cxgb3: Fix sparse warning and micro-optimize is_pure_response()
[linux-2.6-block.git] / drivers / net / cxgb3 / sge.c
CommitLineData
4d22de3e 1/*
a02d44a0 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4d22de3e 3 *
1d68e93d
DLR
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
4d22de3e 9 *
1d68e93d
DLR
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
4d22de3e 31 */
4d22de3e
DLR
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include "common.h"
40#include "regs.h"
41#include "sge_defs.h"
42#include "t3_cpl.h"
43#include "firmware_exports.h"
44
45#define USE_GTS 0
46
47#define SGE_RX_SM_BUF_SIZE 1536
e0994eb1 48
4d22de3e 49#define SGE_RX_COPY_THRES 256
cf992af5 50#define SGE_RX_PULL_LEN 128
4d22de3e 51
e0994eb1 52/*
cf992af5
DLR
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
e0994eb1 56 */
cf992af5 57#define FL0_PG_CHUNK_SIZE 2048
7385ecf3
DLR
58#define FL0_PG_ORDER 0
59#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
60#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
cf992af5 61
e0994eb1 62#define SGE_RX_DROP_THRES 16
4d22de3e
DLR
63
64/*
65 * Period of the Tx buffer reclaim timer. This timer does not need to run
66 * frequently as Tx buffers are usually reclaimed by new Tx packets.
67 */
68#define TX_RECLAIM_PERIOD (HZ / 4)
69
70/* WR size in bytes */
71#define WR_LEN (WR_FLITS * 8)
72
73/*
74 * Types of Tx queues in each queue set. Order here matters, do not change.
75 */
76enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
77
78/* Values for sge_txq.flags */
79enum {
80 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
81 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
82};
83
84struct tx_desc {
fb8e4444 85 __be64 flit[TX_DESC_FLITS];
4d22de3e
DLR
86};
87
88struct rx_desc {
89 __be32 addr_lo;
90 __be32 len_gen;
91 __be32 gen2;
92 __be32 addr_hi;
93};
94
95struct tx_sw_desc { /* SW state per Tx descriptor */
96 struct sk_buff *skb;
23561c94
DLR
97 u8 eop; /* set if last descriptor for packet */
98 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
99 u8 fragidx; /* first page fragment associated with descriptor */
100 s8 sflit; /* start flit of first SGL entry in descriptor */
4d22de3e
DLR
101};
102
cf992af5 103struct rx_sw_desc { /* SW state per Rx descriptor */
e0994eb1
DLR
104 union {
105 struct sk_buff *skb;
cf992af5
DLR
106 struct fl_pg_chunk pg_chunk;
107 };
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
4d22de3e
DLR
109};
110
111struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
117};
118
99d7cf30
DLR
119/*
120 * Holds unmapping information for Tx packets that need deferred unmapping.
121 * This structure lives at skb->head and must be allocated by callers.
122 */
123struct deferred_unmap_info {
124 struct pci_dev *pdev;
125 dma_addr_t addr[MAX_SKB_FRAGS + 1];
126};
127
4d22de3e
DLR
128/*
129 * Maps a number of flits to the number of Tx descriptors that can hold them.
130 * The formula is
131 *
132 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
133 *
134 * HW allows up to 4 descriptors to be combined into a WR.
135 */
136static u8 flit_desc_map[] = {
137 0,
138#if SGE_NUM_GENBITS == 1
139 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
141 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
142 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
143#elif SGE_NUM_GENBITS == 2
144 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
145 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
146 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
147 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
148#else
149# error "SGE_NUM_GENBITS must be 1 or 2"
150#endif
151};
152
153static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
154{
155 return container_of(q, struct sge_qset, fl[qidx]);
156}
157
158static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
159{
160 return container_of(q, struct sge_qset, rspq);
161}
162
163static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
164{
165 return container_of(q, struct sge_qset, txq[qidx]);
166}
167
168/**
169 * refill_rspq - replenish an SGE response queue
170 * @adapter: the adapter
171 * @q: the response queue to replenish
172 * @credits: how many new responses to make available
173 *
174 * Replenishes a response queue by making the supplied number of responses
175 * available to HW.
176 */
177static inline void refill_rspq(struct adapter *adapter,
178 const struct sge_rspq *q, unsigned int credits)
179{
afefce66 180 rmb();
4d22de3e
DLR
181 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
182 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
183}
184
185/**
186 * need_skb_unmap - does the platform need unmapping of sk_buffs?
187 *
188 * Returns true if the platfrom needs sk_buff unmapping. The compiler
189 * optimizes away unecessary code if this returns true.
190 */
191static inline int need_skb_unmap(void)
192{
193 /*
194 * This structure is used to tell if the platfrom needs buffer
195 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
196 */
197 struct dummy {
198 DECLARE_PCI_UNMAP_ADDR(addr);
199 };
200
201 return sizeof(struct dummy) != 0;
202}
203
204/**
205 * unmap_skb - unmap a packet main body and its page fragments
206 * @skb: the packet
207 * @q: the Tx queue containing Tx descriptors for the packet
208 * @cidx: index of Tx descriptor
209 * @pdev: the PCI device
210 *
211 * Unmap the main body of an sk_buff and its page fragments, if any.
212 * Because of the fairly complicated structure of our SGLs and the desire
23561c94
DLR
213 * to conserve space for metadata, the information necessary to unmap an
214 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
215 * descriptors (the physical addresses of the various data buffers), and
216 * the SW descriptor state (assorted indices). The send functions
217 * initialize the indices for the first packet descriptor so we can unmap
218 * the buffers held in the first Tx descriptor here, and we have enough
219 * information at this point to set the state for the next Tx descriptor.
220 *
221 * Note that it is possible to clean up the first descriptor of a packet
222 * before the send routines have written the next descriptors, but this
223 * race does not cause any problem. We just end up writing the unmapping
224 * info for the descriptor first.
4d22de3e
DLR
225 */
226static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
227 unsigned int cidx, struct pci_dev *pdev)
228{
229 const struct sg_ent *sgp;
23561c94
DLR
230 struct tx_sw_desc *d = &q->sdesc[cidx];
231 int nfrags, frag_idx, curflit, j = d->addr_idx;
4d22de3e 232
23561c94
DLR
233 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
234 frag_idx = d->fragidx;
4d22de3e 235
23561c94
DLR
236 if (frag_idx == 0 && skb_headlen(skb)) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
238 skb_headlen(skb), PCI_DMA_TODEVICE);
4d22de3e
DLR
239 j = 1;
240 }
241
23561c94 242 curflit = d->sflit + 1 + j;
4d22de3e
DLR
243 nfrags = skb_shinfo(skb)->nr_frags;
244
245 while (frag_idx < nfrags && curflit < WR_FLITS) {
246 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
247 skb_shinfo(skb)->frags[frag_idx].size,
248 PCI_DMA_TODEVICE);
249 j ^= 1;
250 if (j == 0) {
251 sgp++;
252 curflit++;
253 }
254 curflit++;
255 frag_idx++;
256 }
257
23561c94
DLR
258 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
259 d = cidx + 1 == q->size ? q->sdesc : d + 1;
260 d->fragidx = frag_idx;
261 d->addr_idx = j;
262 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
4d22de3e
DLR
263 }
264}
265
266/**
267 * free_tx_desc - reclaims Tx descriptors and their buffers
268 * @adapter: the adapter
269 * @q: the Tx queue to reclaim descriptors from
270 * @n: the number of descriptors to reclaim
271 *
272 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
273 * Tx buffers. Called with the Tx queue lock held.
274 */
275static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
276 unsigned int n)
277{
278 struct tx_sw_desc *d;
279 struct pci_dev *pdev = adapter->pdev;
280 unsigned int cidx = q->cidx;
281
99d7cf30
DLR
282 const int need_unmap = need_skb_unmap() &&
283 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
284
4d22de3e
DLR
285 d = &q->sdesc[cidx];
286 while (n--) {
287 if (d->skb) { /* an SGL is present */
99d7cf30 288 if (need_unmap)
4d22de3e 289 unmap_skb(d->skb, q, cidx, pdev);
23561c94 290 if (d->eop)
4d22de3e
DLR
291 kfree_skb(d->skb);
292 }
293 ++d;
294 if (++cidx == q->size) {
295 cidx = 0;
296 d = q->sdesc;
297 }
298 }
299 q->cidx = cidx;
300}
301
302/**
303 * reclaim_completed_tx - reclaims completed Tx descriptors
304 * @adapter: the adapter
305 * @q: the Tx queue to reclaim completed descriptors from
306 *
307 * Reclaims Tx descriptors that the SGE has indicated it has processed,
308 * and frees the associated buffers if possible. Called with the Tx
309 * queue's lock held.
310 */
311static inline void reclaim_completed_tx(struct adapter *adapter,
312 struct sge_txq *q)
313{
314 unsigned int reclaim = q->processed - q->cleaned;
315
316 if (reclaim) {
317 free_tx_desc(adapter, q, reclaim);
318 q->cleaned += reclaim;
319 q->in_use -= reclaim;
320 }
321}
322
323/**
324 * should_restart_tx - are there enough resources to restart a Tx queue?
325 * @q: the Tx queue
326 *
327 * Checks if there are enough descriptors to restart a suspended Tx queue.
328 */
329static inline int should_restart_tx(const struct sge_txq *q)
330{
331 unsigned int r = q->processed - q->cleaned;
332
333 return q->in_use - r < (q->size >> 1);
334}
335
336/**
337 * free_rx_bufs - free the Rx buffers on an SGE free list
338 * @pdev: the PCI device associated with the adapter
339 * @rxq: the SGE free list to clean up
340 *
341 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
342 * this queue should be stopped before calling this function.
343 */
344static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
345{
346 unsigned int cidx = q->cidx;
347
348 while (q->credits--) {
349 struct rx_sw_desc *d = &q->sdesc[cidx];
350
351 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
352 q->buf_size, PCI_DMA_FROMDEVICE);
cf992af5 353 if (q->use_pages) {
20d3fc11
DLR
354 if (d->pg_chunk.page)
355 put_page(d->pg_chunk.page);
cf992af5 356 d->pg_chunk.page = NULL;
e0994eb1 357 } else {
cf992af5
DLR
358 kfree_skb(d->skb);
359 d->skb = NULL;
e0994eb1 360 }
4d22de3e
DLR
361 if (++cidx == q->size)
362 cidx = 0;
363 }
e0994eb1 364
cf992af5 365 if (q->pg_chunk.page) {
7385ecf3 366 __free_pages(q->pg_chunk.page, q->order);
cf992af5
DLR
367 q->pg_chunk.page = NULL;
368 }
4d22de3e
DLR
369}
370
371/**
372 * add_one_rx_buf - add a packet buffer to a free-buffer list
cf992af5 373 * @va: buffer start VA
4d22de3e
DLR
374 * @len: the buffer length
375 * @d: the HW Rx descriptor to write
376 * @sd: the SW Rx descriptor to write
377 * @gen: the generation bit value
378 * @pdev: the PCI device associated with the adapter
379 *
380 * Add a buffer of the given length to the supplied HW and SW Rx
381 * descriptors.
382 */
b1fb1f28
DLR
383static inline int add_one_rx_buf(void *va, unsigned int len,
384 struct rx_desc *d, struct rx_sw_desc *sd,
385 unsigned int gen, struct pci_dev *pdev)
4d22de3e
DLR
386{
387 dma_addr_t mapping;
388
e0994eb1 389 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
8d8bb39b 390 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
b1fb1f28
DLR
391 return -ENOMEM;
392
4d22de3e
DLR
393 pci_unmap_addr_set(sd, dma_addr, mapping);
394
395 d->addr_lo = cpu_to_be32(mapping);
396 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
397 wmb();
398 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
399 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
b1fb1f28 400 return 0;
4d22de3e
DLR
401}
402
7385ecf3
DLR
403static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
404 unsigned int order)
cf992af5
DLR
405{
406 if (!q->pg_chunk.page) {
7385ecf3 407 q->pg_chunk.page = alloc_pages(gfp, order);
cf992af5
DLR
408 if (unlikely(!q->pg_chunk.page))
409 return -ENOMEM;
410 q->pg_chunk.va = page_address(q->pg_chunk.page);
411 q->pg_chunk.offset = 0;
412 }
413 sd->pg_chunk = q->pg_chunk;
414
415 q->pg_chunk.offset += q->buf_size;
7385ecf3 416 if (q->pg_chunk.offset == (PAGE_SIZE << order))
cf992af5
DLR
417 q->pg_chunk.page = NULL;
418 else {
419 q->pg_chunk.va += q->buf_size;
420 get_page(q->pg_chunk.page);
421 }
422 return 0;
423}
424
4d22de3e
DLR
425/**
426 * refill_fl - refill an SGE free-buffer list
427 * @adapter: the adapter
428 * @q: the free-list to refill
429 * @n: the number of new buffers to allocate
430 * @gfp: the gfp flags for allocating new buffers
431 *
432 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
433 * allocated with the supplied gfp flags. The caller must assure that
434 * @n does not exceed the queue's capacity.
435 */
b1fb1f28 436static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
4d22de3e 437{
cf992af5 438 void *buf_start;
4d22de3e
DLR
439 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
440 struct rx_desc *d = &q->desc[q->pidx];
b1fb1f28 441 unsigned int count = 0;
4d22de3e
DLR
442
443 while (n--) {
b1fb1f28
DLR
444 int err;
445
cf992af5 446 if (q->use_pages) {
7385ecf3 447 if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
cf992af5 448nomem: q->alloc_failed++;
e0994eb1
DLR
449 break;
450 }
cf992af5 451 buf_start = sd->pg_chunk.va;
e0994eb1 452 } else {
cf992af5 453 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
e0994eb1 454
cf992af5
DLR
455 if (!skb)
456 goto nomem;
e0994eb1 457
cf992af5
DLR
458 sd->skb = skb;
459 buf_start = skb->data;
e0994eb1
DLR
460 }
461
b1fb1f28
DLR
462 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
463 adap->pdev);
464 if (unlikely(err)) {
465 if (!q->use_pages) {
466 kfree_skb(sd->skb);
467 sd->skb = NULL;
468 }
469 break;
470 }
471
4d22de3e
DLR
472 d++;
473 sd++;
474 if (++q->pidx == q->size) {
475 q->pidx = 0;
476 q->gen ^= 1;
477 sd = q->sdesc;
478 d = q->desc;
479 }
480 q->credits++;
b1fb1f28 481 count++;
4d22de3e 482 }
afefce66 483 wmb();
b1fb1f28
DLR
484 if (likely(count))
485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
486
487 return count;
4d22de3e
DLR
488}
489
490static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
491{
7385ecf3
DLR
492 refill_fl(adap, fl, min(16U, fl->size - fl->credits),
493 GFP_ATOMIC | __GFP_COMP);
4d22de3e
DLR
494}
495
496/**
497 * recycle_rx_buf - recycle a receive buffer
498 * @adapter: the adapter
499 * @q: the SGE free list
500 * @idx: index of buffer to recycle
501 *
502 * Recycles the specified buffer on the given free list by adding it at
503 * the next available slot on the list.
504 */
505static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
506 unsigned int idx)
507{
508 struct rx_desc *from = &q->desc[idx];
509 struct rx_desc *to = &q->desc[q->pidx];
510
cf992af5 511 q->sdesc[q->pidx] = q->sdesc[idx];
4d22de3e
DLR
512 to->addr_lo = from->addr_lo; /* already big endian */
513 to->addr_hi = from->addr_hi; /* likewise */
514 wmb();
515 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
516 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
517 q->credits++;
518
519 if (++q->pidx == q->size) {
520 q->pidx = 0;
521 q->gen ^= 1;
522 }
523 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
524}
525
526/**
527 * alloc_ring - allocate resources for an SGE descriptor ring
528 * @pdev: the PCI device
529 * @nelem: the number of descriptors
530 * @elem_size: the size of each descriptor
531 * @sw_size: the size of the SW state associated with each ring element
532 * @phys: the physical address of the allocated ring
533 * @metadata: address of the array holding the SW state for the ring
534 *
535 * Allocates resources for an SGE descriptor ring, such as Tx queues,
536 * free buffer lists, or response queues. Each SGE ring requires
537 * space for its HW descriptors plus, optionally, space for the SW state
538 * associated with each HW entry (the metadata). The function returns
539 * three values: the virtual address for the HW ring (the return value
540 * of the function), the physical address of the HW ring, and the address
541 * of the SW ring.
542 */
543static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
e0994eb1 544 size_t sw_size, dma_addr_t * phys, void *metadata)
4d22de3e
DLR
545{
546 size_t len = nelem * elem_size;
547 void *s = NULL;
548 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
549
550 if (!p)
551 return NULL;
52565544 552 if (sw_size && metadata) {
4d22de3e
DLR
553 s = kcalloc(nelem, sw_size, GFP_KERNEL);
554
555 if (!s) {
556 dma_free_coherent(&pdev->dev, len, p, *phys);
557 return NULL;
558 }
4d22de3e 559 *(void **)metadata = s;
52565544 560 }
4d22de3e
DLR
561 memset(p, 0, len);
562 return p;
563}
564
204e2f98
DLR
565/**
566 * t3_reset_qset - reset a sge qset
567 * @q: the queue set
568 *
569 * Reset the qset structure.
570 * the NAPI structure is preserved in the event of
571 * the qset's reincarnation, for example during EEH recovery.
572 */
573static void t3_reset_qset(struct sge_qset *q)
574{
575 if (q->adap &&
576 !(q->adap->flags & NAPI_INIT)) {
577 memset(q, 0, sizeof(*q));
578 return;
579 }
580
581 q->adap = NULL;
582 memset(&q->rspq, 0, sizeof(q->rspq));
583 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
584 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
585 q->txq_stopped = 0;
20d3fc11 586 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
b47385bd
DLR
587 kfree(q->lro_frag_tbl);
588 q->lro_nfrags = q->lro_frag_len = 0;
204e2f98
DLR
589}
590
591
4d22de3e
DLR
592/**
593 * free_qset - free the resources of an SGE queue set
594 * @adapter: the adapter owning the queue set
595 * @q: the queue set
596 *
597 * Release the HW and SW resources associated with an SGE queue set, such
598 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
599 * queue set must be quiesced prior to calling this.
600 */
9265fabf 601static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
4d22de3e
DLR
602{
603 int i;
604 struct pci_dev *pdev = adapter->pdev;
605
4d22de3e
DLR
606 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
607 if (q->fl[i].desc) {
b1186dee 608 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 609 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
b1186dee 610 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
611 free_rx_bufs(pdev, &q->fl[i]);
612 kfree(q->fl[i].sdesc);
613 dma_free_coherent(&pdev->dev,
614 q->fl[i].size *
615 sizeof(struct rx_desc), q->fl[i].desc,
616 q->fl[i].phys_addr);
617 }
618
619 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
620 if (q->txq[i].desc) {
b1186dee 621 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 622 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
b1186dee 623 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
624 if (q->txq[i].sdesc) {
625 free_tx_desc(adapter, &q->txq[i],
626 q->txq[i].in_use);
627 kfree(q->txq[i].sdesc);
628 }
629 dma_free_coherent(&pdev->dev,
630 q->txq[i].size *
631 sizeof(struct tx_desc),
632 q->txq[i].desc, q->txq[i].phys_addr);
633 __skb_queue_purge(&q->txq[i].sendq);
634 }
635
636 if (q->rspq.desc) {
b1186dee 637 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 638 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
b1186dee 639 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
640 dma_free_coherent(&pdev->dev,
641 q->rspq.size * sizeof(struct rsp_desc),
642 q->rspq.desc, q->rspq.phys_addr);
643 }
644
204e2f98 645 t3_reset_qset(q);
4d22de3e
DLR
646}
647
648/**
649 * init_qset_cntxt - initialize an SGE queue set context info
650 * @qs: the queue set
651 * @id: the queue set id
652 *
653 * Initializes the TIDs and context ids for the queues of a queue set.
654 */
655static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
656{
657 qs->rspq.cntxt_id = id;
658 qs->fl[0].cntxt_id = 2 * id;
659 qs->fl[1].cntxt_id = 2 * id + 1;
660 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
661 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
662 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
663 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
664 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
665}
666
667/**
668 * sgl_len - calculates the size of an SGL of the given capacity
669 * @n: the number of SGL entries
670 *
671 * Calculates the number of flits needed for a scatter/gather list that
672 * can hold the given number of entries.
673 */
674static inline unsigned int sgl_len(unsigned int n)
675{
676 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
677 return (3 * n) / 2 + (n & 1);
678}
679
680/**
681 * flits_to_desc - returns the num of Tx descriptors for the given flits
682 * @n: the number of flits
683 *
684 * Calculates the number of Tx descriptors needed for the supplied number
685 * of flits.
686 */
687static inline unsigned int flits_to_desc(unsigned int n)
688{
689 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
690 return flit_desc_map[n];
691}
692
cf992af5
DLR
693/**
694 * get_packet - return the next ingress packet buffer from a free list
695 * @adap: the adapter that received the packet
696 * @fl: the SGE free list holding the packet
697 * @len: the packet length including any SGE padding
698 * @drop_thres: # of remaining buffers before we start dropping packets
699 *
700 * Get the next packet from a free list and complete setup of the
701 * sk_buff. If the packet is small we make a copy and recycle the
702 * original buffer, otherwise we use the original buffer itself. If a
703 * positive drop threshold is supplied packets are dropped and their
704 * buffers recycled if (a) the number of remaining buffers is under the
705 * threshold and the packet is too big to copy, or (b) the packet should
706 * be copied but there is no memory for the copy.
707 */
708static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
709 unsigned int len, unsigned int drop_thres)
710{
711 struct sk_buff *skb = NULL;
712 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
713
714 prefetch(sd->skb->data);
715 fl->credits--;
716
717 if (len <= SGE_RX_COPY_THRES) {
718 skb = alloc_skb(len, GFP_ATOMIC);
719 if (likely(skb != NULL)) {
720 __skb_put(skb, len);
721 pci_dma_sync_single_for_cpu(adap->pdev,
722 pci_unmap_addr(sd, dma_addr), len,
723 PCI_DMA_FROMDEVICE);
724 memcpy(skb->data, sd->skb->data, len);
725 pci_dma_sync_single_for_device(adap->pdev,
726 pci_unmap_addr(sd, dma_addr), len,
727 PCI_DMA_FROMDEVICE);
728 } else if (!drop_thres)
729 goto use_orig_buf;
730recycle:
731 recycle_rx_buf(adap, fl, fl->cidx);
732 return skb;
733 }
734
735 if (unlikely(fl->credits < drop_thres))
736 goto recycle;
737
738use_orig_buf:
739 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
740 fl->buf_size, PCI_DMA_FROMDEVICE);
741 skb = sd->skb;
742 skb_put(skb, len);
743 __refill_fl(adap, fl);
744 return skb;
745}
746
747/**
748 * get_packet_pg - return the next ingress packet buffer from a free list
749 * @adap: the adapter that received the packet
750 * @fl: the SGE free list holding the packet
751 * @len: the packet length including any SGE padding
752 * @drop_thres: # of remaining buffers before we start dropping packets
753 *
754 * Get the next packet from a free list populated with page chunks.
755 * If the packet is small we make a copy and recycle the original buffer,
756 * otherwise we attach the original buffer as a page fragment to a fresh
757 * sk_buff. If a positive drop threshold is supplied packets are dropped
758 * and their buffers recycled if (a) the number of remaining buffers is
759 * under the threshold and the packet is too big to copy, or (b) there's
760 * no system memory.
761 *
762 * Note: this function is similar to @get_packet but deals with Rx buffers
763 * that are page chunks rather than sk_buffs.
764 */
765static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
7385ecf3
DLR
766 struct sge_rspq *q, unsigned int len,
767 unsigned int drop_thres)
cf992af5 768{
7385ecf3 769 struct sk_buff *newskb, *skb;
cf992af5
DLR
770 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
771
7385ecf3
DLR
772 newskb = skb = q->pg_skb;
773
774 if (!skb && (len <= SGE_RX_COPY_THRES)) {
775 newskb = alloc_skb(len, GFP_ATOMIC);
776 if (likely(newskb != NULL)) {
777 __skb_put(newskb, len);
cf992af5
DLR
778 pci_dma_sync_single_for_cpu(adap->pdev,
779 pci_unmap_addr(sd, dma_addr), len,
780 PCI_DMA_FROMDEVICE);
7385ecf3 781 memcpy(newskb->data, sd->pg_chunk.va, len);
cf992af5
DLR
782 pci_dma_sync_single_for_device(adap->pdev,
783 pci_unmap_addr(sd, dma_addr), len,
784 PCI_DMA_FROMDEVICE);
785 } else if (!drop_thres)
786 return NULL;
787recycle:
788 fl->credits--;
789 recycle_rx_buf(adap, fl, fl->cidx);
7385ecf3
DLR
790 q->rx_recycle_buf++;
791 return newskb;
cf992af5
DLR
792 }
793
7385ecf3 794 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
cf992af5
DLR
795 goto recycle;
796
7385ecf3 797 if (!skb)
b47385bd 798 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
7385ecf3 799 if (unlikely(!newskb)) {
cf992af5
DLR
800 if (!drop_thres)
801 return NULL;
802 goto recycle;
803 }
804
805 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
806 fl->buf_size, PCI_DMA_FROMDEVICE);
7385ecf3
DLR
807 if (!skb) {
808 __skb_put(newskb, SGE_RX_PULL_LEN);
809 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
810 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
811 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
812 len - SGE_RX_PULL_LEN);
813 newskb->len = len;
814 newskb->data_len = len - SGE_RX_PULL_LEN;
815 } else {
816 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
817 sd->pg_chunk.page,
818 sd->pg_chunk.offset, len);
819 newskb->len += len;
820 newskb->data_len += len;
821 }
822 newskb->truesize += newskb->data_len;
cf992af5
DLR
823
824 fl->credits--;
825 /*
826 * We do not refill FLs here, we let the caller do it to overlap a
827 * prefetch.
828 */
7385ecf3 829 return newskb;
cf992af5
DLR
830}
831
4d22de3e
DLR
832/**
833 * get_imm_packet - return the next ingress packet buffer from a response
834 * @resp: the response descriptor containing the packet data
835 *
836 * Return a packet containing the immediate data of the given response.
837 */
838static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
839{
840 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
841
842 if (skb) {
843 __skb_put(skb, IMMED_PKT_SIZE);
27d7ff46 844 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
4d22de3e
DLR
845 }
846 return skb;
847}
848
849/**
850 * calc_tx_descs - calculate the number of Tx descriptors for a packet
851 * @skb: the packet
852 *
853 * Returns the number of Tx descriptors needed for the given Ethernet
854 * packet. Ethernet packets require addition of WR and CPL headers.
855 */
856static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
857{
858 unsigned int flits;
859
860 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
861 return 1;
862
863 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
864 if (skb_shinfo(skb)->gso_size)
865 flits++;
866 return flits_to_desc(flits);
867}
868
869/**
870 * make_sgl - populate a scatter/gather list for a packet
871 * @skb: the packet
872 * @sgp: the SGL to populate
873 * @start: start address of skb main body data to include in the SGL
874 * @len: length of skb main body data to include in the SGL
875 * @pdev: the PCI device
876 *
877 * Generates a scatter/gather list for the buffers that make up a packet
878 * and returns the SGL size in 8-byte words. The caller must size the SGL
879 * appropriately.
880 */
881static inline unsigned int make_sgl(const struct sk_buff *skb,
882 struct sg_ent *sgp, unsigned char *start,
883 unsigned int len, struct pci_dev *pdev)
884{
885 dma_addr_t mapping;
886 unsigned int i, j = 0, nfrags;
887
888 if (len) {
889 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
890 sgp->len[0] = cpu_to_be32(len);
891 sgp->addr[0] = cpu_to_be64(mapping);
892 j = 1;
893 }
894
895 nfrags = skb_shinfo(skb)->nr_frags;
896 for (i = 0; i < nfrags; i++) {
897 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
898
899 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
900 frag->size, PCI_DMA_TODEVICE);
901 sgp->len[j] = cpu_to_be32(frag->size);
902 sgp->addr[j] = cpu_to_be64(mapping);
903 j ^= 1;
904 if (j == 0)
905 ++sgp;
906 }
907 if (j)
908 sgp->len[j] = 0;
909 return ((nfrags + (len != 0)) * 3) / 2 + j;
910}
911
912/**
913 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
914 * @adap: the adapter
915 * @q: the Tx queue
916 *
917 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
918 * where the HW is going to sleep just after we checked, however,
919 * then the interrupt handler will detect the outstanding TX packet
920 * and ring the doorbell for us.
921 *
922 * When GTS is disabled we unconditionally ring the doorbell.
923 */
924static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
925{
926#if USE_GTS
927 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
928 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
929 set_bit(TXQ_LAST_PKT_DB, &q->flags);
930 t3_write_reg(adap, A_SG_KDOORBELL,
931 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
932 }
933#else
934 wmb(); /* write descriptors before telling HW */
935 t3_write_reg(adap, A_SG_KDOORBELL,
936 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
937#endif
938}
939
940static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
941{
942#if SGE_NUM_GENBITS == 2
943 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
944#endif
945}
946
947/**
948 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
949 * @ndesc: number of Tx descriptors spanned by the SGL
950 * @skb: the packet corresponding to the WR
951 * @d: first Tx descriptor to be written
952 * @pidx: index of above descriptors
953 * @q: the SGE Tx queue
954 * @sgl: the SGL
955 * @flits: number of flits to the start of the SGL in the first descriptor
956 * @sgl_flits: the SGL size in flits
957 * @gen: the Tx descriptor generation
958 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
959 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
960 *
961 * Write a work request header and an associated SGL. If the SGL is
962 * small enough to fit into one Tx descriptor it has already been written
963 * and we just need to write the WR header. Otherwise we distribute the
964 * SGL across the number of descriptors it spans.
965 */
966static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
967 struct tx_desc *d, unsigned int pidx,
968 const struct sge_txq *q,
969 const struct sg_ent *sgl,
970 unsigned int flits, unsigned int sgl_flits,
fb8e4444
AV
971 unsigned int gen, __be32 wr_hi,
972 __be32 wr_lo)
4d22de3e
DLR
973{
974 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
975 struct tx_sw_desc *sd = &q->sdesc[pidx];
976
977 sd->skb = skb;
978 if (need_skb_unmap()) {
23561c94
DLR
979 sd->fragidx = 0;
980 sd->addr_idx = 0;
981 sd->sflit = flits;
4d22de3e
DLR
982 }
983
984 if (likely(ndesc == 1)) {
23561c94 985 sd->eop = 1;
4d22de3e
DLR
986 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
987 V_WR_SGLSFLT(flits)) | wr_hi;
988 wmb();
989 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
990 V_WR_GEN(gen)) | wr_lo;
991 wr_gen2(d, gen);
992 } else {
993 unsigned int ogen = gen;
994 const u64 *fp = (const u64 *)sgl;
995 struct work_request_hdr *wp = wrp;
996
997 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
998 V_WR_SGLSFLT(flits)) | wr_hi;
999
1000 while (sgl_flits) {
1001 unsigned int avail = WR_FLITS - flits;
1002
1003 if (avail > sgl_flits)
1004 avail = sgl_flits;
1005 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1006 sgl_flits -= avail;
1007 ndesc--;
1008 if (!sgl_flits)
1009 break;
1010
1011 fp += avail;
1012 d++;
23561c94 1013 sd->eop = 0;
4d22de3e
DLR
1014 sd++;
1015 if (++pidx == q->size) {
1016 pidx = 0;
1017 gen ^= 1;
1018 d = q->desc;
1019 sd = q->sdesc;
1020 }
1021
1022 sd->skb = skb;
1023 wrp = (struct work_request_hdr *)d;
1024 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1025 V_WR_SGLSFLT(1)) | wr_hi;
1026 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1027 sgl_flits + 1)) |
1028 V_WR_GEN(gen)) | wr_lo;
1029 wr_gen2(d, gen);
1030 flits = 1;
1031 }
23561c94 1032 sd->eop = 1;
4d22de3e
DLR
1033 wrp->wr_hi |= htonl(F_WR_EOP);
1034 wmb();
1035 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1036 wr_gen2((struct tx_desc *)wp, ogen);
1037 WARN_ON(ndesc != 0);
1038 }
1039}
1040
1041/**
1042 * write_tx_pkt_wr - write a TX_PKT work request
1043 * @adap: the adapter
1044 * @skb: the packet to send
1045 * @pi: the egress interface
1046 * @pidx: index of the first Tx descriptor to write
1047 * @gen: the generation value to use
1048 * @q: the Tx queue
1049 * @ndesc: number of descriptors the packet will occupy
1050 * @compl: the value of the COMPL bit to use
1051 *
1052 * Generate a TX_PKT work request to send the supplied packet.
1053 */
1054static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1055 const struct port_info *pi,
1056 unsigned int pidx, unsigned int gen,
1057 struct sge_txq *q, unsigned int ndesc,
1058 unsigned int compl)
1059{
1060 unsigned int flits, sgl_flits, cntrl, tso_info;
1061 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1062 struct tx_desc *d = &q->desc[pidx];
1063 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1064
1065 cpl->len = htonl(skb->len | 0x80000000);
1066 cntrl = V_TXPKT_INTF(pi->port_id);
1067
1068 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1069 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1070
1071 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1072 if (tso_info) {
1073 int eth_type;
1074 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1075
1076 d->flit[2] = 0;
1077 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1078 hdr->cntrl = htonl(cntrl);
bbe735e4 1079 eth_type = skb_network_offset(skb) == ETH_HLEN ?
4d22de3e
DLR
1080 CPL_ETH_II : CPL_ETH_II_VLAN;
1081 tso_info |= V_LSO_ETH_TYPE(eth_type) |
eddc9ec5 1082 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
aa8223c7 1083 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
4d22de3e
DLR
1084 hdr->lso_info = htonl(tso_info);
1085 flits = 3;
1086 } else {
1087 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1088 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1089 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1090 cpl->cntrl = htonl(cntrl);
1091
1092 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1093 q->sdesc[pidx].skb = NULL;
1094 if (!skb->data_len)
d626f62b
ACM
1095 skb_copy_from_linear_data(skb, &d->flit[2],
1096 skb->len);
4d22de3e
DLR
1097 else
1098 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1099
1100 flits = (skb->len + 7) / 8 + 2;
1101 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1102 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1103 | F_WR_SOP | F_WR_EOP | compl);
1104 wmb();
1105 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1106 V_WR_TID(q->token));
1107 wr_gen2(d, gen);
1108 kfree_skb(skb);
1109 return;
1110 }
1111
1112 flits = 2;
1113 }
1114
1115 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1116 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
4d22de3e
DLR
1117
1118 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1119 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1120 htonl(V_WR_TID(q->token)));
1121}
1122
a8cc21f6
KK
1123static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1124 struct sge_txq *q)
1125{
1126 netif_stop_queue(dev);
1127 set_bit(TXQ_ETH, &qs->txq_stopped);
1128 q->stops++;
1129}
1130
4d22de3e
DLR
1131/**
1132 * eth_xmit - add a packet to the Ethernet Tx queue
1133 * @skb: the packet
1134 * @dev: the egress net device
1135 *
1136 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1137 */
1138int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1139{
1140 unsigned int ndesc, pidx, credits, gen, compl;
1141 const struct port_info *pi = netdev_priv(dev);
5fbf816f 1142 struct adapter *adap = pi->adapter;
bea3348e 1143 struct sge_qset *qs = pi->qs;
4d22de3e
DLR
1144 struct sge_txq *q = &qs->txq[TXQ_ETH];
1145
1146 /*
1147 * The chip min packet length is 9 octets but play safe and reject
1148 * anything shorter than an Ethernet header.
1149 */
1150 if (unlikely(skb->len < ETH_HLEN)) {
1151 dev_kfree_skb(skb);
1152 return NETDEV_TX_OK;
1153 }
1154
1155 spin_lock(&q->lock);
1156 reclaim_completed_tx(adap, q);
1157
1158 credits = q->size - q->in_use;
1159 ndesc = calc_tx_descs(skb);
1160
1161 if (unlikely(credits < ndesc)) {
a8cc21f6
KK
1162 t3_stop_queue(dev, qs, q);
1163 dev_err(&adap->pdev->dev,
1164 "%s: Tx ring %u full while queue awake!\n",
1165 dev->name, q->cntxt_id & 7);
4d22de3e
DLR
1166 spin_unlock(&q->lock);
1167 return NETDEV_TX_BUSY;
1168 }
1169
1170 q->in_use += ndesc;
cd7e9034
DLR
1171 if (unlikely(credits - ndesc < q->stop_thres)) {
1172 t3_stop_queue(dev, qs, q);
1173
1174 if (should_restart_tx(q) &&
1175 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1176 q->restarts++;
1177 netif_wake_queue(dev);
1178 }
1179 }
4d22de3e
DLR
1180
1181 gen = q->gen;
1182 q->unacked += ndesc;
1183 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1184 q->unacked &= 7;
1185 pidx = q->pidx;
1186 q->pidx += ndesc;
1187 if (q->pidx >= q->size) {
1188 q->pidx -= q->size;
1189 q->gen ^= 1;
1190 }
1191
1192 /* update port statistics */
1193 if (skb->ip_summed == CHECKSUM_COMPLETE)
1194 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1195 if (skb_shinfo(skb)->gso_size)
1196 qs->port_stats[SGE_PSTAT_TSO]++;
1197 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1198 qs->port_stats[SGE_PSTAT_VLANINS]++;
1199
1200 dev->trans_start = jiffies;
1201 spin_unlock(&q->lock);
1202
1203 /*
1204 * We do not use Tx completion interrupts to free DMAd Tx packets.
1205 * This is good for performamce but means that we rely on new Tx
1206 * packets arriving to run the destructors of completed packets,
1207 * which open up space in their sockets' send queues. Sometimes
1208 * we do not get such new packets causing Tx to stall. A single
1209 * UDP transmitter is a good example of this situation. We have
1210 * a clean up timer that periodically reclaims completed packets
1211 * but it doesn't run often enough (nor do we want it to) to prevent
1212 * lengthy stalls. A solution to this problem is to run the
1213 * destructor early, after the packet is queued but before it's DMAd.
1214 * A cons is that we lie to socket memory accounting, but the amount
1215 * of extra memory is reasonable (limited by the number of Tx
1216 * descriptors), the packets do actually get freed quickly by new
1217 * packets almost always, and for protocols like TCP that wait for
1218 * acks to really free up the data the extra memory is even less.
1219 * On the positive side we run the destructors on the sending CPU
1220 * rather than on a potentially different completing CPU, usually a
1221 * good thing. We also run them without holding our Tx queue lock,
1222 * unlike what reclaim_completed_tx() would otherwise do.
1223 *
1224 * Run the destructor before telling the DMA engine about the packet
1225 * to make sure it doesn't complete and get freed prematurely.
1226 */
1227 if (likely(!skb_shared(skb)))
1228 skb_orphan(skb);
1229
1230 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1231 check_ring_tx_db(adap, q);
1232 return NETDEV_TX_OK;
1233}
1234
1235/**
1236 * write_imm - write a packet into a Tx descriptor as immediate data
1237 * @d: the Tx descriptor to write
1238 * @skb: the packet
1239 * @len: the length of packet data to write as immediate data
1240 * @gen: the generation bit value to write
1241 *
1242 * Writes a packet as immediate data into a Tx descriptor. The packet
1243 * contains a work request at its beginning. We must write the packet
27186dc3
DLR
1244 * carefully so the SGE doesn't read it accidentally before it's written
1245 * in its entirety.
4d22de3e
DLR
1246 */
1247static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1248 unsigned int len, unsigned int gen)
1249{
1250 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1251 struct work_request_hdr *to = (struct work_request_hdr *)d;
1252
27186dc3
DLR
1253 if (likely(!skb->data_len))
1254 memcpy(&to[1], &from[1], len - sizeof(*from));
1255 else
1256 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1257
4d22de3e
DLR
1258 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1259 V_WR_BCNTLFLT(len & 7));
1260 wmb();
1261 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1262 V_WR_LEN((len + 7) / 8));
1263 wr_gen2(d, gen);
1264 kfree_skb(skb);
1265}
1266
1267/**
1268 * check_desc_avail - check descriptor availability on a send queue
1269 * @adap: the adapter
1270 * @q: the send queue
1271 * @skb: the packet needing the descriptors
1272 * @ndesc: the number of Tx descriptors needed
1273 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1274 *
1275 * Checks if the requested number of Tx descriptors is available on an
1276 * SGE send queue. If the queue is already suspended or not enough
1277 * descriptors are available the packet is queued for later transmission.
1278 * Must be called with the Tx queue locked.
1279 *
1280 * Returns 0 if enough descriptors are available, 1 if there aren't
1281 * enough descriptors and the packet has been queued, and 2 if the caller
1282 * needs to retry because there weren't enough descriptors at the
1283 * beginning of the call but some freed up in the mean time.
1284 */
1285static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1286 struct sk_buff *skb, unsigned int ndesc,
1287 unsigned int qid)
1288{
1289 if (unlikely(!skb_queue_empty(&q->sendq))) {
1290 addq_exit:__skb_queue_tail(&q->sendq, skb);
1291 return 1;
1292 }
1293 if (unlikely(q->size - q->in_use < ndesc)) {
1294 struct sge_qset *qs = txq_to_qset(q, qid);
1295
1296 set_bit(qid, &qs->txq_stopped);
1297 smp_mb__after_clear_bit();
1298
1299 if (should_restart_tx(q) &&
1300 test_and_clear_bit(qid, &qs->txq_stopped))
1301 return 2;
1302
1303 q->stops++;
1304 goto addq_exit;
1305 }
1306 return 0;
1307}
1308
1309/**
1310 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1311 * @q: the SGE control Tx queue
1312 *
1313 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1314 * that send only immediate data (presently just the control queues) and
1315 * thus do not have any sk_buffs to release.
1316 */
1317static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1318{
1319 unsigned int reclaim = q->processed - q->cleaned;
1320
1321 q->in_use -= reclaim;
1322 q->cleaned += reclaim;
1323}
1324
1325static inline int immediate(const struct sk_buff *skb)
1326{
27186dc3 1327 return skb->len <= WR_LEN;
4d22de3e
DLR
1328}
1329
1330/**
1331 * ctrl_xmit - send a packet through an SGE control Tx queue
1332 * @adap: the adapter
1333 * @q: the control queue
1334 * @skb: the packet
1335 *
1336 * Send a packet through an SGE control Tx queue. Packets sent through
1337 * a control queue must fit entirely as immediate data in a single Tx
1338 * descriptor and have no page fragments.
1339 */
1340static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1341 struct sk_buff *skb)
1342{
1343 int ret;
1344 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1345
1346 if (unlikely(!immediate(skb))) {
1347 WARN_ON(1);
1348 dev_kfree_skb(skb);
1349 return NET_XMIT_SUCCESS;
1350 }
1351
1352 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1353 wrp->wr_lo = htonl(V_WR_TID(q->token));
1354
1355 spin_lock(&q->lock);
1356 again:reclaim_completed_tx_imm(q);
1357
1358 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1359 if (unlikely(ret)) {
1360 if (ret == 1) {
1361 spin_unlock(&q->lock);
1362 return NET_XMIT_CN;
1363 }
1364 goto again;
1365 }
1366
1367 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1368
1369 q->in_use++;
1370 if (++q->pidx >= q->size) {
1371 q->pidx = 0;
1372 q->gen ^= 1;
1373 }
1374 spin_unlock(&q->lock);
1375 wmb();
1376 t3_write_reg(adap, A_SG_KDOORBELL,
1377 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1378 return NET_XMIT_SUCCESS;
1379}
1380
1381/**
1382 * restart_ctrlq - restart a suspended control queue
1383 * @qs: the queue set cotaining the control queue
1384 *
1385 * Resumes transmission on a suspended Tx control queue.
1386 */
1387static void restart_ctrlq(unsigned long data)
1388{
1389 struct sk_buff *skb;
1390 struct sge_qset *qs = (struct sge_qset *)data;
1391 struct sge_txq *q = &qs->txq[TXQ_CTRL];
4d22de3e
DLR
1392
1393 spin_lock(&q->lock);
1394 again:reclaim_completed_tx_imm(q);
1395
bea3348e
SH
1396 while (q->in_use < q->size &&
1397 (skb = __skb_dequeue(&q->sendq)) != NULL) {
4d22de3e
DLR
1398
1399 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1400
1401 if (++q->pidx >= q->size) {
1402 q->pidx = 0;
1403 q->gen ^= 1;
1404 }
1405 q->in_use++;
1406 }
1407
1408 if (!skb_queue_empty(&q->sendq)) {
1409 set_bit(TXQ_CTRL, &qs->txq_stopped);
1410 smp_mb__after_clear_bit();
1411
1412 if (should_restart_tx(q) &&
1413 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1414 goto again;
1415 q->stops++;
1416 }
1417
1418 spin_unlock(&q->lock);
afefce66 1419 wmb();
bea3348e 1420 t3_write_reg(qs->adap, A_SG_KDOORBELL,
4d22de3e
DLR
1421 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1422}
1423
14ab9892
DLR
1424/*
1425 * Send a management message through control queue 0
1426 */
1427int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1428{
204e2f98 1429 int ret;
bc4b6b52
DLR
1430 local_bh_disable();
1431 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1432 local_bh_enable();
1433
1434 return ret;
14ab9892
DLR
1435}
1436
99d7cf30
DLR
1437/**
1438 * deferred_unmap_destructor - unmap a packet when it is freed
1439 * @skb: the packet
1440 *
1441 * This is the packet destructor used for Tx packets that need to remain
1442 * mapped until they are freed rather than until their Tx descriptors are
1443 * freed.
1444 */
1445static void deferred_unmap_destructor(struct sk_buff *skb)
1446{
1447 int i;
1448 const dma_addr_t *p;
1449 const struct skb_shared_info *si;
1450 const struct deferred_unmap_info *dui;
99d7cf30
DLR
1451
1452 dui = (struct deferred_unmap_info *)skb->head;
1453 p = dui->addr;
1454
23561c94
DLR
1455 if (skb->tail - skb->transport_header)
1456 pci_unmap_single(dui->pdev, *p++,
1457 skb->tail - skb->transport_header,
1458 PCI_DMA_TODEVICE);
99d7cf30
DLR
1459
1460 si = skb_shinfo(skb);
1461 for (i = 0; i < si->nr_frags; i++)
1462 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1463 PCI_DMA_TODEVICE);
1464}
1465
1466static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1467 const struct sg_ent *sgl, int sgl_flits)
1468{
1469 dma_addr_t *p;
1470 struct deferred_unmap_info *dui;
1471
1472 dui = (struct deferred_unmap_info *)skb->head;
1473 dui->pdev = pdev;
1474 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1475 *p++ = be64_to_cpu(sgl->addr[0]);
1476 *p++ = be64_to_cpu(sgl->addr[1]);
1477 }
1478 if (sgl_flits)
1479 *p = be64_to_cpu(sgl->addr[0]);
1480}
1481
4d22de3e
DLR
1482/**
1483 * write_ofld_wr - write an offload work request
1484 * @adap: the adapter
1485 * @skb: the packet to send
1486 * @q: the Tx queue
1487 * @pidx: index of the first Tx descriptor to write
1488 * @gen: the generation value to use
1489 * @ndesc: number of descriptors the packet will occupy
1490 *
1491 * Write an offload work request to send the supplied packet. The packet
1492 * data already carry the work request with most fields populated.
1493 */
1494static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1495 struct sge_txq *q, unsigned int pidx,
1496 unsigned int gen, unsigned int ndesc)
1497{
1498 unsigned int sgl_flits, flits;
1499 struct work_request_hdr *from;
1500 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1501 struct tx_desc *d = &q->desc[pidx];
1502
1503 if (immediate(skb)) {
1504 q->sdesc[pidx].skb = NULL;
1505 write_imm(d, skb, skb->len, gen);
1506 return;
1507 }
1508
1509 /* Only TX_DATA builds SGLs */
1510
1511 from = (struct work_request_hdr *)skb->data;
ea2ae17d
ACM
1512 memcpy(&d->flit[1], &from[1],
1513 skb_transport_offset(skb) - sizeof(*from));
4d22de3e 1514
ea2ae17d 1515 flits = skb_transport_offset(skb) / 8;
4d22de3e 1516 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
9c70220b 1517 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
27a884dc 1518 skb->tail - skb->transport_header,
4d22de3e 1519 adap->pdev);
99d7cf30
DLR
1520 if (need_skb_unmap()) {
1521 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1522 skb->destructor = deferred_unmap_destructor;
99d7cf30 1523 }
4d22de3e
DLR
1524
1525 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1526 gen, from->wr_hi, from->wr_lo);
1527}
1528
1529/**
1530 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1531 * @skb: the packet
1532 *
1533 * Returns the number of Tx descriptors needed for the given offload
1534 * packet. These packets are already fully constructed.
1535 */
1536static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1537{
27186dc3 1538 unsigned int flits, cnt;
4d22de3e 1539
27186dc3 1540 if (skb->len <= WR_LEN)
4d22de3e
DLR
1541 return 1; /* packet fits as immediate data */
1542
ea2ae17d 1543 flits = skb_transport_offset(skb) / 8; /* headers */
27186dc3 1544 cnt = skb_shinfo(skb)->nr_frags;
27a884dc 1545 if (skb->tail != skb->transport_header)
4d22de3e
DLR
1546 cnt++;
1547 return flits_to_desc(flits + sgl_len(cnt));
1548}
1549
1550/**
1551 * ofld_xmit - send a packet through an offload queue
1552 * @adap: the adapter
1553 * @q: the Tx offload queue
1554 * @skb: the packet
1555 *
1556 * Send an offload packet through an SGE offload queue.
1557 */
1558static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1559 struct sk_buff *skb)
1560{
1561 int ret;
1562 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1563
1564 spin_lock(&q->lock);
1565 again:reclaim_completed_tx(adap, q);
1566
1567 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1568 if (unlikely(ret)) {
1569 if (ret == 1) {
1570 skb->priority = ndesc; /* save for restart */
1571 spin_unlock(&q->lock);
1572 return NET_XMIT_CN;
1573 }
1574 goto again;
1575 }
1576
1577 gen = q->gen;
1578 q->in_use += ndesc;
1579 pidx = q->pidx;
1580 q->pidx += ndesc;
1581 if (q->pidx >= q->size) {
1582 q->pidx -= q->size;
1583 q->gen ^= 1;
1584 }
1585 spin_unlock(&q->lock);
1586
1587 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1588 check_ring_tx_db(adap, q);
1589 return NET_XMIT_SUCCESS;
1590}
1591
1592/**
1593 * restart_offloadq - restart a suspended offload queue
1594 * @qs: the queue set cotaining the offload queue
1595 *
1596 * Resumes transmission on a suspended Tx offload queue.
1597 */
1598static void restart_offloadq(unsigned long data)
1599{
1600 struct sk_buff *skb;
1601 struct sge_qset *qs = (struct sge_qset *)data;
1602 struct sge_txq *q = &qs->txq[TXQ_OFLD];
5fbf816f
DLR
1603 const struct port_info *pi = netdev_priv(qs->netdev);
1604 struct adapter *adap = pi->adapter;
4d22de3e
DLR
1605
1606 spin_lock(&q->lock);
1607 again:reclaim_completed_tx(adap, q);
1608
1609 while ((skb = skb_peek(&q->sendq)) != NULL) {
1610 unsigned int gen, pidx;
1611 unsigned int ndesc = skb->priority;
1612
1613 if (unlikely(q->size - q->in_use < ndesc)) {
1614 set_bit(TXQ_OFLD, &qs->txq_stopped);
1615 smp_mb__after_clear_bit();
1616
1617 if (should_restart_tx(q) &&
1618 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1619 goto again;
1620 q->stops++;
1621 break;
1622 }
1623
1624 gen = q->gen;
1625 q->in_use += ndesc;
1626 pidx = q->pidx;
1627 q->pidx += ndesc;
1628 if (q->pidx >= q->size) {
1629 q->pidx -= q->size;
1630 q->gen ^= 1;
1631 }
1632 __skb_unlink(skb, &q->sendq);
1633 spin_unlock(&q->lock);
1634
1635 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1636 spin_lock(&q->lock);
1637 }
1638 spin_unlock(&q->lock);
1639
1640#if USE_GTS
1641 set_bit(TXQ_RUNNING, &q->flags);
1642 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1643#endif
afefce66 1644 wmb();
4d22de3e
DLR
1645 t3_write_reg(adap, A_SG_KDOORBELL,
1646 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1647}
1648
1649/**
1650 * queue_set - return the queue set a packet should use
1651 * @skb: the packet
1652 *
1653 * Maps a packet to the SGE queue set it should use. The desired queue
1654 * set is carried in bits 1-3 in the packet's priority.
1655 */
1656static inline int queue_set(const struct sk_buff *skb)
1657{
1658 return skb->priority >> 1;
1659}
1660
1661/**
1662 * is_ctrl_pkt - return whether an offload packet is a control packet
1663 * @skb: the packet
1664 *
1665 * Determines whether an offload packet should use an OFLD or a CTRL
1666 * Tx queue. This is indicated by bit 0 in the packet's priority.
1667 */
1668static inline int is_ctrl_pkt(const struct sk_buff *skb)
1669{
1670 return skb->priority & 1;
1671}
1672
1673/**
1674 * t3_offload_tx - send an offload packet
1675 * @tdev: the offload device to send to
1676 * @skb: the packet
1677 *
1678 * Sends an offload packet. We use the packet priority to select the
1679 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1680 * should be sent as regular or control, bits 1-3 select the queue set.
1681 */
1682int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1683{
1684 struct adapter *adap = tdev2adap(tdev);
1685 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1686
1687 if (unlikely(is_ctrl_pkt(skb)))
1688 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1689
1690 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1691}
1692
1693/**
1694 * offload_enqueue - add an offload packet to an SGE offload receive queue
1695 * @q: the SGE response queue
1696 * @skb: the packet
1697 *
1698 * Add a new offload packet to an SGE response queue's offload packet
1699 * queue. If the packet is the first on the queue it schedules the RX
1700 * softirq to process the queue.
1701 */
1702static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1703{
147e70e6
DM
1704 int was_empty = skb_queue_empty(&q->rx_queue);
1705
1706 __skb_queue_tail(&q->rx_queue, skb);
1707
1708 if (was_empty) {
4d22de3e
DLR
1709 struct sge_qset *qs = rspq_to_qset(q);
1710
bea3348e 1711 napi_schedule(&qs->napi);
4d22de3e 1712 }
4d22de3e
DLR
1713}
1714
1715/**
1716 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1717 * @tdev: the offload device that will be receiving the packets
1718 * @q: the SGE response queue that assembled the bundle
1719 * @skbs: the partial bundle
1720 * @n: the number of packets in the bundle
1721 *
1722 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1723 */
1724static inline void deliver_partial_bundle(struct t3cdev *tdev,
1725 struct sge_rspq *q,
1726 struct sk_buff *skbs[], int n)
1727{
1728 if (n) {
1729 q->offload_bundles++;
1730 tdev->recv(tdev, skbs, n);
1731 }
1732}
1733
1734/**
1735 * ofld_poll - NAPI handler for offload packets in interrupt mode
1736 * @dev: the network device doing the polling
1737 * @budget: polling budget
1738 *
1739 * The NAPI handler for offload packets when a response queue is serviced
1740 * by the hard interrupt handler, i.e., when it's operating in non-polling
1741 * mode. Creates small packet batches and sends them through the offload
1742 * receive handler. Batches need to be of modest size as we do prefetches
1743 * on the packets in each.
1744 */
bea3348e 1745static int ofld_poll(struct napi_struct *napi, int budget)
4d22de3e 1746{
bea3348e 1747 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
4d22de3e 1748 struct sge_rspq *q = &qs->rspq;
bea3348e
SH
1749 struct adapter *adapter = qs->adap;
1750 int work_done = 0;
4d22de3e 1751
bea3348e 1752 while (work_done < budget) {
147e70e6
DM
1753 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1754 struct sk_buff_head queue;
4d22de3e
DLR
1755 int ngathered;
1756
1757 spin_lock_irq(&q->lock);
147e70e6
DM
1758 __skb_queue_head_init(&queue);
1759 skb_queue_splice_init(&q->rx_queue, &queue);
1760 if (skb_queue_empty(&queue)) {
bea3348e 1761 napi_complete(napi);
4d22de3e 1762 spin_unlock_irq(&q->lock);
bea3348e 1763 return work_done;
4d22de3e 1764 }
4d22de3e
DLR
1765 spin_unlock_irq(&q->lock);
1766
147e70e6
DM
1767 ngathered = 0;
1768 skb_queue_walk_safe(&queue, skb, tmp) {
1769 if (work_done >= budget)
1770 break;
1771 work_done++;
1772
1773 __skb_unlink(skb, &queue);
1774 prefetch(skb->data);
1775 skbs[ngathered] = skb;
4d22de3e
DLR
1776 if (++ngathered == RX_BUNDLE_SIZE) {
1777 q->offload_bundles++;
1778 adapter->tdev.recv(&adapter->tdev, skbs,
1779 ngathered);
1780 ngathered = 0;
1781 }
1782 }
147e70e6
DM
1783 if (!skb_queue_empty(&queue)) {
1784 /* splice remaining packets back onto Rx queue */
4d22de3e 1785 spin_lock_irq(&q->lock);
147e70e6 1786 skb_queue_splice(&queue, &q->rx_queue);
4d22de3e
DLR
1787 spin_unlock_irq(&q->lock);
1788 }
1789 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1790 }
bea3348e
SH
1791
1792 return work_done;
4d22de3e
DLR
1793}
1794
1795/**
1796 * rx_offload - process a received offload packet
1797 * @tdev: the offload device receiving the packet
1798 * @rq: the response queue that received the packet
1799 * @skb: the packet
1800 * @rx_gather: a gather list of packets if we are building a bundle
1801 * @gather_idx: index of the next available slot in the bundle
1802 *
1803 * Process an ingress offload pakcet and add it to the offload ingress
1804 * queue. Returns the index of the next available slot in the bundle.
1805 */
1806static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1807 struct sk_buff *skb, struct sk_buff *rx_gather[],
1808 unsigned int gather_idx)
1809{
459a98ed 1810 skb_reset_mac_header(skb);
c1d2bbe1 1811 skb_reset_network_header(skb);
badff6d0 1812 skb_reset_transport_header(skb);
4d22de3e
DLR
1813
1814 if (rq->polling) {
1815 rx_gather[gather_idx++] = skb;
1816 if (gather_idx == RX_BUNDLE_SIZE) {
1817 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1818 gather_idx = 0;
1819 rq->offload_bundles++;
1820 }
1821 } else
1822 offload_enqueue(rq, skb);
1823
1824 return gather_idx;
1825}
1826
4d22de3e
DLR
1827/**
1828 * restart_tx - check whether to restart suspended Tx queues
1829 * @qs: the queue set to resume
1830 *
1831 * Restarts suspended Tx queues of an SGE queue set if they have enough
1832 * free resources to resume operation.
1833 */
1834static void restart_tx(struct sge_qset *qs)
1835{
1836 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1837 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1838 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1839 qs->txq[TXQ_ETH].restarts++;
1840 if (netif_running(qs->netdev))
1841 netif_wake_queue(qs->netdev);
1842 }
1843
1844 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1845 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1846 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1847 qs->txq[TXQ_OFLD].restarts++;
1848 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1849 }
1850 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1851 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1852 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1853 qs->txq[TXQ_CTRL].restarts++;
1854 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1855 }
1856}
1857
1858/**
1859 * rx_eth - process an ingress ethernet packet
1860 * @adap: the adapter
1861 * @rq: the response queue that received the packet
1862 * @skb: the packet
1863 * @pad: amount of padding at the start of the buffer
1864 *
1865 * Process an ingress ethernet pakcet and deliver it to the stack.
1866 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1867 * if it was immediate data in a response.
1868 */
1869static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
b47385bd 1870 struct sk_buff *skb, int pad, int lro)
4d22de3e
DLR
1871{
1872 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
b47385bd 1873 struct sge_qset *qs = rspq_to_qset(rq);
4d22de3e
DLR
1874 struct port_info *pi;
1875
4d22de3e 1876 skb_pull(skb, sizeof(*p) + pad);
4c13eb66 1877 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
4d22de3e 1878 pi = netdev_priv(skb->dev);
05e5c116 1879 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
4d22de3e
DLR
1880 !p->fragment) {
1881 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1882 skb->ip_summed = CHECKSUM_UNNECESSARY;
1883 } else
1884 skb->ip_summed = CHECKSUM_NONE;
1885
1886 if (unlikely(p->vlan_valid)) {
1887 struct vlan_group *grp = pi->vlan_grp;
1888
b47385bd 1889 qs->port_stats[SGE_PSTAT_VLANEX]++;
4d22de3e 1890 if (likely(grp))
b47385bd
DLR
1891 if (lro)
1892 lro_vlan_hwaccel_receive_skb(&qs->lro_mgr, skb,
1893 grp,
1894 ntohs(p->vlan),
1895 p);
1896 else
1897 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1898 rq->polling);
4d22de3e
DLR
1899 else
1900 dev_kfree_skb_any(skb);
b47385bd
DLR
1901 } else if (rq->polling) {
1902 if (lro)
1903 lro_receive_skb(&qs->lro_mgr, skb, p);
1904 else
1905 netif_receive_skb(skb);
1906 } else
4d22de3e
DLR
1907 netif_rx(skb);
1908}
1909
b47385bd
DLR
1910static inline int is_eth_tcp(u32 rss)
1911{
1912 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
1913}
1914
1915/**
1916 * lro_frame_ok - check if an ingress packet is eligible for LRO
1917 * @p: the CPL header of the packet
1918 *
1919 * Returns true if a received packet is eligible for LRO.
1920 * The following conditions must be true:
1921 * - packet is TCP/IP Ethernet II (checked elsewhere)
1922 * - not an IP fragment
1923 * - no IP options
1924 * - TCP/IP checksums are correct
1925 * - the packet is for this host
1926 */
1927static inline int lro_frame_ok(const struct cpl_rx_pkt *p)
1928{
1929 const struct ethhdr *eh = (struct ethhdr *)(p + 1);
1930 const struct iphdr *ih = (struct iphdr *)(eh + 1);
1931
1932 return (*((u8 *)p + 1) & 0x90) == 0x10 && p->csum == htons(0xffff) &&
1933 eh->h_proto == htons(ETH_P_IP) && ih->ihl == (sizeof(*ih) >> 2);
1934}
1935
b47385bd
DLR
1936static int t3_get_lro_header(void **eh, void **iph, void **tcph,
1937 u64 *hdr_flags, void *priv)
1938{
1939 const struct cpl_rx_pkt *cpl = priv;
1940
1941 if (!lro_frame_ok(cpl))
1942 return -1;
1943
1944 *eh = (struct ethhdr *)(cpl + 1);
1945 *iph = (struct iphdr *)((struct ethhdr *)*eh + 1);
1946 *tcph = (struct tcphdr *)((struct iphdr *)*iph + 1);
1947
b47385bd
DLR
1948 *hdr_flags = LRO_IPV4 | LRO_TCP;
1949 return 0;
1950}
1951
1952static int t3_get_skb_header(struct sk_buff *skb,
1953 void **iph, void **tcph, u64 *hdr_flags,
1954 void *priv)
1955{
1956 void *eh;
1957
1958 return t3_get_lro_header(&eh, iph, tcph, hdr_flags, priv);
1959}
1960
1961static int t3_get_frag_header(struct skb_frag_struct *frag, void **eh,
1962 void **iph, void **tcph, u64 *hdr_flags,
1963 void *priv)
1964{
1965 return t3_get_lro_header(eh, iph, tcph, hdr_flags, priv);
1966}
1967
1968/**
1969 * lro_add_page - add a page chunk to an LRO session
1970 * @adap: the adapter
1971 * @qs: the associated queue set
1972 * @fl: the free list containing the page chunk to add
1973 * @len: packet length
1974 * @complete: Indicates the last fragment of a frame
1975 *
1976 * Add a received packet contained in a page chunk to an existing LRO
1977 * session.
1978 */
1979static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
1980 struct sge_fl *fl, int len, int complete)
1981{
1982 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1983 struct cpl_rx_pkt *cpl;
1984 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl;
1985 int nr_frags = qs->lro_nfrags, frag_len = qs->lro_frag_len;
1986 int offset = 0;
1987
1988 if (!nr_frags) {
1989 offset = 2 + sizeof(struct cpl_rx_pkt);
1990 qs->lro_va = cpl = sd->pg_chunk.va + 2;
1991 }
1992
1993 fl->credits--;
1994
1995 len -= offset;
1996 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
1997 fl->buf_size, PCI_DMA_FROMDEVICE);
1998
1999 rx_frag += nr_frags;
2000 rx_frag->page = sd->pg_chunk.page;
2001 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2002 rx_frag->size = len;
2003 frag_len += len;
2004 qs->lro_nfrags++;
2005 qs->lro_frag_len = frag_len;
2006
2007 if (!complete)
2008 return;
2009
2010 qs->lro_nfrags = qs->lro_frag_len = 0;
2011 cpl = qs->lro_va;
2012
2013 if (unlikely(cpl->vlan_valid)) {
2014 struct net_device *dev = qs->netdev;
2015 struct port_info *pi = netdev_priv(dev);
2016 struct vlan_group *grp = pi->vlan_grp;
2017
2018 if (likely(grp != NULL)) {
2019 lro_vlan_hwaccel_receive_frags(&qs->lro_mgr,
2020 qs->lro_frag_tbl,
2021 frag_len, frag_len,
2022 grp, ntohs(cpl->vlan),
2023 cpl, 0);
2024 return;
2025 }
2026 }
2027 lro_receive_frags(&qs->lro_mgr, qs->lro_frag_tbl,
2028 frag_len, frag_len, cpl, 0);
2029}
2030
2031/**
2032 * init_lro_mgr - initialize a LRO manager object
2033 * @lro_mgr: the LRO manager object
2034 */
2035static void init_lro_mgr(struct sge_qset *qs, struct net_lro_mgr *lro_mgr)
2036{
2037 lro_mgr->dev = qs->netdev;
2038 lro_mgr->features = LRO_F_NAPI;
2039 lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
2040 lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
2041 lro_mgr->max_desc = T3_MAX_LRO_SES;
2042 lro_mgr->lro_arr = qs->lro_desc;
2043 lro_mgr->get_frag_header = t3_get_frag_header;
2044 lro_mgr->get_skb_header = t3_get_skb_header;
2045 lro_mgr->max_aggr = T3_MAX_LRO_MAX_PKTS;
2046 if (lro_mgr->max_aggr > MAX_SKB_FRAGS)
2047 lro_mgr->max_aggr = MAX_SKB_FRAGS;
2048}
2049
4d22de3e
DLR
2050/**
2051 * handle_rsp_cntrl_info - handles control information in a response
2052 * @qs: the queue set corresponding to the response
2053 * @flags: the response control flags
4d22de3e
DLR
2054 *
2055 * Handles the control information of an SGE response, such as GTS
2056 * indications and completion credits for the queue set's Tx queues.
6195c71d 2057 * HW coalesces credits, we don't do any extra SW coalescing.
4d22de3e 2058 */
6195c71d 2059static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
4d22de3e
DLR
2060{
2061 unsigned int credits;
2062
2063#if USE_GTS
2064 if (flags & F_RSPD_TXQ0_GTS)
2065 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2066#endif
2067
4d22de3e
DLR
2068 credits = G_RSPD_TXQ0_CR(flags);
2069 if (credits)
2070 qs->txq[TXQ_ETH].processed += credits;
2071
6195c71d
DLR
2072 credits = G_RSPD_TXQ2_CR(flags);
2073 if (credits)
2074 qs->txq[TXQ_CTRL].processed += credits;
2075
4d22de3e
DLR
2076# if USE_GTS
2077 if (flags & F_RSPD_TXQ1_GTS)
2078 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2079# endif
6195c71d
DLR
2080 credits = G_RSPD_TXQ1_CR(flags);
2081 if (credits)
2082 qs->txq[TXQ_OFLD].processed += credits;
4d22de3e
DLR
2083}
2084
2085/**
2086 * check_ring_db - check if we need to ring any doorbells
2087 * @adapter: the adapter
2088 * @qs: the queue set whose Tx queues are to be examined
2089 * @sleeping: indicates which Tx queue sent GTS
2090 *
2091 * Checks if some of a queue set's Tx queues need to ring their doorbells
2092 * to resume transmission after idling while they still have unprocessed
2093 * descriptors.
2094 */
2095static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2096 unsigned int sleeping)
2097{
2098 if (sleeping & F_RSPD_TXQ0_GTS) {
2099 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2100
2101 if (txq->cleaned + txq->in_use != txq->processed &&
2102 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2103 set_bit(TXQ_RUNNING, &txq->flags);
2104 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2105 V_EGRCNTX(txq->cntxt_id));
2106 }
2107 }
2108
2109 if (sleeping & F_RSPD_TXQ1_GTS) {
2110 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2111
2112 if (txq->cleaned + txq->in_use != txq->processed &&
2113 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2114 set_bit(TXQ_RUNNING, &txq->flags);
2115 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2116 V_EGRCNTX(txq->cntxt_id));
2117 }
2118 }
2119}
2120
2121/**
2122 * is_new_response - check if a response is newly written
2123 * @r: the response descriptor
2124 * @q: the response queue
2125 *
2126 * Returns true if a response descriptor contains a yet unprocessed
2127 * response.
2128 */
2129static inline int is_new_response(const struct rsp_desc *r,
2130 const struct sge_rspq *q)
2131{
2132 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2133}
2134
7385ecf3
DLR
2135static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2136{
2137 q->pg_skb = NULL;
2138 q->rx_recycle_buf = 0;
2139}
2140
4d22de3e
DLR
2141#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2142#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2143 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2144 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2145 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2146
2147/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2148#define NOMEM_INTR_DELAY 2500
2149
2150/**
2151 * process_responses - process responses from an SGE response queue
2152 * @adap: the adapter
2153 * @qs: the queue set to which the response queue belongs
2154 * @budget: how many responses can be processed in this round
2155 *
2156 * Process responses from an SGE response queue up to the supplied budget.
2157 * Responses include received packets as well as credits and other events
2158 * for the queues that belong to the response queue's queue set.
2159 * A negative budget is effectively unlimited.
2160 *
2161 * Additionally choose the interrupt holdoff time for the next interrupt
2162 * on this queue. If the system is under memory shortage use a fairly
2163 * long delay to help recovery.
2164 */
2165static int process_responses(struct adapter *adap, struct sge_qset *qs,
2166 int budget)
2167{
2168 struct sge_rspq *q = &qs->rspq;
2169 struct rsp_desc *r = &q->desc[q->cidx];
2170 int budget_left = budget;
6195c71d 2171 unsigned int sleeping = 0;
4d22de3e
DLR
2172 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2173 int ngathered = 0;
2174
2175 q->next_holdoff = q->holdoff_tmr;
2176
2177 while (likely(budget_left && is_new_response(r, q))) {
b47385bd 2178 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
4d22de3e
DLR
2179 struct sk_buff *skb = NULL;
2180 u32 len, flags = ntohl(r->flags);
7385ecf3
DLR
2181 __be32 rss_hi = *(const __be32 *)r,
2182 rss_lo = r->rss_hdr.rss_hash_val;
4d22de3e
DLR
2183
2184 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2185
2186 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2187 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2188 if (!skb)
2189 goto no_mem;
2190
2191 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2192 skb->data[0] = CPL_ASYNC_NOTIF;
2193 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2194 q->async_notif++;
2195 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2196 skb = get_imm_packet(r);
2197 if (unlikely(!skb)) {
cf992af5 2198no_mem:
4d22de3e
DLR
2199 q->next_holdoff = NOMEM_INTR_DELAY;
2200 q->nomem++;
2201 /* consume one credit since we tried */
2202 budget_left--;
2203 break;
2204 }
2205 q->imm_data++;
e0994eb1 2206 ethpad = 0;
4d22de3e 2207 } else if ((len = ntohl(r->len_cq)) != 0) {
cf992af5 2208 struct sge_fl *fl;
e0994eb1 2209
b47385bd
DLR
2210 if (eth)
2211 lro = qs->lro_enabled && is_eth_tcp(rss_hi);
2212
cf992af5
DLR
2213 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2214 if (fl->use_pages) {
2215 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
e0994eb1 2216
cf992af5
DLR
2217 prefetch(addr);
2218#if L1_CACHE_BYTES < 128
2219 prefetch(addr + L1_CACHE_BYTES);
2220#endif
e0994eb1 2221 __refill_fl(adap, fl);
b47385bd
DLR
2222 if (lro > 0) {
2223 lro_add_page(adap, qs, fl,
2224 G_RSPD_LEN(len),
2225 flags & F_RSPD_EOP);
2226 goto next_fl;
2227 }
e0994eb1 2228
7385ecf3
DLR
2229 skb = get_packet_pg(adap, fl, q,
2230 G_RSPD_LEN(len),
2231 eth ?
2232 SGE_RX_DROP_THRES : 0);
2233 q->pg_skb = skb;
cf992af5 2234 } else
e0994eb1
DLR
2235 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2236 eth ? SGE_RX_DROP_THRES : 0);
cf992af5
DLR
2237 if (unlikely(!skb)) {
2238 if (!eth)
2239 goto no_mem;
2240 q->rx_drops++;
2241 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2242 __skb_pull(skb, 2);
b47385bd 2243next_fl:
4d22de3e
DLR
2244 if (++fl->cidx == fl->size)
2245 fl->cidx = 0;
2246 } else
2247 q->pure_rsps++;
2248
2249 if (flags & RSPD_CTRL_MASK) {
2250 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2251 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2252 }
2253
2254 r++;
2255 if (unlikely(++q->cidx == q->size)) {
2256 q->cidx = 0;
2257 q->gen ^= 1;
2258 r = q->desc;
2259 }
2260 prefetch(r);
2261
2262 if (++q->credits >= (q->size / 4)) {
2263 refill_rspq(adap, q, q->credits);
2264 q->credits = 0;
2265 }
2266
7385ecf3
DLR
2267 packet_complete = flags &
2268 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2269 F_RSPD_ASYNC_NOTIF);
2270
2271 if (skb != NULL && packet_complete) {
4d22de3e 2272 if (eth)
b47385bd 2273 rx_eth(adap, q, skb, ethpad, lro);
4d22de3e 2274 else {
afefce66 2275 q->offload_pkts++;
cf992af5
DLR
2276 /* Preserve the RSS info in csum & priority */
2277 skb->csum = rss_hi;
2278 skb->priority = rss_lo;
2279 ngathered = rx_offload(&adap->tdev, q, skb,
2280 offload_skbs,
e0994eb1 2281 ngathered);
4d22de3e 2282 }
7385ecf3
DLR
2283
2284 if (flags & F_RSPD_EOP)
b47385bd 2285 clear_rspq_bufstate(q);
4d22de3e 2286 }
4d22de3e
DLR
2287 --budget_left;
2288 }
2289
4d22de3e 2290 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
b47385bd
DLR
2291 lro_flush_all(&qs->lro_mgr);
2292 qs->port_stats[SGE_PSTAT_LRO_AGGR] = qs->lro_mgr.stats.aggregated;
2293 qs->port_stats[SGE_PSTAT_LRO_FLUSHED] = qs->lro_mgr.stats.flushed;
2294 qs->port_stats[SGE_PSTAT_LRO_NO_DESC] = qs->lro_mgr.stats.no_desc;
2295
4d22de3e
DLR
2296 if (sleeping)
2297 check_ring_db(adap, qs, sleeping);
2298
2299 smp_mb(); /* commit Tx queue .processed updates */
2300 if (unlikely(qs->txq_stopped != 0))
2301 restart_tx(qs);
2302
2303 budget -= budget_left;
2304 return budget;
2305}
2306
2307static inline int is_pure_response(const struct rsp_desc *r)
2308{
c5419e6f 2309 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
4d22de3e
DLR
2310
2311 return (n | r->len_cq) == 0;
2312}
2313
2314/**
2315 * napi_rx_handler - the NAPI handler for Rx processing
bea3348e 2316 * @napi: the napi instance
4d22de3e
DLR
2317 * @budget: how many packets we can process in this round
2318 *
2319 * Handler for new data events when using NAPI.
2320 */
bea3348e 2321static int napi_rx_handler(struct napi_struct *napi, int budget)
4d22de3e 2322{
bea3348e
SH
2323 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2324 struct adapter *adap = qs->adap;
2325 int work_done = process_responses(adap, qs, budget);
4d22de3e 2326
bea3348e
SH
2327 if (likely(work_done < budget)) {
2328 napi_complete(napi);
4d22de3e 2329
bea3348e
SH
2330 /*
2331 * Because we don't atomically flush the following
2332 * write it is possible that in very rare cases it can
2333 * reach the device in a way that races with a new
2334 * response being written plus an error interrupt
2335 * causing the NAPI interrupt handler below to return
2336 * unhandled status to the OS. To protect against
2337 * this would require flushing the write and doing
2338 * both the write and the flush with interrupts off.
2339 * Way too expensive and unjustifiable given the
2340 * rarity of the race.
2341 *
2342 * The race cannot happen at all with MSI-X.
2343 */
2344 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2345 V_NEWTIMER(qs->rspq.next_holdoff) |
2346 V_NEWINDEX(qs->rspq.cidx));
2347 }
2348 return work_done;
4d22de3e
DLR
2349}
2350
2351/*
2352 * Returns true if the device is already scheduled for polling.
2353 */
bea3348e 2354static inline int napi_is_scheduled(struct napi_struct *napi)
4d22de3e 2355{
bea3348e 2356 return test_bit(NAPI_STATE_SCHED, &napi->state);
4d22de3e
DLR
2357}
2358
2359/**
2360 * process_pure_responses - process pure responses from a response queue
2361 * @adap: the adapter
2362 * @qs: the queue set owning the response queue
2363 * @r: the first pure response to process
2364 *
2365 * A simpler version of process_responses() that handles only pure (i.e.,
2366 * non data-carrying) responses. Such respones are too light-weight to
2367 * justify calling a softirq under NAPI, so we handle them specially in
2368 * the interrupt handler. The function is called with a pointer to a
2369 * response, which the caller must ensure is a valid pure response.
2370 *
2371 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2372 */
2373static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2374 struct rsp_desc *r)
2375{
2376 struct sge_rspq *q = &qs->rspq;
6195c71d 2377 unsigned int sleeping = 0;
4d22de3e
DLR
2378
2379 do {
2380 u32 flags = ntohl(r->flags);
2381
2382 r++;
2383 if (unlikely(++q->cidx == q->size)) {
2384 q->cidx = 0;
2385 q->gen ^= 1;
2386 r = q->desc;
2387 }
2388 prefetch(r);
2389
2390 if (flags & RSPD_CTRL_MASK) {
2391 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2392 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2393 }
2394
2395 q->pure_rsps++;
2396 if (++q->credits >= (q->size / 4)) {
2397 refill_rspq(adap, q, q->credits);
2398 q->credits = 0;
2399 }
2400 } while (is_new_response(r, q) && is_pure_response(r));
2401
4d22de3e
DLR
2402 if (sleeping)
2403 check_ring_db(adap, qs, sleeping);
2404
2405 smp_mb(); /* commit Tx queue .processed updates */
2406 if (unlikely(qs->txq_stopped != 0))
2407 restart_tx(qs);
2408
2409 return is_new_response(r, q);
2410}
2411
2412/**
2413 * handle_responses - decide what to do with new responses in NAPI mode
2414 * @adap: the adapter
2415 * @q: the response queue
2416 *
2417 * This is used by the NAPI interrupt handlers to decide what to do with
2418 * new SGE responses. If there are no new responses it returns -1. If
2419 * there are new responses and they are pure (i.e., non-data carrying)
2420 * it handles them straight in hard interrupt context as they are very
2421 * cheap and don't deliver any packets. Finally, if there are any data
2422 * signaling responses it schedules the NAPI handler. Returns 1 if it
2423 * schedules NAPI, 0 if all new responses were pure.
2424 *
2425 * The caller must ascertain NAPI is not already running.
2426 */
2427static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2428{
2429 struct sge_qset *qs = rspq_to_qset(q);
2430 struct rsp_desc *r = &q->desc[q->cidx];
2431
2432 if (!is_new_response(r, q))
2433 return -1;
2434 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2435 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2436 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2437 return 0;
2438 }
bea3348e 2439 napi_schedule(&qs->napi);
4d22de3e
DLR
2440 return 1;
2441}
2442
2443/*
2444 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2445 * (i.e., response queue serviced in hard interrupt).
2446 */
2447irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2448{
2449 struct sge_qset *qs = cookie;
bea3348e 2450 struct adapter *adap = qs->adap;
4d22de3e
DLR
2451 struct sge_rspq *q = &qs->rspq;
2452
2453 spin_lock(&q->lock);
2454 if (process_responses(adap, qs, -1) == 0)
2455 q->unhandled_irqs++;
2456 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2457 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2458 spin_unlock(&q->lock);
2459 return IRQ_HANDLED;
2460}
2461
2462/*
2463 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2464 * (i.e., response queue serviced by NAPI polling).
2465 */
9265fabf 2466static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
4d22de3e
DLR
2467{
2468 struct sge_qset *qs = cookie;
4d22de3e
DLR
2469 struct sge_rspq *q = &qs->rspq;
2470
2471 spin_lock(&q->lock);
4d22de3e 2472
bea3348e 2473 if (handle_responses(qs->adap, q) < 0)
4d22de3e
DLR
2474 q->unhandled_irqs++;
2475 spin_unlock(&q->lock);
2476 return IRQ_HANDLED;
2477}
2478
2479/*
2480 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2481 * SGE response queues as well as error and other async events as they all use
2482 * the same MSI vector. We use one SGE response queue per port in this mode
2483 * and protect all response queues with queue 0's lock.
2484 */
2485static irqreturn_t t3_intr_msi(int irq, void *cookie)
2486{
2487 int new_packets = 0;
2488 struct adapter *adap = cookie;
2489 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2490
2491 spin_lock(&q->lock);
2492
2493 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2494 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2495 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2496 new_packets = 1;
2497 }
2498
2499 if (adap->params.nports == 2 &&
2500 process_responses(adap, &adap->sge.qs[1], -1)) {
2501 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2502
2503 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2504 V_NEWTIMER(q1->next_holdoff) |
2505 V_NEWINDEX(q1->cidx));
2506 new_packets = 1;
2507 }
2508
2509 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2510 q->unhandled_irqs++;
2511
2512 spin_unlock(&q->lock);
2513 return IRQ_HANDLED;
2514}
2515
bea3348e 2516static int rspq_check_napi(struct sge_qset *qs)
4d22de3e 2517{
bea3348e
SH
2518 struct sge_rspq *q = &qs->rspq;
2519
2520 if (!napi_is_scheduled(&qs->napi) &&
2521 is_new_response(&q->desc[q->cidx], q)) {
2522 napi_schedule(&qs->napi);
4d22de3e
DLR
2523 return 1;
2524 }
2525 return 0;
2526}
2527
2528/*
2529 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2530 * by NAPI polling). Handles data events from SGE response queues as well as
2531 * error and other async events as they all use the same MSI vector. We use
2532 * one SGE response queue per port in this mode and protect all response
2533 * queues with queue 0's lock.
2534 */
9265fabf 2535static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
4d22de3e
DLR
2536{
2537 int new_packets;
2538 struct adapter *adap = cookie;
2539 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2540
2541 spin_lock(&q->lock);
2542
bea3348e 2543 new_packets = rspq_check_napi(&adap->sge.qs[0]);
4d22de3e 2544 if (adap->params.nports == 2)
bea3348e 2545 new_packets += rspq_check_napi(&adap->sge.qs[1]);
4d22de3e
DLR
2546 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2547 q->unhandled_irqs++;
2548
2549 spin_unlock(&q->lock);
2550 return IRQ_HANDLED;
2551}
2552
2553/*
2554 * A helper function that processes responses and issues GTS.
2555 */
2556static inline int process_responses_gts(struct adapter *adap,
2557 struct sge_rspq *rq)
2558{
2559 int work;
2560
2561 work = process_responses(adap, rspq_to_qset(rq), -1);
2562 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2563 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2564 return work;
2565}
2566
2567/*
2568 * The legacy INTx interrupt handler. This needs to handle data events from
2569 * SGE response queues as well as error and other async events as they all use
2570 * the same interrupt pin. We use one SGE response queue per port in this mode
2571 * and protect all response queues with queue 0's lock.
2572 */
2573static irqreturn_t t3_intr(int irq, void *cookie)
2574{
2575 int work_done, w0, w1;
2576 struct adapter *adap = cookie;
2577 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2578 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2579
2580 spin_lock(&q0->lock);
2581
2582 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2583 w1 = adap->params.nports == 2 &&
2584 is_new_response(&q1->desc[q1->cidx], q1);
2585
2586 if (likely(w0 | w1)) {
2587 t3_write_reg(adap, A_PL_CLI, 0);
2588 t3_read_reg(adap, A_PL_CLI); /* flush */
2589
2590 if (likely(w0))
2591 process_responses_gts(adap, q0);
2592
2593 if (w1)
2594 process_responses_gts(adap, q1);
2595
2596 work_done = w0 | w1;
2597 } else
2598 work_done = t3_slow_intr_handler(adap);
2599
2600 spin_unlock(&q0->lock);
2601 return IRQ_RETVAL(work_done != 0);
2602}
2603
2604/*
2605 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2606 * Handles data events from SGE response queues as well as error and other
2607 * async events as they all use the same interrupt pin. We use one SGE
2608 * response queue per port in this mode and protect all response queues with
2609 * queue 0's lock.
2610 */
2611static irqreturn_t t3b_intr(int irq, void *cookie)
2612{
2613 u32 map;
2614 struct adapter *adap = cookie;
2615 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2616
2617 t3_write_reg(adap, A_PL_CLI, 0);
2618 map = t3_read_reg(adap, A_SG_DATA_INTR);
2619
2620 if (unlikely(!map)) /* shared interrupt, most likely */
2621 return IRQ_NONE;
2622
2623 spin_lock(&q0->lock);
2624
2625 if (unlikely(map & F_ERRINTR))
2626 t3_slow_intr_handler(adap);
2627
2628 if (likely(map & 1))
2629 process_responses_gts(adap, q0);
2630
2631 if (map & 2)
2632 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2633
2634 spin_unlock(&q0->lock);
2635 return IRQ_HANDLED;
2636}
2637
2638/*
2639 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2640 * Handles data events from SGE response queues as well as error and other
2641 * async events as they all use the same interrupt pin. We use one SGE
2642 * response queue per port in this mode and protect all response queues with
2643 * queue 0's lock.
2644 */
2645static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2646{
2647 u32 map;
4d22de3e 2648 struct adapter *adap = cookie;
bea3348e
SH
2649 struct sge_qset *qs0 = &adap->sge.qs[0];
2650 struct sge_rspq *q0 = &qs0->rspq;
4d22de3e
DLR
2651
2652 t3_write_reg(adap, A_PL_CLI, 0);
2653 map = t3_read_reg(adap, A_SG_DATA_INTR);
2654
2655 if (unlikely(!map)) /* shared interrupt, most likely */
2656 return IRQ_NONE;
2657
2658 spin_lock(&q0->lock);
2659
2660 if (unlikely(map & F_ERRINTR))
2661 t3_slow_intr_handler(adap);
2662
bea3348e
SH
2663 if (likely(map & 1))
2664 napi_schedule(&qs0->napi);
4d22de3e 2665
bea3348e
SH
2666 if (map & 2)
2667 napi_schedule(&adap->sge.qs[1].napi);
4d22de3e
DLR
2668
2669 spin_unlock(&q0->lock);
2670 return IRQ_HANDLED;
2671}
2672
2673/**
2674 * t3_intr_handler - select the top-level interrupt handler
2675 * @adap: the adapter
2676 * @polling: whether using NAPI to service response queues
2677 *
2678 * Selects the top-level interrupt handler based on the type of interrupts
2679 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2680 * response queues.
2681 */
7c239975 2682irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
4d22de3e
DLR
2683{
2684 if (adap->flags & USING_MSIX)
2685 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2686 if (adap->flags & USING_MSI)
2687 return polling ? t3_intr_msi_napi : t3_intr_msi;
2688 if (adap->params.rev > 0)
2689 return polling ? t3b_intr_napi : t3b_intr;
2690 return t3_intr;
2691}
2692
b881955b
DLR
2693#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2694 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2695 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2696 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2697 F_HIRCQPARITYERROR)
2698#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2699#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2700 F_RSPQDISABLED)
2701
4d22de3e
DLR
2702/**
2703 * t3_sge_err_intr_handler - SGE async event interrupt handler
2704 * @adapter: the adapter
2705 *
2706 * Interrupt handler for SGE asynchronous (non-data) events.
2707 */
2708void t3_sge_err_intr_handler(struct adapter *adapter)
2709{
2710 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2711
b881955b
DLR
2712 if (status & SGE_PARERR)
2713 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2714 status & SGE_PARERR);
2715 if (status & SGE_FRAMINGERR)
2716 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2717 status & SGE_FRAMINGERR);
2718
4d22de3e
DLR
2719 if (status & F_RSPQCREDITOVERFOW)
2720 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2721
2722 if (status & F_RSPQDISABLED) {
2723 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2724
2725 CH_ALERT(adapter,
2726 "packet delivered to disabled response queue "
2727 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2728 }
2729
6e3f03b7
DLR
2730 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2731 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2732 status & F_HIPIODRBDROPERR ? "high" : "lo");
2733
4d22de3e 2734 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
b881955b 2735 if (status & SGE_FATALERR)
4d22de3e
DLR
2736 t3_fatal_err(adapter);
2737}
2738
2739/**
2740 * sge_timer_cb - perform periodic maintenance of an SGE qset
2741 * @data: the SGE queue set to maintain
2742 *
2743 * Runs periodically from a timer to perform maintenance of an SGE queue
2744 * set. It performs two tasks:
2745 *
2746 * a) Cleans up any completed Tx descriptors that may still be pending.
2747 * Normal descriptor cleanup happens when new packets are added to a Tx
2748 * queue so this timer is relatively infrequent and does any cleanup only
2749 * if the Tx queue has not seen any new packets in a while. We make a
2750 * best effort attempt to reclaim descriptors, in that we don't wait
2751 * around if we cannot get a queue's lock (which most likely is because
2752 * someone else is queueing new packets and so will also handle the clean
2753 * up). Since control queues use immediate data exclusively we don't
2754 * bother cleaning them up here.
2755 *
2756 * b) Replenishes Rx queues that have run out due to memory shortage.
2757 * Normally new Rx buffers are added when existing ones are consumed but
2758 * when out of memory a queue can become empty. We try to add only a few
2759 * buffers here, the queue will be replenished fully as these new buffers
2760 * are used up if memory shortage has subsided.
2761 */
2762static void sge_timer_cb(unsigned long data)
2763{
2764 spinlock_t *lock;
2765 struct sge_qset *qs = (struct sge_qset *)data;
bea3348e 2766 struct adapter *adap = qs->adap;
4d22de3e
DLR
2767
2768 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2769 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2770 spin_unlock(&qs->txq[TXQ_ETH].lock);
2771 }
2772 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2773 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2774 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2775 }
2776 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
bea3348e 2777 &adap->sge.qs[0].rspq.lock;
4d22de3e 2778 if (spin_trylock_irq(lock)) {
bea3348e 2779 if (!napi_is_scheduled(&qs->napi)) {
bae73f44
DLR
2780 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2781
4d22de3e
DLR
2782 if (qs->fl[0].credits < qs->fl[0].size)
2783 __refill_fl(adap, &qs->fl[0]);
2784 if (qs->fl[1].credits < qs->fl[1].size)
2785 __refill_fl(adap, &qs->fl[1]);
bae73f44
DLR
2786
2787 if (status & (1 << qs->rspq.cntxt_id)) {
2788 qs->rspq.starved++;
2789 if (qs->rspq.credits) {
2790 refill_rspq(adap, &qs->rspq, 1);
2791 qs->rspq.credits--;
2792 qs->rspq.restarted++;
e0994eb1 2793 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
bae73f44
DLR
2794 1 << qs->rspq.cntxt_id);
2795 }
2796 }
4d22de3e
DLR
2797 }
2798 spin_unlock_irq(lock);
2799 }
2800 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2801}
2802
2803/**
2804 * t3_update_qset_coalesce - update coalescing settings for a queue set
2805 * @qs: the SGE queue set
2806 * @p: new queue set parameters
2807 *
2808 * Update the coalescing settings for an SGE queue set. Nothing is done
2809 * if the queue set is not initialized yet.
2810 */
2811void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2812{
4d22de3e
DLR
2813 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2814 qs->rspq.polling = p->polling;
bea3348e 2815 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
4d22de3e
DLR
2816}
2817
2818/**
2819 * t3_sge_alloc_qset - initialize an SGE queue set
2820 * @adapter: the adapter
2821 * @id: the queue set id
2822 * @nports: how many Ethernet ports will be using this queue set
2823 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2824 * @p: configuration parameters for this queue set
2825 * @ntxq: number of Tx queues for the queue set
2826 * @netdev: net device associated with this queue set
2827 *
2828 * Allocate resources and initialize an SGE queue set. A queue set
2829 * comprises a response queue, two Rx free-buffer queues, and up to 3
2830 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2831 * queue, offload queue, and control queue.
2832 */
2833int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2834 int irq_vec_idx, const struct qset_params *p,
bea3348e 2835 int ntxq, struct net_device *dev)
4d22de3e 2836{
b1fb1f28 2837 int i, avail, ret = -ENOMEM;
4d22de3e 2838 struct sge_qset *q = &adapter->sge.qs[id];
b47385bd 2839 struct net_lro_mgr *lro_mgr = &q->lro_mgr;
4d22de3e
DLR
2840
2841 init_qset_cntxt(q, id);
20d3fc11 2842 setup_timer(&q->tx_reclaim_timer, sge_timer_cb, (unsigned long)q);
4d22de3e
DLR
2843
2844 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2845 sizeof(struct rx_desc),
2846 sizeof(struct rx_sw_desc),
2847 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2848 if (!q->fl[0].desc)
2849 goto err;
2850
2851 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2852 sizeof(struct rx_desc),
2853 sizeof(struct rx_sw_desc),
2854 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2855 if (!q->fl[1].desc)
2856 goto err;
2857
2858 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2859 sizeof(struct rsp_desc), 0,
2860 &q->rspq.phys_addr, NULL);
2861 if (!q->rspq.desc)
2862 goto err;
2863
2864 for (i = 0; i < ntxq; ++i) {
2865 /*
2866 * The control queue always uses immediate data so does not
2867 * need to keep track of any sk_buffs.
2868 */
2869 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2870
2871 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2872 sizeof(struct tx_desc), sz,
2873 &q->txq[i].phys_addr,
2874 &q->txq[i].sdesc);
2875 if (!q->txq[i].desc)
2876 goto err;
2877
2878 q->txq[i].gen = 1;
2879 q->txq[i].size = p->txq_size[i];
2880 spin_lock_init(&q->txq[i].lock);
2881 skb_queue_head_init(&q->txq[i].sendq);
2882 }
2883
2884 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2885 (unsigned long)q);
2886 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2887 (unsigned long)q);
2888
2889 q->fl[0].gen = q->fl[1].gen = 1;
2890 q->fl[0].size = p->fl_size;
2891 q->fl[1].size = p->jumbo_size;
2892
2893 q->rspq.gen = 1;
2894 q->rspq.size = p->rspq_size;
2895 spin_lock_init(&q->rspq.lock);
147e70e6 2896 skb_queue_head_init(&q->rspq.rx_queue);
4d22de3e
DLR
2897
2898 q->txq[TXQ_ETH].stop_thres = nports *
2899 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2900
cf992af5
DLR
2901#if FL0_PG_CHUNK_SIZE > 0
2902 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
e0994eb1 2903#else
cf992af5 2904 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
e0994eb1 2905#endif
7385ecf3
DLR
2906#if FL1_PG_CHUNK_SIZE > 0
2907 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
2908#else
cf992af5
DLR
2909 q->fl[1].buf_size = is_offload(adapter) ?
2910 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2911 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
7385ecf3
DLR
2912#endif
2913
2914 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2915 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
2916 q->fl[0].order = FL0_PG_ORDER;
2917 q->fl[1].order = FL1_PG_ORDER;
4d22de3e 2918
b47385bd
DLR
2919 q->lro_frag_tbl = kcalloc(MAX_FRAME_SIZE / FL1_PG_CHUNK_SIZE + 1,
2920 sizeof(struct skb_frag_struct),
2921 GFP_KERNEL);
2922 q->lro_nfrags = q->lro_frag_len = 0;
b1186dee 2923 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
2924
2925 /* FL threshold comparison uses < */
2926 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2927 q->rspq.phys_addr, q->rspq.size,
2928 q->fl[0].buf_size, 1, 0);
2929 if (ret)
2930 goto err_unlock;
2931
2932 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2933 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2934 q->fl[i].phys_addr, q->fl[i].size,
2935 q->fl[i].buf_size, p->cong_thres, 1,
2936 0);
2937 if (ret)
2938 goto err_unlock;
2939 }
2940
2941 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2942 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2943 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2944 1, 0);
2945 if (ret)
2946 goto err_unlock;
2947
2948 if (ntxq > 1) {
2949 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2950 USE_GTS, SGE_CNTXT_OFLD, id,
2951 q->txq[TXQ_OFLD].phys_addr,
2952 q->txq[TXQ_OFLD].size, 0, 1, 0);
2953 if (ret)
2954 goto err_unlock;
2955 }
2956
2957 if (ntxq > 2) {
2958 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2959 SGE_CNTXT_CTRL, id,
2960 q->txq[TXQ_CTRL].phys_addr,
2961 q->txq[TXQ_CTRL].size,
2962 q->txq[TXQ_CTRL].token, 1, 0);
2963 if (ret)
2964 goto err_unlock;
2965 }
2966
b1186dee 2967 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e 2968
bea3348e
SH
2969 q->adap = adapter;
2970 q->netdev = dev;
2971 t3_update_qset_coalesce(q, p);
b47385bd
DLR
2972
2973 init_lro_mgr(q, lro_mgr);
2974
7385ecf3
DLR
2975 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
2976 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
2977 if (!avail) {
2978 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
2979 goto err;
2980 }
2981 if (avail < q->fl[0].size)
2982 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
2983 avail);
2984
7385ecf3
DLR
2985 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
2986 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
2987 if (avail < q->fl[1].size)
2988 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
2989 avail);
4d22de3e
DLR
2990 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2991
2992 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2993 V_NEWTIMER(q->rspq.holdoff_tmr));
2994
2995 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2996 return 0;
2997
b1fb1f28 2998err_unlock:
b1186dee 2999 spin_unlock_irq(&adapter->sge.reg_lock);
b1fb1f28 3000err:
4d22de3e
DLR
3001 t3_free_qset(adapter, q);
3002 return ret;
3003}
3004
0ca41c04
DLR
3005/**
3006 * t3_stop_sge_timers - stop SGE timer call backs
3007 * @adap: the adapter
3008 *
3009 * Stops each SGE queue set's timer call back
3010 */
3011void t3_stop_sge_timers(struct adapter *adap)
3012{
3013 int i;
3014
3015 for (i = 0; i < SGE_QSETS; ++i) {
3016 struct sge_qset *q = &adap->sge.qs[i];
3017
3018 if (q->tx_reclaim_timer.function)
3019 del_timer_sync(&q->tx_reclaim_timer);
3020 }
3021}
3022
4d22de3e
DLR
3023/**
3024 * t3_free_sge_resources - free SGE resources
3025 * @adap: the adapter
3026 *
3027 * Frees resources used by the SGE queue sets.
3028 */
3029void t3_free_sge_resources(struct adapter *adap)
3030{
3031 int i;
3032
3033 for (i = 0; i < SGE_QSETS; ++i)
3034 t3_free_qset(adap, &adap->sge.qs[i]);
3035}
3036
3037/**
3038 * t3_sge_start - enable SGE
3039 * @adap: the adapter
3040 *
3041 * Enables the SGE for DMAs. This is the last step in starting packet
3042 * transfers.
3043 */
3044void t3_sge_start(struct adapter *adap)
3045{
3046 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3047}
3048
3049/**
3050 * t3_sge_stop - disable SGE operation
3051 * @adap: the adapter
3052 *
3053 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3054 * from error interrupts) or from normal process context. In the latter
3055 * case it also disables any pending queue restart tasklets. Note that
3056 * if it is called in interrupt context it cannot disable the restart
3057 * tasklets as it cannot wait, however the tasklets will have no effect
3058 * since the doorbells are disabled and the driver will call this again
3059 * later from process context, at which time the tasklets will be stopped
3060 * if they are still running.
3061 */
3062void t3_sge_stop(struct adapter *adap)
3063{
3064 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3065 if (!in_interrupt()) {
3066 int i;
3067
3068 for (i = 0; i < SGE_QSETS; ++i) {
3069 struct sge_qset *qs = &adap->sge.qs[i];
3070
3071 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3072 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3073 }
3074 }
3075}
3076
3077/**
3078 * t3_sge_init - initialize SGE
3079 * @adap: the adapter
3080 * @p: the SGE parameters
3081 *
3082 * Performs SGE initialization needed every time after a chip reset.
3083 * We do not initialize any of the queue sets here, instead the driver
3084 * top-level must request those individually. We also do not enable DMA
3085 * here, that should be done after the queues have been set up.
3086 */
3087void t3_sge_init(struct adapter *adap, struct sge_params *p)
3088{
3089 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3090
3091 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
b881955b 3092 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
4d22de3e
DLR
3093 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3094 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3095#if SGE_NUM_GENBITS == 1
3096 ctrl |= F_EGRGENCTRL;
3097#endif
3098 if (adap->params.rev > 0) {
3099 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3100 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
4d22de3e
DLR
3101 }
3102 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3103 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3104 V_LORCQDRBTHRSH(512));
3105 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3106 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
6195c71d 3107 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
b881955b
DLR
3108 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3109 adap->params.rev < T3_REV_C ? 1000 : 500);
4d22de3e
DLR
3110 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3111 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3112 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3113 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3114 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3115}
3116
3117/**
3118 * t3_sge_prep - one-time SGE initialization
3119 * @adap: the associated adapter
3120 * @p: SGE parameters
3121 *
3122 * Performs one-time initialization of SGE SW state. Includes determining
3123 * defaults for the assorted SGE parameters, which admins can change until
3124 * they are used to initialize the SGE.
3125 */
7b9b0943 3126void t3_sge_prep(struct adapter *adap, struct sge_params *p)
4d22de3e
DLR
3127{
3128 int i;
3129
3130 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3131 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3132
3133 for (i = 0; i < SGE_QSETS; ++i) {
3134 struct qset_params *q = p->qset + i;
3135
3136 q->polling = adap->params.rev > 0;
3137 q->coalesce_usecs = 5;
3138 q->rspq_size = 1024;
e0994eb1 3139 q->fl_size = 1024;
7385ecf3 3140 q->jumbo_size = 512;
4d22de3e
DLR
3141 q->txq_size[TXQ_ETH] = 1024;
3142 q->txq_size[TXQ_OFLD] = 1024;
3143 q->txq_size[TXQ_CTRL] = 256;
3144 q->cong_thres = 0;
3145 }
3146
3147 spin_lock_init(&adap->sge.reg_lock);
3148}
3149
3150/**
3151 * t3_get_desc - dump an SGE descriptor for debugging purposes
3152 * @qs: the queue set
3153 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3154 * @idx: the descriptor index in the queue
3155 * @data: where to dump the descriptor contents
3156 *
3157 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3158 * size of the descriptor.
3159 */
3160int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3161 unsigned char *data)
3162{
3163 if (qnum >= 6)
3164 return -EINVAL;
3165
3166 if (qnum < 3) {
3167 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3168 return -EINVAL;
3169 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3170 return sizeof(struct tx_desc);
3171 }
3172
3173 if (qnum == 3) {
3174 if (!qs->rspq.desc || idx >= qs->rspq.size)
3175 return -EINVAL;
3176 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3177 return sizeof(struct rsp_desc);
3178 }
3179
3180 qnum -= 4;
3181 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3182 return -EINVAL;
3183 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3184 return sizeof(struct rx_desc);
3185}