Merge branch 'report-rcu-qs-for-busy-network-kthreads'
[linux-block.git] / drivers / net / dsa / mt7530.c
CommitLineData
1802d0be 1// SPDX-License-Identifier: GPL-2.0-only
b8f126a8
SW
2/*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
b8f126a8
SW
5 */
6#include <linux/etherdevice.h>
7#include <linux/if_bridge.h>
8#include <linux/iopoll.h>
9#include <linux/mdio.h>
10#include <linux/mfd/syscon.h>
11#include <linux/module.h>
12#include <linux/netdevice.h>
ba751e28 13#include <linux/of_irq.h>
b8f126a8
SW
14#include <linux/of_mdio.h>
15#include <linux/of_net.h>
16#include <linux/of_platform.h>
ca366d6c 17#include <linux/phylink.h>
b8f126a8
SW
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/reset.h>
eb976a55 21#include <linux/gpio/consumer.h>
429a0ede 22#include <linux/gpio/driver.h>
b8f126a8 23#include <net/dsa.h>
b8f126a8
SW
24
25#include "mt7530.h"
26
cbd1f243
RKO
27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28{
29 return container_of(pcs, struct mt753x_pcs, pcs);
30}
31
b8f126a8
SW
32/* String, offset, and register size in bytes if different from 4 bytes */
33static const struct mt7530_mib_desc mt7530_mib[] = {
34 MIB_DESC(1, 0x00, "TxDrop"),
35 MIB_DESC(1, 0x04, "TxCrcErr"),
36 MIB_DESC(1, 0x08, "TxUnicast"),
37 MIB_DESC(1, 0x0c, "TxMulticast"),
38 MIB_DESC(1, 0x10, "TxBroadcast"),
39 MIB_DESC(1, 0x14, "TxCollision"),
40 MIB_DESC(1, 0x18, "TxSingleCollision"),
41 MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 MIB_DESC(1, 0x20, "TxDeferred"),
43 MIB_DESC(1, 0x24, "TxLateCollision"),
44 MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 MIB_DESC(1, 0x2c, "TxPause"),
46 MIB_DESC(1, 0x30, "TxPktSz64"),
47 MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 MIB_DESC(2, 0x48, "TxBytes"),
53 MIB_DESC(1, 0x60, "RxDrop"),
54 MIB_DESC(1, 0x64, "RxFiltering"),
aff51c5d 55 MIB_DESC(1, 0x68, "RxUnicast"),
b8f126a8
SW
56 MIB_DESC(1, 0x6c, "RxMulticast"),
57 MIB_DESC(1, 0x70, "RxBroadcast"),
58 MIB_DESC(1, 0x74, "RxAlignErr"),
59 MIB_DESC(1, 0x78, "RxCrcErr"),
60 MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 MIB_DESC(1, 0x80, "RxFragErr"),
62 MIB_DESC(1, 0x84, "RxOverSzErr"),
63 MIB_DESC(1, 0x88, "RxJabberErr"),
64 MIB_DESC(1, 0x8c, "RxPause"),
65 MIB_DESC(1, 0x90, "RxPktSz64"),
66 MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 MIB_DESC(2, 0xa8, "RxBytes"),
72 MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 MIB_DESC(1, 0xb8, "RxArlDrop"),
75};
76
4732315c
IL
77/* Since phy_device has not yet been created and
78 * phy_{read,write}_mmd_indirect is not available, we provide our own
79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80 * to complete this function.
81 */
b8f126a8
SW
82static int
83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84{
85 struct mii_bus *bus = priv->bus;
86 int value, ret;
87
88 /* Write the desired MMD Devad */
89 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 if (ret < 0)
91 goto err;
92
93 /* Write the desired MMD register address */
94 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 if (ret < 0)
96 goto err;
97
98 /* Select the Function : DATA with no post increment */
99 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 if (ret < 0)
101 goto err;
102
103 /* Read the content of the MMD's selected register */
104 value = bus->read(bus, 0, MII_MMD_DATA);
105
106 return value;
107err:
108 dev_err(&bus->dev, "failed to read mmd register\n");
109
110 return ret;
111}
112
113static int
114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 int devad, u32 data)
116{
117 struct mii_bus *bus = priv->bus;
118 int ret;
119
120 /* Write the desired MMD Devad */
121 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 if (ret < 0)
123 goto err;
124
125 /* Write the desired MMD register address */
126 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 if (ret < 0)
128 goto err;
129
130 /* Select the Function : DATA with no post increment */
131 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 if (ret < 0)
133 goto err;
134
135 /* Write the data into MMD's selected register */
136 ret = bus->write(bus, 0, MII_MMD_DATA, data);
137err:
138 if (ret < 0)
139 dev_err(&bus->dev,
140 "failed to write mmd register\n");
141 return ret;
142}
143
144static void
1557c679 145mt7530_mutex_lock(struct mt7530_priv *priv)
b8f126a8 146{
54d4147a
DG
147 if (priv->bus)
148 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1557c679 149}
b8f126a8 150
1557c679
DG
151static void
152mt7530_mutex_unlock(struct mt7530_priv *priv)
153{
54d4147a
DG
154 if (priv->bus)
155 mutex_unlock(&priv->bus->mdio_lock);
1557c679
DG
156}
157
158static void
159core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160{
161 mt7530_mutex_lock(priv);
b8f126a8
SW
162
163 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164
1557c679 165 mt7530_mutex_unlock(priv);
b8f126a8
SW
166}
167
168static void
169core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170{
b8f126a8
SW
171 u32 val;
172
1557c679 173 mt7530_mutex_lock(priv);
b8f126a8
SW
174
175 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 val &= ~mask;
177 val |= set;
178 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179
1557c679 180 mt7530_mutex_unlock(priv);
b8f126a8
SW
181}
182
183static void
184core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185{
186 core_rmw(priv, reg, 0, val);
187}
188
189static void
190core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191{
192 core_rmw(priv, reg, val, 0);
193}
194
a08c0455
DG
195static int
196mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197{
198 int ret;
199
200 ret = regmap_write(priv->regmap, reg, val);
201
b8f126a8 202 if (ret < 0)
a08c0455 203 dev_err(priv->dev,
b8f126a8 204 "failed to write mt7530 register\n");
a08c0455 205
b8f126a8
SW
206 return ret;
207}
208
a08c0455
DG
209static u32
210mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211{
212 int ret;
213 u32 val;
214
215 ret = regmap_read(priv->regmap, reg, &val);
216 if (ret) {
b6f56cdd 217 WARN_ON_ONCE(1);
a08c0455 218 dev_err(priv->dev,
b8f126a8 219 "failed to read mt7530 register\n");
b6f56cdd 220 return 0;
b8f126a8
SW
221 }
222
a08c0455 223 return val;
b8f126a8
SW
224}
225
226static void
227mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228{
1557c679 229 mt7530_mutex_lock(priv);
b8f126a8
SW
230
231 mt7530_mii_write(priv, reg, val);
232
1557c679 233 mt7530_mutex_unlock(priv);
b8f126a8
SW
234}
235
c288575f
LC
236static u32
237_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238{
239 return mt7530_mii_read(p->priv, p->reg);
240}
241
b8f126a8
SW
242static u32
243_mt7530_read(struct mt7530_dummy_poll *p)
244{
b8f126a8
SW
245 u32 val;
246
1557c679 247 mt7530_mutex_lock(p->priv);
b8f126a8
SW
248
249 val = mt7530_mii_read(p->priv, p->reg);
250
1557c679 251 mt7530_mutex_unlock(p->priv);
b8f126a8
SW
252
253 return val;
254}
255
256static u32
257mt7530_read(struct mt7530_priv *priv, u32 reg)
258{
259 struct mt7530_dummy_poll p;
260
261 INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 return _mt7530_read(&p);
263}
264
265static void
266mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 u32 mask, u32 set)
268{
1557c679 269 mt7530_mutex_lock(priv);
b8f126a8 270
a08c0455 271 regmap_update_bits(priv->regmap, reg, mask, set);
b8f126a8 272
1557c679 273 mt7530_mutex_unlock(priv);
b8f126a8
SW
274}
275
276static void
277mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278{
a08c0455 279 mt7530_rmw(priv, reg, val, val);
b8f126a8
SW
280}
281
282static void
283mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284{
285 mt7530_rmw(priv, reg, val, 0);
286}
287
288static int
289mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290{
291 u32 val;
292 int ret;
293 struct mt7530_dummy_poll p;
294
295 /* Set the command operating upon the MAC address entries */
296 val = ATC_BUSY | ATC_MAT(0) | cmd;
297 mt7530_write(priv, MT7530_ATC, val);
298
299 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 ret = readx_poll_timeout(_mt7530_read, &p, val,
301 !(val & ATC_BUSY), 20, 20000);
302 if (ret < 0) {
303 dev_err(priv->dev, "reset timeout\n");
304 return ret;
305 }
306
307 /* Additional sanity for read command if the specified
308 * entry is invalid
309 */
310 val = mt7530_read(priv, MT7530_ATC);
311 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 return -EINVAL;
313
314 if (rsp)
315 *rsp = val;
316
317 return 0;
318}
319
320static void
321mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322{
323 u32 reg[3];
324 int i;
325
326 /* Read from ARL table into an array */
327 for (i = 0; i < 3; i++) {
328 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329
330 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 __func__, __LINE__, i, reg[i]);
332 }
333
334 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344}
345
346static void
347mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 u8 port_mask, const u8 *mac,
349 u8 aging, u8 type)
350{
351 u32 reg[3] = { 0 };
352 int i;
353
354 reg[1] |= vid & CVID_MASK;
73c447ca
DQ
355 reg[1] |= ATA2_IVL;
356 reg[1] |= ATA2_FID(FID_BRIDGED);
b8f126a8
SW
357 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 /* STATIC_ENT indicate that entry is static wouldn't
360 * be aged out and STATIC_EMP specified as erasing an
361 * entry
362 */
363 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 reg[1] |= mac[5] << MAC_BYTE_5;
365 reg[1] |= mac[4] << MAC_BYTE_4;
366 reg[0] |= mac[3] << MAC_BYTE_3;
367 reg[0] |= mac[2] << MAC_BYTE_2;
368 reg[0] |= mac[1] << MAC_BYTE_1;
369 reg[0] |= mac[0] << MAC_BYTE_0;
370
371 /* Write array into the ARL table */
372 for (i = 0; i < 3; i++)
373 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374}
375
c8b8a3c6
VO
376/* Set up switch core clock for MT7530 */
377static void mt7530_pll_setup(struct mt7530_priv *priv)
378{
8f058a6e
379 /* Disable core clock */
380 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381
c8b8a3c6
VO
382 /* Disable PLL */
383 core_write(priv, CORE_GSWPLL_GRP1, 0);
384
385 /* Set core clock into 500Mhz */
386 core_write(priv, CORE_GSWPLL_GRP2,
387 RG_GSWPLL_POSDIV_500M(1) |
388 RG_GSWPLL_FBKDIV_500M(25));
389
390 /* Enable PLL */
391 core_write(priv, CORE_GSWPLL_GRP1,
392 RG_GSWPLL_EN_PRE |
393 RG_GSWPLL_POSDIV_200M(2) |
394 RG_GSWPLL_FBKDIV_200M(32));
8f058a6e
395
396 udelay(20);
397
398 /* Enable core clock */
399 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
c8b8a3c6
VO
400}
401
b79d7c14
VO
402/* If port 6 is available as a CPU port, always prefer that as the default,
403 * otherwise don't care.
404 */
405static struct dsa_port *
406mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407{
408 struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409
410 if (dsa_port_is_cpu(cpu_dp))
411 return cpu_dp;
412
413 return NULL;
414}
415
fdcc8ccd 416/* Setup port 6 interface mode and TRGMII TX circuit */
4ea4c040
417static void
418mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
b8f126a8
SW
419{
420 struct mt7530_priv *priv = ds->priv;
4eec447e
421 u32 ncpo1, ssc_delta, xtal;
422
423 /* Disable the MT7530 TRGMII clocks */
424 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
425
426 if (interface == PHY_INTERFACE_MODE_RGMII) {
427 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
428 P6_INTF_MODE(0));
4ea4c040 429 return;
4eec447e
430 }
431
432 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
7ef6f6f8
RD
433
434 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
435
4eec447e
436 if (xtal == HWTRAP_XTAL_25MHZ)
437 ssc_delta = 0x57;
438 else
439 ssc_delta = 0x87;
440
441 if (priv->id == ID_MT7621) {
442 /* PLL frequency: 125MHz: 1.0GBit */
443 if (xtal == HWTRAP_XTAL_40MHZ)
444 ncpo1 = 0x0640;
407b508b 445 if (xtal == HWTRAP_XTAL_25MHZ)
4eec447e
446 ncpo1 = 0x0a00;
447 } else { /* PLL frequency: 250MHz: 2.0Gbit */
448 if (xtal == HWTRAP_XTAL_40MHZ)
449 ncpo1 = 0x0c80;
450 if (xtal == HWTRAP_XTAL_25MHZ)
451 ncpo1 = 0x1400;
b8f126a8
SW
452 }
453
4eec447e
454 /* Setup the MT7530 TRGMII Tx Clock */
455 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459 core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
460 RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
461 core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
462 RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
463 core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
464 RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
465
466 /* Enable the MT7530 TRGMII clocks */
467 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
4ea4c040 468}
0b086d76 469
42bc4faf
AC
470static void
471mt7531_pll_setup(struct mt7530_priv *priv)
472{
c288575f
LC
473 u32 top_sig;
474 u32 hwstrap;
475 u32 xtal;
476 u32 val;
477
c288575f
LC
478 val = mt7530_read(priv, MT7531_CREV);
479 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
480 hwstrap = mt7530_read(priv, MT7531_HWTRAP);
481 if ((val & CHIP_REV_M) > 0)
482 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
483 HWTRAP_XTAL_FSEL_25MHZ;
484 else
485 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
486
487 /* Step 1 : Disable MT7531 COREPLL */
488 val = mt7530_read(priv, MT7531_PLLGP_EN);
489 val &= ~EN_COREPLL;
490 mt7530_write(priv, MT7531_PLLGP_EN, val);
491
492 /* Step 2: switch to XTAL output */
493 val = mt7530_read(priv, MT7531_PLLGP_EN);
494 val |= SW_CLKSW;
495 mt7530_write(priv, MT7531_PLLGP_EN, val);
496
497 val = mt7530_read(priv, MT7531_PLLGP_CR0);
498 val &= ~RG_COREPLL_EN;
499 mt7530_write(priv, MT7531_PLLGP_CR0, val);
500
501 /* Step 3: disable PLLGP and enable program PLLGP */
502 val = mt7530_read(priv, MT7531_PLLGP_EN);
503 val |= SW_PLLGP;
504 mt7530_write(priv, MT7531_PLLGP_EN, val);
505
506 /* Step 4: program COREPLL output frequency to 500MHz */
507 val = mt7530_read(priv, MT7531_PLLGP_CR0);
508 val &= ~RG_COREPLL_POSDIV_M;
509 val |= 2 << RG_COREPLL_POSDIV_S;
510 mt7530_write(priv, MT7531_PLLGP_CR0, val);
511 usleep_range(25, 35);
512
513 switch (xtal) {
514 case HWTRAP_XTAL_FSEL_25MHZ:
515 val = mt7530_read(priv, MT7531_PLLGP_CR0);
516 val &= ~RG_COREPLL_SDM_PCW_M;
517 val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
518 mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 break;
520 case HWTRAP_XTAL_FSEL_40MHZ:
521 val = mt7530_read(priv, MT7531_PLLGP_CR0);
522 val &= ~RG_COREPLL_SDM_PCW_M;
523 val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
524 mt7530_write(priv, MT7531_PLLGP_CR0, val);
525 break;
0e8c266c 526 }
c288575f
LC
527
528 /* Set feedback divide ratio update signal to high */
529 val = mt7530_read(priv, MT7531_PLLGP_CR0);
530 val |= RG_COREPLL_SDM_PCW_CHG;
531 mt7530_write(priv, MT7531_PLLGP_CR0, val);
532 /* Wait for at least 16 XTAL clocks */
533 usleep_range(10, 20);
534
535 /* Step 5: set feedback divide ratio update signal to low */
536 val = mt7530_read(priv, MT7531_PLLGP_CR0);
537 val &= ~RG_COREPLL_SDM_PCW_CHG;
538 mt7530_write(priv, MT7531_PLLGP_CR0, val);
539
540 /* Enable 325M clock for SGMII */
541 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
542
543 /* Enable 250SSC clock for RGMII */
544 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
545
546 /* Step 6: Enable MT7531 PLL */
547 val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 val |= RG_COREPLL_EN;
549 mt7530_write(priv, MT7531_PLLGP_CR0, val);
550
551 val = mt7530_read(priv, MT7531_PLLGP_EN);
552 val |= EN_COREPLL;
553 mt7530_write(priv, MT7531_PLLGP_EN, val);
554 usleep_range(25, 35);
c288575f
LC
555}
556
b8f126a8
SW
557static void
558mt7530_mib_reset(struct dsa_switch *ds)
559{
560 struct mt7530_priv *priv = ds->priv;
561
562 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564}
565
defa2e54 566static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
b8f126a8 567{
b8f126a8
SW
568 return mdiobus_read_nested(priv->bus, port, regnum);
569}
570
defa2e54
AL
571static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
572 u16 val)
b8f126a8 573{
b8f126a8
SW
574 return mdiobus_write_nested(priv->bus, port, regnum, val);
575}
576
defa2e54
AL
577static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
578 int devad, int regnum)
579{
580 return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
581}
582
583static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
584 int regnum, u16 val)
585{
586 return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
587}
588
c288575f
LC
589static int
590mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
591 int regnum)
592{
c288575f
LC
593 struct mt7530_dummy_poll p;
594 u32 reg, val;
595 int ret;
596
597 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
598
1557c679 599 mt7530_mutex_lock(priv);
c288575f
LC
600
601 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
602 !(val & MT7531_PHY_ACS_ST), 20, 100000);
603 if (ret < 0) {
604 dev_err(priv->dev, "poll timeout\n");
605 goto out;
606 }
607
608 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
609 MT7531_MDIO_DEV_ADDR(devad) | regnum;
610 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
611
612 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
613 !(val & MT7531_PHY_ACS_ST), 20, 100000);
614 if (ret < 0) {
615 dev_err(priv->dev, "poll timeout\n");
616 goto out;
617 }
618
619 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
620 MT7531_MDIO_DEV_ADDR(devad);
621 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
622
623 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
624 !(val & MT7531_PHY_ACS_ST), 20, 100000);
625 if (ret < 0) {
626 dev_err(priv->dev, "poll timeout\n");
627 goto out;
628 }
629
630 ret = val & MT7531_MDIO_RW_DATA_MASK;
631out:
1557c679 632 mt7530_mutex_unlock(priv);
c288575f
LC
633
634 return ret;
635}
636
637static int
638mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
defa2e54 639 int regnum, u16 data)
c288575f 640{
c288575f
LC
641 struct mt7530_dummy_poll p;
642 u32 val, reg;
643 int ret;
644
645 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
646
1557c679 647 mt7530_mutex_lock(priv);
c288575f
LC
648
649 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 if (ret < 0) {
652 dev_err(priv->dev, "poll timeout\n");
653 goto out;
654 }
655
656 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
657 MT7531_MDIO_DEV_ADDR(devad) | regnum;
658 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
659
660 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
661 !(val & MT7531_PHY_ACS_ST), 20, 100000);
662 if (ret < 0) {
663 dev_err(priv->dev, "poll timeout\n");
664 goto out;
665 }
666
667 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
668 MT7531_MDIO_DEV_ADDR(devad) | data;
669 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
670
671 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
672 !(val & MT7531_PHY_ACS_ST), 20, 100000);
673 if (ret < 0) {
674 dev_err(priv->dev, "poll timeout\n");
675 goto out;
676 }
677
678out:
1557c679 679 mt7530_mutex_unlock(priv);
c288575f
LC
680
681 return ret;
682}
683
684static int
685mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
686{
c288575f
LC
687 struct mt7530_dummy_poll p;
688 int ret;
689 u32 val;
690
691 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
692
1557c679 693 mt7530_mutex_lock(priv);
c288575f
LC
694
695 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 if (ret < 0) {
698 dev_err(priv->dev, "poll timeout\n");
699 goto out;
700 }
701
702 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
703 MT7531_MDIO_REG_ADDR(regnum);
704
705 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
706
707 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709 if (ret < 0) {
710 dev_err(priv->dev, "poll timeout\n");
711 goto out;
712 }
713
714 ret = val & MT7531_MDIO_RW_DATA_MASK;
715out:
1557c679 716 mt7530_mutex_unlock(priv);
c288575f
LC
717
718 return ret;
719}
720
721static int
722mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
723 u16 data)
724{
c288575f
LC
725 struct mt7530_dummy_poll p;
726 int ret;
727 u32 reg;
728
729 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730
1557c679 731 mt7530_mutex_lock(priv);
c288575f
LC
732
733 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
734 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
735 if (ret < 0) {
736 dev_err(priv->dev, "poll timeout\n");
737 goto out;
738 }
739
740 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
741 MT7531_MDIO_REG_ADDR(regnum) | data;
742
743 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
744
745 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
746 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
747 if (ret < 0) {
748 dev_err(priv->dev, "poll timeout\n");
749 goto out;
750 }
751
752out:
1557c679 753 mt7530_mutex_unlock(priv);
c288575f
LC
754
755 return ret;
756}
757
758static int
defa2e54 759mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
c288575f 760{
defa2e54 761 struct mt7530_priv *priv = bus->priv;
c288575f 762
defa2e54 763 return priv->info->phy_read_c22(priv, port, regnum);
c288575f
LC
764}
765
766static int
defa2e54 767mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
c288575f 768{
defa2e54 769 struct mt7530_priv *priv = bus->priv;
c288575f 770
defa2e54 771 return priv->info->phy_read_c45(priv, port, devad, regnum);
c288575f
LC
772}
773
ba751e28 774static int
defa2e54 775mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
ba751e28
DQ
776{
777 struct mt7530_priv *priv = bus->priv;
778
defa2e54 779 return priv->info->phy_write_c22(priv, port, regnum, val);
ba751e28
DQ
780}
781
782static int
defa2e54
AL
783mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
784 u16 val)
ba751e28
DQ
785{
786 struct mt7530_priv *priv = bus->priv;
787
defa2e54 788 return priv->info->phy_write_c45(priv, port, devad, regnum, val);
ba751e28
DQ
789}
790
b8f126a8 791static void
89f09048
FF
792mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
793 uint8_t *data)
b8f126a8
SW
794{
795 int i;
796
89f09048
FF
797 if (stringset != ETH_SS_STATS)
798 return;
799
b8f126a8 800 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
e403cfff 801 ethtool_puts(&data, mt7530_mib[i].name);
b8f126a8
SW
802}
803
804static void
805mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
806 uint64_t *data)
807{
808 struct mt7530_priv *priv = ds->priv;
809 const struct mt7530_mib_desc *mib;
810 u32 reg, i;
811 u64 hi;
812
813 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
814 mib = &mt7530_mib[i];
815 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
816
817 data[i] = mt7530_read(priv, reg);
818 if (mib->size == 2) {
819 hi = mt7530_read(priv, reg + 4);
820 data[i] |= hi << 32;
821 }
822 }
823}
824
825static int
89f09048 826mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
b8f126a8 827{
89f09048
FF
828 if (sset != ETH_SS_STATS)
829 return 0;
830
b8f126a8
SW
831 return ARRAY_SIZE(mt7530_mib);
832}
833
ea6d5c92
DQ
834static int
835mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
836{
837 struct mt7530_priv *priv = ds->priv;
838 unsigned int secs = msecs / 1000;
839 unsigned int tmp_age_count;
840 unsigned int error = -1;
841 unsigned int age_count;
842 unsigned int age_unit;
843
844 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
845 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
846 return -ERANGE;
847
848 /* iterate through all possible age_count to find the closest pair */
849 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
850 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
851
852 if (tmp_age_unit <= AGE_UNIT_MAX) {
853 unsigned int tmp_error = secs -
854 (tmp_age_count + 1) * (tmp_age_unit + 1);
855
856 /* found a closer pair */
857 if (error > tmp_error) {
858 error = tmp_error;
859 age_count = tmp_age_count;
860 age_unit = tmp_age_unit;
861 }
862
863 /* found the exact match, so break the loop */
864 if (!error)
865 break;
866 }
867 }
868
869 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
870
871 return 0;
872}
873
25d15dee
DG
874static const char *p5_intf_modes(unsigned int p5_interface)
875{
876 switch (p5_interface) {
877 case P5_DISABLED:
878 return "DISABLED";
879 case P5_INTF_SEL_PHY_P0:
880 return "PHY P0";
881 case P5_INTF_SEL_PHY_P4:
882 return "PHY P4";
883 case P5_INTF_SEL_GMAC5:
884 return "GMAC5";
25d15dee
DG
885 default:
886 return "unknown";
887 }
888}
889
38f790a8
RD
890static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
891{
892 struct mt7530_priv *priv = ds->priv;
893 u8 tx_delay = 0;
894 int val;
895
896 mutex_lock(&priv->reg_mutex);
897
898 val = mt7530_read(priv, MT7530_MHWTRAP);
899
900 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
901 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
902
903 switch (priv->p5_intf_sel) {
904 case P5_INTF_SEL_PHY_P0:
905 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
906 val |= MHWTRAP_PHY0_SEL;
df561f66 907 fallthrough;
38f790a8
RD
908 case P5_INTF_SEL_PHY_P4:
909 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
910 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
911
912 /* Setup the MAC by default for the cpu port */
913 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
914 break;
915 case P5_INTF_SEL_GMAC5:
916 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
917 val &= ~MHWTRAP_P5_DIS;
918 break;
38f790a8 919 default:
01fc4294 920 break;
38f790a8
RD
921 }
922
923 /* Setup RGMII settings */
924 if (phy_interface_mode_is_rgmii(interface)) {
925 val |= MHWTRAP_P5_RGMII_MODE;
926
927 /* P5 RGMII RX Clock Control: delay setting for 1000M */
928 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
929
930 /* Don't set delay in DSA mode */
931 if (!dsa_is_dsa_port(priv->ds, 5) &&
932 (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
933 interface == PHY_INTERFACE_MODE_RGMII_ID))
934 tx_delay = 4; /* n * 0.5 ns */
935
936 /* P5 RGMII TX Clock Control: delay x */
937 mt7530_write(priv, MT7530_P5RGMIITXCR,
938 CSR_RGMII_TXC_CFG(0x10 + tx_delay));
939
940 /* reduce P5 RGMII Tx driving, 8mA */
941 mt7530_write(priv, MT7530_IO_DRV_CR,
942 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
943 }
944
945 mt7530_write(priv, MT7530_MHWTRAP, val);
946
947 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
948 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
949
38f790a8
RD
950 mutex_unlock(&priv->reg_mutex);
951}
952
d7c66073
953static void
954mt753x_trap_frames(struct mt7530_priv *priv)
955{
956 /* Trap BPDUs to the CPU port(s) */
957 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
958 MT753X_BPDU_CPU_ONLY);
8332cf6f 959
e94b590a
960 /* Trap 802.1X PAE frames to the CPU port(s) */
961 mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK,
962 MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY));
963
8332cf6f
964 /* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
965 mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
966 MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
d7c66073
967}
968
22fa1017 969static void
c288575f 970mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
b8f126a8 971{
c288575f 972 struct mt7530_priv *priv = ds->priv;
c288575f 973
b8f126a8
SW
974 /* Enable Mediatek header mode on the cpu port */
975 mt7530_write(priv, MT7530_PVC_P(port),
976 PORT_SPEC_TAG);
977
120a56b0
978 /* Enable flooding on the CPU port */
979 mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
980 UNU_FFP(BIT(port)));
b8f126a8 981
ff221029
982 /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
983 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
984 * is affine to the inbound user port.
985 */
986 if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
987 mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
988
b8f126a8 989 /* CPU port gets connected to all user ports of
c288575f 990 * the switch.
b8f126a8
SW
991 */
992 mt7530_write(priv, MT7530_PCR_P(port),
02bc6e54 993 PCR_MATRIX(dsa_user_ports(priv->ds)));
b8f126a8 994
6087175b
DQ
995 /* Set to fallback mode for independent VLAN learning */
996 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
997 MT7530_PORT_FALLBACK_MODE);
b8f126a8
SW
998}
999
1000static int
1001mt7530_port_enable(struct dsa_switch *ds, int port,
1002 struct phy_device *phy)
1003{
1f9a6abe 1004 struct dsa_port *dp = dsa_to_port(ds, port);
b8f126a8
SW
1005 struct mt7530_priv *priv = ds->priv;
1006
1007 mutex_lock(&priv->reg_mutex);
1008
b8f126a8
SW
1009 /* Allow the user port gets connected to the cpu port and also
1010 * restore the port matrix if the port is the member of a certain
1011 * bridge.
1012 */
1f9a6abe
FW
1013 if (dsa_port_is_user(dp)) {
1014 struct dsa_port *cpu_dp = dp->cpu_dp;
1015
1016 priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1017 }
b8f126a8
SW
1018 priv->ports[port].enable = true;
1019 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1020 priv->ports[port].pm);
b8f126a8
SW
1021
1022 mutex_unlock(&priv->reg_mutex);
1023
1024 return 0;
1025}
1026
1027static void
75104db0 1028mt7530_port_disable(struct dsa_switch *ds, int port)
b8f126a8
SW
1029{
1030 struct mt7530_priv *priv = ds->priv;
1031
1032 mutex_lock(&priv->reg_mutex);
1033
1034 /* Clear up all port matrix which could be restored in the next
1035 * enablement for the port.
1036 */
1037 priv->ports[port].enable = false;
1038 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1039 PCR_MATRIX_CLR);
b8f126a8
SW
1040
1041 mutex_unlock(&priv->reg_mutex);
1042}
1043
9470174e
DQ
1044static int
1045mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1046{
1047 struct mt7530_priv *priv = ds->priv;
9470174e
DQ
1048 int length;
1049 u32 val;
1050
1051 /* When a new MTU is set, DSA always set the CPU port's MTU to the
6ca80638 1052 * largest MTU of the user ports. Because the switch only has a global
9470174e
DQ
1053 * RX length register, only allowing CPU port here is enough.
1054 */
1055 if (!dsa_is_cpu_port(ds, port))
1056 return 0;
1057
1557c679 1058 mt7530_mutex_lock(priv);
9470174e
DQ
1059
1060 val = mt7530_mii_read(priv, MT7530_GMACCR);
1061 val &= ~MAX_RX_PKT_LEN_MASK;
1062
1063 /* RX length also includes Ethernet header, MTK tag, and FCS length */
1064 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1065 if (length <= 1522) {
1066 val |= MAX_RX_PKT_LEN_1522;
1067 } else if (length <= 1536) {
1068 val |= MAX_RX_PKT_LEN_1536;
1069 } else if (length <= 1552) {
1070 val |= MAX_RX_PKT_LEN_1552;
1071 } else {
1072 val &= ~MAX_RX_JUMBO_MASK;
1073 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1074 val |= MAX_RX_PKT_LEN_JUMBO;
1075 }
1076
1077 mt7530_mii_write(priv, MT7530_GMACCR, val);
1078
1557c679 1079 mt7530_mutex_unlock(priv);
9470174e
DQ
1080
1081 return 0;
1082}
1083
1084static int
1085mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1086{
1087 return MT7530_MAX_MTU;
1088}
1089
b8f126a8
SW
1090static void
1091mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1092{
1093 struct mt7530_priv *priv = ds->priv;
1094 u32 stp_state;
1095
1096 switch (state) {
1097 case BR_STATE_DISABLED:
1098 stp_state = MT7530_STP_DISABLED;
1099 break;
1100 case BR_STATE_BLOCKING:
1101 stp_state = MT7530_STP_BLOCKING;
1102 break;
1103 case BR_STATE_LISTENING:
1104 stp_state = MT7530_STP_LISTENING;
1105 break;
1106 case BR_STATE_LEARNING:
1107 stp_state = MT7530_STP_LEARNING;
1108 break;
1109 case BR_STATE_FORWARDING:
1110 default:
1111 stp_state = MT7530_STP_FORWARDING;
1112 break;
1113 }
1114
a9e3f62d
DQ
1115 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1116 FID_PST(FID_BRIDGED, stp_state));
b8f126a8
SW
1117}
1118
5a30833b
DQ
1119static int
1120mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1121 struct switchdev_brport_flags flags,
1122 struct netlink_ext_ack *extack)
1123{
1124 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1125 BR_BCAST_FLOOD))
1126 return -EINVAL;
1127
1128 return 0;
1129}
1130
1131static int
1132mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1133 struct switchdev_brport_flags flags,
1134 struct netlink_ext_ack *extack)
1135{
1136 struct mt7530_priv *priv = ds->priv;
1137
1138 if (flags.mask & BR_LEARNING)
1139 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1140 flags.val & BR_LEARNING ? 0 : SA_DIS);
1141
1142 if (flags.mask & BR_FLOOD)
1143 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1144 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1145
1146 if (flags.mask & BR_MCAST_FLOOD)
1147 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1148 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1149
1150 if (flags.mask & BR_BCAST_FLOOD)
1151 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1152 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1153
1154 return 0;
1155}
1156
b8f126a8
SW
1157static int
1158mt7530_port_bridge_join(struct dsa_switch *ds, int port,
06b9cce4
VO
1159 struct dsa_bridge bridge, bool *tx_fwd_offload,
1160 struct netlink_ext_ack *extack)
b8f126a8 1161{
872bb81d 1162 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1f9a6abe
FW
1163 struct dsa_port *cpu_dp = dp->cpu_dp;
1164 u32 port_bitmap = BIT(cpu_dp->index);
872bb81d 1165 struct mt7530_priv *priv = ds->priv;
b8f126a8
SW
1166
1167 mutex_lock(&priv->reg_mutex);
1168
872bb81d
VO
1169 dsa_switch_for_each_user_port(other_dp, ds) {
1170 int other_port = other_dp->index;
1171
1172 if (dp == other_dp)
1173 continue;
1174
b8f126a8
SW
1175 /* Add this port to the port matrix of the other ports in the
1176 * same bridge. If the port is disabled, port matrix is kept
1177 * and not being setup until the port becomes enabled.
1178 */
d3eed0e5 1179 if (!dsa_port_offloads_bridge(other_dp, &bridge))
872bb81d
VO
1180 continue;
1181
1182 if (priv->ports[other_port].enable)
1183 mt7530_set(priv, MT7530_PCR_P(other_port),
1184 PCR_MATRIX(BIT(port)));
1185 priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1186
1187 port_bitmap |= BIT(other_port);
b8f126a8
SW
1188 }
1189
1190 /* Add the all other ports to this port matrix. */
1191 if (priv->ports[port].enable)
1192 mt7530_rmw(priv, MT7530_PCR_P(port),
1193 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1194 priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1195
6087175b
DQ
1196 /* Set to fallback mode for independent VLAN learning */
1197 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1198 MT7530_PORT_FALLBACK_MODE);
1199
b8f126a8
SW
1200 mutex_unlock(&priv->reg_mutex);
1201
1202 return 0;
1203}
1204
83163f7d
SW
1205static void
1206mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1207{
1208 struct mt7530_priv *priv = ds->priv;
1209 bool all_user_ports_removed = true;
1210 int i;
1211
6087175b
DQ
1212 /* This is called after .port_bridge_leave when leaving a VLAN-aware
1213 * bridge. Don't set standalone ports to fallback mode.
83163f7d 1214 */
41fb0cf1 1215 if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
6087175b
DQ
1216 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1217 MT7530_PORT_FALLBACK_MODE);
1218
8fbebef8
DQ
1219 mt7530_rmw(priv, MT7530_PVC_P(port),
1220 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
e045124e 1221 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
8fbebef8
DQ
1222 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1223 MT7530_VLAN_ACC_ALL);
83163f7d 1224
6087175b
DQ
1225 /* Set PVID to 0 */
1226 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1227 G0_PORT_VID_DEF);
1228
83163f7d
SW
1229 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1230 if (dsa_is_user_port(ds, i) &&
68bb8ea8 1231 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
83163f7d
SW
1232 all_user_ports_removed = false;
1233 break;
1234 }
1235 }
1236
1237 /* CPU port also does the same thing until all user ports belonging to
1238 * the CPU port get out of VLAN filtering mode.
1239 */
1240 if (all_user_ports_removed) {
1f9a6abe
FW
1241 struct dsa_port *dp = dsa_to_port(ds, port);
1242 struct dsa_port *cpu_dp = dp->cpu_dp;
1243
1244 mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
83163f7d 1245 PCR_MATRIX(dsa_user_ports(priv->ds)));
1f9a6abe 1246 mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
e045124e 1247 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
83163f7d
SW
1248 }
1249}
1250
1251static void
1252mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1253{
1254 struct mt7530_priv *priv = ds->priv;
1255
83163f7d 1256 /* Trapped into security mode allows packet forwarding through VLAN
6087175b 1257 * table lookup.
83163f7d 1258 */
6087175b 1259 if (dsa_is_user_port(ds, port)) {
38152ea3
DQ
1260 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1261 MT7530_PORT_SECURITY_MODE);
6087175b
DQ
1262 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1263 G0_PORT_VID(priv->ports[port].pvid));
8fbebef8
DQ
1264
1265 /* Only accept tagged frames if PVID is not set */
1266 if (!priv->ports[port].pvid)
1267 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1268 MT7530_VLAN_ACC_TAGGED);
83163f7d 1269
0b6d6425
VO
1270 /* Set the port as a user port which is to be able to recognize
1271 * VID from incoming packets before fetching entry within the
1272 * VLAN table.
1273 */
1274 mt7530_rmw(priv, MT7530_PVC_P(port),
1275 VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1276 VLAN_ATTR(MT7530_VLAN_USER) |
1277 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1278 } else {
1279 /* Also set CPU ports to the "user" VLAN port attribute, to
1280 * allow VLAN classification, but keep the EG_TAG attribute as
1281 * "consistent" (i.o.w. don't change its value) for packets
1282 * received by the switch from the CPU, so that tagged packets
1283 * are forwarded to user ports as tagged, and untagged as
1284 * untagged.
1285 */
1286 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1287 VLAN_ATTR(MT7530_VLAN_USER));
1288 }
83163f7d
SW
1289}
1290
b8f126a8
SW
1291static void
1292mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
d3eed0e5 1293 struct dsa_bridge bridge)
b8f126a8 1294{
872bb81d 1295 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1f9a6abe 1296 struct dsa_port *cpu_dp = dp->cpu_dp;
b8f126a8 1297 struct mt7530_priv *priv = ds->priv;
b8f126a8
SW
1298
1299 mutex_lock(&priv->reg_mutex);
1300
872bb81d
VO
1301 dsa_switch_for_each_user_port(other_dp, ds) {
1302 int other_port = other_dp->index;
1303
1304 if (dp == other_dp)
1305 continue;
1306
b8f126a8
SW
1307 /* Remove this port from the port matrix of the other ports
1308 * in the same bridge. If the port is disabled, port matrix
1309 * is kept and not being setup until the port becomes enabled.
1310 */
d3eed0e5 1311 if (!dsa_port_offloads_bridge(other_dp, &bridge))
872bb81d
VO
1312 continue;
1313
1314 if (priv->ports[other_port].enable)
1315 mt7530_clear(priv, MT7530_PCR_P(other_port),
1316 PCR_MATRIX(BIT(port)));
1317 priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
b8f126a8
SW
1318 }
1319
1320 /* Set the cpu port to be the only one in the port matrix of
1321 * this port.
1322 */
1323 if (priv->ports[port].enable)
1324 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1f9a6abe
FW
1325 PCR_MATRIX(BIT(cpu_dp->index)));
1326 priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
b8f126a8 1327
6087175b
DQ
1328 /* When a port is removed from the bridge, the port would be set up
1329 * back to the default as is at initial boot which is a VLAN-unaware
1330 * port.
1331 */
1332 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1333 MT7530_PORT_MATRIX_MODE);
1334
b8f126a8
SW
1335 mutex_unlock(&priv->reg_mutex);
1336}
1337
1338static int
b8f126a8 1339mt7530_port_fdb_add(struct dsa_switch *ds, int port,
c2693363
VO
1340 const unsigned char *addr, u16 vid,
1341 struct dsa_db db)
b8f126a8
SW
1342{
1343 struct mt7530_priv *priv = ds->priv;
1b6dd556 1344 int ret;
b8f126a8
SW
1345 u8 port_mask = BIT(port);
1346
1347 mutex_lock(&priv->reg_mutex);
6c2c1dcb 1348 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
18bd5949 1349 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
b8f126a8 1350 mutex_unlock(&priv->reg_mutex);
1b6dd556
AS
1351
1352 return ret;
b8f126a8
SW
1353}
1354
1355static int
1356mt7530_port_fdb_del(struct dsa_switch *ds, int port,
c2693363
VO
1357 const unsigned char *addr, u16 vid,
1358 struct dsa_db db)
b8f126a8
SW
1359{
1360 struct mt7530_priv *priv = ds->priv;
1361 int ret;
1362 u8 port_mask = BIT(port);
1363
1364 mutex_lock(&priv->reg_mutex);
6c2c1dcb 1365 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
18bd5949 1366 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
b8f126a8
SW
1367 mutex_unlock(&priv->reg_mutex);
1368
1369 return ret;
1370}
1371
1372static int
1373mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
2bedde1a 1374 dsa_fdb_dump_cb_t *cb, void *data)
b8f126a8
SW
1375{
1376 struct mt7530_priv *priv = ds->priv;
1377 struct mt7530_fdb _fdb = { 0 };
1378 int cnt = MT7530_NUM_FDB_RECORDS;
1379 int ret = 0;
1380 u32 rsp = 0;
1381
1382 mutex_lock(&priv->reg_mutex);
1383
1384 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1385 if (ret < 0)
1386 goto err;
1387
1388 do {
1389 if (rsp & ATC_SRCH_HIT) {
1390 mt7530_fdb_read(priv, &_fdb);
1391 if (_fdb.port_mask & BIT(port)) {
2bedde1a
AS
1392 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1393 data);
b8f126a8
SW
1394 if (ret < 0)
1395 break;
1396 }
1397 }
1398 } while (--cnt &&
1399 !(rsp & ATC_SRCH_END) &&
1400 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1401err:
1402 mutex_unlock(&priv->reg_mutex);
1403
1404 return 0;
1405}
1406
5a30833b
DQ
1407static int
1408mt7530_port_mdb_add(struct dsa_switch *ds, int port,
c2693363
VO
1409 const struct switchdev_obj_port_mdb *mdb,
1410 struct dsa_db db)
5a30833b
DQ
1411{
1412 struct mt7530_priv *priv = ds->priv;
1413 const u8 *addr = mdb->addr;
1414 u16 vid = mdb->vid;
1415 u8 port_mask = 0;
1416 int ret;
1417
1418 mutex_lock(&priv->reg_mutex);
1419
1420 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1421 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1422 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1423 & PORT_MAP_MASK;
1424
1425 port_mask |= BIT(port);
1426 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1427 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1428
1429 mutex_unlock(&priv->reg_mutex);
1430
1431 return ret;
1432}
1433
1434static int
1435mt7530_port_mdb_del(struct dsa_switch *ds, int port,
c2693363
VO
1436 const struct switchdev_obj_port_mdb *mdb,
1437 struct dsa_db db)
5a30833b
DQ
1438{
1439 struct mt7530_priv *priv = ds->priv;
1440 const u8 *addr = mdb->addr;
1441 u16 vid = mdb->vid;
1442 u8 port_mask = 0;
1443 int ret;
1444
1445 mutex_lock(&priv->reg_mutex);
1446
1447 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1448 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1449 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1450 & PORT_MAP_MASK;
1451
1452 port_mask &= ~BIT(port);
1453 mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1454 port_mask ? STATIC_ENT : STATIC_EMP);
1455 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1456
1457 mutex_unlock(&priv->reg_mutex);
1458
1459 return ret;
1460}
1461
83163f7d
SW
1462static int
1463mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1464{
1465 struct mt7530_dummy_poll p;
1466 u32 val;
1467 int ret;
1468
1469 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1470 mt7530_write(priv, MT7530_VTCR, val);
1471
1472 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1473 ret = readx_poll_timeout(_mt7530_read, &p, val,
1474 !(val & VTCR_BUSY), 20, 20000);
1475 if (ret < 0) {
1476 dev_err(priv->dev, "poll timeout\n");
1477 return ret;
1478 }
1479
1480 val = mt7530_read(priv, MT7530_VTCR);
1481 if (val & VTCR_INVALID) {
1482 dev_err(priv->dev, "read VTCR invalid\n");
1483 return -EINVAL;
1484 }
1485
1486 return 0;
1487}
1488
1489static int
89153ed6
VO
1490mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1491 struct netlink_ext_ack *extack)
83163f7d 1492{
1f9a6abe
FW
1493 struct dsa_port *dp = dsa_to_port(ds, port);
1494 struct dsa_port *cpu_dp = dp->cpu_dp;
1495
83163f7d
SW
1496 if (vlan_filtering) {
1497 /* The port is being kept as VLAN-unaware port when bridge is
1498 * set up with vlan_filtering not being set, Otherwise, the
1499 * port and the corresponding CPU port is required the setup
1500 * for becoming a VLAN-aware port.
1501 */
1502 mt7530_port_set_vlan_aware(ds, port);
1f9a6abe 1503 mt7530_port_set_vlan_aware(ds, cpu_dp->index);
e3ee07d1
VO
1504 } else {
1505 mt7530_port_set_vlan_unaware(ds, port);
83163f7d
SW
1506 }
1507
1508 return 0;
1509}
1510
83163f7d
SW
1511static void
1512mt7530_hw_vlan_add(struct mt7530_priv *priv,
1513 struct mt7530_hw_vlan_entry *entry)
1514{
a9c31741 1515 struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
83163f7d
SW
1516 u8 new_members;
1517 u32 val;
1518
a9c31741 1519 new_members = entry->old_members | BIT(entry->port);
83163f7d
SW
1520
1521 /* Validate the entry with independent learning, create egress tag per
1522 * VLAN and joining the port as one of the port members.
1523 */
6087175b
DQ
1524 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1525 VLAN_VALID;
83163f7d
SW
1526 mt7530_write(priv, MT7530_VAWD1, val);
1527
1528 /* Decide whether adding tag or not for those outgoing packets from the
1529 * port inside the VLAN.
a9c31741 1530 * CPU port is always taken as a tagged port for serving more than one
83163f7d
SW
1531 * VLANs across and also being applied with egress type stack mode for
1532 * that VLAN tags would be appended after hardware special tag used as
1533 * DSA tag.
1534 */
a9c31741
FW
1535 if (dsa_port_is_cpu(dp))
1536 val = MT7530_VLAN_EGRESS_STACK;
1537 else if (entry->untagged)
1538 val = MT7530_VLAN_EGRESS_UNTAG;
1539 else
1540 val = MT7530_VLAN_EGRESS_TAG;
83163f7d 1541 mt7530_rmw(priv, MT7530_VAWD2,
a9c31741
FW
1542 ETAG_CTRL_P_MASK(entry->port),
1543 ETAG_CTRL_P(entry->port, val));
83163f7d
SW
1544}
1545
1546static void
1547mt7530_hw_vlan_del(struct mt7530_priv *priv,
1548 struct mt7530_hw_vlan_entry *entry)
1549{
1550 u8 new_members;
1551 u32 val;
1552
1553 new_members = entry->old_members & ~BIT(entry->port);
1554
1555 val = mt7530_read(priv, MT7530_VAWD1);
1556 if (!(val & VLAN_VALID)) {
1557 dev_err(priv->dev,
1558 "Cannot be deleted due to invalid entry\n");
1559 return;
1560 }
1561
a9c31741 1562 if (new_members) {
83163f7d
SW
1563 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1564 VLAN_VALID;
1565 mt7530_write(priv, MT7530_VAWD1, val);
1566 } else {
1567 mt7530_write(priv, MT7530_VAWD1, 0);
1568 mt7530_write(priv, MT7530_VAWD2, 0);
1569 }
1570}
1571
1572static void
1573mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1574 struct mt7530_hw_vlan_entry *entry,
1575 mt7530_vlan_op vlan_op)
1576{
1577 u32 val;
1578
1579 /* Fetch entry */
1580 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1581
1582 val = mt7530_read(priv, MT7530_VAWD1);
1583
1584 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1585
1586 /* Manipulate entry */
1587 vlan_op(priv, entry);
1588
1589 /* Flush result to hardware */
1590 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1591}
1592
1ca8a193
DQ
1593static int
1594mt7530_setup_vlan0(struct mt7530_priv *priv)
1595{
1596 u32 val;
1597
1598 /* Validate the entry with independent learning, keep the original
1599 * ingress tag attribute.
1600 */
1601 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1602 VLAN_VALID;
1603 mt7530_write(priv, MT7530_VAWD1, val);
1604
1605 return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1606}
1607
1958d581 1608static int
83163f7d 1609mt7530_port_vlan_add(struct dsa_switch *ds, int port,
31046a5f
VO
1610 const struct switchdev_obj_port_vlan *vlan,
1611 struct netlink_ext_ack *extack)
83163f7d
SW
1612{
1613 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1614 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1615 struct mt7530_hw_vlan_entry new_entry;
1616 struct mt7530_priv *priv = ds->priv;
83163f7d 1617
83163f7d
SW
1618 mutex_lock(&priv->reg_mutex);
1619
b7a9e0da
VO
1620 mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1621 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
83163f7d
SW
1622
1623 if (pvid) {
b7a9e0da 1624 priv->ports[port].pvid = vlan->vid;
6087175b 1625
8fbebef8
DQ
1626 /* Accept all frames if PVID is set */
1627 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1628 MT7530_VLAN_ACC_ALL);
1629
6087175b
DQ
1630 /* Only configure PVID if VLAN filtering is enabled */
1631 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1632 mt7530_rmw(priv, MT7530_PPBV1_P(port),
1633 G0_PORT_VID_MASK,
1634 G0_PORT_VID(vlan->vid));
8fbebef8
DQ
1635 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1636 /* This VLAN is overwritten without PVID, so unset it */
1637 priv->ports[port].pvid = G0_PORT_VID_DEF;
1638
1639 /* Only accept tagged frames if the port is VLAN-aware */
1640 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1641 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1642 MT7530_VLAN_ACC_TAGGED);
1643
1644 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1645 G0_PORT_VID_DEF);
83163f7d
SW
1646 }
1647
1648 mutex_unlock(&priv->reg_mutex);
1958d581
VO
1649
1650 return 0;
83163f7d
SW
1651}
1652
1653static int
1654mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1655 const struct switchdev_obj_port_vlan *vlan)
1656{
1657 struct mt7530_hw_vlan_entry target_entry;
1658 struct mt7530_priv *priv = ds->priv;
83163f7d 1659
83163f7d
SW
1660 mutex_lock(&priv->reg_mutex);
1661
b7a9e0da
VO
1662 mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1663 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1664 mt7530_hw_vlan_del);
83163f7d 1665
b7a9e0da
VO
1666 /* PVID is being restored to the default whenever the PVID port
1667 * is being removed from the VLAN.
1668 */
6087175b
DQ
1669 if (priv->ports[port].pvid == vlan->vid) {
1670 priv->ports[port].pvid = G0_PORT_VID_DEF;
8fbebef8
DQ
1671
1672 /* Only accept tagged frames if the port is VLAN-aware */
1673 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1674 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1675 MT7530_VLAN_ACC_TAGGED);
1676
6087175b
DQ
1677 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1678 G0_PORT_VID_DEF);
1679 }
83163f7d 1680
83163f7d
SW
1681
1682 mutex_unlock(&priv->reg_mutex);
1683
1684 return 0;
1685}
1686
c288575f
LC
1687static int mt753x_mirror_port_get(unsigned int id, u32 val)
1688{
1689 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1690 MIRROR_PORT(val);
1691}
1692
1693static int mt753x_mirror_port_set(unsigned int id, u32 val)
1694{
1695 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1696 MIRROR_PORT(val);
1697}
1698
1699static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
37feab60 1700 struct dsa_mall_mirror_tc_entry *mirror,
0148bb50 1701 bool ingress, struct netlink_ext_ack *extack)
37feab60
DQ
1702{
1703 struct mt7530_priv *priv = ds->priv;
c288575f 1704 int monitor_port;
37feab60
DQ
1705 u32 val;
1706
1707 /* Check for existent entry */
1708 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1709 return -EEXIST;
1710
c288575f 1711 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
37feab60
DQ
1712
1713 /* MT7530 only supports one monitor port */
c288575f
LC
1714 monitor_port = mt753x_mirror_port_get(priv->id, val);
1715 if (val & MT753X_MIRROR_EN(priv->id) &&
1716 monitor_port != mirror->to_local_port)
37feab60
DQ
1717 return -EEXIST;
1718
c288575f
LC
1719 val |= MT753X_MIRROR_EN(priv->id);
1720 val &= ~MT753X_MIRROR_MASK(priv->id);
1721 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1722 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
37feab60
DQ
1723
1724 val = mt7530_read(priv, MT7530_PCR_P(port));
1725 if (ingress) {
1726 val |= PORT_RX_MIR;
1727 priv->mirror_rx |= BIT(port);
1728 } else {
1729 val |= PORT_TX_MIR;
1730 priv->mirror_tx |= BIT(port);
1731 }
1732 mt7530_write(priv, MT7530_PCR_P(port), val);
1733
1734 return 0;
1735}
1736
c288575f 1737static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
37feab60
DQ
1738 struct dsa_mall_mirror_tc_entry *mirror)
1739{
1740 struct mt7530_priv *priv = ds->priv;
1741 u32 val;
1742
1743 val = mt7530_read(priv, MT7530_PCR_P(port));
1744 if (mirror->ingress) {
1745 val &= ~PORT_RX_MIR;
1746 priv->mirror_rx &= ~BIT(port);
1747 } else {
1748 val &= ~PORT_TX_MIR;
1749 priv->mirror_tx &= ~BIT(port);
1750 }
1751 mt7530_write(priv, MT7530_PCR_P(port), val);
1752
1753 if (!priv->mirror_rx && !priv->mirror_tx) {
c288575f
LC
1754 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1755 val &= ~MT753X_MIRROR_EN(priv->id);
1756 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
37feab60
DQ
1757 }
1758}
1759
b8f126a8 1760static enum dsa_tag_protocol
4d776482
FF
1761mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1762 enum dsa_tag_protocol mp)
b8f126a8 1763{
244f8a80 1764 return DSA_TAG_PROTO_MTK;
b8f126a8
SW
1765}
1766
63c75c05 1767#ifdef CONFIG_GPIOLIB
429a0ede
DQ
1768static inline u32
1769mt7530_gpio_to_bit(unsigned int offset)
1770{
1771 /* Map GPIO offset to register bit
1772 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2
1773 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5
1774 * [10: 8] port 2 LED 0..2 as GPIO 6..8
1775 * [14:12] port 3 LED 0..2 as GPIO 9..11
1776 * [18:16] port 4 LED 0..2 as GPIO 12..14
1777 */
1778 return BIT(offset + offset / 3);
1779}
1780
1781static int
1782mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1783{
1784 struct mt7530_priv *priv = gpiochip_get_data(gc);
1785 u32 bit = mt7530_gpio_to_bit(offset);
1786
1787 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1788}
1789
1790static void
1791mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1792{
1793 struct mt7530_priv *priv = gpiochip_get_data(gc);
1794 u32 bit = mt7530_gpio_to_bit(offset);
1795
1796 if (value)
1797 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1798 else
1799 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1800}
1801
1802static int
1803mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1804{
1805 struct mt7530_priv *priv = gpiochip_get_data(gc);
1806 u32 bit = mt7530_gpio_to_bit(offset);
1807
1808 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1809 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1810}
1811
1812static int
1813mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1814{
1815 struct mt7530_priv *priv = gpiochip_get_data(gc);
1816 u32 bit = mt7530_gpio_to_bit(offset);
1817
1818 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1819 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1820
1821 return 0;
1822}
1823
1824static int
1825mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1826{
1827 struct mt7530_priv *priv = gpiochip_get_data(gc);
1828 u32 bit = mt7530_gpio_to_bit(offset);
1829
1830 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1831
1832 if (value)
1833 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1834 else
1835 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1836
1837 mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1838
1839 return 0;
1840}
1841
1842static int
1843mt7530_setup_gpio(struct mt7530_priv *priv)
1844{
1845 struct device *dev = priv->dev;
1846 struct gpio_chip *gc;
1847
1848 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1849 if (!gc)
1850 return -ENOMEM;
1851
1852 mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1853 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1854 mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1855
1856 gc->label = "mt7530";
1857 gc->parent = dev;
1858 gc->owner = THIS_MODULE;
1859 gc->get_direction = mt7530_gpio_get_direction;
1860 gc->direction_input = mt7530_gpio_direction_input;
1861 gc->direction_output = mt7530_gpio_direction_output;
1862 gc->get = mt7530_gpio_get;
1863 gc->set = mt7530_gpio_set;
1864 gc->base = -1;
1865 gc->ngpio = 15;
1866 gc->can_sleep = true;
1867
1868 return devm_gpiochip_add_data(dev, gc, priv);
1869}
63c75c05 1870#endif /* CONFIG_GPIOLIB */
429a0ede 1871
ba751e28
DQ
1872static irqreturn_t
1873mt7530_irq_thread_fn(int irq, void *dev_id)
1874{
1875 struct mt7530_priv *priv = dev_id;
1876 bool handled = false;
1877 u32 val;
1878 int p;
1879
1557c679 1880 mt7530_mutex_lock(priv);
ba751e28
DQ
1881 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1882 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1557c679 1883 mt7530_mutex_unlock(priv);
ba751e28
DQ
1884
1885 for (p = 0; p < MT7530_NUM_PHYS; p++) {
1886 if (BIT(p) & val) {
1887 unsigned int irq;
1888
1889 irq = irq_find_mapping(priv->irq_domain, p);
1890 handle_nested_irq(irq);
1891 handled = true;
1892 }
1893 }
1894
1895 return IRQ_RETVAL(handled);
1896}
1897
1898static void
1899mt7530_irq_mask(struct irq_data *d)
1900{
1901 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1902
1903 priv->irq_enable &= ~BIT(d->hwirq);
1904}
1905
1906static void
1907mt7530_irq_unmask(struct irq_data *d)
1908{
1909 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1910
1911 priv->irq_enable |= BIT(d->hwirq);
1912}
1913
1914static void
1915mt7530_irq_bus_lock(struct irq_data *d)
1916{
1917 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1918
1557c679 1919 mt7530_mutex_lock(priv);
ba751e28
DQ
1920}
1921
1922static void
1923mt7530_irq_bus_sync_unlock(struct irq_data *d)
1924{
1925 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1926
1927 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1557c679 1928 mt7530_mutex_unlock(priv);
ba751e28
DQ
1929}
1930
1931static struct irq_chip mt7530_irq_chip = {
1932 .name = KBUILD_MODNAME,
1933 .irq_mask = mt7530_irq_mask,
1934 .irq_unmask = mt7530_irq_unmask,
1935 .irq_bus_lock = mt7530_irq_bus_lock,
1936 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1937};
1938
1939static int
1940mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1941 irq_hw_number_t hwirq)
1942{
1943 irq_set_chip_data(irq, domain->host_data);
1944 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1945 irq_set_nested_thread(irq, true);
1946 irq_set_noprobe(irq);
1947
1948 return 0;
1949}
1950
1951static const struct irq_domain_ops mt7530_irq_domain_ops = {
1952 .map = mt7530_irq_map,
1953 .xlate = irq_domain_xlate_onecell,
1954};
1955
110c18bf
DG
1956static void
1957mt7988_irq_mask(struct irq_data *d)
1958{
1959 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1960
1961 priv->irq_enable &= ~BIT(d->hwirq);
1962 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1963}
1964
1965static void
1966mt7988_irq_unmask(struct irq_data *d)
1967{
1968 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1969
1970 priv->irq_enable |= BIT(d->hwirq);
1971 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1972}
1973
1974static struct irq_chip mt7988_irq_chip = {
1975 .name = KBUILD_MODNAME,
1976 .irq_mask = mt7988_irq_mask,
1977 .irq_unmask = mt7988_irq_unmask,
1978};
1979
1980static int
1981mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
1982 irq_hw_number_t hwirq)
1983{
1984 irq_set_chip_data(irq, domain->host_data);
1985 irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
1986 irq_set_nested_thread(irq, true);
1987 irq_set_noprobe(irq);
1988
1989 return 0;
1990}
1991
1992static const struct irq_domain_ops mt7988_irq_domain_ops = {
1993 .map = mt7988_irq_map,
1994 .xlate = irq_domain_xlate_onecell,
1995};
1996
ba751e28
DQ
1997static void
1998mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1999{
2000 struct dsa_switch *ds = priv->ds;
2001 int p;
2002
2003 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2004 if (BIT(p) & ds->phys_mii_mask) {
2005 unsigned int irq;
2006
2007 irq = irq_create_mapping(priv->irq_domain, p);
6ca80638 2008 ds->user_mii_bus->irq[p] = irq;
ba751e28
DQ
2009 }
2010 }
2011}
2012
2013static int
2014mt7530_setup_irq(struct mt7530_priv *priv)
2015{
2016 struct device *dev = priv->dev;
2017 struct device_node *np = dev->of_node;
2018 int ret;
2019
2020 if (!of_property_read_bool(np, "interrupt-controller")) {
2021 dev_info(dev, "no interrupt support\n");
2022 return 0;
2023 }
2024
2025 priv->irq = of_irq_get(np, 0);
2026 if (priv->irq <= 0) {
2027 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2028 return priv->irq ? : -EINVAL;
2029 }
2030
110c18bf
DG
2031 if (priv->id == ID_MT7988)
2032 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2033 &mt7988_irq_domain_ops,
2034 priv);
2035 else
2036 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2037 &mt7530_irq_domain_ops,
2038 priv);
2039
ba751e28
DQ
2040 if (!priv->irq_domain) {
2041 dev_err(dev, "failed to create IRQ domain\n");
2042 return -ENOMEM;
2043 }
2044
2045 /* This register must be set for MT7530 to properly fire interrupts */
804cd5f7 2046 if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
ba751e28
DQ
2047 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2048
2049 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2050 IRQF_ONESHOT, KBUILD_MODNAME, priv);
2051 if (ret) {
2052 irq_domain_remove(priv->irq_domain);
2053 dev_err(dev, "failed to request IRQ: %d\n", ret);
2054 return ret;
2055 }
2056
2057 return 0;
2058}
2059
2060static void
2061mt7530_free_mdio_irq(struct mt7530_priv *priv)
2062{
2063 int p;
2064
2065 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2066 if (BIT(p) & priv->ds->phys_mii_mask) {
2067 unsigned int irq;
2068
2069 irq = irq_find_mapping(priv->irq_domain, p);
2070 irq_dispose_mapping(irq);
2071 }
2072 }
2073}
2074
2075static void
2076mt7530_free_irq_common(struct mt7530_priv *priv)
2077{
2078 free_irq(priv->irq, priv);
2079 irq_domain_remove(priv->irq_domain);
2080}
2081
2082static void
2083mt7530_free_irq(struct mt7530_priv *priv)
2084{
91374ba5
2085 struct device_node *mnp, *np = priv->dev->of_node;
2086
2087 mnp = of_get_child_by_name(np, "mdio");
2088 if (!mnp)
2089 mt7530_free_mdio_irq(priv);
2090 of_node_put(mnp);
2091
ba751e28
DQ
2092 mt7530_free_irq_common(priv);
2093}
2094
2095static int
2096mt7530_setup_mdio(struct mt7530_priv *priv)
2097{
91374ba5 2098 struct device_node *mnp, *np = priv->dev->of_node;
ba751e28
DQ
2099 struct dsa_switch *ds = priv->ds;
2100 struct device *dev = priv->dev;
2101 struct mii_bus *bus;
2102 static int idx;
91374ba5
2103 int ret = 0;
2104
2105 mnp = of_get_child_by_name(np, "mdio");
2106
2107 if (mnp && !of_device_is_available(mnp))
2108 goto out;
ba751e28
DQ
2109
2110 bus = devm_mdiobus_alloc(dev);
91374ba5
2111 if (!bus) {
2112 ret = -ENOMEM;
2113 goto out;
2114 }
2115
2116 if (!mnp)
2117 ds->user_mii_bus = bus;
ba751e28 2118
ba751e28
DQ
2119 bus->priv = priv;
2120 bus->name = KBUILD_MODNAME "-mii";
2121 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
defa2e54
AL
2122 bus->read = mt753x_phy_read_c22;
2123 bus->write = mt753x_phy_write_c22;
2124 bus->read_c45 = mt753x_phy_read_c45;
2125 bus->write_c45 = mt753x_phy_write_c45;
ba751e28
DQ
2126 bus->parent = dev;
2127 bus->phy_mask = ~ds->phys_mii_mask;
2128
91374ba5 2129 if (priv->irq && !mnp)
ba751e28
DQ
2130 mt7530_setup_mdio_irq(priv);
2131
91374ba5 2132 ret = devm_of_mdiobus_register(dev, bus, mnp);
ba751e28
DQ
2133 if (ret) {
2134 dev_err(dev, "failed to register MDIO bus: %d\n", ret);
91374ba5 2135 if (priv->irq && !mnp)
ba751e28
DQ
2136 mt7530_free_mdio_irq(priv);
2137 }
2138
91374ba5
2139out:
2140 of_node_put(mnp);
ba751e28
DQ
2141 return ret;
2142}
2143
b8f126a8
SW
2144static int
2145mt7530_setup(struct dsa_switch *ds)
2146{
2147 struct mt7530_priv *priv = ds->priv;
6e19bc26 2148 struct device_node *dn = NULL;
38f790a8
RD
2149 struct device_node *phy_node;
2150 struct device_node *mac_np;
b8f126a8 2151 struct mt7530_dummy_poll p;
38f790a8 2152 phy_interface_t interface;
6e19bc26 2153 struct dsa_port *cpu_dp;
ca366d6c
RD
2154 u32 id, val;
2155 int ret, i;
b8f126a8 2156
6ca80638 2157 /* The parent node of conduit netdev which holds the common system
b8f126a8
SW
2158 * controller also is the container for two GMACs nodes representing
2159 * as two netdev instances.
2160 */
6e19bc26 2161 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
6ca80638 2162 dn = cpu_dp->conduit->dev.of_node->parent;
6e19bc26 2163 /* It doesn't matter which CPU port is found first,
6ca80638 2164 * their conduits should share the same parent OF node
6e19bc26
FW
2165 */
2166 break;
2167 }
2168
2169 if (!dn) {
6ca80638 2170 dev_err(ds->dev, "parent OF node of DSA conduit not found");
6e19bc26
FW
2171 return -EINVAL;
2172 }
2173
0b69c54c 2174 ds->assisted_learning_on_cpu_port = true;
771c8901 2175 ds->mtu_enforcement_ingress = true;
b8f126a8 2176
ddda1ac1 2177 if (priv->id == ID_MT7530) {
ddda1ac1
GU
2178 regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2179 ret = regulator_enable(priv->core_pwr);
2180 if (ret < 0) {
2181 dev_err(priv->dev,
2182 "Failed to enable core power: %d\n", ret);
2183 return ret;
2184 }
b8f126a8 2185
ddda1ac1
GU
2186 regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2187 ret = regulator_enable(priv->io_pwr);
2188 if (ret < 0) {
2189 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2190 ret);
2191 return ret;
2192 }
b8f126a8
SW
2193 }
2194
2195 /* Reset whole chip through gpio pin or memory-mapped registers for
2196 * different type of hardware
2197 */
2198 if (priv->mcm) {
2199 reset_control_assert(priv->rstc);
f490c492 2200 usleep_range(5000, 5100);
b8f126a8
SW
2201 reset_control_deassert(priv->rstc);
2202 } else {
2203 gpiod_set_value_cansleep(priv->reset, 0);
f490c492 2204 usleep_range(5000, 5100);
b8f126a8
SW
2205 gpiod_set_value_cansleep(priv->reset, 1);
2206 }
2207
2208 /* Waiting for MT7530 got to stable */
2209 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2210 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2211 20, 1000000);
2212 if (ret < 0) {
2213 dev_err(priv->dev, "reset timeout\n");
2214 return ret;
2215 }
2216
2217 id = mt7530_read(priv, MT7530_CREV);
2218 id >>= CHIP_NAME_SHIFT;
2219 if (id != MT7530_ID) {
2220 dev_err(priv->dev, "chip %x can't be supported\n", id);
2221 return -ENODEV;
2222 }
2223
fd792909
2224 if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2225 dev_err(priv->dev,
2226 "MT7530 with a 20MHz XTAL is not supported!\n");
2227 return -EINVAL;
2228 }
2229
b8f126a8
SW
2230 /* Reset the switch through internal reset */
2231 mt7530_write(priv, MT7530_SYS_CTRL,
2232 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2233 SYS_CTRL_REG_RST);
2234
c8b8a3c6
VO
2235 mt7530_pll_setup(priv);
2236
fdcc8ccd
2237 /* Lower Tx driving for TRGMII path */
2238 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2239 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2240 TD_DM_DRVP(8) | TD_DM_DRVN(8));
2241
2242 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2243 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2244 RD_TAP_MASK, RD_TAP(16));
2245
feb03fd1 2246 /* Enable port 6 */
b8f126a8
SW
2247 val = mt7530_read(priv, MT7530_MHWTRAP);
2248 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2249 val |= MHWTRAP_MANUAL;
2250 mt7530_write(priv, MT7530_MHWTRAP, val);
2251
d7c66073
2252 mt753x_trap_frames(priv);
2253
b8f126a8
SW
2254 /* Enable and reset MIB counters */
2255 mt7530_mib_reset(ds);
2256
b8f126a8 2257 for (i = 0; i < MT7530_NUM_PORTS; i++) {
6324230b
2258 /* Clear link settings and enable force mode to force link down
2259 * on all ports until they're enabled later.
2260 */
2261 mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2262 PMCR_FORCE_MODE, PMCR_FORCE_MODE);
2263
b8f126a8
SW
2264 /* Disable forwarding by default on all ports */
2265 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2266 PCR_MATRIX_CLR);
2267
0b69c54c
DQ
2268 /* Disable learning by default on all ports */
2269 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2270
0ce0c3cd 2271 if (dsa_is_cpu_port(ds, i)) {
22fa1017 2272 mt753x_cpu_port_enable(ds, i);
5a30833b 2273 } else {
75104db0 2274 mt7530_port_disable(ds, i);
6087175b
DQ
2275
2276 /* Set default PVID to 0 on all user ports */
2277 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2278 G0_PORT_VID_DEF);
5a30833b 2279 }
e045124e
DQ
2280 /* Enable consistent egress tag */
2281 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2282 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
b8f126a8
SW
2283 }
2284
1ca8a193
DQ
2285 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2286 ret = mt7530_setup_vlan0(priv);
2287 if (ret)
2288 return ret;
2289
38f790a8 2290 /* Setup port 5 */
38f790a8
RD
2291 if (!dsa_is_unused_port(ds, 5)) {
2292 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
38f790a8 2293 } else {
152f8e8e
2294 /* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2295 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2296 * is detected.
2297 */
38f790a8
RD
2298 for_each_child_of_node(dn, mac_np) {
2299 if (!of_device_is_compatible(mac_np,
2300 "mediatek,eth-mac"))
2301 continue;
2302
2303 ret = of_property_read_u32(mac_np, "reg", &id);
2304 if (ret < 0 || id != 1)
2305 continue;
2306
2307 phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
0452800f
CG
2308 if (!phy_node)
2309 continue;
2310
38f790a8 2311 if (phy_node->parent == priv->dev->of_node->parent) {
0c65b2b9 2312 ret = of_get_phy_mode(mac_np, &interface);
8e4efd47
SP
2313 if (ret && ret != -ENODEV) {
2314 of_node_put(mac_np);
a9e9b091 2315 of_node_put(phy_node);
0c65b2b9 2316 return ret;
8e4efd47 2317 }
38f790a8
RD
2318 id = of_mdio_parse_addr(ds->dev, phy_node);
2319 if (id == 0)
2320 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2321 if (id == 4)
2322 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2323 }
8e4efd47 2324 of_node_put(mac_np);
38f790a8
RD
2325 of_node_put(phy_node);
2326 break;
2327 }
152f8e8e 2328
04a22bef
2329 if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2330 priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2331 mt7530_setup_port5(ds, interface);
38f790a8
RD
2332 }
2333
63c75c05 2334#ifdef CONFIG_GPIOLIB
429a0ede
DQ
2335 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2336 ret = mt7530_setup_gpio(priv);
2337 if (ret)
2338 return ret;
2339 }
63c75c05 2340#endif /* CONFIG_GPIOLIB */
429a0ede 2341
b8f126a8 2342 /* Flush the FDB table */
18bd5949 2343 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
b8f126a8
SW
2344 if (ret < 0)
2345 return ret;
2346
2347 return 0;
2348}
2349
7f54cc97
DG
2350static int
2351mt7531_setup_common(struct dsa_switch *ds)
2352{
2353 struct mt7530_priv *priv = ds->priv;
7f54cc97
DG
2354 int ret, i;
2355
d7c66073 2356 mt753x_trap_frames(priv);
7f54cc97
DG
2357
2358 /* Enable and reset MIB counters */
2359 mt7530_mib_reset(ds);
2360
120a56b0
2361 /* Disable flooding on all ports */
2362 mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2363 UNU_FFP_MASK);
2364
7f54cc97 2365 for (i = 0; i < MT7530_NUM_PORTS; i++) {
6324230b
2366 /* Clear link settings and enable force mode to force link down
2367 * on all ports until they're enabled later.
2368 */
2369 mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2370 MT7531_FORCE_MODE, MT7531_FORCE_MODE);
2371
7f54cc97
DG
2372 /* Disable forwarding by default on all ports */
2373 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2374 PCR_MATRIX_CLR);
2375
2376 /* Disable learning by default on all ports */
2377 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2378
2379 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2380
2381 if (dsa_is_cpu_port(ds, i)) {
22fa1017 2382 mt753x_cpu_port_enable(ds, i);
7f54cc97
DG
2383 } else {
2384 mt7530_port_disable(ds, i);
2385
2386 /* Set default PVID to 0 on all user ports */
2387 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2388 G0_PORT_VID_DEF);
2389 }
2390
2391 /* Enable consistent egress tag */
2392 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2393 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2394 }
2395
2396 /* Flush the FDB table */
2397 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2398 if (ret < 0)
2399 return ret;
2400
2401 return 0;
2402}
2403
c288575f
LC
2404static int
2405mt7531_setup(struct dsa_switch *ds)
2406{
2407 struct mt7530_priv *priv = ds->priv;
2408 struct mt7530_dummy_poll p;
2409 u32 val, id;
2410 int ret, i;
2411
2412 /* Reset whole chip through gpio pin or memory-mapped registers for
2413 * different type of hardware
2414 */
2415 if (priv->mcm) {
2416 reset_control_assert(priv->rstc);
f490c492 2417 usleep_range(5000, 5100);
c288575f
LC
2418 reset_control_deassert(priv->rstc);
2419 } else {
2420 gpiod_set_value_cansleep(priv->reset, 0);
f490c492 2421 usleep_range(5000, 5100);
c288575f
LC
2422 gpiod_set_value_cansleep(priv->reset, 1);
2423 }
2424
2425 /* Waiting for MT7530 got to stable */
2426 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2427 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2428 20, 1000000);
2429 if (ret < 0) {
2430 dev_err(priv->dev, "reset timeout\n");
2431 return ret;
2432 }
2433
2434 id = mt7530_read(priv, MT7531_CREV);
2435 id >>= CHIP_NAME_SHIFT;
2436
2437 if (id != MT7531_ID) {
2438 dev_err(priv->dev, "chip %x can't be supported\n", id);
2439 return -ENODEV;
2440 }
2441
1f4a85f2
2442 /* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2443 * MT7531BE has got only one SGMII unit which is for port 6.
2444 */
2445 val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2446 priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2447
a565f98d 2448 /* Force link down on all ports before internal reset */
728c2af6
AC
2449 for (i = 0; i < MT7530_NUM_PORTS; i++)
2450 mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2451
c288575f 2452 /* Reset the switch through internal reset */
a565f98d 2453 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
c288575f 2454
1f4a85f2
2455 if (!priv->p5_sgmii) {
2456 mt7531_pll_setup(priv);
2457 } else {
6ca80638 2458 /* Let ds->user_mii_bus be able to access external phy. */
c288575f
LC
2459 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2460 MT7531_EXT_P_MDC_11);
2461 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2462 MT7531_EXT_P_MDIO_12);
c288575f 2463 }
1f4a85f2
2464
2465 if (!dsa_is_unused_port(ds, 5))
2466 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
c288575f
LC
2467
2468 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2469 MT7531_GPIO0_INTERRUPT);
2470
c288575f
LC
2471 /* Enable PHY core PLL, since phy_device has not yet been created
2472 * provided for phy_[read,write]_mmd_indirect is called, we provide
2473 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2474 * function.
2475 */
2476 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2477 MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2478 val |= MT7531_PHY_PLL_BYPASS_MODE;
2479 val &= ~MT7531_PHY_PLL_OFF;
2480 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2481 CORE_PLL_GROUP4, val);
2482
7f54cc97 2483 mt7531_setup_common(ds);
c288575f 2484
1ca8a193
DQ
2485 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2486 ret = mt7530_setup_vlan0(priv);
2487 if (ret)
2488 return ret;
2489
0b69c54c 2490 ds->assisted_learning_on_cpu_port = true;
771c8901 2491 ds->mtu_enforcement_ingress = true;
c288575f 2492
c288575f
LC
2493 return 0;
2494}
2495
59c2215f
RKO
2496static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2497 struct phylink_config *config)
2498{
2499 switch (port) {
05957aa7
2500 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2501 case 0 ... 4:
59c2215f
RKO
2502 __set_bit(PHY_INTERFACE_MODE_GMII,
2503 config->supported_interfaces);
2504 break;
2505
05957aa7
2506 /* Port 5 supports rgmii with delays, mii, and gmii. */
2507 case 5:
59c2215f
RKO
2508 phy_interface_set_rgmii(config->supported_interfaces);
2509 __set_bit(PHY_INTERFACE_MODE_MII,
2510 config->supported_interfaces);
2511 __set_bit(PHY_INTERFACE_MODE_GMII,
2512 config->supported_interfaces);
2513 break;
2514
05957aa7
2515 /* Port 6 supports rgmii and trgmii. */
2516 case 6:
59c2215f
RKO
2517 __set_bit(PHY_INTERFACE_MODE_RGMII,
2518 config->supported_interfaces);
2519 __set_bit(PHY_INTERFACE_MODE_TRGMII,
2520 config->supported_interfaces);
2521 break;
2522 }
2523}
2524
59c2215f
RKO
2525static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2526 struct phylink_config *config)
2527{
2528 struct mt7530_priv *priv = ds->priv;
2529
2530 switch (port) {
05957aa7
2531 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2532 case 0 ... 4:
59c2215f
RKO
2533 __set_bit(PHY_INTERFACE_MODE_GMII,
2534 config->supported_interfaces);
2535 break;
2536
05957aa7
2537 /* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2538 * MT7531AE.
2539 */
2540 case 5:
1f4a85f2 2541 if (!priv->p5_sgmii) {
59c2215f
RKO
2542 phy_interface_set_rgmii(config->supported_interfaces);
2543 break;
2544 }
2545 fallthrough;
2546
05957aa7
2547 /* Port 6 supports sgmii/802.3z. */
2548 case 6:
59c2215f
RKO
2549 __set_bit(PHY_INTERFACE_MODE_SGMII,
2550 config->supported_interfaces);
2551 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2552 config->supported_interfaces);
2553 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
2554 config->supported_interfaces);
2555
2556 config->mac_capabilities |= MAC_2500FD;
2557 break;
2558 }
2559}
2560
110c18bf
DG
2561static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2562 struct phylink_config *config)
2563{
110c18bf 2564 switch (port) {
05957aa7 2565 /* Ports which are connected to switch PHYs. There is no MII pinout. */
c9d70a1d 2566 case 0 ... 3:
110c18bf
DG
2567 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2568 config->supported_interfaces);
2569 break;
2570
05957aa7 2571 /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
110c18bf
DG
2572 case 6:
2573 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2574 config->supported_interfaces);
2575 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2576 MAC_10000FD;
2577 }
2578}
2579
adf4ae24 2580static void
88bdef8b
LC
2581mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2582 phy_interface_t interface)
2583{
2584 struct mt7530_priv *priv = ds->priv;
2585
4ea4c040
2586 if (port == 5)
2587 mt7530_setup_port5(priv->ds, interface);
2588 else if (port == 6)
2589 mt7530_setup_port6(priv->ds, interface);
88bdef8b
LC
2590}
2591
adf4ae24
2592static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2593 phy_interface_t interface,
2594 struct phy_device *phydev)
c288575f
LC
2595{
2596 u32 val;
2597
c288575f
LC
2598 val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2599 val |= GP_CLK_EN;
2600 val &= ~GP_MODE_MASK;
2601 val |= GP_MODE(MT7531_GP_MODE_RGMII);
2602 val &= ~CLK_SKEW_IN_MASK;
2603 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2604 val &= ~CLK_SKEW_OUT_MASK;
2605 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2606 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2607
2608 /* Do not adjust rgmii delay when vendor phy driver presents. */
2609 if (!phydev || phy_driver_is_genphy(phydev)) {
2610 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2611 switch (interface) {
2612 case PHY_INTERFACE_MODE_RGMII:
2613 val |= TXCLK_NO_REVERSE;
2614 val |= RXCLK_NO_DELAY;
2615 break;
2616 case PHY_INTERFACE_MODE_RGMII_RXID:
2617 val |= TXCLK_NO_REVERSE;
2618 break;
2619 case PHY_INTERFACE_MODE_RGMII_TXID:
2620 val |= RXCLK_NO_DELAY;
2621 break;
2622 case PHY_INTERFACE_MODE_RGMII_ID:
2623 break;
2624 default:
adf4ae24 2625 break;
c288575f
LC
2626 }
2627 }
c288575f 2628
adf4ae24 2629 mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
c288575f
LC
2630}
2631
adf4ae24 2632static void
c288575f
LC
2633mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2634 phy_interface_t interface)
2635{
2636 struct mt7530_priv *priv = ds->priv;
2637 struct phy_device *phydev;
2638 struct dsa_port *dp;
2639
adf4ae24 2640 if (phy_interface_mode_is_rgmii(interface)) {
c288575f 2641 dp = dsa_to_port(ds, port);
6ca80638 2642 phydev = dp->user->phydev;
adf4ae24 2643 mt7531_rgmii_setup(priv, port, interface, phydev);
c288575f 2644 }
c288575f
LC
2645}
2646
cbd1f243
RKO
2647static struct phylink_pcs *
2648mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2649 phy_interface_t interface)
2650{
2651 struct mt7530_priv *priv = ds->priv;
2652
2653 switch (interface) {
2654 case PHY_INTERFACE_MODE_TRGMII:
5b89aeae 2655 return &priv->pcs[port].pcs;
cbd1f243
RKO
2656 case PHY_INTERFACE_MODE_SGMII:
2657 case PHY_INTERFACE_MODE_1000BASEX:
2658 case PHY_INTERFACE_MODE_2500BASEX:
5b89aeae 2659 return priv->ports[port].sgmii_pcs;
cbd1f243
RKO
2660 default:
2661 return NULL;
2662 }
2663}
2664
88bdef8b
LC
2665static void
2666mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2667 const struct phylink_link_state *state)
2668{
2669 struct mt7530_priv *priv = ds->priv;
88bdef8b 2670
1192ed89
2671 if ((port == 5 || port == 6) && priv->info->mac_port_config)
2672 priv->info->mac_port_config(ds, port, mode, state->interface);
38f790a8 2673
38f790a8
RD
2674 /* Are we connected to external phy */
2675 if (port == 5 && dsa_is_user_port(ds, 5))
b04097c7 2676 mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
ca366d6c
RD
2677}
2678
c288575f 2679static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
ca366d6c
RD
2680 unsigned int mode,
2681 phy_interface_t interface)
2682{
2683 struct mt7530_priv *priv = ds->priv;
2684
1d01145f 2685 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
ca366d6c
RD
2686}
2687
c288575f 2688static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
ca366d6c
RD
2689 unsigned int mode,
2690 phy_interface_t interface,
5b502a7b
RK
2691 struct phy_device *phydev,
2692 int speed, int duplex,
2693 bool tx_pause, bool rx_pause)
ca366d6c
RD
2694{
2695 struct mt7530_priv *priv = ds->priv;
1d01145f
RD
2696 u32 mcr;
2697
2698 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2699
2700 switch (speed) {
2701 case SPEED_1000:
22fa1017
2702 case SPEED_2500:
2703 case SPEED_10000:
1d01145f
RD
2704 mcr |= PMCR_FORCE_SPEED_1000;
2705 break;
2706 case SPEED_100:
2707 mcr |= PMCR_FORCE_SPEED_100;
2708 break;
2709 }
2710 if (duplex == DUPLEX_FULL) {
2711 mcr |= PMCR_FORCE_FDX;
2712 if (tx_pause)
2713 mcr |= PMCR_TX_FC_EN;
2714 if (rx_pause)
2715 mcr |= PMCR_RX_FC_EN;
2716 }
ca366d6c 2717
53243d41 2718 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
40b5d2f1
RD
2719 switch (speed) {
2720 case SPEED_1000:
22fa1017 2721 case SPEED_2500:
40b5d2f1
RD
2722 mcr |= PMCR_FORCE_EEE1G;
2723 break;
2724 case SPEED_100:
2725 mcr |= PMCR_FORCE_EEE100;
2726 break;
2727 }
2728 }
2729
1d01145f 2730 mt7530_set(priv, MT7530_PMCR_P(port), mcr);
ca366d6c
RD
2731}
2732
59c2215f
RKO
2733static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2734 struct phylink_config *config)
2735{
2736 struct mt7530_priv *priv = ds->priv;
2737
2738 /* This switch only supports full-duplex at 1Gbps */
2739 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2740 MAC_10 | MAC_100 | MAC_1000FD;
2741
2742 priv->info->mac_port_get_caps(ds, port, config);
2743}
2744
9d0df207
RKO
2745static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2746 unsigned long *supported,
2747 const struct phylink_link_state *state)
ca366d6c 2748{
9d0df207
RKO
2749 /* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2750 if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2751 phy_interface_mode_is_8023z(state->interface))
2752 phylink_clear(supported, Autoneg);
ca366d6c 2753
9d0df207 2754 return 0;
ca366d6c
RD
2755}
2756
cbd1f243
RKO
2757static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2758 struct phylink_link_state *state)
ca366d6c 2759{
cbd1f243
RKO
2760 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2761 int port = pcs_to_mt753x_pcs(pcs)->port;
ca366d6c
RD
2762 u32 pmsr;
2763
ca366d6c
RD
2764 pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2765
2766 state->link = (pmsr & PMSR_LINK);
2767 state->an_complete = state->link;
2768 state->duplex = !!(pmsr & PMSR_DPX);
2769
2770 switch (pmsr & PMSR_SPEED_MASK) {
2771 case PMSR_SPEED_10:
2772 state->speed = SPEED_10;
2773 break;
2774 case PMSR_SPEED_100:
2775 state->speed = SPEED_100;
2776 break;
2777 case PMSR_SPEED_1000:
2778 state->speed = SPEED_1000;
2779 break;
2780 default:
2781 state->speed = SPEED_UNKNOWN;
2782 break;
2783 }
2784
2785 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2786 if (pmsr & PMSR_RX_FC)
2787 state->pause |= MLO_PAUSE_RX;
2788 if (pmsr & PMSR_TX_FC)
2789 state->pause |= MLO_PAUSE_TX;
ca366d6c
RD
2790}
2791
6c1e4eca 2792static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
cbd1f243
RKO
2793 phy_interface_t interface,
2794 const unsigned long *advertising,
2795 bool permit_pause_to_mac)
88bdef8b 2796{
cbd1f243
RKO
2797 return 0;
2798}
88bdef8b 2799
cbd1f243
RKO
2800static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
2801{
88bdef8b
LC
2802}
2803
cbd1f243 2804static const struct phylink_pcs_ops mt7530_pcs_ops = {
9d0df207 2805 .pcs_validate = mt753x_pcs_validate,
cbd1f243
RKO
2806 .pcs_get_state = mt7530_pcs_get_state,
2807 .pcs_config = mt753x_pcs_config,
2808 .pcs_an_restart = mt7530_pcs_an_restart,
2809};
2810
88bdef8b
LC
2811static int
2812mt753x_setup(struct dsa_switch *ds)
2813{
2814 struct mt7530_priv *priv = ds->priv;
3a87131e
2815 int ret = priv->info->sw_setup(ds);
2816 int i;
88bdef8b 2817
ba751e28
DQ
2818 if (ret)
2819 return ret;
88bdef8b 2820
ba751e28
DQ
2821 ret = mt7530_setup_irq(priv);
2822 if (ret)
2823 return ret;
88bdef8b 2824
ba751e28
DQ
2825 ret = mt7530_setup_mdio(priv);
2826 if (ret && priv->irq)
2827 mt7530_free_irq_common(priv);
88bdef8b 2828
3a87131e
2829 /* Initialise the PCS devices */
2830 for (i = 0; i < priv->ds->num_ports; i++) {
2831 priv->pcs[i].pcs.ops = priv->info->pcs_ops;
2832 priv->pcs[i].pcs.neg_mode = true;
2833 priv->pcs[i].priv = priv;
2834 priv->pcs[i].port = i;
2835 }
2836
91daa4f6 2837 if (priv->create_sgmii) {
1f4a85f2 2838 ret = priv->create_sgmii(priv);
91daa4f6
DG
2839 if (ret && priv->irq)
2840 mt7530_free_irq(priv);
2841 }
2842
ba751e28 2843 return ret;
88bdef8b
LC
2844}
2845
40b5d2f1 2846static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
d80a5233 2847 struct ethtool_keee *e)
40b5d2f1
RD
2848{
2849 struct mt7530_priv *priv = ds->priv;
2850 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
2851
2852 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
2853 e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
2854
2855 return 0;
2856}
2857
2858static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
d80a5233 2859 struct ethtool_keee *e)
40b5d2f1
RD
2860{
2861 struct mt7530_priv *priv = ds->priv;
2862 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
2863
2864 if (e->tx_lpi_timer > 0xFFF)
2865 return -EINVAL;
2866
2867 set = SET_LPI_THRESH(e->tx_lpi_timer);
2868 if (!e->tx_lpi_enabled)
2869 /* Force LPI Mode without a delay */
2870 set |= LPI_MODE_EN;
2871 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
2872
2873 return 0;
2874}
2875
024d8577
2876static void
2877mt753x_conduit_state_change(struct dsa_switch *ds,
2878 const struct net_device *conduit,
2879 bool operational)
2880{
2881 struct dsa_port *cpu_dp = conduit->dsa_ptr;
2882 struct mt7530_priv *priv = ds->priv;
2883 int val = 0;
2884 u8 mask;
2885
2886 /* Set the CPU port to trap frames to for MT7530. Trapped frames will be
2887 * forwarded to the numerically smallest CPU port whose conduit
2888 * interface is up.
2889 */
2890 if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
2891 return;
2892
2893 mask = BIT(cpu_dp->index);
2894
2895 if (operational)
2896 priv->active_cpu_ports |= mask;
2897 else
2898 priv->active_cpu_ports &= ~mask;
2899
2900 if (priv->active_cpu_ports)
2901 val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
2902
2903 mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
2904}
2905
110c18bf
DG
2906static int mt7988_setup(struct dsa_switch *ds)
2907{
2908 struct mt7530_priv *priv = ds->priv;
2909
2910 /* Reset the switch */
2911 reset_control_assert(priv->rstc);
2912 usleep_range(20, 50);
2913 reset_control_deassert(priv->rstc);
2914 usleep_range(20, 50);
2915
2916 /* Reset the switch PHYs */
2917 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
2918
2919 return mt7531_setup_common(ds);
2920}
2921
cb675afc 2922const struct dsa_switch_ops mt7530_switch_ops = {
b8f126a8 2923 .get_tag_protocol = mtk_get_tag_protocol,
88bdef8b 2924 .setup = mt753x_setup,
b79d7c14 2925 .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
b8f126a8 2926 .get_strings = mt7530_get_strings,
b8f126a8
SW
2927 .get_ethtool_stats = mt7530_get_ethtool_stats,
2928 .get_sset_count = mt7530_get_sset_count,
ea6d5c92 2929 .set_ageing_time = mt7530_set_ageing_time,
b8f126a8
SW
2930 .port_enable = mt7530_port_enable,
2931 .port_disable = mt7530_port_disable,
9470174e
DQ
2932 .port_change_mtu = mt7530_port_change_mtu,
2933 .port_max_mtu = mt7530_port_max_mtu,
b8f126a8 2934 .port_stp_state_set = mt7530_stp_state_set,
5a30833b
DQ
2935 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
2936 .port_bridge_flags = mt7530_port_bridge_flags,
b8f126a8
SW
2937 .port_bridge_join = mt7530_port_bridge_join,
2938 .port_bridge_leave = mt7530_port_bridge_leave,
b8f126a8
SW
2939 .port_fdb_add = mt7530_port_fdb_add,
2940 .port_fdb_del = mt7530_port_fdb_del,
2941 .port_fdb_dump = mt7530_port_fdb_dump,
5a30833b
DQ
2942 .port_mdb_add = mt7530_port_mdb_add,
2943 .port_mdb_del = mt7530_port_mdb_del,
83163f7d 2944 .port_vlan_filtering = mt7530_port_vlan_filtering,
83163f7d
SW
2945 .port_vlan_add = mt7530_port_vlan_add,
2946 .port_vlan_del = mt7530_port_vlan_del,
c288575f
LC
2947 .port_mirror_add = mt753x_port_mirror_add,
2948 .port_mirror_del = mt753x_port_mirror_del,
59c2215f 2949 .phylink_get_caps = mt753x_phylink_get_caps,
cbd1f243 2950 .phylink_mac_select_pcs = mt753x_phylink_mac_select_pcs,
88bdef8b 2951 .phylink_mac_config = mt753x_phylink_mac_config,
c288575f
LC
2952 .phylink_mac_link_down = mt753x_phylink_mac_link_down,
2953 .phylink_mac_link_up = mt753x_phylink_mac_link_up,
40b5d2f1
RD
2954 .get_mac_eee = mt753x_get_mac_eee,
2955 .set_mac_eee = mt753x_set_mac_eee,
024d8577 2956 .conduit_state_change = mt753x_conduit_state_change,
b8f126a8 2957};
cb675afc 2958EXPORT_SYMBOL_GPL(mt7530_switch_ops);
b8f126a8 2959
cb675afc 2960const struct mt753x_info mt753x_table[] = {
88bdef8b
LC
2961 [ID_MT7621] = {
2962 .id = ID_MT7621,
cbd1f243 2963 .pcs_ops = &mt7530_pcs_ops,
88bdef8b 2964 .sw_setup = mt7530_setup,
defa2e54
AL
2965 .phy_read_c22 = mt7530_phy_read_c22,
2966 .phy_write_c22 = mt7530_phy_write_c22,
2967 .phy_read_c45 = mt7530_phy_read_c45,
2968 .phy_write_c45 = mt7530_phy_write_c45,
59c2215f 2969 .mac_port_get_caps = mt7530_mac_port_get_caps,
88bdef8b
LC
2970 .mac_port_config = mt7530_mac_config,
2971 },
2972 [ID_MT7530] = {
2973 .id = ID_MT7530,
cbd1f243 2974 .pcs_ops = &mt7530_pcs_ops,
88bdef8b 2975 .sw_setup = mt7530_setup,
defa2e54
AL
2976 .phy_read_c22 = mt7530_phy_read_c22,
2977 .phy_write_c22 = mt7530_phy_write_c22,
2978 .phy_read_c45 = mt7530_phy_read_c45,
2979 .phy_write_c45 = mt7530_phy_write_c45,
59c2215f 2980 .mac_port_get_caps = mt7530_mac_port_get_caps,
88bdef8b
LC
2981 .mac_port_config = mt7530_mac_config,
2982 },
c288575f
LC
2983 [ID_MT7531] = {
2984 .id = ID_MT7531,
5b89aeae 2985 .pcs_ops = &mt7530_pcs_ops,
c288575f 2986 .sw_setup = mt7531_setup,
defa2e54
AL
2987 .phy_read_c22 = mt7531_ind_c22_phy_read,
2988 .phy_write_c22 = mt7531_ind_c22_phy_write,
2989 .phy_read_c45 = mt7531_ind_c45_phy_read,
2990 .phy_write_c45 = mt7531_ind_c45_phy_write,
59c2215f 2991 .mac_port_get_caps = mt7531_mac_port_get_caps,
c288575f 2992 .mac_port_config = mt7531_mac_config,
c288575f 2993 },
110c18bf
DG
2994 [ID_MT7988] = {
2995 .id = ID_MT7988,
2996 .pcs_ops = &mt7530_pcs_ops,
2997 .sw_setup = mt7988_setup,
2998 .phy_read_c22 = mt7531_ind_c22_phy_read,
2999 .phy_write_c22 = mt7531_ind_c22_phy_write,
3000 .phy_read_c45 = mt7531_ind_c45_phy_read,
3001 .phy_write_c45 = mt7531_ind_c45_phy_write,
110c18bf 3002 .mac_port_get_caps = mt7988_mac_port_get_caps,
110c18bf 3003 },
88bdef8b 3004};
cb675afc 3005EXPORT_SYMBOL_GPL(mt753x_table);
88bdef8b 3006
cb675afc 3007int
37c9c0d8 3008mt7530_probe_common(struct mt7530_priv *priv)
b8f126a8 3009{
37c9c0d8 3010 struct device *dev = priv->dev;
b8f126a8 3011
37c9c0d8 3012 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
b8f126a8
SW
3013 if (!priv->ds)
3014 return -ENOMEM;
3015
37c9c0d8 3016 priv->ds->dev = dev;
342afce1 3017 priv->ds->num_ports = MT7530_NUM_PORTS;
7e99e347 3018
ddda1ac1
GU
3019 /* Get the hardware identifier from the devicetree node.
3020 * We will need it for some of the clock and regulator setup.
3021 */
37c9c0d8 3022 priv->info = of_device_get_match_data(dev);
88bdef8b
LC
3023 if (!priv->info)
3024 return -EINVAL;
3025
3026 /* Sanity check if these required device operations are filled
3027 * properly.
3028 */
8c2703f5 3029 if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
6ebe414b 3030 !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
88bdef8b
LC
3031 return -EINVAL;
3032
3033 priv->id = priv->info->id;
37c9c0d8
DG
3034 priv->dev = dev;
3035 priv->ds->priv = priv;
3036 priv->ds->ops = &mt7530_switch_ops;
3037 mutex_init(&priv->reg_mutex);
3038 dev_set_drvdata(dev, priv);
b8f126a8 3039
37c9c0d8
DG
3040 return 0;
3041}
cb675afc 3042EXPORT_SYMBOL_GPL(mt7530_probe_common);
ddda1ac1 3043
cb675afc 3044void
720d7363
DG
3045mt7530_remove_common(struct mt7530_priv *priv)
3046{
3047 if (priv->irq)
3048 mt7530_free_irq(priv);
3049
3050 dsa_unregister_switch(priv->ds);
3051
3052 mutex_destroy(&priv->reg_mutex);
3053}
cb675afc 3054EXPORT_SYMBOL_GPL(mt7530_remove_common);
b8f126a8
SW
3055
3056MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3057MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3058MODULE_LICENSE("GPL");