Merge git://git.kernel.org/pub/scm/linux/kernel/git/brodo/pcmcia-fixes-2.6
[linux-2.6-block.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
22 * UBI scanning unit.
23 *
24 * This unit is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 */
42
43#include <linux/err.h>
44#include <linux/crc32.h>
4bc1dca4 45#include <asm/div64.h>
801c135c
AB
46#include "ubi.h"
47
48#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 49static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
801c135c
AB
50#else
51#define paranoid_check_si(ubi, si) 0
52#endif
53
54/* Temporary variables used during scanning */
55static struct ubi_ec_hdr *ech;
56static struct ubi_vid_hdr *vidh;
57
941dfb07 58/**
78d87c95
AB
59 * add_to_list - add physical eraseblock to a list.
60 * @si: scanning information
61 * @pnum: physical eraseblock number to add
62 * @ec: erase counter of the physical eraseblock
63 * @list: the list to add to
64 *
65 * This function adds physical eraseblock @pnum to free, erase, corrupted or
66 * alien lists. Returns zero in case of success and a negative error code in
67 * case of failure.
68 */
69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70 struct list_head *list)
801c135c
AB
71{
72 struct ubi_scan_leb *seb;
73
74 if (list == &si->free)
75 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76 else if (list == &si->erase)
77 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78 else if (list == &si->corr)
79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80 else if (list == &si->alien)
81 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
82 else
83 BUG();
84
85 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
86 if (!seb)
87 return -ENOMEM;
88
89 seb->pnum = pnum;
90 seb->ec = ec;
91 list_add_tail(&seb->u.list, list);
92 return 0;
93}
94
801c135c
AB
95/**
96 * validate_vid_hdr - check that volume identifier header is correct and
97 * consistent.
98 * @vid_hdr: the volume identifier header to check
99 * @sv: information about the volume this logical eraseblock belongs to
100 * @pnum: physical eraseblock number the VID header came from
101 *
102 * This function checks that data stored in @vid_hdr is consistent. Returns
103 * non-zero if an inconsistency was found and zero if not.
104 *
105 * Note, UBI does sanity check of everything it reads from the flash media.
106 * Most of the checks are done in the I/O unit. Here we check that the
107 * information in the VID header is consistent to the information in other VID
108 * headers of the same volume.
109 */
110static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
111 const struct ubi_scan_volume *sv, int pnum)
112{
113 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
114 int vol_id = be32_to_cpu(vid_hdr->vol_id);
115 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
116 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
117
118 if (sv->leb_count != 0) {
119 int sv_vol_type;
120
121 /*
122 * This is not the first logical eraseblock belonging to this
123 * volume. Ensure that the data in its VID header is consistent
124 * to the data in previous logical eraseblock headers.
125 */
126
127 if (vol_id != sv->vol_id) {
128 dbg_err("inconsistent vol_id");
129 goto bad;
130 }
131
132 if (sv->vol_type == UBI_STATIC_VOLUME)
133 sv_vol_type = UBI_VID_STATIC;
134 else
135 sv_vol_type = UBI_VID_DYNAMIC;
136
137 if (vol_type != sv_vol_type) {
138 dbg_err("inconsistent vol_type");
139 goto bad;
140 }
141
142 if (used_ebs != sv->used_ebs) {
143 dbg_err("inconsistent used_ebs");
144 goto bad;
145 }
146
147 if (data_pad != sv->data_pad) {
148 dbg_err("inconsistent data_pad");
149 goto bad;
150 }
151 }
152
153 return 0;
154
155bad:
156 ubi_err("inconsistent VID header at PEB %d", pnum);
157 ubi_dbg_dump_vid_hdr(vid_hdr);
158 ubi_dbg_dump_sv(sv);
159 return -EINVAL;
160}
161
162/**
163 * add_volume - add volume to the scanning information.
164 * @si: scanning information
165 * @vol_id: ID of the volume to add
166 * @pnum: physical eraseblock number
167 * @vid_hdr: volume identifier header
168 *
169 * If the volume corresponding to the @vid_hdr logical eraseblock is already
170 * present in the scanning information, this function does nothing. Otherwise
171 * it adds corresponding volume to the scanning information. Returns a pointer
172 * to the scanning volume object in case of success and a negative error code
173 * in case of failure.
