UBI: bugfix - do not torture PEB needlessly
[linux-2.6-block.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * UBI scanning sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for scanning the flash media, checking UBI
801c135c
AB
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 */
42
43#include <linux/err.h>
44#include <linux/crc32.h>
4bc1dca4 45#include <asm/div64.h>
801c135c
AB
46#include "ubi.h"
47
48#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 49static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
801c135c
AB
50#else
51#define paranoid_check_si(ubi, si) 0
52#endif
53
54/* Temporary variables used during scanning */
55static struct ubi_ec_hdr *ech;
56static struct ubi_vid_hdr *vidh;
57
941dfb07 58/**
78d87c95
AB
59 * add_to_list - add physical eraseblock to a list.
60 * @si: scanning information
61 * @pnum: physical eraseblock number to add
62 * @ec: erase counter of the physical eraseblock
63 * @list: the list to add to
64 *
65 * This function adds physical eraseblock @pnum to free, erase, corrupted or
66 * alien lists. Returns zero in case of success and a negative error code in
67 * case of failure.
68 */
69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70 struct list_head *list)
801c135c
AB
71{
72 struct ubi_scan_leb *seb;
73
74 if (list == &si->free)
75 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76 else if (list == &si->erase)
77 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78 else if (list == &si->corr)
79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80 else if (list == &si->alien)
81 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
82 else
83 BUG();
84
85 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
86 if (!seb)
87 return -ENOMEM;
88
89 seb->pnum = pnum;
90 seb->ec = ec;
91 list_add_tail(&seb->u.list, list);
92 return 0;
93}
94
801c135c
AB
95/**
96 * validate_vid_hdr - check that volume identifier header is correct and
97 * consistent.
98 * @vid_hdr: the volume identifier header to check
99 * @sv: information about the volume this logical eraseblock belongs to
100 * @pnum: physical eraseblock number the VID header came from
101 *
102 * This function checks that data stored in @vid_hdr is consistent. Returns
103 * non-zero if an inconsistency was found and zero if not.
104 *
105 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 106 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
107 * information in the VID header is consistent to the information in other VID
108 * headers of the same volume.
109 */
110static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
111 const struct ubi_scan_volume *sv, int pnum)
112{
113 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
114 int vol_id = be32_to_cpu(vid_hdr->vol_id);
115 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
116 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
117
118 if (sv->leb_count != 0) {
119 int sv_vol_type;
120
121 /*
122 * This is not the first logical eraseblock belonging to this
123 * volume. Ensure that the data in its VID header is consistent
124 * to the data in previous logical eraseblock headers.
125 */
126
127 if (vol_id != sv->vol_id) {
128 dbg_err("inconsistent vol_id");
129 goto bad;
130 }
131
132 if (sv->vol_type == UBI_STATIC_VOLUME)
133 sv_vol_type = UBI_VID_STATIC;
134 else
135 sv_vol_type = UBI_VID_DYNAMIC;
136
137 if (vol_type != sv_vol_type) {
138 dbg_err("inconsistent vol_type");
139 goto bad;
140 }
141
142 if (used_ebs != sv->used_ebs) {
143 dbg_err("inconsistent used_ebs");
144 goto bad;
145 }
146
147 if (data_pad != sv->data_pad) {
148 dbg_err("inconsistent data_pad");
149 goto bad;
150 }
151 }
152
153 return 0;
154
155bad:
156 ubi_err("inconsistent VID header at PEB %d", pnum);
157 ubi_dbg_dump_vid_hdr(vid_hdr);
158 ubi_dbg_dump_sv(sv);
159 return -EINVAL;
160}
161
162/**
163 * add_volume - add volume to the scanning information.
164 * @si: scanning information
165 * @vol_id: ID of the volume to add
166 * @pnum: physical eraseblock number
167 * @vid_hdr: volume identifier header
168 *
169 * If the volume corresponding to the @vid_hdr logical eraseblock is already
170 * present in the scanning information, this function does nothing. Otherwise
171 * it adds corresponding volume to the scanning information. Returns a pointer
172 * to the scanning volume object in case of success and a negative error code
173 * in case of failure.
174 */
175static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
176 int pnum,
177 const struct ubi_vid_hdr *vid_hdr)
178{
179 struct ubi_scan_volume *sv;
180 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
181
3261ebd7 182 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
183
184 /* Walk the volume RB-tree to look if this volume is already present */
185 while (*p) {
186 parent = *p;
187 sv = rb_entry(parent, struct ubi_scan_volume, rb);
188
189 if (vol_id == sv->vol_id)
190 return sv;
191
192 if (vol_id > sv->vol_id)
193 p = &(*p)->rb_left;
194 else
195 p = &(*p)->rb_right;
196 }
197
198 /* The volume is absent - add it */
199 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
200 if (!sv)
201 return ERR_PTR(-ENOMEM);
202
203 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
204 sv->vol_id = vol_id;
205 sv->root = RB_ROOT;
3261ebd7
CH
206 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
207 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
208 sv->compat = vid_hdr->compat;
209 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
210 : UBI_STATIC_VOLUME;
211 if (vol_id > si->highest_vol_id)
212 si->highest_vol_id = vol_id;
213
214 rb_link_node(&sv->rb, parent, p);
215 rb_insert_color(&sv->rb, &si->volumes);
216 si->vols_found += 1;
217 dbg_bld("added volume %d", vol_id);
218 return sv;
219}
220
221/**
222 * compare_lebs - find out which logical eraseblock is newer.
223 * @ubi: UBI device description object
224 * @seb: first logical eraseblock to compare
225 * @pnum: physical eraseblock number of the second logical eraseblock to
226 * compare
227 * @vid_hdr: volume identifier header of the second logical eraseblock
228 *
229 * This function compares 2 copies of a LEB and informs which one is newer. In
230 * case of success this function returns a positive value, in case of failure, a
231 * negative error code is returned. The success return codes use the following
232 * bits:
233 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
234 * second PEB (described by @pnum and @vid_hdr);
235 * o bit 0 is set: the second PEB is newer;
236 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
237 * o bit 1 is set: bit-flips were detected in the newer LEB;
238 * o bit 2 is cleared: the older LEB is not corrupted;
239 * o bit 2 is set: the older LEB is corrupted.
240 */
e88d6e10
AB
241static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
242 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
243{
244 void *buf;
245 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
246 uint32_t data_crc, crc;
8bc22961 247 struct ubi_vid_hdr *vh = NULL;
3261ebd7 248 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c
AB
249
250 if (seb->sqnum == 0 && sqnum2 == 0) {
3261ebd7 251 long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
252
253 /*
254 * UBI constantly increases the logical eraseblock version
255 * number and it can overflow. Thus, we have to bear in mind
256 * that versions that are close to %0xFFFFFFFF are less then
257 * versions that are close to %0.
258 *
85c6e6e2
AB
259 * The UBI WL sub-system guarantees that the number of pending
260 * tasks is not greater then %0x7FFFFFFF. So, if the difference
801c135c
AB
261 * between any two versions is greater or equivalent to
262 * %0x7FFFFFFF, there was an overflow and the logical
263 * eraseblock with lower version is actually newer then the one
264 * with higher version.
265 *
266 * FIXME: but this is anyway obsolete and will be removed at
267 * some point.
268 */
801c135c
AB
269 dbg_bld("using old crappy leb_ver stuff");
270
64203195
AB
271 if (v1 == v2) {
272 ubi_err("PEB %d and PEB %d have the same version %lld",
273 seb->pnum, pnum, v1);
274 return -EINVAL;
275 }
276
801c135c
AB
277 abs = v1 - v2;
278 if (abs < 0)
279 abs = -abs;
280
281 if (abs < 0x7FFFFFFF)
282 /* Non-overflow situation */
283 second_is_newer = (v2 > v1);
284 else
285 second_is_newer = (v2 < v1);
286 } else
287 /* Obviously the LEB with lower sequence counter is older */
288 second_is_newer = sqnum2 > seb->sqnum;
289
290 /*
291 * Now we know which copy is newer. If the copy flag of the PEB with
292 * newer version is not set, then we just return, otherwise we have to
293 * check data CRC. For the second PEB we already have the VID header,
294 * for the first one - we'll need to re-read it from flash.
295 *
296 * FIXME: this may be optimized so that we wouldn't read twice.
297 */
298
299 if (second_is_newer) {
300 if (!vid_hdr->copy_flag) {
301 /* It is not a copy, so it is newer */
302 dbg_bld("second PEB %d is newer, copy_flag is unset",
303 pnum);
304 return 1;
305 }
306 } else {
307 pnum = seb->pnum;
308
33818bbb 309 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 310 if (!vh)
801c135c
AB
311 return -ENOMEM;
312
8bc22961 313 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
314 if (err) {
315 if (err == UBI_IO_BITFLIPS)
316 bitflips = 1;
317 else {
318 dbg_err("VID of PEB %d header is bad, but it "
319 "was OK earlier", pnum);
320 if (err > 0)
321 err = -EIO;
322
323 goto out_free_vidh;
324 }
325 }
326
8bc22961 327 if (!vh->copy_flag) {
801c135c
AB
328 /* It is not a copy, so it is newer */
329 dbg_bld("first PEB %d is newer, copy_flag is unset",
330 pnum);
331 err = bitflips << 1;
332 goto out_free_vidh;
333 }
334
8bc22961 335 vid_hdr = vh;
801c135c
AB
336 }
337
338 /* Read the data of the copy and check the CRC */
339
3261ebd7 340 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 341 buf = vmalloc(len);
801c135c
AB
342 if (!buf) {
343 err = -ENOMEM;
344 goto out_free_vidh;
345 }
346
347 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
348 if (err && err != UBI_IO_BITFLIPS)
349 goto out_free_buf;
350
3261ebd7 351 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
352 crc = crc32(UBI_CRC32_INIT, buf, len);
353 if (crc != data_crc) {
354 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
355 pnum, crc, data_crc);
356 corrupted = 1;
357 bitflips = 0;
358 second_is_newer = !second_is_newer;
359 } else {
360 dbg_bld("PEB %d CRC is OK", pnum);
361 bitflips = !!err;
362 }
363
92ad8f37 364 vfree(buf);
8bc22961 365 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
366
367 if (second_is_newer)
368 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
369 else
370 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
371
372 return second_is_newer | (bitflips << 1) | (corrupted << 2);
373
374out_free_buf:
92ad8f37 375 vfree(buf);
801c135c 376out_free_vidh:
8bc22961 377 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
378 return err;
379}
380
381/**
382 * ubi_scan_add_used - add information about a physical eraseblock to the
383 * scanning information.
384 * @ubi: UBI device description object
385 * @si: scanning information
386 * @pnum: the physical eraseblock number
387 * @ec: erase counter
388 * @vid_hdr: the volume identifier header
389 * @bitflips: if bit-flips were detected when this physical eraseblock was read
390 *
79b510c0
AB
391 * This function adds information about a used physical eraseblock to the
392 * 'used' tree of the corresponding volume. The function is rather complex
393 * because it has to handle cases when this is not the first physical
394 * eraseblock belonging to the same logical eraseblock, and the newer one has
395 * to be picked, while the older one has to be dropped. This function returns
396 * zero in case of success and a negative error code in case of failure.
801c135c 397 */
e88d6e10 398int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
399 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
400 int bitflips)
401{
402 int err, vol_id, lnum;
403 uint32_t leb_ver;
404 unsigned long long sqnum;
405 struct ubi_scan_volume *sv;
406 struct ubi_scan_leb *seb;
407 struct rb_node **p, *parent = NULL;
408
3261ebd7
CH
409 vol_id = be32_to_cpu(vid_hdr->vol_id);
410 lnum = be32_to_cpu(vid_hdr->lnum);
411 sqnum = be64_to_cpu(vid_hdr->sqnum);
412 leb_ver = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
413
414 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
415 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
416
417 sv = add_volume(si, vol_id, pnum, vid_hdr);
418 if (IS_ERR(sv) < 0)
419 return PTR_ERR(sv);
420
76eafe47
BS
421 if (si->max_sqnum < sqnum)
422 si->max_sqnum = sqnum;
423
801c135c
AB
424 /*
425 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
426 * if this is the first instance of this logical eraseblock or not.
427 */
428 p = &sv->root.rb_node;
429 while (*p) {
430 int cmp_res;
431
432 parent = *p;
433 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
434 if (lnum != seb->lnum) {
435 if (lnum < seb->lnum)
436 p = &(*p)->rb_left;
437 else
438 p = &(*p)->rb_right;
439 continue;
440 }
441
442 /*
443 * There is already a physical eraseblock describing the same
444 * logical eraseblock present.
445 */
446
447 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
448 "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
449 seb->leb_ver, seb->ec);
450
451 /*
452 * Make sure that the logical eraseblocks have different
453 * versions. Otherwise the image is bad.
454 */
455 if (seb->leb_ver == leb_ver && leb_ver != 0) {
456 ubi_err("two LEBs with same version %u", leb_ver);
457 ubi_dbg_dump_seb(seb, 0);
458 ubi_dbg_dump_vid_hdr(vid_hdr);
459 return -EINVAL;
460 }
461
462 /*
463 * Make sure that the logical eraseblocks have different
464 * sequence numbers. Otherwise the image is bad.
465 *
466 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
467 */
468 if (seb->sqnum == sqnum && sqnum != 0) {
469 ubi_err("two LEBs with same sequence number %llu",
470 sqnum);
471 ubi_dbg_dump_seb(seb, 0);
472 ubi_dbg_dump_vid_hdr(vid_hdr);
473 return -EINVAL;
474 }
475
476 /*
477 * Now we have to drop the older one and preserve the newer
478 * one.
479 */
480 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
481 if (cmp_res < 0)
482 return cmp_res;
483
484 if (cmp_res & 1) {
485 /*
486 * This logical eraseblock is newer then the one
487 * found earlier.
488 */
489 err = validate_vid_hdr(vid_hdr, sv, pnum);
490 if (err)
491 return err;
492
493 if (cmp_res & 4)
78d87c95
AB
494 err = add_to_list(si, seb->pnum, seb->ec,
495 &si->corr);
801c135c 496 else
78d87c95
AB
497 err = add_to_list(si, seb->pnum, seb->ec,
498 &si->erase);
801c135c
AB
499 if (err)
500 return err;
501
502 seb->ec = ec;
503 seb->pnum = pnum;
504 seb->scrub = ((cmp_res & 2) || bitflips);
505 seb->sqnum = sqnum;
506 seb->leb_ver = leb_ver;
507
508 if (sv->highest_lnum == lnum)
509 sv->last_data_size =
3261ebd7 510 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
511
512 return 0;
513 } else {
514 /*
515 * This logical eraseblock is older then the one found
516 * previously.
517 */
518 if (cmp_res & 4)
78d87c95 519 return add_to_list(si, pnum, ec, &si->corr);
801c135c 520 else
78d87c95 521 return add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
522 }
523 }
524
525 /*
526 * We've met this logical eraseblock for the first time, add it to the
527 * scanning information.
528 */
529
530 err = validate_vid_hdr(vid_hdr, sv, pnum);
531 if (err)
532 return err;
533
534 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
535 if (!seb)
536 return -ENOMEM;
537
538 seb->ec = ec;
539 seb->pnum = pnum;
540 seb->lnum = lnum;
541 seb->sqnum = sqnum;
542 seb->scrub = bitflips;
543 seb->leb_ver = leb_ver;
544
545 if (sv->highest_lnum <= lnum) {
546 sv->highest_lnum = lnum;
3261ebd7 547 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
548 }
549
801c135c
AB
550 sv->leb_count += 1;
551 rb_link_node(&seb->u.rb, parent, p);
552 rb_insert_color(&seb->u.rb, &sv->root);
553 return 0;
554}
555
556/**
557 * ubi_scan_find_sv - find information about a particular volume in the
558 * scanning information.
559 * @si: scanning information
560 * @vol_id: the requested volume ID
561 *
562 * This function returns a pointer to the volume description or %NULL if there
563 * are no data about this volume in the scanning information.
564 */
565struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
566 int vol_id)
567{
568 struct ubi_scan_volume *sv;
569 struct rb_node *p = si->volumes.rb_node;
570
571 while (p) {
572 sv = rb_entry(p, struct ubi_scan_volume, rb);
573
574 if (vol_id == sv->vol_id)
575 return sv;
576
577 if (vol_id > sv->vol_id)
578 p = p->rb_left;
579 else
580 p = p->rb_right;
581 }
582
583 return NULL;
584}
585
586/**
587 * ubi_scan_find_seb - find information about a particular logical
588 * eraseblock in the volume scanning information.
589 * @sv: a pointer to the volume scanning information
590 * @lnum: the requested logical eraseblock
591 *
592 * This function returns a pointer to the scanning logical eraseblock or %NULL
593 * if there are no data about it in the scanning volume information.
594 */
595struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
596 int lnum)
597{
598 struct ubi_scan_leb *seb;
599 struct rb_node *p = sv->root.rb_node;
600
601 while (p) {
602 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
603
604 if (lnum == seb->lnum)
605 return seb;
606
607 if (lnum > seb->lnum)
608 p = p->rb_left;
609 else
610 p = p->rb_right;
611 }
612
613 return NULL;
614}
615
616/**
617 * ubi_scan_rm_volume - delete scanning information about a volume.
618 * @si: scanning information
619 * @sv: the volume scanning information to delete
620 */
621void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
622{
623 struct rb_node *rb;
624 struct ubi_scan_leb *seb;
625
626 dbg_bld("remove scanning information about volume %d", sv->vol_id);
627
628 while ((rb = rb_first(&sv->root))) {
629 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
630 rb_erase(&seb->u.rb, &sv->root);
631 list_add_tail(&seb->u.list, &si->erase);
632 }
633
634 rb_erase(&sv->rb, &si->volumes);
635 kfree(sv);
636 si->vols_found -= 1;
637}
638
639/**
640 * ubi_scan_erase_peb - erase a physical eraseblock.
641 * @ubi: UBI device description object
642 * @si: scanning information
643 * @pnum: physical eraseblock number to erase;
644 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
645 *
646 * This function erases physical eraseblock 'pnum', and writes the erase
647 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
648 * initialization stages, when the EBA sub-system had not been yet initialized.
649 * This function returns zero in case of success and a negative error code in
650 * case of failure.
801c135c 651 */
e88d6e10
AB
652int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
653 int pnum, int ec)
801c135c
AB
654{
655 int err;
656 struct ubi_ec_hdr *ec_hdr;
657
801c135c
AB
658 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
659 /*
660 * Erase counter overflow. Upgrade UBI and use 64-bit
661 * erase counters internally.
662 */
663 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
664 return -EINVAL;
665 }
666
dcec4c3b
FM
667 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
668 if (!ec_hdr)
669 return -ENOMEM;
670
3261ebd7 671 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
672
673 err = ubi_io_sync_erase(ubi, pnum, 0);
674 if (err < 0)
675 goto out_free;
676
677 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
678
679out_free:
680 kfree(ec_hdr);
681 return err;
682}
683
684/**
685 * ubi_scan_get_free_peb - get a free physical eraseblock.
686 * @ubi: UBI device description object
687 * @si: scanning information
688 *
689 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
690 * called on the UBI initialization stages when the wear-leveling sub-system is
691 * not initialized yet. This function picks a physical eraseblocks from one of
692 * the lists, writes the EC header if it is needed, and removes it from the
693 * list.
801c135c
AB
694 *
695 * This function returns scanning physical eraseblock information in case of
696 * success and an error code in case of failure.
697 */
e88d6e10 698struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
801c135c
AB
699 struct ubi_scan_info *si)
700{
701 int err = 0, i;
702 struct ubi_scan_leb *seb;
703
704 if (!list_empty(&si->free)) {
705 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
706 list_del(&seb->u.list);
707 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
708 return seb;
709 }
710
711 for (i = 0; i < 2; i++) {
712 struct list_head *head;
713 struct ubi_scan_leb *tmp_seb;
714
715 if (i == 0)
716 head = &si->erase;
717 else
718 head = &si->corr;
719
720 /*
721 * We try to erase the first physical eraseblock from the @head
722 * list and pick it if we succeed, or try to erase the
723 * next one if not. And so forth. We don't want to take care
724 * about bad eraseblocks here - they'll be handled later.
725 */
726 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
727 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
728 seb->ec = si->mean_ec;
729
730 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
731 if (err)
732 continue;
733
734 seb->ec += 1;
735 list_del(&seb->u.list);
736 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
737 return seb;
738 }
739 }
740
741 ubi_err("no eraseblocks found");
742 return ERR_PTR(-ENOSPC);
743}
744
745/**
746 * process_eb - read UBI headers, check them and add corresponding data
747 * to the scanning information.
748 * @ubi: UBI device description object
749 * @si: scanning information
750 * @pnum: the physical eraseblock number
751 *
78d87c95 752 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
753 * handled and a negative error code in case of failure.
754 */
755static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
756{
c18a8418 757 long long uninitialized_var(ec);
801c135c
AB
758 int err, bitflips = 0, vol_id, ec_corr = 0;
759
760 dbg_bld("scan PEB %d", pnum);
761
762 /* Skip bad physical eraseblocks */
763 err = ubi_io_is_bad(ubi, pnum);
764 if (err < 0)
765 return err;
766 else if (err) {
767 /*
85c6e6e2
AB
768 * FIXME: this is actually duty of the I/O sub-system to
769 * initialize this, but MTD does not provide enough
770 * information.
801c135c
AB
771 */
772 si->bad_peb_count += 1;
773 return 0;
774 }
775
776 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
777 if (err < 0)
778 return err;
779 else if (err == UBI_IO_BITFLIPS)
780 bitflips = 1;
781 else if (err == UBI_IO_PEB_EMPTY)
78d87c95 782 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
801c135c
AB
783 else if (err == UBI_IO_BAD_EC_HDR) {
784 /*
785 * We have to also look at the VID header, possibly it is not
786 * corrupted. Set %bitflips flag in order to make this PEB be
787 * moved and EC be re-created.
788 */
789 ec_corr = 1;
790 ec = UBI_SCAN_UNKNOWN_EC;
791 bitflips = 1;
792 }
793
794 si->is_empty = 0;
795
796 if (!ec_corr) {
797 /* Make sure UBI version is OK */
798 if (ech->version != UBI_VERSION) {
799 ubi_err("this UBI version is %d, image version is %d",
800 UBI_VERSION, (int)ech->version);
801 return -EINVAL;
802 }
803
3261ebd7 804 ec = be64_to_cpu(ech->ec);
801c135c
AB
805 if (ec > UBI_MAX_ERASECOUNTER) {
806 /*
807 * Erase counter overflow. The EC headers have 64 bits
808 * reserved, but we anyway make use of only 31 bit
809 * values, as this seems to be enough for any existing
810 * flash. Upgrade UBI and use 64-bit erase counters
811 * internally.
812 */
813 ubi_err("erase counter overflow, max is %d",
814 UBI_MAX_ERASECOUNTER);
815 ubi_dbg_dump_ec_hdr(ech);
816 return -EINVAL;
817 }
818 }
819
820 /* OK, we've done with the EC header, let's look at the VID header */
821
822 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
823 if (err < 0)
824 return err;
825 else if (err == UBI_IO_BITFLIPS)
826 bitflips = 1;
827 else if (err == UBI_IO_BAD_VID_HDR ||
828 (err == UBI_IO_PEB_FREE && ec_corr)) {
829 /* VID header is corrupted */
78d87c95 830 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
831 if (err)
832 return err;
833 goto adjust_mean_ec;
834 } else if (err == UBI_IO_PEB_FREE) {
835 /* No VID header - the physical eraseblock is free */
78d87c95 836 err = add_to_list(si, pnum, ec, &si->free);
801c135c
AB
837 if (err)
838 return err;
839 goto adjust_mean_ec;
840 }
841
3261ebd7 842 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 843 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 844 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
845
846 /* Unsupported internal volume */
847 switch (vidh->compat) {
848 case UBI_COMPAT_DELETE:
849 ubi_msg("\"delete\" compatible internal volume %d:%d"
850 " found, remove it", vol_id, lnum);
78d87c95 851 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
852 if (err)
853 return err;
854 break;
855
856 case UBI_COMPAT_RO:
857 ubi_msg("read-only compatible internal volume %d:%d"
858 " found, switch to read-only mode",
859 vol_id, lnum);
860 ubi->ro_mode = 1;
861 break;
862
863 case UBI_COMPAT_PRESERVE:
864 ubi_msg("\"preserve\" compatible internal volume %d:%d"
865 " found", vol_id, lnum);
78d87c95 866 err = add_to_list(si, pnum, ec, &si->alien);
801c135c
AB
867 if (err)
868 return err;
869 si->alien_peb_count += 1;
870 return 0;
871
872 case UBI_COMPAT_REJECT:
873 ubi_err("incompatible internal volume %d:%d found",
874 vol_id, lnum);
875 return -EINVAL;
876 }
877 }
878
879 /* Both UBI headers seem to be fine */
880 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
881 if (err)
882 return err;
883
884adjust_mean_ec:
885 if (!ec_corr) {
4bc1dca4
AB
886 si->ec_sum += ec;
887 si->ec_count += 1;
801c135c
AB
888 if (ec > si->max_ec)
889 si->max_ec = ec;
890 if (ec < si->min_ec)
891 si->min_ec = ec;
892 }
893
894 return 0;
895}
896
897/**
898 * ubi_scan - scan an MTD device.
899 * @ubi: UBI device description object
900 *
901 * This function does full scanning of an MTD device and returns complete
902 * information about it. In case of failure, an error code is returned.
903 */
904struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
905{
906 int err, pnum;
907 struct rb_node *rb1, *rb2;
908 struct ubi_scan_volume *sv;
909 struct ubi_scan_leb *seb;
910 struct ubi_scan_info *si;
911
912 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
913 if (!si)
914 return ERR_PTR(-ENOMEM);
915
916 INIT_LIST_HEAD(&si->corr);
917 INIT_LIST_HEAD(&si->free);
918 INIT_LIST_HEAD(&si->erase);
919 INIT_LIST_HEAD(&si->alien);
920 si->volumes = RB_ROOT;
921 si->is_empty = 1;
922
923 err = -ENOMEM;
924 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
925 if (!ech)
926 goto out_si;
927
33818bbb 928 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
929 if (!vidh)
930 goto out_ech;
931
932 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
933 cond_resched();
934
c8566350 935 dbg_gen("process PEB %d", pnum);
801c135c
AB
936 err = process_eb(ubi, si, pnum);
937 if (err < 0)
938 goto out_vidh;
939 }
940
941 dbg_msg("scanning is finished");
942
4bc1dca4
AB
943 /* Calculate mean erase counter */
944 if (si->ec_count) {
945 do_div(si->ec_sum, si->ec_count);
946 si->mean_ec = si->ec_sum;
947 }
801c135c
AB
948
949 if (si->is_empty)
950 ubi_msg("empty MTD device detected");
951
952 /*
953 * In case of unknown erase counter we use the mean erase counter
954 * value.
955 */
956 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
957 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
958 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
959 seb->ec = si->mean_ec;
960 }
961
962 list_for_each_entry(seb, &si->free, u.list) {
963 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
964 seb->ec = si->mean_ec;
965 }
966
967 list_for_each_entry(seb, &si->corr, u.list)
968 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
969 seb->ec = si->mean_ec;
970
971 list_for_each_entry(seb, &si->erase, u.list)
972 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
973 seb->ec = si->mean_ec;
974
975 err = paranoid_check_si(ubi, si);
976 if (err) {
977 if (err > 0)
978 err = -EINVAL;
979 goto out_vidh;
980 }
981
982 ubi_free_vid_hdr(ubi, vidh);
983 kfree(ech);
984
985 return si;
986
987out_vidh:
988 ubi_free_vid_hdr(ubi, vidh);
989out_ech:
990 kfree(ech);
991out_si:
992 ubi_scan_destroy_si(si);
993 return ERR_PTR(err);
994}
995
996/**
997 * destroy_sv - free the scanning volume information
998 * @sv: scanning volume information
999 *
1000 * This function destroys the volume RB-tree (@sv->root) and the scanning
1001 * volume information.
1002 */
1003static void destroy_sv(struct ubi_scan_volume *sv)
1004{
1005 struct ubi_scan_leb *seb;
1006 struct rb_node *this = sv->root.rb_node;
1007
1008 while (this) {
1009 if (this->rb_left)
1010 this = this->rb_left;
1011 else if (this->rb_right)
1012 this = this->rb_right;
1013 else {
1014 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1015 this = rb_parent(this);
1016 if (this) {
1017 if (this->rb_left == &seb->u.rb)
1018 this->rb_left = NULL;
1019 else
1020 this->rb_right = NULL;
1021 }
1022
1023 kfree(seb);
1024 }
1025 }
1026 kfree(sv);
1027}
1028
1029/**
1030 * ubi_scan_destroy_si - destroy scanning information.
1031 * @si: scanning information
1032 */
1033void ubi_scan_destroy_si(struct ubi_scan_info *si)
1034{
1035 struct ubi_scan_leb *seb, *seb_tmp;
1036 struct ubi_scan_volume *sv;
1037 struct rb_node *rb;
1038
1039 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1040 list_del(&seb->u.list);
1041 kfree(seb);
1042 }
1043 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1044 list_del(&seb->u.list);
1045 kfree(seb);
1046 }
1047 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1048 list_del(&seb->u.list);
1049 kfree(seb);
1050 }
1051 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1052 list_del(&seb->u.list);
1053 kfree(seb);
1054 }
1055
1056 /* Destroy the volume RB-tree */
1057 rb = si->volumes.rb_node;
1058 while (rb) {
1059 if (rb->rb_left)
1060 rb = rb->rb_left;
1061 else if (rb->rb_right)
1062 rb = rb->rb_right;
1063 else {
1064 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1065
1066 rb = rb_parent(rb);
1067 if (rb) {
1068 if (rb->rb_left == &sv->rb)
1069 rb->rb_left = NULL;
1070 else
1071 rb->rb_right = NULL;
1072 }
1073
1074 destroy_sv(sv);
1075 }
1076 }
1077
1078 kfree(si);
1079}
1080
1081#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1082
1083/**
1084 * paranoid_check_si - check if the scanning information is correct and
1085 * consistent.
1086 * @ubi: UBI device description object
1087 * @si: scanning information
1088 *
1089 * This function returns zero if the scanning information is all right, %1 if
1090 * not and a negative error code if an error occurred.
1091 */
e88d6e10 1092static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
801c135c
AB
1093{
1094 int pnum, err, vols_found = 0;
1095 struct rb_node *rb1, *rb2;
1096 struct ubi_scan_volume *sv;
1097 struct ubi_scan_leb *seb, *last_seb;
1098 uint8_t *buf;
1099
1100 /*
78d87c95 1101 * At first, check that scanning information is OK.
801c135c
AB
1102 */
1103 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1104 int leb_count = 0;
1105
1106 cond_resched();
1107
1108 vols_found += 1;
1109
1110 if (si->is_empty) {
1111 ubi_err("bad is_empty flag");
1112 goto bad_sv;
1113 }
1114
1115 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1116 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1117 sv->data_pad < 0 || sv->last_data_size < 0) {
1118 ubi_err("negative values");
1119 goto bad_sv;
1120 }
1121
1122 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1123 sv->vol_id < UBI_INTERNAL_VOL_START) {
1124 ubi_err("bad vol_id");
1125 goto bad_sv;
1126 }
1127
1128 if (sv->vol_id > si->highest_vol_id) {
1129 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1130 si->highest_vol_id, sv->vol_id);
1131 goto out;
1132 }
1133
1134 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1135 sv->vol_type != UBI_STATIC_VOLUME) {
1136 ubi_err("bad vol_type");
1137 goto bad_sv;
1138 }
1139
1140 if (sv->data_pad > ubi->leb_size / 2) {
1141 ubi_err("bad data_pad");
1142 goto bad_sv;
1143 }
1144
1145 last_seb = NULL;
1146 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1147 cond_resched();
1148
1149 last_seb = seb;
1150 leb_count += 1;
1151
1152 if (seb->pnum < 0 || seb->ec < 0) {
1153 ubi_err("negative values");
1154 goto bad_seb;
1155 }
1156
1157 if (seb->ec < si->min_ec) {
1158 ubi_err("bad si->min_ec (%d), %d found",
1159 si->min_ec, seb->ec);
1160 goto bad_seb;
1161 }
1162
1163 if (seb->ec > si->max_ec) {
1164 ubi_err("bad si->max_ec (%d), %d found",
1165 si->max_ec, seb->ec);
1166 goto bad_seb;
1167 }
1168
1169 if (seb->pnum >= ubi->peb_count) {
1170 ubi_err("too high PEB number %d, total PEBs %d",
1171 seb->pnum, ubi->peb_count);
1172 goto bad_seb;
1173 }
1174
1175 if (sv->vol_type == UBI_STATIC_VOLUME) {
1176 if (seb->lnum >= sv->used_ebs) {
1177 ubi_err("bad lnum or used_ebs");
1178 goto bad_seb;
1179 }
1180 } else {
1181 if (sv->used_ebs != 0) {
1182 ubi_err("non-zero used_ebs");
1183 goto bad_seb;
1184 }
1185 }
1186
1187 if (seb->lnum > sv->highest_lnum) {
1188 ubi_err("incorrect highest_lnum or lnum");
1189 goto bad_seb;
1190 }
1191 }
1192
1193 if (sv->leb_count != leb_count) {
1194 ubi_err("bad leb_count, %d objects in the tree",
1195 leb_count);
1196 goto bad_sv;
1197 }
1198
1199 if (!last_seb)
1200 continue;
1201
1202 seb = last_seb;
1203
1204 if (seb->lnum != sv->highest_lnum) {
1205 ubi_err("bad highest_lnum");
1206 goto bad_seb;
1207 }
1208 }
1209
1210 if (vols_found != si->vols_found) {
1211 ubi_err("bad si->vols_found %d, should be %d",
1212 si->vols_found, vols_found);
1213 goto out;
1214 }
1215
1216 /* Check that scanning information is correct */
1217 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1218 last_seb = NULL;
1219 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1220 int vol_type;
1221
1222 cond_resched();
1223
1224 last_seb = seb;
1225
1226 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1227 if (err && err != UBI_IO_BITFLIPS) {
1228 ubi_err("VID header is not OK (%d)", err);
1229 if (err > 0)
1230 err = -EIO;
1231 return err;
1232 }
1233
1234 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1235 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1236 if (sv->vol_type != vol_type) {
1237 ubi_err("bad vol_type");
1238 goto bad_vid_hdr;
1239 }
1240
3261ebd7 1241 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
801c135c
AB
1242 ubi_err("bad sqnum %llu", seb->sqnum);
1243 goto bad_vid_hdr;
1244 }
1245
3261ebd7 1246 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1247 ubi_err("bad vol_id %d", sv->vol_id);
1248 goto bad_vid_hdr;
1249 }
1250
1251 if (sv->compat != vidh->compat) {
1252 ubi_err("bad compat %d", vidh->compat);
1253 goto bad_vid_hdr;
1254 }
1255
3261ebd7 1256 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1257 ubi_err("bad lnum %d", seb->lnum);
1258 goto bad_vid_hdr;
1259 }
1260
3261ebd7 1261 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1262 ubi_err("bad used_ebs %d", sv->used_ebs);
1263 goto bad_vid_hdr;
1264 }
1265
3261ebd7 1266 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1267 ubi_err("bad data_pad %d", sv->data_pad);
1268 goto bad_vid_hdr;
1269 }
1270
3261ebd7 1271 if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
801c135c
AB
1272 ubi_err("bad leb_ver %u", seb->leb_ver);
1273 goto bad_vid_hdr;
1274 }
1275 }
1276
1277 if (!last_seb)
1278 continue;
1279
3261ebd7 1280 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1281 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1282 goto bad_vid_hdr;
1283 }
1284
3261ebd7 1285 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1286 ubi_err("bad last_data_size %d", sv->last_data_size);
1287 goto bad_vid_hdr;
1288 }
1289 }
1290
1291 /*
1292 * Make sure that all the physical eraseblocks are in one of the lists
1293 * or trees.
1294 */
d9b0744d 1295 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1296 if (!buf)
1297 return -ENOMEM;
1298
801c135c
AB
1299 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1300 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1301 if (err < 0) {
1302 kfree(buf);
801c135c 1303 return err;
341e1a0c 1304 }
801c135c 1305 else if (err)
d9b0744d 1306 buf[pnum] = 1;
801c135c
AB
1307 }
1308
1309 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1310 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
d9b0744d 1311 buf[seb->pnum] = 1;
801c135c
AB
1312
1313 list_for_each_entry(seb, &si->free, u.list)
d9b0744d 1314 buf[seb->pnum] = 1;
801c135c
AB
1315
1316 list_for_each_entry(seb, &si->corr, u.list)
d9b0744d 1317 buf[seb->pnum] = 1;
801c135c
AB
1318
1319 list_for_each_entry(seb, &si->erase, u.list)
d9b0744d 1320 buf[seb->pnum] = 1;
801c135c
AB
1321
1322 list_for_each_entry(seb, &si->alien, u.list)
d9b0744d 1323 buf[seb->pnum] = 1;
801c135c
AB
1324
1325 err = 0;
1326 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1327 if (!buf[pnum]) {
801c135c
AB
1328 ubi_err("PEB %d is not referred", pnum);
1329 err = 1;
1330 }
1331
1332 kfree(buf);
1333 if (err)
1334 goto out;
1335 return 0;
1336
1337bad_seb:
1338 ubi_err("bad scanning information about LEB %d", seb->lnum);
1339 ubi_dbg_dump_seb(seb, 0);
1340 ubi_dbg_dump_sv(sv);
1341 goto out;
1342
1343bad_sv:
1344 ubi_err("bad scanning information about volume %d", sv->vol_id);
1345 ubi_dbg_dump_sv(sv);
1346 goto out;
1347
1348bad_vid_hdr:
1349 ubi_err("bad scanning information about volume %d", sv->vol_id);
1350 ubi_dbg_dump_sv(sv);
1351 ubi_dbg_dump_vid_hdr(vidh);
1352
1353out:
1354 ubi_dbg_dump_stack();
1355 return 1;
1356}
1357
1358#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */