345bb6 1354 iowrite8(~0, &nic->csr->scb.stat_ack);
24180333
JB
1355
1356 /* if the command failed, or is not OK, notify and return */
1357 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
fa05e1ad 1358 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
24180333
JB
1359 err = -EPERM;
1360 }
05479938 1361
24180333 1362 return err;
1da177e4
LT
1363}
1364
1365static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1366 struct sk_buff *skb)
1367{
1368 cb->command = cpu_to_le16(cb_iaaddr);
1369 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1370}
1371
1372static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1373{
1374 cb->command = cpu_to_le16(cb_dump);
1375 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1376 offsetof(struct mem, dump_buf));
1377}
1378
72001762
AM
1379static int e100_phy_check_without_mii(struct nic *nic)
1380{
1381 u8 phy_type;
1382 int without_mii;
1383
1384 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1385
1386 switch (phy_type) {
1387 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1388 case I82503: /* Non-MII PHY; UNTESTED! */
1389 case S80C24: /* Non-MII PHY; tested and working */
1390 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1391 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1392 * doesn't have a programming interface of any sort. The
1393 * media is sensed automatically based on how the link partner
1394 * is configured. This is, in essence, manual configuration.
1395 */
fa05e1ad
JP
1396 netif_info(nic, probe, nic->netdev,
1397 "found MII-less i82503 or 80c24 or other PHY\n");
72001762
AM
1398
1399 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1400 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1401
1402 /* these might be needed for certain MII-less cards...
1403 * nic->flags |= ich;
1404 * nic->flags |= ich_10h_workaround; */
1405
1406 without_mii = 1;
1407 break;
1408 default:
1409 without_mii = 0;
1410 break;
1411 }
1412 return without_mii;
1413}
1414
1da177e4
LT
1415#define NCONFIG_AUTO_SWITCH 0x0080
1416#define MII_NSC_CONG MII_RESV1
1417#define NSC_CONG_ENABLE 0x0100
1418#define NSC_CONG_TXREADY 0x0400
1419#define ADVERTISE_FC_SUPPORTED 0x0400
1420static int e100_phy_init(struct nic *nic)
1421{
1422 struct net_device *netdev = nic->netdev;
1423 u32 addr;
1424 u16 bmcr, stat, id_lo, id_hi, cong;
1425
1426 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
f26251eb 1427 for (addr = 0; addr < 32; addr++) {
1da177e4
LT
1428 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1429 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1430 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1431 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
f26251eb 1432 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1da177e4
LT
1433 break;
1434 }
72001762
AM
1435 if (addr == 32) {
1436 /* uhoh, no PHY detected: check whether we seem to be some
1437 * weird, rare variant which is *known* to not have any MII.
1438 * But do this AFTER MII checking only, since this does
1439 * lookup of EEPROM values which may easily be unreliable. */
1440 if (e100_phy_check_without_mii(nic))
1441 return 0; /* simply return and hope for the best */
1442 else {
1443 /* for unknown cases log a fatal error */
fa05e1ad
JP
1444 netif_err(nic, hw, nic->netdev,
1445 "Failed to locate any known PHY, aborting\n");
72001762
AM
1446 return -EAGAIN;
1447 }
1448 } else
fa05e1ad
JP
1449 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1450 "phy_addr = %d\n", nic->mii.phy_id);
1da177e4 1451
1da177e4
LT
1452 /* Get phy ID */
1453 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1454 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1455 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
fa05e1ad
JP
1456 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1457 "phy ID = 0x%08X\n", nic->phy);
1da177e4 1458
8fbd962e
BA
1459 /* Select the phy and isolate the rest */
1460 for (addr = 0; addr < 32; addr++) {
1461 if (addr != nic->mii.phy_id) {
1462 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1463 } else if (nic->phy != phy_82552_v) {
1464 bmcr = mdio_read(netdev, addr, MII_BMCR);
1465 mdio_write(netdev, addr, MII_BMCR,
1466 bmcr & ~BMCR_ISOLATE);
1467 }
1468 }
1469 /*
1470 * Workaround for 82552:
1471 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1472 * other phy_id's) using bmcr value from addr discovery loop above.
1473 */
1474 if (nic->phy == phy_82552_v)
1475 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1476 bmcr & ~BMCR_ISOLATE);
1477
1da177e4
LT
1478 /* Handle National tx phys */
1479#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
f26251eb 1480 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1da177e4
LT
1481 /* Disable congestion control */
1482 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1483 cong |= NSC_CONG_TXREADY;
1484 cong &= ~NSC_CONG_ENABLE;
1485 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1486 }
1487
b55de80e
BA
1488 if (nic->phy == phy_82552_v) {
1489 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1490
72001762
AM
1491 /* assign special tweaked mdio_ctrl() function */
1492 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1493
b55de80e
BA
1494 /* Workaround Si not advertising flow-control during autoneg */
1495 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1496 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1497
1498 /* Reset for the above changes to take effect */
1499 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1500 bmcr |= BMCR_RESET;
1501 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1502 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
60ffa478
JK
1503 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1504 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1505 /* enable/disable MDI/MDI-X auto-switching. */
1506 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1507 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
64895145 1508 }
1da177e4
LT
1509
1510 return 0;
1511}
1512
1513static int e100_hw_init(struct nic *nic)
1514{
dca97ad2 1515 int err = 0;
1da177e4
LT
1516
1517 e100_hw_reset(nic);
1518
fa05e1ad 1519 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
f26251eb 1520 if (!in_interrupt() && (err = e100_self_test(nic)))
1da177e4
LT
1521 return err;
1522
f26251eb 1523 if ((err = e100_phy_init(nic)))
1da177e4 1524 return err;
f26251eb 1525 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1da177e4 1526 return err;
f26251eb 1527 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1da177e4 1528 return err;
9ac32e1b 1529 if ((err = e100_load_ucode_wait(nic)))
1da177e4 1530 return err;
f26251eb 1531 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1da177e4 1532 return err;
f26251eb 1533 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1da177e4 1534 return err;
f26251eb 1535 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1da177e4
LT
1536 nic->dma_addr + offsetof(struct mem, stats))))
1537 return err;
f26251eb 1538 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1da177e4
LT
1539 return err;
1540
1541 e100_disable_irq(nic);
1542
1543 return 0;
1544}
1545
1546static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1547{
1548 struct net_device *netdev = nic->netdev;
22bedad3 1549 struct netdev_hw_addr *ha;
4cd24eaf 1550 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1da177e4
LT
1551
1552 cb->command = cpu_to_le16(cb_multi);
1553 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
48e2f183 1554 i = 0;
22bedad3 1555 netdev_for_each_mc_addr(ha, netdev) {
48e2f183
JP
1556 if (i == count)
1557 break;
22bedad3 1558 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1da177e4 1559 ETH_ALEN);
48e2f183 1560 }
1da177e4
LT
1561}
1562
1563static void e100_set_multicast_list(struct net_device *netdev)
1564{
1565 struct nic *nic = netdev_priv(netdev);
1566
fa05e1ad
JP
1567 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1568 "mc_count=%d, flags=0x%04X\n",
1569 netdev_mc_count(netdev), netdev->flags);
1da177e4 1570
f26251eb 1571 if (netdev->flags & IFF_PROMISC)
1da177e4
LT
1572 nic->flags |= promiscuous;
1573 else
1574 nic->flags &= ~promiscuous;
1575
f26251eb 1576 if (netdev->flags & IFF_ALLMULTI ||
4cd24eaf 1577 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1da177e4
LT
1578 nic->flags |= multicast_all;
1579 else
1580 nic->flags &= ~multicast_all;
1581
1582 e100_exec_cb(nic, NULL, e100_configure);
1583 e100_exec_cb(nic, NULL, e100_multi);
1584}
1585
1586static void e100_update_stats(struct nic *nic)
1587{
09f75cd7
JG
1588 struct net_device *dev = nic->netdev;
1589 struct net_device_stats *ns = &dev->stats;
1da177e4 1590 struct stats *s = &nic->mem->stats;
aaf918ba
AV
1591 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1592 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1da177e4
LT
1593 &s->complete;
1594
1595 /* Device's stats reporting may take several microseconds to
0a0863af 1596 * complete, so we're always waiting for results of the
1da177e4
LT
1597 * previous command. */
1598
f26251eb 1599 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1da177e4
LT
1600 *complete = 0;
1601 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1602 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1603 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1604 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1605 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1606 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1607 ns->collisions += nic->tx_collisions;
1608 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1609 le32_to_cpu(s->tx_lost_crs);
1da177e4
LT
1610 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1611 nic->rx_over_length_errors;
1612 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1613 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1614 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1615 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
ecf7130b 1616 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1da177e4
LT
1617 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1618 le32_to_cpu(s->rx_alignment_errors) +
1619 le32_to_cpu(s->rx_short_frame_errors) +
1620 le32_to_cpu(s->rx_cdt_errors);
1621 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1622 nic->tx_single_collisions +=
1623 le32_to_cpu(s->tx_single_collisions);
1624 nic->tx_multiple_collisions +=
1625 le32_to_cpu(s->tx_multiple_collisions);
f26251eb 1626 if (nic->mac >= mac_82558_D101_A4) {
1da177e4
LT
1627 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1628 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1629 nic->rx_fc_unsupported +=
1630 le32_to_cpu(s->fc_rcv_unsupported);
f26251eb 1631 if (nic->mac >= mac_82559_D101M) {
1da177e4
LT
1632 nic->tx_tco_frames +=
1633 le16_to_cpu(s->xmt_tco_frames);
1634 nic->rx_tco_frames +=
1635 le16_to_cpu(s->rcv_tco_frames);
1636 }
1637 }
1638 }
1639
05479938 1640
f26251eb 1641 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
fa05e1ad
JP
1642 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1643 "exec cuc_dump_reset failed\n");
1da177e4
LT
1644}
1645
1646static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1647{
1648 /* Adjust inter-frame-spacing (IFS) between two transmits if
1649 * we're getting collisions on a half-duplex connection. */
1650
f26251eb 1651 if (duplex == DUPLEX_HALF) {
1da177e4
LT
1652 u32 prev = nic->adaptive_ifs;
1653 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1654
f26251eb 1655 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1da177e4 1656 (nic->tx_frames > min_frames)) {
f26251eb 1657 if (nic->adaptive_ifs < 60)
1da177e4
LT
1658 nic->adaptive_ifs += 5;
1659 } else if (nic->tx_frames < min_frames) {
f26251eb 1660 if (nic->adaptive_ifs >= 5)
1da177e4
LT
1661 nic->adaptive_ifs -= 5;
1662 }
f26251eb 1663 if (nic->adaptive_ifs != prev)
1da177e4
LT
1664 e100_exec_cb(nic, NULL, e100_configure);
1665 }
1666}
1667
1668static void e100_watchdog(unsigned long data)
1669{
1670 struct nic *nic = (struct nic *)data;
8ae6daca 1671 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
25db0338 1672 u32 speed;
1da177e4 1673
fa05e1ad
JP
1674 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1675 "right now = %ld\n", jiffies);
1da177e4
LT
1676
1677 /* mii library handles link maintenance tasks */
1678
1679 mii_ethtool_gset(&nic->mii, &cmd);
25db0338 1680 speed = ethtool_cmd_speed(&cmd);
1da177e4 1681
f26251eb 1682 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
fa05e1ad 1683 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
25db0338 1684 speed == SPEED_100 ? 100 : 10,
fa05e1ad 1685 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
f26251eb 1686 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
fa05e1ad 1687 netdev_info(nic->netdev, "NIC Link is Down\n");
1da177e4
LT
1688 }
1689
1690 mii_check_link(&nic->mii);
1691
1692 /* Software generated interrupt to recover from (rare) Rx
05479938
JB
1693 * allocation failure.
1694 * Unfortunately have to use a spinlock to not re-enable interrupts
1695 * accidentally, due to hardware that shares a register between the
1696 * interrupt mask bit and the SW Interrupt generation bit */
1da177e4 1697 spin_lock_irq(&nic->cmd_lock);
27345bb6 1698 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1da177e4 1699 e100_write_flush(nic);
ad8c48ad 1700 spin_unlock_irq(&nic->cmd_lock);
1da177e4
LT
1701
1702 e100_update_stats(nic);
25db0338 1703 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1da177e4 1704
f26251eb 1705 if (nic->mac <= mac_82557_D100_C)
1da177e4
LT
1706 /* Issue a multicast command to workaround a 557 lock up */
1707 e100_set_multicast_list(nic->netdev);
1708
25db0338 1709 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1da177e4
LT
1710 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1711 nic->flags |= ich_10h_workaround;
1712 else
1713 nic->flags &= ~ich_10h_workaround;
1714
34c6417b
SH
1715 mod_timer(&nic->watchdog,
1716 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1da177e4
LT
1717}
1718
858119e1 1719static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1da177e4
LT
1720 struct sk_buff *skb)
1721{
1722 cb->command = nic->tx_command;
962082b6 1723 /* interrupt every 16 packets regardless of delay */
f26251eb 1724 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
996ec353 1725 cb->command |= cpu_to_le16(cb_i);
1da177e4
LT
1726 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1727 cb->u.tcb.tcb_byte_count = 0;
1728 cb->u.tcb.threshold = nic->tx_threshold;
1729 cb->u.tcb.tbd_count = 1;
1730 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1731 skb->data, skb->len, PCI_DMA_TODEVICE));
611494dc 1732 /* check for mapping failure? */
1da177e4
LT
1733 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1734}
1735
3b29a56d
SH
1736static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1737 struct net_device *netdev)
1da177e4
LT
1738{
1739 struct nic *nic = netdev_priv(netdev);
1740 int err;
1741
f26251eb 1742 if (nic->flags & ich_10h_workaround) {
1da177e4
LT
1743 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1744 Issue a NOP command followed by a 1us delay before
1745 issuing the Tx command. */
f26251eb 1746 if (e100_exec_cmd(nic, cuc_nop, 0))
fa05e1ad
JP
1747 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1748 "exec cuc_nop failed\n");
1da177e4
LT
1749 udelay(1);
1750 }
1751
1752 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1753
f26251eb 1754 switch (err) {
1da177e4
LT
1755 case -ENOSPC:
1756 /* We queued the skb, but now we're out of space. */
fa05e1ad
JP
1757 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1758 "No space for CB\n");
1da177e4
LT
1759 netif_stop_queue(netdev);
1760 break;
1761 case -ENOMEM:
1762 /* This is a hard error - log it. */
fa05e1ad
JP
1763 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1764 "Out of Tx resources, returning skb\n");
1da177e4 1765 netif_stop_queue(netdev);
5b548140 1766 return NETDEV_TX_BUSY;
1da177e4
LT
1767 }
1768
6ed10654 1769 return NETDEV_TX_OK;
1da177e4
LT
1770}
1771
858119e1 1772static int e100_tx_clean(struct nic *nic)
1da177e4 1773{
09f75cd7 1774 struct net_device *dev = nic->netdev;
1da177e4
LT
1775 struct cb *cb;
1776 int tx_cleaned = 0;
1777
1778 spin_lock(&nic->cb_lock);
1779
1da177e4 1780 /* Clean CBs marked complete */
f26251eb 1781 for (cb = nic->cb_to_clean;
1da177e4
LT
1782 cb->status & cpu_to_le16(cb_complete);
1783 cb = nic->cb_to_clean = cb->next) {
2d0bb1c1 1784 rmb(); /* read skb after status */
fa05e1ad
JP
1785 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1786 "cb[%d]->status = 0x%04X\n",
1787 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1788 cb->status);
dc45010e 1789
f26251eb 1790 if (likely(cb->skb != NULL)) {
09f75cd7
JG
1791 dev->stats.tx_packets++;
1792 dev->stats.tx_bytes += cb->skb->len;
1da177e4
LT
1793
1794 pci_unmap_single(nic->pdev,
1795 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1796 le16_to_cpu(cb->u.tcb.tbd.size),
1797 PCI_DMA_TODEVICE);
1798 dev_kfree_skb_any(cb->skb);
1799 cb->skb = NULL;
1800 tx_cleaned = 1;
1801 }
1802 cb->status = 0;
1803 nic->cbs_avail++;
1804 }
1805
1806 spin_unlock(&nic->cb_lock);
1807
1808 /* Recover from running out of Tx resources in xmit_frame */
f26251eb 1809 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1da177e4
LT
1810 netif_wake_queue(nic->netdev);
1811
1812 return tx_cleaned;
1813}
1814
1815static void e100_clean_cbs(struct nic *nic)
1816{
f26251eb
BA
1817 if (nic->cbs) {
1818 while (nic->cbs_avail != nic->params.cbs.count) {
1da177e4 1819 struct cb *cb = nic->cb_to_clean;
f26251eb 1820 if (cb->skb) {
1da177e4
LT
1821 pci_unmap_single(nic->pdev,
1822 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1823 le16_to_cpu(cb->u.tcb.tbd.size),
1824 PCI_DMA_TODEVICE);
1825 dev_kfree_skb(cb->skb);
1826 }
1827 nic->cb_to_clean = nic->cb_to_clean->next;
1828 nic->cbs_avail++;
1829 }
98468efd 1830 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1da177e4
LT
1831 nic->cbs = NULL;
1832 nic->cbs_avail = 0;
1833 }
1834 nic->cuc_cmd = cuc_start;
1835 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1836 nic->cbs;
1837}
1838
1839static int e100_alloc_cbs(struct nic *nic)
1840{
1841 struct cb *cb;
1842 unsigned int i, count = nic->params.cbs.count;
1843
1844 nic->cuc_cmd = cuc_start;
1845 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1846 nic->cbs_avail = 0;
1847
98468efd
RO
1848 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1849 &nic->cbs_dma_addr);
f26251eb 1850 if (!nic->cbs)
1da177e4 1851 return -ENOMEM;
70abc8cb 1852 memset(nic->cbs, 0, count * sizeof(struct cb));
1da177e4 1853
f26251eb 1854 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1da177e4
LT
1855 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1856 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1857
1858 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1859 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1860 ((i+1) % count) * sizeof(struct cb));
1da177e4
LT
1861 }
1862
1863 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1864 nic->cbs_avail = count;
1865
1866 return 0;
1867}
1868
ca93ca42 1869static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1da177e4 1870{
f26251eb
BA
1871 if (!nic->rxs) return;
1872 if (RU_SUSPENDED != nic->ru_running) return;
ca93ca42
JG
1873
1874 /* handle init time starts */
f26251eb 1875 if (!rx) rx = nic->rxs;
ca93ca42
JG
1876
1877 /* (Re)start RU if suspended or idle and RFA is non-NULL */
f26251eb 1878 if (rx->skb) {
ca93ca42
JG
1879 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1880 nic->ru_running = RU_RUNNING;
1881 }
1da177e4
LT
1882}
1883
1884#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
858119e1 1885static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1da177e4 1886{
89d71a66 1887 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1da177e4
LT
1888 return -ENOMEM;
1889
89d71a66 1890 /* Init, and map the RFD. */
27d7ff46 1891 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1da177e4
LT
1892 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1893 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1894
8d8bb39b 1895 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1f53367d 1896 dev_kfree_skb_any(rx->skb);
097688ef 1897 rx->skb = NULL;
1f53367d
MC
1898 rx->dma_addr = 0;
1899 return -ENOMEM;
1900 }
1901
1da177e4 1902 /* Link the RFD to end of RFA by linking previous RFD to
7734f6e6
DA
1903 * this one. We are safe to touch the previous RFD because
1904 * it is protected by the before last buffer's el bit being set */
aaf918ba 1905 if (rx->prev->skb) {
1da177e4 1906 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
6caf52a4 1907 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1923815d 1908 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
773c9c1f 1909 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
1910 }
1911
1912 return 0;
1913}
1914
858119e1 1915static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1da177e4
LT
1916 unsigned int *work_done, unsigned int work_to_do)
1917{
09f75cd7 1918 struct net_device *dev = nic->netdev;
1da177e4
LT
1919 struct sk_buff *skb = rx->skb;
1920 struct rfd *rfd = (struct rfd *)skb->data;
1921 u16 rfd_status, actual_size;
1922
f26251eb 1923 if (unlikely(work_done && *work_done >= work_to_do))
1da177e4
LT
1924 return -EAGAIN;
1925
1926 /* Need to sync before taking a peek at cb_complete bit */
1927 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
773c9c1f 1928 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
1929 rfd_status = le16_to_cpu(rfd->status);
1930
fa05e1ad
JP
1931 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1932 "status=0x%04X\n", rfd_status);
2d0bb1c1 1933 rmb(); /* read size after status bit */
1da177e4
LT
1934
1935 /* If data isn't ready, nothing to indicate */
7734f6e6
DA
1936 if (unlikely(!(rfd_status & cb_complete))) {
1937 /* If the next buffer has the el bit, but we think the receiver
1938 * is still running, check to see if it really stopped while
1939 * we had interrupts off.
1940 * This allows for a fast restart without re-enabling
1941 * interrupts */
1942 if ((le16_to_cpu(rfd->command) & cb_el) &&
1943 (RU_RUNNING == nic->ru_running))
1944
17393dd6 1945 if (ioread8(&nic->csr->scb.status) & rus_no_res)
7734f6e6 1946 nic->ru_running = RU_SUSPENDED;
303d67c2
KH
1947 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1948 sizeof(struct rfd),
6ff9c2e7 1949 PCI_DMA_FROMDEVICE);
1f53367d 1950 return -ENODATA;
7734f6e6 1951 }
1da177e4
LT
1952
1953 /* Get actual data size */
1954 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
f26251eb 1955 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1da177e4
LT
1956 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1957
1958 /* Get data */
1959 pci_unmap_single(nic->pdev, rx->dma_addr,
773c9c1f 1960 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1da177e4 1961
7734f6e6
DA
1962 /* If this buffer has the el bit, but we think the receiver
1963 * is still running, check to see if it really stopped while
1964 * we had interrupts off.
1965 * This allows for a fast restart without re-enabling interrupts.
1966 * This can happen when the RU sees the size change but also sees
1967 * the el bit set. */
1968 if ((le16_to_cpu(rfd->command) & cb_el) &&
1969 (RU_RUNNING == nic->ru_running)) {
1970
17393dd6 1971 if (ioread8(&nic->csr->scb.status) & rus_no_res)
ca93ca42 1972 nic->ru_running = RU_SUSPENDED;
7734f6e6 1973 }
ca93ca42 1974
1da177e4
LT
1975 /* Pull off the RFD and put the actual data (minus eth hdr) */
1976 skb_reserve(skb, sizeof(struct rfd));
1977 skb_put(skb, actual_size);
1978 skb->protocol = eth_type_trans(skb, nic->netdev);
1979
f26251eb 1980 if (unlikely(!(rfd_status & cb_ok))) {
1da177e4 1981 /* Don't indicate if hardware indicates errors */
1da177e4 1982 dev_kfree_skb_any(skb);
f26251eb 1983 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1da177e4
LT
1984 /* Don't indicate oversized frames */
1985 nic->rx_over_length_errors++;
1da177e4
LT
1986 dev_kfree_skb_any(skb);
1987 } else {
09f75cd7
JG
1988 dev->stats.rx_packets++;
1989 dev->stats.rx_bytes += actual_size;
1da177e4 1990 netif_receive_skb(skb);
f26251eb 1991 if (work_done)
1da177e4
LT
1992 (*work_done)++;
1993 }
1994
1995 rx->skb = NULL;
1996
1997 return 0;
1998}
1999
858119e1 2000static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1da177e4
LT
2001 unsigned int work_to_do)
2002{
2003 struct rx *rx;
7734f6e6
DA
2004 int restart_required = 0, err = 0;
2005 struct rx *old_before_last_rx, *new_before_last_rx;
2006 struct rfd *old_before_last_rfd, *new_before_last_rfd;
1da177e4
LT
2007
2008 /* Indicate newly arrived packets */
f26251eb 2009 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
7734f6e6
DA
2010 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2011 /* Hit quota or no more to clean */
2012 if (-EAGAIN == err || -ENODATA == err)
ca93ca42 2013 break;
1da177e4
LT
2014 }
2015
7734f6e6
DA
2016
2017 /* On EAGAIN, hit quota so have more work to do, restart once
2018 * cleanup is complete.
2019 * Else, are we already rnr? then pay attention!!! this ensures that
2020 * the state machine progression never allows a start with a
2021 * partially cleaned list, avoiding a race between hardware
2022 * and rx_to_clean when in NAPI mode */
2023 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2024 restart_required = 1;
2025
2026 old_before_last_rx = nic->rx_to_use->prev->prev;
2027 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
ca93ca42 2028
1da177e4 2029 /* Alloc new skbs to refill list */
f26251eb
BA
2030 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2031 if (unlikely(e100_rx_alloc_skb(nic, rx)))
1da177e4
LT
2032 break; /* Better luck next time (see watchdog) */
2033 }
ca93ca42 2034
7734f6e6
DA
2035 new_before_last_rx = nic->rx_to_use->prev->prev;
2036 if (new_before_last_rx != old_before_last_rx) {
2037 /* Set the el-bit on the buffer that is before the last buffer.
2038 * This lets us update the next pointer on the last buffer
2039 * without worrying about hardware touching it.
2040 * We set the size to 0 to prevent hardware from touching this
2041 * buffer.
2042 * When the hardware hits the before last buffer with el-bit
2043 * and size of 0, it will RNR interrupt, the RUS will go into
2044 * the No Resources state. It will not complete nor write to
2045 * this buffer. */
2046 new_before_last_rfd =
2047 (struct rfd *)new_before_last_rx->skb->data;
2048 new_before_last_rfd->size = 0;
2049 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2050 pci_dma_sync_single_for_device(nic->pdev,
2051 new_before_last_rx->dma_addr, sizeof(struct rfd),
773c9c1f 2052 PCI_DMA_BIDIRECTIONAL);
7734f6e6
DA
2053
2054 /* Now that we have a new stopping point, we can clear the old
2055 * stopping point. We must sync twice to get the proper
2056 * ordering on the hardware side of things. */
2057 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2058 pci_dma_sync_single_for_device(nic->pdev,
2059 old_before_last_rx->dma_addr, sizeof(struct rfd),
773c9c1f 2060 PCI_DMA_BIDIRECTIONAL);
7734f6e6
DA
2061 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2062 pci_dma_sync_single_for_device(nic->pdev,
2063 old_before_last_rx->dma_addr, sizeof(struct rfd),
773c9c1f 2064 PCI_DMA_BIDIRECTIONAL);
7734f6e6
DA
2065 }
2066
f26251eb 2067 if (restart_required) {
ca93ca42 2068 // ack the rnr?
915e91d7 2069 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
7734f6e6 2070 e100_start_receiver(nic, nic->rx_to_clean);
f26251eb 2071 if (work_done)
ca93ca42
JG
2072 (*work_done)++;
2073 }
1da177e4
LT
2074}
2075
2076static void e100_rx_clean_list(struct nic *nic)
2077{
2078 struct rx *rx;
2079 unsigned int i, count = nic->params.rfds.count;
2080
ca93ca42
JG
2081 nic->ru_running = RU_UNINITIALIZED;
2082
f26251eb
BA
2083 if (nic->rxs) {
2084 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2085 if (rx->skb) {
1da177e4 2086 pci_unmap_single(nic->pdev, rx->dma_addr,
773c9c1f 2087 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
2088 dev_kfree_skb(rx->skb);
2089 }
2090 }
2091 kfree(nic->rxs);
2092 nic->rxs = NULL;
2093 }
2094
2095 nic->rx_to_use = nic->rx_to_clean = NULL;
1da177e4
LT
2096}
2097
2098static int e100_rx_alloc_list(struct nic *nic)
2099{
2100 struct rx *rx;
2101 unsigned int i, count = nic->params.rfds.count;
7734f6e6 2102 struct rfd *before_last;
1da177e4
LT
2103
2104 nic->rx_to_use = nic->rx_to_clean = NULL;
ca93ca42 2105 nic->ru_running = RU_UNINITIALIZED;
1da177e4 2106
f26251eb 2107 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1da177e4 2108 return -ENOMEM;
1da177e4 2109
f26251eb 2110 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1da177e4
LT
2111 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2112 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
f26251eb 2113 if (e100_rx_alloc_skb(nic, rx)) {
1da177e4
LT
2114 e100_rx_clean_list(nic);
2115 return -ENOMEM;
2116 }
2117 }
7734f6e6
DA
2118 /* Set the el-bit on the buffer that is before the last buffer.
2119 * This lets us update the next pointer on the last buffer without
2120 * worrying about hardware touching it.
2121 * We set the size to 0 to prevent hardware from touching this buffer.
2122 * When the hardware hits the before last buffer with el-bit and size
2123 * of 0, it will RNR interrupt, the RU will go into the No Resources
2124 * state. It will not complete nor write to this buffer. */
2125 rx = nic->rxs->prev->prev;
2126 before_last = (struct rfd *)rx->skb->data;
2127 before_last->command |= cpu_to_le16(cb_el);
2128 before_last->size = 0;
2129 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
773c9c1f 2130 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
2131
2132 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
ca93ca42 2133 nic->ru_running = RU_SUSPENDED;
1da177e4
LT
2134
2135 return 0;
2136}
2137
7d12e780 2138static irqreturn_t e100_intr(int irq, void *dev_id)
1da177e4
LT
2139{
2140 struct net_device *netdev = dev_id;
2141 struct nic *nic = netdev_priv(netdev);
27345bb6 2142 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1da177e4 2143
fa05e1ad
JP
2144 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2145 "stat_ack = 0x%02X\n", stat_ack);
1da177e4 2146
f26251eb 2147 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
1da177e4
LT
2148 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2149 return IRQ_NONE;
2150
2151 /* Ack interrupt(s) */
27345bb6 2152 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1da177e4 2153
ca93ca42 2154 /* We hit Receive No Resource (RNR); restart RU after cleaning */
f26251eb 2155 if (stat_ack & stat_ack_rnr)
ca93ca42
JG
2156 nic->ru_running = RU_SUSPENDED;
2157
288379f0 2158 if (likely(napi_schedule_prep(&nic->napi))) {
0685c31b 2159 e100_disable_irq(nic);
288379f0 2160 __napi_schedule(&nic->napi);
0685c31b 2161 }
1da177e4
LT
2162
2163 return IRQ_HANDLED;
2164}
2165
bea3348e 2166static int e100_poll(struct napi_struct *napi, int budget)
1da177e4 2167{
bea3348e 2168 struct nic *nic = container_of(napi, struct nic, napi);
ddfce6bb 2169 unsigned int work_done = 0;
1da177e4 2170
bea3348e 2171 e100_rx_clean(nic, &work_done, budget);
53e52c72 2172 e100_tx_clean(nic);
1da177e4 2173
53e52c72
DM
2174 /* If budget not fully consumed, exit the polling mode */
2175 if (work_done < budget) {
288379f0 2176 napi_complete(napi);
1da177e4 2177 e100_enable_irq(nic);
1da177e4
LT
2178 }
2179
bea3348e 2180 return work_done;
1da177e4
LT
2181}
2182
2183#ifdef CONFIG_NET_POLL_CONTROLLER
2184static void e100_netpoll(struct net_device *netdev)
2185{
2186 struct nic *nic = netdev_priv(netdev);
611494dc 2187
1da177e4 2188 e100_disable_irq(nic);
7d12e780 2189 e100_intr(nic->pdev->irq, netdev);
1da177e4
LT
2190 e100_tx_clean(nic);
2191 e100_enable_irq(nic);
2192}
2193#endif
2194
1da177e4
LT
2195static int e100_set_mac_address(struct net_device *netdev, void *p)
2196{
2197 struct nic *nic = netdev_priv(netdev);
2198 struct sockaddr *addr = p;
2199
2200 if (!is_valid_ether_addr(addr->sa_data))
2201 return -EADDRNOTAVAIL;
2202
2203 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2204 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2205
2206 return 0;
2207}
2208
2209static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2210{
f26251eb 2211 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1da177e4
LT
2212 return -EINVAL;
2213 netdev->mtu = new_mtu;
2214 return 0;
2215}
2216
2217static int e100_asf(struct nic *nic)
2218{
2219 /* ASF can be enabled from eeprom */
807540ba 2220 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1da177e4
LT
2221 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2222 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
807540ba 2223 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
1da177e4
LT
2224}
2225
2226static int e100_up(struct nic *nic)
2227{
2228 int err;
2229
f26251eb 2230 if ((err = e100_rx_alloc_list(nic)))
1da177e4 2231 return err;
f26251eb 2232 if ((err = e100_alloc_cbs(nic)))
1da177e4 2233 goto err_rx_clean_list;
f26251eb 2234 if ((err = e100_hw_init(nic)))
1da177e4
LT
2235 goto err_clean_cbs;
2236 e100_set_multicast_list(nic->netdev);
ca93ca42 2237 e100_start_receiver(nic, NULL);
1da177e4 2238 mod_timer(&nic->watchdog, jiffies);
f26251eb 2239 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
1da177e4
LT
2240 nic->netdev->name, nic->netdev)))
2241 goto err_no_irq;
1da177e4 2242 netif_wake_queue(nic->netdev);
bea3348e 2243 napi_enable(&nic->napi);
0236ebb7
MC
2244 /* enable ints _after_ enabling poll, preventing a race between
2245 * disable ints+schedule */
2246 e100_enable_irq(nic);
1da177e4
LT
2247 return 0;
2248
2249err_no_irq:
2250 del_timer_sync(&nic->watchdog);
2251err_clean_cbs:
2252 e100_clean_cbs(nic);
2253err_rx_clean_list:
2254 e100_rx_clean_list(nic);
2255 return err;
2256}
2257
2258static void e100_down(struct nic *nic)
2259{
0236ebb7 2260 /* wait here for poll to complete */
bea3348e 2261 napi_disable(&nic->napi);
0236ebb7 2262 netif_stop_queue(nic->netdev);
1da177e4
LT
2263 e100_hw_reset(nic);
2264 free_irq(nic->pdev->irq, nic->netdev);
2265 del_timer_sync(&nic->watchdog);
2266 netif_carrier_off(nic->netdev);
1da177e4
LT
2267 e100_clean_cbs(nic);
2268 e100_rx_clean_list(nic);
2269}
2270
2271static void e100_tx_timeout(struct net_device *netdev)
2272{
2273 struct nic *nic = netdev_priv(netdev);
2274
05479938 2275 /* Reset outside of interrupt context, to avoid request_irq
2acdb1e0
MC
2276 * in interrupt context */
2277 schedule_work(&nic->tx_timeout_task);
2278}
2279
c4028958 2280static void e100_tx_timeout_task(struct work_struct *work)
2acdb1e0 2281{
c4028958
DH
2282 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2283 struct net_device *netdev = nic->netdev;
2acdb1e0 2284
fa05e1ad
JP
2285 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2286 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
401da6ae
AC
2287
2288 rtnl_lock();
2289 if (netif_running(netdev)) {
2290 e100_down(netdev_priv(netdev));
2291 e100_up(netdev_priv(netdev));
2292 }
2293 rtnl_unlock();
1da177e4
LT
2294}
2295
2296static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2297{
2298 int err;
2299 struct sk_buff *skb;
2300
2301 /* Use driver resources to perform internal MAC or PHY
2302 * loopback test. A single packet is prepared and transmitted
2303 * in loopback mode, and the test passes if the received
2304 * packet compares byte-for-byte to the transmitted packet. */
2305
f26251eb 2306 if ((err = e100_rx_alloc_list(nic)))
1da177e4 2307 return err;
f26251eb 2308 if ((err = e100_alloc_cbs(nic)))
1da177e4
LT
2309 goto err_clean_rx;
2310
2311 /* ICH PHY loopback is broken so do MAC loopback instead */
f26251eb 2312 if (nic->flags & ich && loopback_mode == lb_phy)
1da177e4
LT
2313 loopback_mode = lb_mac;
2314
2315 nic->loopback = loopback_mode;
f26251eb 2316 if ((err = e100_hw_init(nic)))
1da177e4
LT
2317 goto err_loopback_none;
2318
f26251eb 2319 if (loopback_mode == lb_phy)
1da177e4
LT
2320 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2321 BMCR_LOOPBACK);
2322
ca93ca42 2323 e100_start_receiver(nic, NULL);
1da177e4 2324
f26251eb 2325 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
1da177e4
LT
2326 err = -ENOMEM;
2327 goto err_loopback_none;
2328 }
2329 skb_put(skb, ETH_DATA_LEN);
2330 memset(skb->data, 0xFF, ETH_DATA_LEN);
2331 e100_xmit_frame(skb, nic->netdev);
2332
2333 msleep(10);
2334
aa49cdd9 2335 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
773c9c1f 2336 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
aa49cdd9 2337
f26251eb 2338 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
1da177e4
LT
2339 skb->data, ETH_DATA_LEN))
2340 err = -EAGAIN;
2341
2342err_loopback_none:
2343 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2344 nic->loopback = lb_none;
1da177e4 2345 e100_clean_cbs(nic);
aa49cdd9 2346 e100_hw_reset(nic);
1da177e4
LT
2347err_clean_rx:
2348 e100_rx_clean_list(nic);
2349 return err;
2350}
2351
2352#define MII_LED_CONTROL 0x1B
b55de80e
BA
2353#define E100_82552_LED_OVERRIDE 0x19
2354#define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2355#define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
1da177e4
LT
2356
2357static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2358{
2359 struct nic *nic = netdev_priv(netdev);
2360 return mii_ethtool_gset(&nic->mii, cmd);
2361}
2362
2363static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2364{
2365 struct nic *nic = netdev_priv(netdev);
2366 int err;
2367
2368 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2369 err = mii_ethtool_sset(&nic->mii, cmd);
2370 e100_exec_cb(nic, NULL, e100_configure);
2371
2372 return err;
2373}
2374
2375static void e100_get_drvinfo(struct net_device *netdev,
2376 struct ethtool_drvinfo *info)
2377{
2378 struct nic *nic = netdev_priv(netdev);
2379 strcpy(info->driver, DRV_NAME);
2380 strcpy(info->version, DRV_VERSION);
2381 strcpy(info->fw_version, "N/A");
2382 strcpy(info->bus_info, pci_name(nic->pdev));
2383}
2384
abf9b902 2385#define E100_PHY_REGS 0x1C
1da177e4
LT
2386static int e100_get_regs_len(struct net_device *netdev)
2387{
2388 struct nic *nic = netdev_priv(netdev);
abf9b902 2389 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
1da177e4
LT
2390}
2391
2392static void e100_get_regs(struct net_device *netdev,
2393 struct ethtool_regs *regs, void *p)
2394{
2395 struct nic *nic = netdev_priv(netdev);
2396 u32 *buff = p;
2397 int i;
2398
44c10138 2399 regs->version = (1 << 24) | nic->pdev->revision;
27345bb6
JB
2400 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2401 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2402 ioread16(&nic->csr->scb.status);
f26251eb 2403 for (i = E100_PHY_REGS; i >= 0; i--)
1da177e4
LT
2404 buff[1 + E100_PHY_REGS - i] =
2405 mdio_read(netdev, nic->mii.phy_id, i);
2406 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2407 e100_exec_cb(nic, NULL, e100_dump);
2408 msleep(10);
2409 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2410 sizeof(nic->mem->dump_buf));
2411}
2412
2413static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2414{
2415 struct nic *nic = netdev_priv(netdev);
2416 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2417 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2418}
2419
2420static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2421{
2422 struct nic *nic = netdev_priv(netdev);
2423
bc79fc84
RW
2424 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2425 !device_can_wakeup(&nic->pdev->dev))
1da177e4
LT
2426 return -EOPNOTSUPP;
2427
f26251eb 2428 if (wol->wolopts)
1da177e4
LT
2429 nic->flags |= wol_magic;
2430 else
2431 nic->flags &= ~wol_magic;
2432
bc79fc84
RW
2433 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2434
1da177e4
LT
2435 e100_exec_cb(nic, NULL, e100_configure);
2436
2437 return 0;
2438}
2439
2440static u32 e100_get_msglevel(struct net_device *netdev)
2441{
2442 struct nic *nic = netdev_priv(netdev);
2443 return nic->msg_enable;
2444}
2445
2446static void e100_set_msglevel(struct net_device *netdev, u32 value)
2447{
2448 struct nic *nic = netdev_priv(netdev);
2449 nic->msg_enable = value;
2450}
2451
2452static int e100_nway_reset(struct net_device *netdev)
2453{
2454 struct nic *nic = netdev_priv(netdev);
2455 return mii_nway_restart(&nic->mii);
2456}
2457
2458static u32 e100_get_link(struct net_device *netdev)
2459{
2460 struct nic *nic = netdev_priv(netdev);
2461 return mii_link_ok(&nic->mii);
2462}
2463
2464static int e100_get_eeprom_len(struct net_device *netdev)
2465{
2466 struct nic *nic = netdev_priv(netdev);
2467 return nic->eeprom_wc << 1;
2468}
2469
2470#define E100_EEPROM_MAGIC 0x1234
2471static int e100_get_eeprom(struct net_device *netdev,
2472 struct ethtool_eeprom *eeprom, u8 *bytes)
2473{
2474 struct nic *nic = netdev_priv(netdev);
2475
2476 eeprom->magic = E100_EEPROM_MAGIC;
2477 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2478
2479 return 0;
2480}
2481
2482static int e100_set_eeprom(struct net_device *netdev,
2483 struct ethtool_eeprom *eeprom, u8 *bytes)
2484{
2485 struct nic *nic = netdev_priv(netdev);
2486
f26251eb 2487 if (eeprom->magic != E100_EEPROM_MAGIC)
1da177e4
LT
2488 return -EINVAL;
2489
2490 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2491
2492 return e100_eeprom_save(nic, eeprom->offset >> 1,
2493 (eeprom->len >> 1) + 1);
2494}
2495
2496static void e100_get_ringparam(struct net_device *netdev,
2497 struct ethtool_ringparam *ring)
2498{
2499 struct nic *nic = netdev_priv(netdev);
2500 struct param_range *rfds = &nic->params.rfds;
2501 struct param_range *cbs = &nic->params.cbs;
2502
2503 ring->rx_max_pending = rfds->max;
2504 ring->tx_max_pending = cbs->max;
2505 ring->rx_mini_max_pending = 0;
2506 ring->rx_jumbo_max_pending = 0;
2507 ring->rx_pending = rfds->count;
2508 ring->tx_pending = cbs->count;
2509 ring->rx_mini_pending = 0;
2510 ring->rx_jumbo_pending = 0;
2511}
2512
2513static int e100_set_ringparam(struct net_device *netdev,
2514 struct ethtool_ringparam *ring)
2515{
2516 struct nic *nic = netdev_priv(netdev);
2517 struct param_range *rfds = &nic->params.rfds;
2518 struct param_range *cbs = &nic->params.cbs;
2519
05479938 2520 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
1da177e4
LT
2521 return -EINVAL;
2522
f26251eb 2523 if (netif_running(netdev))
1da177e4
LT
2524 e100_down(nic);
2525 rfds->count = max(ring->rx_pending, rfds->min);
2526 rfds->count = min(rfds->count, rfds->max);
2527 cbs->count = max(ring->tx_pending, cbs->min);
2528 cbs->count = min(cbs->count, cbs->max);
fa05e1ad
JP
2529 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2530 rfds->count, cbs->count);
f26251eb 2531 if (netif_running(netdev))
1da177e4
LT
2532 e100_up(nic);
2533
2534 return 0;
2535}
2536
2537static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2538 "Link test (on/offline)",
2539 "Eeprom test (on/offline)",
2540 "Self test (offline)",
2541 "Mac loopback (offline)",
2542 "Phy loopback (offline)",
2543};
4c3616cd 2544#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
1da177e4 2545
1da177e4
LT
2546static void e100_diag_test(struct net_device *netdev,
2547 struct ethtool_test *test, u64 *data)
2548{
2549 struct ethtool_cmd cmd;
2550 struct nic *nic = netdev_priv(netdev);
2551 int i, err;
2552
2553 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2554 data[0] = !mii_link_ok(&nic->mii);
2555 data[1] = e100_eeprom_load(nic);
f26251eb 2556 if (test->flags & ETH_TEST_FL_OFFLINE) {
1da177e4
LT
2557
2558 /* save speed, duplex & autoneg settings */
2559 err = mii_ethtool_gset(&nic->mii, &cmd);
2560
f26251eb 2561 if (netif_running(netdev))
1da177e4
LT
2562 e100_down(nic);
2563 data[2] = e100_self_test(nic);
2564 data[3] = e100_loopback_test(nic, lb_mac);
2565 data[4] = e100_loopback_test(nic, lb_phy);
2566
2567 /* restore speed, duplex & autoneg settings */
2568 err = mii_ethtool_sset(&nic->mii, &cmd);
2569
f26251eb 2570 if (netif_running(netdev))
1da177e4
LT
2571 e100_up(nic);
2572 }
f26251eb 2573 for (i = 0; i < E100_TEST_LEN; i++)
1da177e4 2574 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
a074fb86
MC
2575
2576 msleep_interruptible(4 * 1000);
1da177e4
LT
2577}
2578
a70b86ae
JK
2579static int e100_set_phys_id(struct net_device *netdev,
2580 enum ethtool_phys_id_state state)
1da177e4
LT
2581{
2582 struct nic *nic = netdev_priv(netdev);
a70b86ae
JK
2583 enum led_state {
2584 led_on = 0x01,
2585 led_off = 0x04,
2586 led_on_559 = 0x05,
2587 led_on_557 = 0x07,
2588 };
b55de80e 2589 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
a70b86ae
JK
2590 MII_LED_CONTROL;
2591 u16 leds = 0;
2592
2593 switch (state) {
2594 case ETHTOOL_ID_ACTIVE:
2595 return 2;
1da177e4 2596
a70b86ae
JK
2597 case ETHTOOL_ID_ON:
2598 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2599 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2600 break;
2601
2602 case ETHTOOL_ID_OFF:
2603 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2604 break;
2605
2606 case ETHTOOL_ID_INACTIVE:
2607 break;
2608 }
1da177e4 2609
a70b86ae 2610 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
1da177e4
LT
2611 return 0;
2612}
2613
2614static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2615 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2616 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2617 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2618 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2619 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2620 "tx_heartbeat_errors", "tx_window_errors",
2621 /* device-specific stats */
2622 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2623 "tx_flow_control_pause", "rx_flow_control_pause",
2624 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2625};
2626#define E100_NET_STATS_LEN 21
4c3616cd 2627#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
1da177e4 2628
b9f2c044 2629static int e100_get_sset_count(struct net_device *netdev, int sset)
1da177e4 2630{
b9f2c044
JG
2631 switch (sset) {
2632 case ETH_SS_TEST:
2633 return E100_TEST_LEN;
2634 case ETH_SS_STATS:
2635 return E100_STATS_LEN;
2636 default:
2637 return -EOPNOTSUPP;
2638 }
1da177e4
LT
2639}
2640
2641static void e100_get_ethtool_stats(struct net_device *netdev,
2642 struct ethtool_stats *stats, u64 *data)
2643{
2644 struct nic *nic = netdev_priv(netdev);
2645 int i;
2646
f26251eb 2647 for (i = 0; i < E100_NET_STATS_LEN; i++)
09f75cd7 2648 data[i] = ((unsigned long *)&netdev->stats)[i];
1da177e4
LT
2649
2650 data[i++] = nic->tx_deferred;
2651 data[i++] = nic->tx_single_collisions;
2652 data[i++] = nic->tx_multiple_collisions;
2653 data[i++] = nic->tx_fc_pause;
2654 data[i++] = nic->rx_fc_pause;
2655 data[i++] = nic->rx_fc_unsupported;
2656 data[i++] = nic->tx_tco_frames;
2657 data[i++] = nic->rx_tco_frames;
2658}
2659
2660static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2661{
f26251eb 2662 switch (stringset) {
1da177e4
LT
2663 case ETH_SS_TEST:
2664 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2665 break;
2666 case ETH_SS_STATS:
2667 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2668 break;
2669 }
2670}
2671
7282d491 2672static const struct ethtool_ops e100_ethtool_ops = {
1da177e4
LT
2673 .get_settings = e100_get_settings,
2674 .set_settings = e100_set_settings,
2675 .get_drvinfo = e100_get_drvinfo,
2676 .get_regs_len = e100_get_regs_len,
2677 .get_regs = e100_get_regs,
2678 .get_wol = e100_get_wol,
2679 .set_wol = e100_set_wol,
2680 .get_msglevel = e100_get_msglevel,
2681 .set_msglevel = e100_set_msglevel,
2682 .nway_reset = e100_nway_reset,
2683 .get_link = e100_get_link,
2684 .get_eeprom_len = e100_get_eeprom_len,
2685 .get_eeprom = e100_get_eeprom,
2686 .set_eeprom = e100_set_eeprom,
2687 .get_ringparam = e100_get_ringparam,
2688 .set_ringparam = e100_set_ringparam,
1da177e4
LT
2689 .self_test = e100_diag_test,
2690 .get_strings = e100_get_strings,
a70b86ae 2691 .set_phys_id = e100_set_phys_id,
1da177e4 2692 .get_ethtool_stats = e100_get_ethtool_stats,
b9f2c044 2693 .get_sset_count = e100_get_sset_count,
1da177e4
LT
2694};
2695
2696static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2697{
2698 struct nic *nic = netdev_priv(netdev);
2699
2700 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2701}
2702
2703static int e100_alloc(struct nic *nic)
2704{
2705 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2706 &nic->dma_addr);
2707 return nic->mem ? 0 : -ENOMEM;
2708}
2709
2710static void e100_free(struct nic *nic)
2711{
f26251eb 2712 if (nic->mem) {
1da177e4
LT
2713 pci_free_consistent(nic->pdev, sizeof(struct mem),
2714 nic->mem, nic->dma_addr);
2715 nic->mem = NULL;
2716 }
2717}
2718
2719static int e100_open(struct net_device *netdev)
2720{
2721 struct nic *nic = netdev_priv(netdev);
2722 int err = 0;
2723
2724 netif_carrier_off(netdev);
f26251eb 2725 if ((err = e100_up(nic)))
fa05e1ad 2726 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
1da177e4
LT
2727 return err;
2728}
2729
2730static int e100_close(struct net_device *netdev)
2731{
2732 e100_down(netdev_priv(netdev));
2733 return 0;
2734}
2735
acc78426
SH
2736static const struct net_device_ops e100_netdev_ops = {
2737 .ndo_open = e100_open,
2738 .ndo_stop = e100_close,
00829823 2739 .ndo_start_xmit = e100_xmit_frame,
acc78426
SH
2740 .ndo_validate_addr = eth_validate_addr,
2741 .ndo_set_multicast_list = e100_set_multicast_list,
2742 .ndo_set_mac_address = e100_set_mac_address,
2743 .ndo_change_mtu = e100_change_mtu,
2744 .ndo_do_ioctl = e100_do_ioctl,
2745 .ndo_tx_timeout = e100_tx_timeout,
2746#ifdef CONFIG_NET_POLL_CONTROLLER
2747 .ndo_poll_controller = e100_netpoll,
2748#endif
2749};
2750
1da177e4
LT
2751static int __devinit e100_probe(struct pci_dev *pdev,
2752 const struct pci_device_id *ent)
2753{
2754 struct net_device *netdev;
2755 struct nic *nic;
2756 int err;
2757
f26251eb
BA
2758 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2759 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
fa05e1ad 2760 pr_err("Etherdev alloc failed, aborting\n");
1da177e4
LT
2761 return -ENOMEM;
2762 }
2763
acc78426 2764 netdev->netdev_ops = &e100_netdev_ops;
1da177e4 2765 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
1da177e4 2766 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
0eb5a34c 2767 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4
LT
2768
2769 nic = netdev_priv(netdev);
bea3348e 2770 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
1da177e4
LT
2771 nic->netdev = netdev;
2772 nic->pdev = pdev;
2773 nic->msg_enable = (1 << debug) - 1;
72001762 2774 nic->mdio_ctrl = mdio_ctrl_hw;
1da177e4
LT
2775 pci_set_drvdata(pdev, netdev);
2776
f26251eb 2777 if ((err = pci_enable_device(pdev))) {
fa05e1ad 2778 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
1da177e4
LT
2779 goto err_out_free_dev;
2780 }
2781
f26251eb 2782 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
fa05e1ad 2783 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
1da177e4
LT
2784 err = -ENODEV;
2785 goto err_out_disable_pdev;
2786 }
2787
f26251eb 2788 if ((err = pci_request_regions(pdev, DRV_NAME))) {
fa05e1ad 2789 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
1da177e4
LT
2790 goto err_out_disable_pdev;
2791 }
2792
284901a9 2793 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
fa05e1ad 2794 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
1da177e4
LT
2795 goto err_out_free_res;
2796 }
2797
1da177e4
LT
2798 SET_NETDEV_DEV(netdev, &pdev->dev);
2799
27345bb6 2800 if (use_io)
fa05e1ad 2801 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
27345bb6
JB
2802
2803 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
f26251eb 2804 if (!nic->csr) {
fa05e1ad 2805 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
1da177e4
LT
2806 err = -ENOMEM;
2807 goto err_out_free_res;
2808 }
2809
f26251eb 2810 if (ent->driver_data)
1da177e4
LT
2811 nic->flags |= ich;
2812 else
2813 nic->flags &= ~ich;
2814
2815 e100_get_defaults(nic);
2816
1f53367d 2817 /* locks must be initialized before calling hw_reset */
1da177e4
LT
2818 spin_lock_init(&nic->cb_lock);
2819 spin_lock_init(&nic->cmd_lock);
ac7c6669 2820 spin_lock_init(&nic->mdio_lock);
1da177e4
LT
2821
2822 /* Reset the device before pci_set_master() in case device is in some
2823 * funky state and has an interrupt pending - hint: we don't have the
2824 * interrupt handler registered yet. */
2825 e100_hw_reset(nic);
2826
2827 pci_set_master(pdev);
2828
2829 init_timer(&nic->watchdog);
2830 nic->watchdog.function = e100_watchdog;
2831 nic->watchdog.data = (unsigned long)nic;
1da177e4 2832
c4028958 2833 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2acdb1e0 2834
f26251eb 2835 if ((err = e100_alloc(nic))) {
fa05e1ad 2836 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
1da177e4
LT
2837 goto err_out_iounmap;
2838 }
2839
f26251eb 2840 if ((err = e100_eeprom_load(nic)))
1da177e4
LT
2841 goto err_out_free;
2842
f92d8728
MC
2843 e100_phy_init(nic);
2844
1da177e4 2845 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
a92dd923 2846 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
948cd43f
JB
2847 if (!is_valid_ether_addr(netdev->perm_addr)) {
2848 if (!eeprom_bad_csum_allow) {
fa05e1ad 2849 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
948cd43f
JB
2850 err = -EAGAIN;
2851 goto err_out_free;
2852 } else {
fa05e1ad 2853 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
948cd43f 2854 }
1da177e4
LT
2855 }
2856
2857 /* Wol magic packet can be enabled from eeprom */
f26251eb 2858 if ((nic->mac >= mac_82558_D101_A4) &&
bc79fc84 2859 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
1da177e4 2860 nic->flags |= wol_magic;
bc79fc84
RW
2861 device_set_wakeup_enable(&pdev->dev, true);
2862 }
1da177e4 2863
6bdacb1a 2864 /* ack any pending wake events, disable PME */
e7272403 2865 pci_pme_active(pdev, false);
1da177e4
LT
2866
2867 strcpy(netdev->name, "eth%d");
f26251eb 2868 if ((err = register_netdev(netdev))) {
fa05e1ad 2869 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
1da177e4
LT
2870 goto err_out_free;
2871 }
98468efd
RO
2872 nic->cbs_pool = pci_pool_create(netdev->name,
2873 nic->pdev,
211a0d94 2874 nic->params.cbs.max * sizeof(struct cb),
98468efd
RO
2875 sizeof(u32),
2876 0);
fa05e1ad
JP
2877 netif_info(nic, probe, nic->netdev,
2878 "addr 0x%llx, irq %d, MAC addr %pM\n",
2879 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2880 pdev->irq, netdev->dev_addr);
1da177e4
LT
2881
2882 return 0;
2883
2884err_out_free:
2885 e100_free(nic);
2886err_out_iounmap:
27345bb6 2887 pci_iounmap(pdev, nic->csr);
1da177e4
LT
2888err_out_free_res:
2889 pci_release_regions(pdev);
2890err_out_disable_pdev:
2891 pci_disable_device(pdev);
2892err_out_free_dev:
2893 pci_set_drvdata(pdev, NULL);
2894 free_netdev(netdev);
2895 return err;
2896}
2897
2898static void __devexit e100_remove(struct pci_dev *pdev)
2899{
2900 struct net_device *netdev = pci_get_drvdata(pdev);
2901
f26251eb 2902 if (netdev) {
1da177e4
LT
2903 struct nic *nic = netdev_priv(netdev);
2904 unregister_netdev(netdev);
2905 e100_free(nic);
915e91d7 2906 pci_iounmap(pdev, nic->csr);
98468efd 2907 pci_pool_destroy(nic->cbs_pool);
1da177e4
LT
2908 free_netdev(netdev);
2909 pci_release_regions(pdev);
2910 pci_disable_device(pdev);
2911 pci_set_drvdata(pdev, NULL);
2912 }
2913}
2914
b55de80e
BA
2915#define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2916#define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2917#define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
ac7c992c 2918static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
1da177e4
LT
2919{
2920 struct net_device *netdev = pci_get_drvdata(pdev);
2921 struct nic *nic = netdev_priv(netdev);
2922
824545e7 2923 if (netif_running(netdev))
f902283b 2924 e100_down(nic);
518d8338 2925 netif_device_detach(netdev);
a53a33da 2926
1da177e4 2927 pci_save_state(pdev);
e8e82b76
AK
2928
2929 if ((nic->flags & wol_magic) | e100_asf(nic)) {
b55de80e
BA
2930 /* enable reverse auto-negotiation */
2931 if (nic->phy == phy_82552_v) {
2932 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2933 E100_82552_SMARTSPEED);
2934
2935 mdio_write(netdev, nic->mii.phy_id,
2936 E100_82552_SMARTSPEED, smartspeed |
2937 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2938 }
ac7c992c 2939 *enable_wake = true;
e8e82b76 2940 } else {
ac7c992c 2941 *enable_wake = false;
e8e82b76 2942 }
975b366a 2943
8543da66 2944 pci_disable_device(pdev);
ac7c992c 2945}
1da177e4 2946
ac7c992c
TLSC
2947static int __e100_power_off(struct pci_dev *pdev, bool wake)
2948{
6905b1f1 2949 if (wake)
ac7c992c 2950 return pci_prepare_to_sleep(pdev);
6905b1f1
RW
2951
2952 pci_wake_from_d3(pdev, false);
2953 pci_set_power_state(pdev, PCI_D3hot);
2954
2955 return 0;
1da177e4
LT
2956}
2957
f902283b 2958#ifdef CONFIG_PM
ac7c992c
TLSC
2959static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2960{
2961 bool wake;
2962 __e100_shutdown(pdev, &wake);
2963 return __e100_power_off(pdev, wake);
2964}
2965
1da177e4
LT
2966static int e100_resume(struct pci_dev *pdev)
2967{
2968 struct net_device *netdev = pci_get_drvdata(pdev);
2969 struct nic *nic = netdev_priv(netdev);
2970
975b366a 2971 pci_set_power_state(pdev, PCI_D0);
1da177e4 2972 pci_restore_state(pdev);
6bdacb1a 2973 /* ack any pending wake events, disable PME */
975b366a 2974 pci_enable_wake(pdev, 0, 0);
1da177e4 2975
4b512d26 2976 /* disable reverse auto-negotiation */
b55de80e
BA
2977 if (nic->phy == phy_82552_v) {
2978 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2979 E100_82552_SMARTSPEED);
2980
2981 mdio_write(netdev, nic->mii.phy_id,
2982 E100_82552_SMARTSPEED,
2983 smartspeed & ~(E100_82552_REV_ANEG));
2984 }
2985
1da177e4 2986 netif_device_attach(netdev);
975b366a 2987 if (netif_running(netdev))
1da177e4
LT
2988 e100_up(nic);
2989
2990 return 0;
2991}
975b366a 2992#endif /* CONFIG_PM */
1da177e4 2993
d18c3db5 2994static void e100_shutdown(struct pci_dev *pdev)
6bdacb1a 2995{
ac7c992c
TLSC
2996 bool wake;
2997 __e100_shutdown(pdev, &wake);
2998 if (system_state == SYSTEM_POWER_OFF)
2999 __e100_power_off(pdev, wake);
6bdacb1a
MC
3000}
3001
2cc30492
AK
3002/* ------------------ PCI Error Recovery infrastructure -------------- */
3003/**
3004 * e100_io_error_detected - called when PCI error is detected.
3005 * @pdev: Pointer to PCI device
0a0863af 3006 * @state: The current pci connection state
2cc30492
AK
3007 */
3008static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3009{
3010 struct net_device *netdev = pci_get_drvdata(pdev);
bea3348e 3011 struct nic *nic = netdev_priv(netdev);
2cc30492 3012
2cc30492 3013 netif_device_detach(netdev);
ef681ce1
AD
3014
3015 if (state == pci_channel_io_perm_failure)
3016 return PCI_ERS_RESULT_DISCONNECT;
3017
3018 if (netif_running(netdev))
3019 e100_down(nic);
b1d26f24 3020 pci_disable_device(pdev);
2cc30492
AK
3021
3022 /* Request a slot reset. */
3023 return PCI_ERS_RESULT_NEED_RESET;
3024}
3025
3026/**
3027 * e100_io_slot_reset - called after the pci bus has been reset.
3028 * @pdev: Pointer to PCI device
3029 *
3030 * Restart the card from scratch.
3031 */
3032static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3033{
3034 struct net_device *netdev = pci_get_drvdata(pdev);
3035 struct nic *nic = netdev_priv(netdev);
3036
3037 if (pci_enable_device(pdev)) {
fa05e1ad 3038 pr_err("Cannot re-enable PCI device after reset\n");
2cc30492
AK
3039 return PCI_ERS_RESULT_DISCONNECT;
3040 }
3041 pci_set_master(pdev);
3042
3043 /* Only one device per card can do a reset */
3044 if (0 != PCI_FUNC(pdev->devfn))
3045 return PCI_ERS_RESULT_RECOVERED;
3046 e100_hw_reset(nic);
3047 e100_phy_init(nic);
3048
3049 return PCI_ERS_RESULT_RECOVERED;
3050}
3051
3052/**
3053 * e100_io_resume - resume normal operations
3054 * @pdev: Pointer to PCI device
3055 *
3056 * Resume normal operations after an error recovery
3057 * sequence has been completed.
3058 */
3059static void e100_io_resume(struct pci_dev *pdev)
3060{
3061 struct net_device *netdev = pci_get_drvdata(pdev);
3062 struct nic *nic = netdev_priv(netdev);
3063
3064 /* ack any pending wake events, disable PME */
3065 pci_enable_wake(pdev, 0, 0);
3066
3067 netif_device_attach(netdev);
3068 if (netif_running(netdev)) {
3069 e100_open(netdev);
3070 mod_timer(&nic->watchdog, jiffies);
3071 }
3072}
3073
3074static struct pci_error_handlers e100_err_handler = {
3075 .error_detected = e100_io_error_detected,
3076 .slot_reset = e100_io_slot_reset,
3077 .resume = e100_io_resume,
3078};
6bdacb1a 3079
1da177e4
LT
3080static struct pci_driver e100_driver = {
3081 .name = DRV_NAME,
3082 .id_table = e100_id_table,
3083 .probe = e100_probe,
3084 .remove = __devexit_p(e100_remove),
e8e82b76 3085#ifdef CONFIG_PM
975b366a 3086 /* Power Management hooks */
1da177e4
LT
3087 .suspend = e100_suspend,
3088 .resume = e100_resume,
3089#endif
05479938 3090 .shutdown = e100_shutdown,
2cc30492 3091 .err_handler = &e100_err_handler,
1da177e4
LT
3092};
3093
3094static int __init e100_init_module(void)
3095{
f26251eb 3096 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
fa05e1ad
JP
3097 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3098 pr_info("%s\n", DRV_COPYRIGHT);
1da177e4 3099 }
29917620 3100 return pci_register_driver(&e100_driver);
1da177e4
LT
3101}
3102
3103static void __exit e100_cleanup_module(void)
3104{
3105 pci_unregister_driver(&e100_driver);
3106}
3107
3108module_init(e100_init_module);
3109module_exit(e100_cleanup_module);