174 */
175static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
176 int pnum,
177 const struct ubi_vid_hdr *vid_hdr)
178{
179 struct ubi_scan_volume *sv;
180 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
181
3261ebd7 182 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
183
184 /* Walk the volume RB-tree to look if this volume is already present */
185 while (*p) {
186 parent = *p;
187 sv = rb_entry(parent, struct ubi_scan_volume, rb);
188
189 if (vol_id == sv->vol_id)
190 return sv;
191
192 if (vol_id > sv->vol_id)
193 p = &(*p)->rb_left;
194 else
195 p = &(*p)->rb_right;
196 }
197
198 /* The volume is absent - add it */
199 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
200 if (!sv)
201 return ERR_PTR(-ENOMEM);
202
203 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
204 sv->vol_id = vol_id;
205 sv->root = RB_ROOT;
3261ebd7
CH
206 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
207 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
208 sv->compat = vid_hdr->compat;
209 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
210 : UBI_STATIC_VOLUME;
211 if (vol_id > si->highest_vol_id)
212 si->highest_vol_id = vol_id;
213
214 rb_link_node(&sv->rb, parent, p);
215 rb_insert_color(&sv->rb, &si->volumes);
216 si->vols_found += 1;
217 dbg_bld("added volume %d", vol_id);
218 return sv;
219}
220
221/**
222 * compare_lebs - find out which logical eraseblock is newer.
223 * @ubi: UBI device description object
224 * @seb: first logical eraseblock to compare
225 * @pnum: physical eraseblock number of the second logical eraseblock to
226 * compare
227 * @vid_hdr: volume identifier header of the second logical eraseblock
228 *
229 * This function compares 2 copies of a LEB and informs which one is newer. In
230 * case of success this function returns a positive value, in case of failure, a
231 * negative error code is returned. The success return codes use the following
232 * bits:
233 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
234 * second PEB (described by @pnum and @vid_hdr);
235 * o bit 0 is set: the second PEB is newer;
236 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
237 * o bit 1 is set: bit-flips were detected in the newer LEB;
238 * o bit 2 is cleared: the older LEB is not corrupted;
239 * o bit 2 is set: the older LEB is corrupted.
240 */
e88d6e10
AB
241static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
242 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
243{
244 void *buf;
245 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
246 uint32_t data_crc, crc;
8bc22961 247 struct ubi_vid_hdr *vh = NULL;
3261ebd7 248 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c
AB
249
250 if (seb->sqnum == 0 && sqnum2 == 0) {
3261ebd7 251 long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
252
253 /*
254 * UBI constantly increases the logical eraseblock version
255 * number and it can overflow. Thus, we have to bear in mind
256 * that versions that are close to %0xFFFFFFFF are less then
257 * versions that are close to %0.
258 *
259 * The UBI WL unit guarantees that the number of pending tasks
260 * is not greater then %0x7FFFFFFF. So, if the difference
261 * between any two versions is greater or equivalent to
262 * %0x7FFFFFFF, there was an overflow and the logical
263 * eraseblock with lower version is actually newer then the one
264 * with higher version.
265 *
266 * FIXME: but this is anyway obsolete and will be removed at
267 * some point.
268 */
801c135c
AB
269 dbg_bld("using old crappy leb_ver stuff");
270
64203195
AB
271 if (v1 == v2) {
272 ubi_err("PEB %d and PEB %d have the same version %lld",
273 seb->pnum, pnum, v1);
274 return -EINVAL;
275 }
276
801c135c
AB
277 abs = v1 - v2;
278 if (abs < 0)
279 abs = -abs;
280
281 if (abs < 0x7FFFFFFF)
282 /* Non-overflow situation */
283 second_is_newer = (v2 > v1);
284 else
285 second_is_newer = (v2 < v1);
286 } else
287 /* Obviously the LEB with lower sequence counter is older */
288 second_is_newer = sqnum2 > seb->sqnum;
289
290 /*
291 * Now we know which copy is newer. If the copy flag of the PEB with
292 * newer version is not set, then we just return, otherwise we have to
293 * check data CRC. For the second PEB we already have the VID header,
294 * for the first one - we'll need to re-read it from flash.
295 *
296 * FIXME: this may be optimized so that we wouldn't read twice.
297 */
298
299 if (second_is_newer) {
300 if (!vid_hdr->copy_flag) {
301 /* It is not a copy, so it is newer */
302 dbg_bld("second PEB %d is newer, copy_flag is unset",
303 pnum);
304 return 1;
305 }
306 } else {
307 pnum = seb->pnum;
308
33818bbb 309 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 310 if (!vh)
801c135c
AB
311 return -ENOMEM;
312
8bc22961 313 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
314 if (err) {
315 if (err == UBI_IO_BITFLIPS)
316 bitflips = 1;
317 else {
318 dbg_err("VID of PEB %d header is bad, but it "
319 "was OK earlier", pnum);
320 if (err > 0)
321 err = -EIO;
322
323 goto out_free_vidh;
324 }
325 }
326
8bc22961 327 if (!vh->copy_flag) {
801c135c
AB
328 /* It is not a copy, so it is newer */
329 dbg_bld("first PEB %d is newer, copy_flag is unset",
330 pnum);
331 err = bitflips << 1;
332 goto out_free_vidh;
333 }
334
8bc22961 335 vid_hdr = vh;
801c135c
AB
336 }
337
338 /* Read the data of the copy and check the CRC */
339
3261ebd7 340 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 341 buf = vmalloc(len);
801c135c
AB
342 if (!buf) {
343 err = -ENOMEM;
344 goto out_free_vidh;
345 }
346
347 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
348 if (err && err != UBI_IO_BITFLIPS)
349 goto out_free_buf;
350
3261ebd7 351 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
352 crc = crc32(UBI_CRC32_INIT, buf, len);
353 if (crc != data_crc) {
354 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
355 pnum, crc, data_crc);
356 corrupted = 1;
357 bitflips = 0;
358 second_is_newer = !second_is_newer;
359 } else {
360 dbg_bld("PEB %d CRC is OK", pnum);
361 bitflips = !!err;
362 }
363
92ad8f37 364 vfree(buf);
8bc22961 365 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
366
367 if (second_is_newer)
368 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
369 else
370 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
371
372 return second_is_newer | (bitflips << 1) | (corrupted << 2);
373
374out_free_buf:
92ad8f37 375 vfree(buf);
801c135c 376out_free_vidh:
8bc22961 377 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
378 return err;
379}
380
381/**
382 * ubi_scan_add_used - add information about a physical eraseblock to the
383 * scanning information.
384 * @ubi: UBI device description object
385 * @si: scanning information
386 * @pnum: the physical eraseblock number
387 * @ec: erase counter
388 * @vid_hdr: the volume identifier header
389 * @bitflips: if bit-flips were detected when this physical eraseblock was read
390 *
79b510c0
AB
391 * This function adds information about a used physical eraseblock to the
392 * 'used' tree of the corresponding volume. The function is rather complex
393 * because it has to handle cases when this is not the first physical
394 * eraseblock belonging to the same logical eraseblock, and the newer one has
395 * to be picked, while the older one has to be dropped. This function returns
396 * zero in case of success and a negative error code in case of failure.
801c135c 397 */
e88d6e10 398int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
399 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
400 int bitflips)
401{
402 int err, vol_id, lnum;
403 uint32_t leb_ver;
404 unsigned long long sqnum;
405 struct ubi_scan_volume *sv;
406 struct ubi_scan_leb *seb;
407 struct rb_node **p, *parent = NULL;
408
3261ebd7
CH
409 vol_id = be32_to_cpu(vid_hdr->vol_id);
410 lnum = be32_to_cpu(vid_hdr->lnum);
411 sqnum = be64_to_cpu(vid_hdr->sqnum);
412 leb_ver = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
413
414 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
415 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
416
417 sv = add_volume(si, vol_id, pnum, vid_hdr);
418 if (IS_ERR(sv) < 0)
419 return PTR_ERR(sv);
420
76eafe47
BS
421 if (si->max_sqnum < sqnum)
422 si->max_sqnum = sqnum;
423
801c135c
AB
424 /*
425 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
426 * if this is the first instance of this logical eraseblock or not.
427 */
428 p = &sv->root.rb_node;
429 while (*p) {
430 int cmp_res;
431
432 parent = *p;
433 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
434 if (lnum != seb->lnum) {
435 if (lnum < seb->lnum)
436 p = &(*p)->rb_left;
437 else
438 p = &(*p)->rb_right;
439 continue;
440 }
441
442 /*
443 * There is already a physical eraseblock describing the same
444 * logical eraseblock present.
445 */
446
447 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
448 "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
449 seb->leb_ver, seb->ec);
450
451 /*
452 * Make sure that the logical eraseblocks have different
453 * versions. Otherwise the image is bad.
454 */
455 if (seb->leb_ver == leb_ver && leb_ver != 0) {
456 ubi_err("two LEBs with same version %u", leb_ver);
457 ubi_dbg_dump_seb(seb, 0);
458 ubi_dbg_dump_vid_hdr(vid_hdr);
459 return -EINVAL;
460 }
461
462 /*
463 * Make sure that the logical eraseblocks have different
464 * sequence numbers. Otherwise the image is bad.
465 *
466 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
467 */
468 if (seb->sqnum == sqnum && sqnum != 0) {
469 ubi_err("two LEBs with same sequence number %llu",
470 sqnum);
471 ubi_dbg_dump_seb(seb, 0);
472 ubi_dbg_dump_vid_hdr(vid_hdr);
473 return -EINVAL;
474 }
475
476 /*
477 * Now we have to drop the older one and preserve the newer
478 * one.
479 */
480 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
481 if (cmp_res < 0)
482 return cmp_res;
483
484 if (cmp_res & 1) {
485 /*
486 * This logical eraseblock is newer then the one
487 * found earlier.
488 */
489 err = validate_vid_hdr(vid_hdr, sv, pnum);
490 if (err)
491 return err;
492
493 if (cmp_res & 4)
78d87c95
AB
494 err = add_to_list(si, seb->pnum, seb->ec,
495 &si->corr);
801c135c 496 else
78d87c95
AB
497 err = add_to_list(si, seb->pnum, seb->ec,
498 &si->erase);
801c135c
AB
499 if (err)
500 return err;
501
502 seb->ec = ec;
503 seb->pnum = pnum;
504 seb->scrub = ((cmp_res & 2) || bitflips);
505 seb->sqnum = sqnum;
506 seb->leb_ver = leb_ver;
507
508 if (sv->highest_lnum == lnum)
509 sv->last_data_size =
3261ebd7 510 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
511
512 return 0;
513 } else {
514 /*
515 * This logical eraseblock is older then the one found
516 * previously.
517 */
518 if (cmp_res & 4)
78d87c95 519 return add_to_list(si, pnum, ec, &si->corr);
801c135c 520 else
78d87c95 521 return add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
522 }
523 }
524
525 /*
526 * We've met this logical eraseblock for the first time, add it to the
527 * scanning information.
528 */
529
530 err = validate_vid_hdr(vid_hdr, sv, pnum);
531 if (err)
532 return err;
533
534 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
535 if (!seb)
536 return -ENOMEM;
537
538 seb->ec = ec;
539 seb->pnum = pnum;
540 seb->lnum = lnum;
541 seb->sqnum = sqnum;
542 seb->scrub = bitflips;
543 seb->leb_ver = leb_ver;
544
545 if (sv->highest_lnum <= lnum) {
546 sv->highest_lnum = lnum;
3261ebd7 547 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
548 }
549
801c135c
AB
550 sv->leb_count += 1;
551 rb_link_node(&seb->u.rb, parent, p);
552 rb_insert_color(&seb->u.rb, &sv->root);
553 return 0;
554}
555
556/**
557 * ubi_scan_find_sv - find information about a particular volume in the
558 * scanning information.
559 * @si: scanning information
560 * @vol_id: the requested volume ID
561 *
562 * This function returns a pointer to the volume description or %NULL if there
563 * are no data about this volume in the scanning information.
564 */
565struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
566 int vol_id)
567{
568 struct ubi_scan_volume *sv;
569 struct rb_node *p = si->volumes.rb_node;
570
571 while (p) {
572 sv = rb_entry(p, struct ubi_scan_volume, rb);
573
574 if (vol_id == sv->vol_id)
575 return sv;
576
577 if (vol_id > sv->vol_id)
578 p = p->rb_left;
579 else
580 p = p->rb_right;
581 }
582
583 return NULL;
584}
585
586/**
587 * ubi_scan_find_seb - find information about a particular logical
588 * eraseblock in the volume scanning information.
589 * @sv: a pointer to the volume scanning information
590 * @lnum: the requested logical eraseblock
591 *
592 * This function returns a pointer to the scanning logical eraseblock or %NULL
593 * if there are no data about it in the scanning volume information.
594 */
595struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
596 int lnum)
597{
598 struct ubi_scan_leb *seb;
599 struct rb_node *p = sv->root.rb_node;
600
601 while (p) {
602 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
603
604 if (lnum == seb->lnum)
605 return seb;
606
607 if (lnum > seb->lnum)
608 p = p->rb_left;
609 else
610 p = p->rb_right;
611 }
612
613 return NULL;
614}
615
616/**
617 * ubi_scan_rm_volume - delete scanning information about a volume.
618 * @si: scanning information
619 * @sv: the volume scanning information to delete
620 */
621void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
622{
623 struct rb_node *rb;
624 struct ubi_scan_leb *seb;
625
626 dbg_bld("remove scanning information about volume %d", sv->vol_id);
627
628 while ((rb = rb_first(&sv->root))) {
629 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
630 rb_erase(&seb->u.rb, &sv->root);
631 list_add_tail(&seb->u.list, &si->erase);
632 }
633
634 rb_erase(&sv->rb, &si->volumes);
635 kfree(sv);
636 si->vols_found -= 1;
637}
638
639/**
640 * ubi_scan_erase_peb - erase a physical eraseblock.
641 * @ubi: UBI device description object
642 * @si: scanning information
643 * @pnum: physical eraseblock number to erase;
644 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
645 *
646 * This function erases physical eraseblock 'pnum', and writes the erase
647 * counter header to it. This function should only be used on UBI device
648 * initialization stages, when the EBA unit had not been yet initialized. This
649 * function returns zero in case of success and a negative error code in case
650 * of failure.
651 */
e88d6e10
AB
652int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
653 int pnum, int ec)
801c135c
AB
654{
655 int err;
656 struct ubi_ec_hdr *ec_hdr;
657
801c135c
AB
658 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
659 /*
660 * Erase counter overflow. Upgrade UBI and use 64-bit
661 * erase counters internally.
662 */
663 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
664 return -EINVAL;
665 }
666
dcec4c3b
FM
667 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
668 if (!ec_hdr)
669 return -ENOMEM;
670
3261ebd7 671 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
672
673 err = ubi_io_sync_erase(ubi, pnum, 0);
674 if (err < 0)
675 goto out_free;
676
677 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
678
679out_free:
680 kfree(ec_hdr);
681 return err;
682}
683
684/**
685 * ubi_scan_get_free_peb - get a free physical eraseblock.
686 * @ubi: UBI device description object
687 * @si: scanning information
688 *
689 * This function returns a free physical eraseblock. It is supposed to be
690 * called on the UBI initialization stages when the wear-leveling unit is not
691 * initialized yet. This function picks a physical eraseblocks from one of the
692 * lists, writes the EC header if it is needed, and removes it from the list.
693 *
694 * This function returns scanning physical eraseblock information in case of
695 * success and an error code in case of failure.
696 */
e88d6e10 697struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
801c135c
AB
698 struct ubi_scan_info *si)
699{
700 int err = 0, i;
701 struct ubi_scan_leb *seb;
702
703 if (!list_empty(&si->free)) {
704 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
705 list_del(&seb->u.list);
706 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
707 return seb;
708 }
709
710 for (i = 0; i < 2; i++) {
711 struct list_head *head;
712 struct ubi_scan_leb *tmp_seb;
713
714 if (i == 0)
715 head = &si->erase;
716 else
717 head = &si->corr;
718
719 /*
720 * We try to erase the first physical eraseblock from the @head
721 * list and pick it if we succeed, or try to erase the
722 * next one if not. And so forth. We don't want to take care
723 * about bad eraseblocks here - they'll be handled later.
724 */
725 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
726 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
727 seb->ec = si->mean_ec;
728
729 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
730 if (err)
731 continue;
732
733 seb->ec += 1;
734 list_del(&seb->u.list);
735 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
736 return seb;
737 }
738 }
739
740 ubi_err("no eraseblocks found");
741 return ERR_PTR(-ENOSPC);
742}
743
744/**
745 * process_eb - read UBI headers, check them and add corresponding data
746 * to the scanning information.
747 * @ubi: UBI device description object
748 * @si: scanning information
749 * @pnum: the physical eraseblock number
750 *
78d87c95 751 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
752 * handled and a negative error code in case of failure.
753 */
754static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
755{
c18a8418 756 long long uninitialized_var(ec);
801c135c
AB
757 int err, bitflips = 0, vol_id, ec_corr = 0;
758
759 dbg_bld("scan PEB %d", pnum);
760
761 /* Skip bad physical eraseblocks */
762 err = ubi_io_is_bad(ubi, pnum);
763 if (err < 0)
764 return err;
765 else if (err) {
766 /*
767 * FIXME: this is actually duty of the I/O unit to initialize
768 * this, but MTD does not provide enough information.
769 */
770 si->bad_peb_count += 1;
771 return 0;
772 }
773
774 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
775 if (err < 0)
776 return err;
777 else if (err == UBI_IO_BITFLIPS)
778 bitflips = 1;
779 else if (err == UBI_IO_PEB_EMPTY)
78d87c95 780 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
801c135c
AB
781 else if (err == UBI_IO_BAD_EC_HDR) {
782 /*
783 * We have to also look at the VID header, possibly it is not
784 * corrupted. Set %bitflips flag in order to make this PEB be
785 * moved and EC be re-created.
786 */
787 ec_corr = 1;
788 ec = UBI_SCAN_UNKNOWN_EC;
789 bitflips = 1;
790 }
791
792 si->is_empty = 0;
793
794 if (!ec_corr) {
795 /* Make sure UBI version is OK */
796 if (ech->version != UBI_VERSION) {
797 ubi_err("this UBI version is %d, image version is %d",
798 UBI_VERSION, (int)ech->version);
799 return -EINVAL;
800 }
801
3261ebd7 802 ec = be64_to_cpu(ech->ec);
801c135c
AB
803 if (ec > UBI_MAX_ERASECOUNTER) {
804 /*
805 * Erase counter overflow. The EC headers have 64 bits
806 * reserved, but we anyway make use of only 31 bit
807 * values, as this seems to be enough for any existing
808 * flash. Upgrade UBI and use 64-bit erase counters
809 * internally.
810 */
811 ubi_err("erase counter overflow, max is %d",
812 UBI_MAX_ERASECOUNTER);
813 ubi_dbg_dump_ec_hdr(ech);
814 return -EINVAL;
815 }
816 }
817
818 /* OK, we've done with the EC header, let's look at the VID header */
819
820 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
821 if (err < 0)
822 return err;
823 else if (err == UBI_IO_BITFLIPS)
824 bitflips = 1;
825 else if (err == UBI_IO_BAD_VID_HDR ||
826 (err == UBI_IO_PEB_FREE && ec_corr)) {
827 /* VID header is corrupted */
78d87c95 828 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
829 if (err)
830 return err;
831 goto adjust_mean_ec;
832 } else if (err == UBI_IO_PEB_FREE) {
833 /* No VID header - the physical eraseblock is free */
78d87c95 834 err = add_to_list(si, pnum, ec, &si->free);
801c135c
AB
835 if (err)
836 return err;
837 goto adjust_mean_ec;
838 }
839
3261ebd7 840 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 841 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 842 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
843
844 /* Unsupported internal volume */
845 switch (vidh->compat) {
846 case UBI_COMPAT_DELETE:
847 ubi_msg("\"delete\" compatible internal volume %d:%d"
848 " found, remove it", vol_id, lnum);
78d87c95 849 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
850 if (err)
851 return err;
852 break;
853
854 case UBI_COMPAT_RO:
855 ubi_msg("read-only compatible internal volume %d:%d"
856 " found, switch to read-only mode",
857 vol_id, lnum);
858 ubi->ro_mode = 1;
859 break;
860
861 case UBI_COMPAT_PRESERVE:
862 ubi_msg("\"preserve\" compatible internal volume %d:%d"
863 " found", vol_id, lnum);
78d87c95 864 err = add_to_list(si, pnum, ec, &si->alien);
801c135c
AB
865 if (err)
866 return err;
867 si->alien_peb_count += 1;
868 return 0;
869
870 case UBI_COMPAT_REJECT:
871 ubi_err("incompatible internal volume %d:%d found",
872 vol_id, lnum);
873 return -EINVAL;
874 }
875 }
876
877 /* Both UBI headers seem to be fine */
878 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
879 if (err)
880 return err;
881
882adjust_mean_ec:
883 if (!ec_corr) {
4bc1dca4
AB
884 si->ec_sum += ec;
885 si->ec_count += 1;
801c135c
AB
886 if (ec > si->max_ec)
887 si->max_ec = ec;
888 if (ec < si->min_ec)
889 si->min_ec = ec;
890 }
891
892 return 0;
893}
894
895/**
896 * ubi_scan - scan an MTD device.
897 * @ubi: UBI device description object
898 *
899 * This function does full scanning of an MTD device and returns complete
900 * information about it. In case of failure, an error code is returned.
901 */
902struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
903{
904 int err, pnum;
905 struct rb_node *rb1, *rb2;
906 struct ubi_scan_volume *sv;
907 struct ubi_scan_leb *seb;
908 struct ubi_scan_info *si;
909
910 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
911 if (!si)
912 return ERR_PTR(-ENOMEM);
913
914 INIT_LIST_HEAD(&si->corr);
915 INIT_LIST_HEAD(&si->free);
916 INIT_LIST_HEAD(&si->erase);
917 INIT_LIST_HEAD(&si->alien);
918 si->volumes = RB_ROOT;
919 si->is_empty = 1;
920
921 err = -ENOMEM;
922 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
923 if (!ech)
924 goto out_si;
925
33818bbb 926 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
927 if (!vidh)
928 goto out_ech;
929
930 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
931 cond_resched();
932
933 dbg_msg("process PEB %d", pnum);
934 err = process_eb(ubi, si, pnum);
935 if (err < 0)
936 goto out_vidh;
937 }
938
939 dbg_msg("scanning is finished");
940
4bc1dca4
AB
941 /* Calculate mean erase counter */
942 if (si->ec_count) {
943 do_div(si->ec_sum, si->ec_count);
944 si->mean_ec = si->ec_sum;
945 }
801c135c
AB
946
947 if (si->is_empty)
948 ubi_msg("empty MTD device detected");
949
950 /*
951 * In case of unknown erase counter we use the mean erase counter
952 * value.
953 */
954 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
955 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
956 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
957 seb->ec = si->mean_ec;
958 }
959
960 list_for_each_entry(seb, &si->free, u.list) {
961 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
962 seb->ec = si->mean_ec;
963 }
964
965 list_for_each_entry(seb, &si->corr, u.list)
966 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
967 seb->ec = si->mean_ec;
968
969 list_for_each_entry(seb, &si->erase, u.list)
970 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
971 seb->ec = si->mean_ec;
972
973 err = paranoid_check_si(ubi, si);
974 if (err) {
975 if (err > 0)
976 err = -EINVAL;
977 goto out_vidh;
978 }
979
980 ubi_free_vid_hdr(ubi, vidh);
981 kfree(ech);
982
983 return si;
984
985out_vidh:
986 ubi_free_vid_hdr(ubi, vidh);
987out_ech:
988 kfree(ech);
989out_si:
990 ubi_scan_destroy_si(si);
991 return ERR_PTR(err);
992}
993
994/**
995 * destroy_sv - free the scanning volume information
996 * @sv: scanning volume information
997 *
998 * This function destroys the volume RB-tree (@sv->root) and the scanning
999 * volume information.
1000 */
1001static void destroy_sv(struct ubi_scan_volume *sv)
1002{
1003 struct ubi_scan_leb *seb;
1004 struct rb_node *this = sv->root.rb_node;
1005
1006 while (this) {
1007 if (this->rb_left)
1008 this = this->rb_left;
1009 else if (this->rb_right)
1010 this = this->rb_right;
1011 else {
1012 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1013 this = rb_parent(this);
1014 if (this) {
1015 if (this->rb_left == &seb->u.rb)
1016 this->rb_left = NULL;
1017 else
1018 this->rb_right = NULL;
1019 }
1020
1021 kfree(seb);
1022 }
1023 }
1024 kfree(sv);
1025}
1026
1027/**
1028 * ubi_scan_destroy_si - destroy scanning information.
1029 * @si: scanning information
1030 */
1031void ubi_scan_destroy_si(struct ubi_scan_info *si)
1032{
1033 struct ubi_scan_leb *seb, *seb_tmp;
1034 struct ubi_scan_volume *sv;
1035 struct rb_node *rb;
1036
1037 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1038 list_del(&seb->u.list);
1039 kfree(seb);
1040 }
1041 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1042 list_del(&seb->u.list);
1043 kfree(seb);
1044 }
1045 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1046 list_del(&seb->u.list);
1047 kfree(seb);
1048 }
1049 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1050 list_del(&seb->u.list);
1051 kfree(seb);
1052 }
1053
1054 /* Destroy the volume RB-tree */
1055 rb = si->volumes.rb_node;
1056 while (rb) {
1057 if (rb->rb_left)
1058 rb = rb->rb_left;
1059 else if (rb->rb_right)
1060 rb = rb->rb_right;
1061 else {
1062 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1063
1064 rb = rb_parent(rb);
1065 if (rb) {
1066 if (rb->rb_left == &sv->rb)
1067 rb->rb_left = NULL;
1068 else
1069 rb->rb_right = NULL;
1070 }
1071
1072 destroy_sv(sv);
1073 }
1074 }
1075
1076 kfree(si);
1077}
1078
1079#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1080
1081/**
1082 * paranoid_check_si - check if the scanning information is correct and
1083 * consistent.
1084 * @ubi: UBI device description object
1085 * @si: scanning information
1086 *
1087 * This function returns zero if the scanning information is all right, %1 if
1088 * not and a negative error code if an error occurred.
1089 */
e88d6e10 1090static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
801c135c
AB
1091{
1092 int pnum, err, vols_found = 0;
1093 struct rb_node *rb1, *rb2;
1094 struct ubi_scan_volume *sv;
1095 struct ubi_scan_leb *seb, *last_seb;
1096 uint8_t *buf;
1097
1098 /*
78d87c95 1099 * At first, check that scanning information is OK.
801c135c
AB
1100 */
1101 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1102 int leb_count = 0;
1103
1104 cond_resched();
1105
1106 vols_found += 1;
1107
1108 if (si->is_empty) {
1109 ubi_err("bad is_empty flag");
1110 goto bad_sv;
1111 }
1112
1113 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1114 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1115 sv->data_pad < 0 || sv->last_data_size < 0) {
1116 ubi_err("negative values");
1117 goto bad_sv;
1118 }
1119
1120 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1121 sv->vol_id < UBI_INTERNAL_VOL_START) {
1122 ubi_err("bad vol_id");
1123 goto bad_sv;
1124 }
1125
1126 if (sv->vol_id > si->highest_vol_id) {
1127 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1128 si->highest_vol_id, sv->vol_id);
1129 goto out;
1130 }
1131
1132 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1133 sv->vol_type != UBI_STATIC_VOLUME) {
1134 ubi_err("bad vol_type");
1135 goto bad_sv;
1136 }
1137
1138 if (sv->data_pad > ubi->leb_size / 2) {
1139 ubi_err("bad data_pad");
1140 goto bad_sv;
1141 }
1142
1143 last_seb = NULL;
1144 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1145 cond_resched();
1146
1147 last_seb = seb;
1148 leb_count += 1;
1149
1150 if (seb->pnum < 0 || seb->ec < 0) {
1151 ubi_err("negative values");
1152 goto bad_seb;
1153 }
1154
1155 if (seb->ec < si->min_ec) {
1156 ubi_err("bad si->min_ec (%d), %d found",
1157 si->min_ec, seb->ec);
1158 goto bad_seb;
1159 }
1160
1161 if (seb->ec > si->max_ec) {
1162 ubi_err("bad si->max_ec (%d), %d found",
1163 si->max_ec, seb->ec);
1164 goto bad_seb;
1165 }
1166
1167 if (seb->pnum >= ubi->peb_count) {
1168 ubi_err("too high PEB number %d, total PEBs %d",
1169 seb->pnum, ubi->peb_count);
1170 goto bad_seb;
1171 }
1172
1173 if (sv->vol_type == UBI_STATIC_VOLUME) {
1174 if (seb->lnum >= sv->used_ebs) {
1175 ubi_err("bad lnum or used_ebs");
1176 goto bad_seb;
1177 }
1178 } else {
1179 if (sv->used_ebs != 0) {
1180 ubi_err("non-zero used_ebs");
1181 goto bad_seb;
1182 }
1183 }
1184
1185 if (seb->lnum > sv->highest_lnum) {
1186 ubi_err("incorrect highest_lnum or lnum");
1187 goto bad_seb;
1188 }
1189 }
1190
1191 if (sv->leb_count != leb_count) {
1192 ubi_err("bad leb_count, %d objects in the tree",
1193 leb_count);
1194 goto bad_sv;
1195 }
1196
1197 if (!last_seb)
1198 continue;
1199
1200 seb = last_seb;
1201
1202 if (seb->lnum != sv->highest_lnum) {
1203 ubi_err("bad highest_lnum");
1204 goto bad_seb;
1205 }
1206 }
1207
1208 if (vols_found != si->vols_found) {
1209 ubi_err("bad si->vols_found %d, should be %d",
1210 si->vols_found, vols_found);
1211 goto out;
1212 }
1213
1214 /* Check that scanning information is correct */
1215 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1216 last_seb = NULL;
1217 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1218 int vol_type;
1219
1220 cond_resched();
1221
1222 last_seb = seb;
1223
1224 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1225 if (err && err != UBI_IO_BITFLIPS) {
1226 ubi_err("VID header is not OK (%d)", err);
1227 if (err > 0)
1228 err = -EIO;
1229 return err;
1230 }
1231
1232 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1233 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1234 if (sv->vol_type != vol_type) {
1235 ubi_err("bad vol_type");
1236 goto bad_vid_hdr;
1237 }
1238
3261ebd7 1239 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
801c135c
AB
1240 ubi_err("bad sqnum %llu", seb->sqnum);
1241 goto bad_vid_hdr;
1242 }
1243
3261ebd7 1244 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1245 ubi_err("bad vol_id %d", sv->vol_id);
1246 goto bad_vid_hdr;
1247 }
1248
1249 if (sv->compat != vidh->compat) {
1250 ubi_err("bad compat %d", vidh->compat);
1251 goto bad_vid_hdr;
1252 }
1253
3261ebd7 1254 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1255 ubi_err("bad lnum %d", seb->lnum);
1256 goto bad_vid_hdr;
1257 }
1258
3261ebd7 1259 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1260 ubi_err("bad used_ebs %d", sv->used_ebs);
1261 goto bad_vid_hdr;
1262 }
1263
3261ebd7 1264 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1265 ubi_err("bad data_pad %d", sv->data_pad);
1266 goto bad_vid_hdr;
1267 }
1268
3261ebd7 1269 if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
801c135c
AB
1270 ubi_err("bad leb_ver %u", seb->leb_ver);
1271 goto bad_vid_hdr;
1272 }
1273 }
1274
1275 if (!last_seb)
1276 continue;
1277
3261ebd7 1278 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1279 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1280 goto bad_vid_hdr;
1281 }
1282
3261ebd7 1283 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1284 ubi_err("bad last_data_size %d", sv->last_data_size);
1285 goto bad_vid_hdr;
1286 }
1287 }
1288
1289 /*
1290 * Make sure that all the physical eraseblocks are in one of the lists
1291 * or trees.
1292 */
d9b0744d 1293 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1294 if (!buf)
1295 return -ENOMEM;
1296
801c135c
AB
1297 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1298 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1299 if (err < 0) {
1300 kfree(buf);
801c135c 1301 return err;
341e1a0c 1302 }
801c135c 1303 else if (err)
d9b0744d 1304 buf[pnum] = 1;
801c135c
AB
1305 }
1306
1307 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1308 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
d9b0744d 1309 buf[seb->pnum] = 1;
801c135c
AB
1310
1311 list_for_each_entry(seb, &si->free, u.list)
d9b0744d 1312 buf[seb->pnum] = 1;
801c135c
AB
1313
1314 list_for_each_entry(seb, &si->corr, u.list)
d9b0744d 1315 buf[seb->pnum] = 1;
801c135c
AB
1316
1317 list_for_each_entry(seb, &si->erase, u.list)
d9b0744d 1318 buf[seb->pnum] = 1;
801c135c
AB
1319
1320 list_for_each_entry(seb, &si->alien, u.list)
d9b0744d 1321 buf[seb->pnum] = 1;
801c135c
AB
1322
1323 err = 0;
1324 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1325 if (!buf[pnum]) {
801c135c
AB
1326 ubi_err("PEB %d is not referred", pnum);
1327 err = 1;
1328 }
1329
1330 kfree(buf);
1331 if (err)
1332 goto out;
1333 return 0;
1334
1335bad_seb:
1336 ubi_err("bad scanning information about LEB %d", seb->lnum);
1337 ubi_dbg_dump_seb(seb, 0);
1338 ubi_dbg_dump_sv(sv);
1339 goto out;
1340
1341bad_sv:
1342 ubi_err("bad scanning information about volume %d", sv->vol_id);
1343 ubi_dbg_dump_sv(sv);
1344 goto out;
1345
1346bad_vid_hdr:
1347 ubi_err("bad scanning information about volume %d", sv->vol_id);
1348 ubi_dbg_dump_sv(sv);
1349 ubi_dbg_dump_vid_hdr(vidh);
1350
1351out:
1352 ubi_dbg_dump_stack();
1353 return 1;
1354}
1355
1356#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */