Documentation: ftrace.txt: Correct nice value of 120 priority
[linux-block.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
85c6e6e2 23 * UBI input/output sub-system.
801c135c 24 *
85c6e6e2
AB
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
801c135c
AB
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
85c6e6e2
AB
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
801c135c
AB
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
be436f62
SK
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
801c135c
AB
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
85c6e6e2
AB
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
801c135c
AB
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
5a0e3ad6 91#include <linux/slab.h>
801c135c
AB
92#include "ubi.h"
93
8056eb4a
AB
94static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
97d6104b
AB
101static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 int offset, int len);
801c135c
AB
103
104/**
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
111 *
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
114 * possible:
115 *
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
801c135c
AB
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
125 */
126int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 int len)
128{
129 int err, retries = 0;
130 size_t read;
131 loff_t addr;
132
133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134
135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 ubi_assert(len > 0);
138
8056eb4a 139 err = self_check_not_bad(ubi, pnum);
801c135c 140 if (err)
adbf05e3 141 return err;
801c135c 142
276832d8
AB
143 /*
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
153 *
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
158 * correct.
159 *
160 * Try to prevent this situation by changing the first byte of the
161 * buffer.
162 */
163 *((uint8_t *)buf) ^= 0xFF;
164
801c135c
AB
165 addr = (loff_t)pnum * ubi->peb_size + offset;
166retry:
329ad399 167 err = mtd_read(ubi->mtd, addr, len, &read, buf);
801c135c 168 if (err) {
d57f4054 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
1a49af2c 170
d57f4054 171 if (mtd_is_bitflip(err)) {
801c135c
AB
172 /*
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
8c1e6ee1
AB
175 *
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
801c135c 179 */
32608703
TB
180 ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
181 pnum);
801c135c
AB
182 ubi_assert(len == read);
183 return UBI_IO_BITFLIPS;
184 }
185
a87f29cb 186 if (retries++ < UBI_IO_RETRIES) {
32608703 187 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
f01e2d16 188 err, errstr, len, pnum, offset, read);
801c135c
AB
189 yield();
190 goto retry;
191 }
192
32608703 193 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
049333ce 194 err, errstr, len, pnum, offset, read);
25886a36 195 dump_stack();
2362a53e
AB
196
197 /*
198 * The driver should never return -EBADMSG if it failed to read
199 * all the requested data. But some buggy drivers might do
200 * this, so we change it to -EIO.
201 */
d57f4054 202 if (read != len && mtd_is_eccerr(err)) {
2362a53e
AB
203 ubi_assert(0);
204 err = -EIO;
205 }
801c135c
AB
206 } else {
207 ubi_assert(len == read);
208
27a0f2a3 209 if (ubi_dbg_is_bitflip(ubi)) {
c8566350 210 dbg_gen("bit-flip (emulated)");
801c135c
AB
211 err = UBI_IO_BITFLIPS;
212 }
213 }
214
215 return err;
216}
217
218/**
219 * ubi_io_write - write data to a physical eraseblock.
220 * @ubi: UBI device description object
221 * @buf: buffer with the data to write
222 * @pnum: physical eraseblock number to write to
223 * @offset: offset within the physical eraseblock where to write
224 * @len: how many bytes to write
225 *
226 * This function writes @len bytes of data from buffer @buf to offset @offset
227 * of physical eraseblock @pnum. If all the data were successfully written,
228 * zero is returned. If an error occurred, this function returns a negative
229 * error code. If %-EIO is returned, the physical eraseblock most probably went
230 * bad.
231 *
232 * Note, in case of an error, it is possible that something was still written
233 * to the flash media, but may be some garbage.
234 */
e88d6e10
AB
235int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 int len)
801c135c
AB
237{
238 int err;
239 size_t written;
240 loff_t addr;
241
242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243
244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248
249 if (ubi->ro_mode) {
32608703 250 ubi_err(ubi, "read-only mode");
801c135c
AB
251 return -EROFS;
252 }
253
8056eb4a 254 err = self_check_not_bad(ubi, pnum);
801c135c 255 if (err)
adbf05e3 256 return err;
801c135c
AB
257
258 /* The area we are writing to has to contain all 0xFF bytes */
97d6104b 259 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
801c135c 260 if (err)
adbf05e3 261 return err;
801c135c
AB
262
263 if (offset >= ubi->leb_start) {
264 /*
265 * We write to the data area of the physical eraseblock. Make
266 * sure it has valid EC and VID headers.
267 */
8056eb4a 268 err = self_check_peb_ec_hdr(ubi, pnum);
801c135c 269 if (err)
adbf05e3 270 return err;
8056eb4a 271 err = self_check_peb_vid_hdr(ubi, pnum);
801c135c 272 if (err)
adbf05e3 273 return err;
801c135c
AB
274 }
275
27a0f2a3 276 if (ubi_dbg_is_write_failure(ubi)) {
32608703 277 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
049333ce 278 len, pnum, offset);
25886a36 279 dump_stack();
801c135c
AB
280 return -EIO;
281 }
282
283 addr = (loff_t)pnum * ubi->peb_size + offset;
eda95cbf 284 err = mtd_write(ubi->mtd, addr, len, &written, buf);
801c135c 285 if (err) {
32608703 286 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
049333ce 287 err, len, pnum, offset, written);
25886a36 288 dump_stack();
ef7088e7 289 ubi_dump_flash(ubi, pnum, offset, len);
801c135c
AB
290 } else
291 ubi_assert(written == len);
292
6e9065d7 293 if (!err) {
97d6104b 294 err = self_check_write(ubi, buf, pnum, offset, len);
6e9065d7
AB
295 if (err)
296 return err;
297
298 /*
299 * Since we always write sequentially, the rest of the PEB has
300 * to contain only 0xFF bytes.
301 */
302 offset += len;
303 len = ubi->peb_size - offset;
304 if (len)
97d6104b 305 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
6e9065d7
AB
306 }
307
801c135c
AB
308 return err;
309}
310
311/**
312 * erase_callback - MTD erasure call-back.
313 * @ei: MTD erase information object.
314 *
315 * Note, even though MTD erase interface is asynchronous, all the current
316 * implementations are synchronous anyway.
317 */
318static void erase_callback(struct erase_info *ei)
319{
320 wake_up_interruptible((wait_queue_head_t *)ei->priv);
321}
322
323/**
324 * do_sync_erase - synchronously erase a physical eraseblock.
325 * @ubi: UBI device description object
326 * @pnum: the physical eraseblock number to erase
327 *
328 * This function synchronously erases physical eraseblock @pnum and returns
329 * zero in case of success and a negative error code in case of failure. If
330 * %-EIO is returned, the physical eraseblock most probably went bad.
331 */
e88d6e10 332static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
333{
334 int err, retries = 0;
335 struct erase_info ei;
336 wait_queue_head_t wq;
337
338 dbg_io("erase PEB %d", pnum);
3efe5090
AB
339 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340
341 if (ubi->ro_mode) {
32608703 342 ubi_err(ubi, "read-only mode");
3efe5090
AB
343 return -EROFS;
344 }
801c135c
AB
345
346retry:
347 init_waitqueue_head(&wq);
348 memset(&ei, 0, sizeof(struct erase_info));
349
350 ei.mtd = ubi->mtd;
2f176f79 351 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
352 ei.len = ubi->peb_size;
353 ei.callback = erase_callback;
354 ei.priv = (unsigned long)&wq;
355
7e1f0dc0 356 err = mtd_erase(ubi->mtd, &ei);
801c135c
AB
357 if (err) {
358 if (retries++ < UBI_IO_RETRIES) {
32608703 359 ubi_warn(ubi, "error %d while erasing PEB %d, retry",
f01e2d16 360 err, pnum);
801c135c
AB
361 yield();
362 goto retry;
363 }
32608703 364 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
25886a36 365 dump_stack();
801c135c
AB
366 return err;
367 }
368
369 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370 ei.state == MTD_ERASE_FAILED);
371 if (err) {
32608703 372 ubi_err(ubi, "interrupted PEB %d erasure", pnum);
801c135c
AB
373 return -EINTR;
374 }
375
376 if (ei.state == MTD_ERASE_FAILED) {
377 if (retries++ < UBI_IO_RETRIES) {
32608703
TB
378 ubi_warn(ubi, "error while erasing PEB %d, retry",
379 pnum);
801c135c
AB
380 yield();
381 goto retry;
382 }
32608703 383 ubi_err(ubi, "cannot erase PEB %d", pnum);
25886a36 384 dump_stack();
801c135c
AB
385 return -EIO;
386 }
387
97d6104b 388 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
801c135c 389 if (err)
adbf05e3 390 return err;
801c135c 391
27a0f2a3 392 if (ubi_dbg_is_erase_failure(ubi)) {
32608703 393 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
801c135c
AB
394 return -EIO;
395 }
396
397 return 0;
398}
399
801c135c
AB
400/* Patterns to write to a physical eraseblock when torturing it */
401static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
402
403/**
404 * torture_peb - test a supposedly bad physical eraseblock.
405 * @ubi: UBI device description object
406 * @pnum: the physical eraseblock number to test
407 *
408 * This function returns %-EIO if the physical eraseblock did not pass the
409 * test, a positive number of erase operations done if the test was
410 * successfully passed, and other negative error codes in case of other errors.
411 */
e88d6e10 412static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 413{
801c135c
AB
414 int err, i, patt_count;
415
32608703 416 ubi_msg(ubi, "run torture test for PEB %d", pnum);
801c135c
AB
417 patt_count = ARRAY_SIZE(patterns);
418 ubi_assert(patt_count > 0);
419
e88d6e10 420 mutex_lock(&ubi->buf_mutex);
801c135c
AB
421 for (i = 0; i < patt_count; i++) {
422 err = do_sync_erase(ubi, pnum);
423 if (err)
424 goto out;
425
426 /* Make sure the PEB contains only 0xFF bytes */
0ca39d74 427 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
801c135c
AB
428 if (err)
429 goto out;
430
0ca39d74 431 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
801c135c 432 if (err == 0) {
32608703 433 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
801c135c
AB
434 pnum);
435 err = -EIO;
436 goto out;
437 }
438
439 /* Write a pattern and check it */
0ca39d74
AB
440 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
441 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
801c135c
AB
442 if (err)
443 goto out;
444
0ca39d74
AB
445 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
446 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
801c135c
AB
447 if (err)
448 goto out;
449
0ca39d74 450 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
bb00e180 451 ubi->peb_size);
801c135c 452 if (err == 0) {
32608703 453 ubi_err(ubi, "pattern %x checking failed for PEB %d",
801c135c
AB
454 patterns[i], pnum);
455 err = -EIO;
456 goto out;
457 }
458 }
459
460 err = patt_count;
32608703 461 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
801c135c
AB
462
463out:
e88d6e10 464 mutex_unlock(&ubi->buf_mutex);
d57f4054 465 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
801c135c
AB
466 /*
467 * If a bit-flip or data integrity error was detected, the test
468 * has not passed because it happened on a freshly erased
469 * physical eraseblock which means something is wrong with it.
470 */
32608703 471 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
8d2d4011 472 pnum);
801c135c 473 err = -EIO;
8d2d4011 474 }
801c135c
AB
475 return err;
476}
477
ebf53f42
AB
478/**
479 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
480 * @ubi: UBI device description object
481 * @pnum: physical eraseblock number to prepare
482 *
483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
484 * algorithm: the PEB is first filled with zeroes, then it is erased. And
485 * filling with zeroes starts from the end of the PEB. This was observed with
486 * Spansion S29GL512N NOR flash.
487 *
488 * This means that in case of a power cut we may end up with intact data at the
489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
493 *
494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
495 * magic numbers in order to invalidate them and prevent the failures. Returns
496 * zero in case of success and a negative error code in case of failure.
497 */
498static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
499{
2c7ca5cc 500 int err;
ebf53f42
AB
501 size_t written;
502 loff_t addr;
503 uint32_t data = 0;
2c7ca5cc 504 struct ubi_ec_hdr ec_hdr;
3291b52f 505 struct ubi_vid_io_buf vidb;
2c7ca5cc 506
2fff570e
AB
507 /*
508 * Note, we cannot generally define VID header buffers on stack,
509 * because of the way we deal with these buffers (see the header
510 * comment in this file). But we know this is a NOR-specific piece of
511 * code, so we can do this. But yes, this is error-prone and we should
512 * (pre-)allocate VID header buffer instead.
513 */
de75c771 514 struct ubi_vid_hdr vid_hdr;
ebf53f42 515
7ac760c2 516 /*
2c7ca5cc 517 * If VID or EC is valid, we have to corrupt them before erasing.
7ac760c2
AB
518 * It is important to first invalidate the EC header, and then the VID
519 * header. Otherwise a power cut may lead to valid EC header and
520 * invalid VID header, in which case UBI will treat this PEB as
fbd0107f 521 * corrupted and will try to preserve it, and print scary warnings.
7ac760c2
AB
522 */
523 addr = (loff_t)pnum * ubi->peb_size;
2c7ca5cc
QW
524 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
525 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
526 err != UBI_IO_FF){
eda95cbf 527 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
2c7ca5cc
QW
528 if(err)
529 goto error;
ebf53f42
AB
530 }
531
3291b52f
BB
532 ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
533 ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
534
535 err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
2c7ca5cc
QW
536 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
537 err != UBI_IO_FF){
538 addr += ubi->vid_hdr_aloffset;
539 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
540 if (err)
541 goto error;
7ac760c2 542 }
2c7ca5cc 543 return 0;
de75c771 544
2c7ca5cc 545error:
de75c771 546 /*
2c7ca5cc
QW
547 * The PEB contains a valid VID or EC header, but we cannot invalidate
548 * it. Supposedly the flash media or the driver is screwed up, so
549 * return an error.
de75c771 550 */
32608703 551 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
ef7088e7 552 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
de75c771 553 return -EIO;
ebf53f42
AB
554}
555
801c135c
AB
556/**
557 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
558 * @ubi: UBI device description object
559 * @pnum: physical eraseblock number to erase
560 * @torture: if this physical eraseblock has to be tortured
561 *
562 * This function synchronously erases physical eraseblock @pnum. If @torture
563 * flag is not zero, the physical eraseblock is checked by means of writing
564 * different patterns to it and reading them back. If the torturing is enabled,
025dfdaf 565 * the physical eraseblock is erased more than once.
801c135c
AB
566 *
567 * This function returns the number of erasures made in case of success, %-EIO
568 * if the erasure failed or the torturing test failed, and other negative error
569 * codes in case of other errors. Note, %-EIO means that the physical
570 * eraseblock is bad.
571 */
e88d6e10 572int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
573{
574 int err, ret = 0;
575
576 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
577
8056eb4a 578 err = self_check_not_bad(ubi, pnum);
801c135c 579 if (err != 0)
adbf05e3 580 return err;
801c135c
AB
581
582 if (ubi->ro_mode) {
32608703 583 ubi_err(ubi, "read-only mode");
801c135c
AB
584 return -EROFS;
585 }
586
ebf53f42
AB
587 if (ubi->nor_flash) {
588 err = nor_erase_prepare(ubi, pnum);
589 if (err)
590 return err;
591 }
592
801c135c
AB
593 if (torture) {
594 ret = torture_peb(ubi, pnum);
595 if (ret < 0)
596 return ret;
597 }
598
599 err = do_sync_erase(ubi, pnum);
600 if (err)
601 return err;
602
603 return ret + 1;
604}
605
606/**
607 * ubi_io_is_bad - check if a physical eraseblock is bad.
608 * @ubi: UBI device description object
609 * @pnum: the physical eraseblock number to check
610 *
611 * This function returns a positive number if the physical eraseblock is bad,
612 * zero if not, and a negative error code if an error occurred.
613 */
614int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
615{
616 struct mtd_info *mtd = ubi->mtd;
617
618 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
619
620 if (ubi->bad_allowed) {
621 int ret;
622
7086c19d 623 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
801c135c 624 if (ret < 0)
32608703 625 ubi_err(ubi, "error %d while checking if PEB %d is bad",
801c135c
AB
626 ret, pnum);
627 else if (ret)
628 dbg_io("PEB %d is bad", pnum);
629 return ret;
630 }
631
632 return 0;
633}
634
635/**
636 * ubi_io_mark_bad - mark a physical eraseblock as bad.
637 * @ubi: UBI device description object
638 * @pnum: the physical eraseblock number to mark
639 *
640 * This function returns zero in case of success and a negative error code in
641 * case of failure.
642 */
643int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
644{
645 int err;
646 struct mtd_info *mtd = ubi->mtd;
647
648 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
649
650 if (ubi->ro_mode) {
32608703 651 ubi_err(ubi, "read-only mode");
801c135c
AB
652 return -EROFS;
653 }
654
655 if (!ubi->bad_allowed)
656 return 0;
657
5942ddbc 658 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
801c135c 659 if (err)
32608703 660 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
801c135c
AB
661 return err;
662}
663
664/**
665 * validate_ec_hdr - validate an erase counter header.
666 * @ubi: UBI device description object
667 * @ec_hdr: the erase counter header to check
668 *
669 * This function returns zero if the erase counter header is OK, and %1 if
670 * not.
671 */
fe96efc1 672static int validate_ec_hdr(const struct ubi_device *ubi,
801c135c
AB
673 const struct ubi_ec_hdr *ec_hdr)
674{
675 long long ec;
fe96efc1 676 int vid_hdr_offset, leb_start;
801c135c 677
3261ebd7
CH
678 ec = be64_to_cpu(ec_hdr->ec);
679 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
680 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
681
682 if (ec_hdr->version != UBI_VERSION) {
32608703 683 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
801c135c
AB
684 UBI_VERSION, (int)ec_hdr->version);
685 goto bad;
686 }
687
688 if (vid_hdr_offset != ubi->vid_hdr_offset) {
32608703 689 ubi_err(ubi, "bad VID header offset %d, expected %d",
801c135c
AB
690 vid_hdr_offset, ubi->vid_hdr_offset);
691 goto bad;
692 }
693
694 if (leb_start != ubi->leb_start) {
32608703 695 ubi_err(ubi, "bad data offset %d, expected %d",
801c135c
AB
696 leb_start, ubi->leb_start);
697 goto bad;
698 }
699
700 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
32608703 701 ubi_err(ubi, "bad erase counter %lld", ec);
801c135c
AB
702 goto bad;
703 }
704
705 return 0;
706
707bad:
32608703 708 ubi_err(ubi, "bad EC header");
a904e3f1 709 ubi_dump_ec_hdr(ec_hdr);
25886a36 710 dump_stack();
801c135c
AB
711 return 1;
712}
713
714/**
715 * ubi_io_read_ec_hdr - read and check an erase counter header.
716 * @ubi: UBI device description object
717 * @pnum: physical eraseblock to read from
718 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
719 * header
720 * @verbose: be verbose if the header is corrupted or was not found
721 *
722 * This function reads erase counter header from physical eraseblock @pnum and
723 * stores it in @ec_hdr. This function also checks CRC checksum of the read
724 * erase counter header. The following codes may be returned:
725 *
726 * o %0 if the CRC checksum is correct and the header was successfully read;
727 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
728 * and corrected by the flash driver; this is harmless but may indicate that
729 * this eraseblock may become bad soon (but may be not);
786d7831 730 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
756e1df1
AB
731 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
732 * a data integrity error (uncorrectable ECC error in case of NAND);
74d82d26 733 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
801c135c
AB
734 * o a negative error code in case of failure.
735 */
e88d6e10 736int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
737 struct ubi_ec_hdr *ec_hdr, int verbose)
738{
92e1a7d9 739 int err, read_err;
801c135c
AB
740 uint32_t crc, magic, hdr_crc;
741
742 dbg_io("read EC header from PEB %d", pnum);
743 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
744
92e1a7d9
AB
745 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
746 if (read_err) {
d57f4054 747 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
92e1a7d9 748 return read_err;
801c135c
AB
749
750 /*
751 * We read all the data, but either a correctable bit-flip
756e1df1
AB
752 * occurred, or MTD reported a data integrity error
753 * (uncorrectable ECC error in case of NAND). The former is
754 * harmless, the later may mean that the read data is
755 * corrupted. But we have a CRC check-sum and we will detect
756 * this. If the EC header is still OK, we just report this as
757 * there was a bit-flip, to force scrubbing.
801c135c 758 */
801c135c
AB
759 }
760
3261ebd7 761 magic = be32_to_cpu(ec_hdr->magic);
801c135c 762 if (magic != UBI_EC_HDR_MAGIC) {
d57f4054 763 if (mtd_is_eccerr(read_err))
92e1a7d9 764 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 765
801c135c
AB
766 /*
767 * The magic field is wrong. Let's check if we have read all
768 * 0xFF. If yes, this physical eraseblock is assumed to be
769 * empty.
801c135c 770 */
bb00e180 771 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
801c135c 772 /* The physical eraseblock is supposedly empty */
801c135c 773 if (verbose)
32608703 774 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
049333ce
AB
775 pnum);
776 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
777 pnum);
92e1a7d9
AB
778 if (!read_err)
779 return UBI_IO_FF;
780 else
781 return UBI_IO_FF_BITFLIPS;
801c135c
AB
782 }
783
784 /*
785 * This is not a valid erase counter header, and these are not
786 * 0xFF bytes. Report that the header is corrupted.
787 */
788 if (verbose) {
32608703 789 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
049333ce 790 pnum, magic, UBI_EC_HDR_MAGIC);
a904e3f1 791 ubi_dump_ec_hdr(ec_hdr);
6f9fdf62 792 }
049333ce
AB
793 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
794 pnum, magic, UBI_EC_HDR_MAGIC);
786d7831 795 return UBI_IO_BAD_HDR;
801c135c
AB
796 }
797
798 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 799 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
800
801 if (hdr_crc != crc) {
802 if (verbose) {
32608703 803 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
049333ce 804 pnum, crc, hdr_crc);
a904e3f1 805 ubi_dump_ec_hdr(ec_hdr);
6f9fdf62 806 }
049333ce
AB
807 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
808 pnum, crc, hdr_crc);
92e1a7d9
AB
809
810 if (!read_err)
811 return UBI_IO_BAD_HDR;
812 else
813 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
814 }
815
816 /* And of course validate what has just been read from the media */
817 err = validate_ec_hdr(ubi, ec_hdr);
818 if (err) {
32608703 819 ubi_err(ubi, "validation failed for PEB %d", pnum);
801c135c
AB
820 return -EINVAL;
821 }
822
eb89580e
AB
823 /*
824 * If there was %-EBADMSG, but the header CRC is still OK, report about
825 * a bit-flip to force scrubbing on this PEB.
826 */
801c135c
AB
827 return read_err ? UBI_IO_BITFLIPS : 0;
828}
829
830/**
831 * ubi_io_write_ec_hdr - write an erase counter header.
832 * @ubi: UBI device description object
833 * @pnum: physical eraseblock to write to
834 * @ec_hdr: the erase counter header to write
835 *
836 * This function writes erase counter header described by @ec_hdr to physical
837 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
838 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
839 * field.
840 *
841 * This function returns zero in case of success and a negative error code in
842 * case of failure. If %-EIO is returned, the physical eraseblock most probably
843 * went bad.
844 */
e88d6e10 845int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
846 struct ubi_ec_hdr *ec_hdr)
847{
848 int err;
849 uint32_t crc;
850
851 dbg_io("write EC header to PEB %d", pnum);
852 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
853
3261ebd7 854 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 855 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
856 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
857 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0c6c7fa1 858 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801c135c 859 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 860 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c 861
8056eb4a 862 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
801c135c 863 if (err)
adbf05e3 864 return err;
801c135c 865
50269067 866 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
867 return -EROFS;
868
801c135c
AB
869 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
870 return err;
871}
872
873/**
874 * validate_vid_hdr - validate a volume identifier header.
875 * @ubi: UBI device description object
876 * @vid_hdr: the volume identifier header to check
877 *
878 * This function checks that data stored in the volume identifier header
879 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
880 */
881static int validate_vid_hdr(const struct ubi_device *ubi,
882 const struct ubi_vid_hdr *vid_hdr)
883{
884 int vol_type = vid_hdr->vol_type;
885 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
886 int vol_id = be32_to_cpu(vid_hdr->vol_id);
887 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 888 int compat = vid_hdr->compat;
3261ebd7
CH
889 int data_size = be32_to_cpu(vid_hdr->data_size);
890 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
891 int data_pad = be32_to_cpu(vid_hdr->data_pad);
892 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
893 int usable_leb_size = ubi->leb_size - data_pad;
894
895 if (copy_flag != 0 && copy_flag != 1) {
32608703 896 ubi_err(ubi, "bad copy_flag");
801c135c
AB
897 goto bad;
898 }
899
900 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
901 data_pad < 0) {
32608703 902 ubi_err(ubi, "negative values");
801c135c
AB
903 goto bad;
904 }
905
906 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
32608703 907 ubi_err(ubi, "bad vol_id");
801c135c
AB
908 goto bad;
909 }
910
911 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
32608703 912 ubi_err(ubi, "bad compat");
801c135c
AB
913 goto bad;
914 }
915
916 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
917 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
918 compat != UBI_COMPAT_REJECT) {
32608703 919 ubi_err(ubi, "bad compat");
801c135c
AB
920 goto bad;
921 }
922
923 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
32608703 924 ubi_err(ubi, "bad vol_type");
801c135c
AB
925 goto bad;
926 }
927
928 if (data_pad >= ubi->leb_size / 2) {
32608703 929 ubi_err(ubi, "bad data_pad");
801c135c
AB
930 goto bad;
931 }
932
281fda27
RW
933 if (data_size > ubi->leb_size) {
934 ubi_err(ubi, "bad data_size");
935 goto bad;
936 }
937
801c135c
AB
938 if (vol_type == UBI_VID_STATIC) {
939 /*
940 * Although from high-level point of view static volumes may
941 * contain zero bytes of data, but no VID headers can contain
942 * zero at these fields, because they empty volumes do not have
943 * mapped logical eraseblocks.
944 */
945 if (used_ebs == 0) {
32608703 946 ubi_err(ubi, "zero used_ebs");
801c135c
AB
947 goto bad;
948 }
949 if (data_size == 0) {
32608703 950 ubi_err(ubi, "zero data_size");
801c135c
AB
951 goto bad;
952 }
953 if (lnum < used_ebs - 1) {
954 if (data_size != usable_leb_size) {
32608703 955 ubi_err(ubi, "bad data_size");
801c135c
AB
956 goto bad;
957 }
958 } else if (lnum == used_ebs - 1) {
959 if (data_size == 0) {
32608703 960 ubi_err(ubi, "bad data_size at last LEB");
801c135c
AB
961 goto bad;
962 }
963 } else {
32608703 964 ubi_err(ubi, "too high lnum");
801c135c
AB
965 goto bad;
966 }
967 } else {
968 if (copy_flag == 0) {
969 if (data_crc != 0) {
32608703 970 ubi_err(ubi, "non-zero data CRC");
801c135c
AB
971 goto bad;
972 }
973 if (data_size != 0) {
32608703 974 ubi_err(ubi, "non-zero data_size");
801c135c
AB
975 goto bad;
976 }
977 } else {
978 if (data_size == 0) {
32608703 979 ubi_err(ubi, "zero data_size of copy");
801c135c
AB
980 goto bad;
981 }
982 }
983 if (used_ebs != 0) {
32608703 984 ubi_err(ubi, "bad used_ebs");
801c135c
AB
985 goto bad;
986 }
987 }
988
989 return 0;
990
991bad:
32608703 992 ubi_err(ubi, "bad VID header");
a904e3f1 993 ubi_dump_vid_hdr(vid_hdr);
25886a36 994 dump_stack();
801c135c
AB
995 return 1;
996}
997
998/**
999 * ubi_io_read_vid_hdr - read and check a volume identifier header.
1000 * @ubi: UBI device description object
1001 * @pnum: physical eraseblock number to read from
3291b52f 1002 * @vidb: the volume identifier buffer to store data in
801c135c
AB
1003 * @verbose: be verbose if the header is corrupted or wasn't found
1004 *
1005 * This function reads the volume identifier header from physical eraseblock
3291b52f 1006 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
74d82d26
AB
1007 * volume identifier header. The error codes are the same as in
1008 * 'ubi_io_read_ec_hdr()'.
801c135c 1009 *
74d82d26
AB
1010 * Note, the implementation of this function is also very similar to
1011 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
801c135c 1012 */
e88d6e10 1013int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
3291b52f 1014 struct ubi_vid_io_buf *vidb, int verbose)
801c135c 1015{
92e1a7d9 1016 int err, read_err;
801c135c 1017 uint32_t crc, magic, hdr_crc;
3291b52f
BB
1018 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1019 void *p = vidb->buffer;
801c135c
AB
1020
1021 dbg_io("read VID header from PEB %d", pnum);
1022 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1023
92e1a7d9 1024 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
8a8e8d2f 1025 ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
d57f4054 1026 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
92e1a7d9 1027 return read_err;
801c135c 1028
3261ebd7 1029 magic = be32_to_cpu(vid_hdr->magic);
801c135c 1030 if (magic != UBI_VID_HDR_MAGIC) {
d57f4054 1031 if (mtd_is_eccerr(read_err))
92e1a7d9 1032 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 1033
bb00e180 1034 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
801c135c 1035 if (verbose)
32608703 1036 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
049333ce
AB
1037 pnum);
1038 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1039 pnum);
92e1a7d9
AB
1040 if (!read_err)
1041 return UBI_IO_FF;
1042 else
1043 return UBI_IO_FF_BITFLIPS;
801c135c
AB
1044 }
1045
801c135c 1046 if (verbose) {
32608703 1047 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
049333ce 1048 pnum, magic, UBI_VID_HDR_MAGIC);
a904e3f1 1049 ubi_dump_vid_hdr(vid_hdr);
6f9fdf62 1050 }
049333ce
AB
1051 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1052 pnum, magic, UBI_VID_HDR_MAGIC);
786d7831 1053 return UBI_IO_BAD_HDR;
801c135c
AB
1054 }
1055
1056 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1057 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1058
1059 if (hdr_crc != crc) {
1060 if (verbose) {
32608703 1061 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
049333ce 1062 pnum, crc, hdr_crc);
a904e3f1 1063 ubi_dump_vid_hdr(vid_hdr);
6f9fdf62 1064 }
049333ce
AB
1065 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1066 pnum, crc, hdr_crc);
92e1a7d9
AB
1067 if (!read_err)
1068 return UBI_IO_BAD_HDR;
1069 else
1070 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
1071 }
1072
801c135c
AB
1073 err = validate_vid_hdr(ubi, vid_hdr);
1074 if (err) {
32608703 1075 ubi_err(ubi, "validation failed for PEB %d", pnum);
801c135c
AB
1076 return -EINVAL;
1077 }
1078
1079 return read_err ? UBI_IO_BITFLIPS : 0;
1080}
1081
1082/**
1083 * ubi_io_write_vid_hdr - write a volume identifier header.
1084 * @ubi: UBI device description object
1085 * @pnum: the physical eraseblock number to write to
3291b52f 1086 * @vidb: the volume identifier buffer to write
801c135c
AB
1087 *
1088 * This function writes the volume identifier header described by @vid_hdr to
1089 * physical eraseblock @pnum. This function automatically fills the
3291b52f
BB
1090 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1091 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
801c135c
AB
1092 *
1093 * This function returns zero in case of success and a negative error code in
1094 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1095 * bad.
1096 */
e88d6e10 1097int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
3291b52f 1098 struct ubi_vid_io_buf *vidb)
801c135c 1099{
3291b52f 1100 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
801c135c
AB
1101 int err;
1102 uint32_t crc;
3291b52f 1103 void *p = vidb->buffer;
801c135c
AB
1104
1105 dbg_io("write VID header to PEB %d", pnum);
1106 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1107
8056eb4a 1108 err = self_check_peb_ec_hdr(ubi, pnum);
801c135c 1109 if (err)
adbf05e3 1110 return err;
801c135c 1111
3261ebd7 1112 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1113 vid_hdr->version = UBI_VERSION;
1114 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1115 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c 1116
8056eb4a 1117 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
801c135c 1118 if (err)
adbf05e3 1119 return err;
801c135c 1120
50269067 1121 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1122 return -EROFS;
1123
801c135c
AB
1124 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1125 ubi->vid_hdr_alsize);
1126 return err;
1127}
1128
801c135c 1129/**
8056eb4a 1130 * self_check_not_bad - ensure that a physical eraseblock is not bad.
801c135c
AB
1131 * @ubi: UBI device description object
1132 * @pnum: physical eraseblock number to check
1133 *
adbf05e3
AB
1134 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1135 * it is bad and a negative error code if an error occurred.
801c135c 1136 */
8056eb4a 1137static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
801c135c
AB
1138{
1139 int err;
1140
64575574 1141 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1142 return 0;
1143
801c135c
AB
1144 err = ubi_io_is_bad(ubi, pnum);
1145 if (!err)
1146 return err;
1147
32608703 1148 ubi_err(ubi, "self-check failed for PEB %d", pnum);
25886a36 1149 dump_stack();
adbf05e3 1150 return err > 0 ? -EINVAL : err;
801c135c
AB
1151}
1152
1153/**
8056eb4a 1154 * self_check_ec_hdr - check if an erase counter header is all right.
801c135c
AB
1155 * @ubi: UBI device description object
1156 * @pnum: physical eraseblock number the erase counter header belongs to
1157 * @ec_hdr: the erase counter header to check
1158 *
1159 * This function returns zero if the erase counter header contains valid
adbf05e3 1160 * values, and %-EINVAL if not.
801c135c 1161 */
8056eb4a
AB
1162static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1163 const struct ubi_ec_hdr *ec_hdr)
801c135c
AB
1164{
1165 int err;
1166 uint32_t magic;
1167
64575574 1168 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1169 return 0;
1170
3261ebd7 1171 magic = be32_to_cpu(ec_hdr->magic);
801c135c 1172 if (magic != UBI_EC_HDR_MAGIC) {
32608703 1173 ubi_err(ubi, "bad magic %#08x, must be %#08x",
801c135c
AB
1174 magic, UBI_EC_HDR_MAGIC);
1175 goto fail;
1176 }
1177
1178 err = validate_ec_hdr(ubi, ec_hdr);
1179 if (err) {
32608703 1180 ubi_err(ubi, "self-check failed for PEB %d", pnum);
801c135c
AB
1181 goto fail;
1182 }
1183
1184 return 0;
1185
1186fail:
a904e3f1 1187 ubi_dump_ec_hdr(ec_hdr);
25886a36 1188 dump_stack();
adbf05e3 1189 return -EINVAL;
801c135c
AB
1190}
1191
1192/**
8056eb4a 1193 * self_check_peb_ec_hdr - check erase counter header.
801c135c
AB
1194 * @ubi: UBI device description object
1195 * @pnum: the physical eraseblock number to check
1196 *
adbf05e3
AB
1197 * This function returns zero if the erase counter header is all right and and
1198 * a negative error code if not or if an error occurred.
801c135c 1199 */
8056eb4a 1200static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
801c135c
AB
1201{
1202 int err;
1203 uint32_t crc, hdr_crc;
1204 struct ubi_ec_hdr *ec_hdr;
1205
64575574 1206 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1207 return 0;
1208
33818bbb 1209 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1210 if (!ec_hdr)
1211 return -ENOMEM;
1212
1213 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
d57f4054 1214 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
801c135c
AB
1215 goto exit;
1216
1217 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1218 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c 1219 if (hdr_crc != crc) {
32608703
TB
1220 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1221 crc, hdr_crc);
1222 ubi_err(ubi, "self-check failed for PEB %d", pnum);
a904e3f1 1223 ubi_dump_ec_hdr(ec_hdr);
25886a36 1224 dump_stack();
adbf05e3 1225 err = -EINVAL;
801c135c
AB
1226 goto exit;
1227 }
1228
8056eb4a 1229 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
801c135c
AB
1230
1231exit:
1232 kfree(ec_hdr);
1233 return err;
1234}
1235
1236/**
8056eb4a 1237 * self_check_vid_hdr - check that a volume identifier header is all right.
801c135c
AB
1238 * @ubi: UBI device description object
1239 * @pnum: physical eraseblock number the volume identifier header belongs to
1240 * @vid_hdr: the volume identifier header to check
1241 *
1242 * This function returns zero if the volume identifier header is all right, and
adbf05e3 1243 * %-EINVAL if not.
801c135c 1244 */
8056eb4a
AB
1245static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1246 const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
1247{
1248 int err;
1249 uint32_t magic;
1250
64575574 1251 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1252 return 0;
1253
3261ebd7 1254 magic = be32_to_cpu(vid_hdr->magic);
801c135c 1255 if (magic != UBI_VID_HDR_MAGIC) {
32608703 1256 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
801c135c
AB
1257 magic, pnum, UBI_VID_HDR_MAGIC);
1258 goto fail;
1259 }
1260
1261 err = validate_vid_hdr(ubi, vid_hdr);
1262 if (err) {
32608703 1263 ubi_err(ubi, "self-check failed for PEB %d", pnum);
801c135c
AB
1264 goto fail;
1265 }
1266
1267 return err;
1268
1269fail:
32608703 1270 ubi_err(ubi, "self-check failed for PEB %d", pnum);
a904e3f1 1271 ubi_dump_vid_hdr(vid_hdr);
25886a36 1272 dump_stack();
adbf05e3 1273 return -EINVAL;
801c135c
AB
1274
1275}
1276
1277/**
8056eb4a 1278 * self_check_peb_vid_hdr - check volume identifier header.
801c135c
AB
1279 * @ubi: UBI device description object
1280 * @pnum: the physical eraseblock number to check
1281 *
1282 * This function returns zero if the volume identifier header is all right,
adbf05e3 1283 * and a negative error code if not or if an error occurred.
801c135c 1284 */
8056eb4a 1285static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
801c135c
AB
1286{
1287 int err;
1288 uint32_t crc, hdr_crc;
3291b52f 1289 struct ubi_vid_io_buf *vidb;
801c135c
AB
1290 struct ubi_vid_hdr *vid_hdr;
1291 void *p;
1292
64575574 1293 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1294 return 0;
1295
3291b52f
BB
1296 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1297 if (!vidb)
801c135c
AB
1298 return -ENOMEM;
1299
3291b52f
BB
1300 vid_hdr = ubi_get_vid_hdr(vidb);
1301 p = vidb->buffer;
801c135c
AB
1302 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1303 ubi->vid_hdr_alsize);
d57f4054 1304 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
801c135c
AB
1305 goto exit;
1306
2e69d491 1307 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1308 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c 1309 if (hdr_crc != crc) {
32608703 1310 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
049333ce 1311 pnum, crc, hdr_crc);
32608703 1312 ubi_err(ubi, "self-check failed for PEB %d", pnum);
a904e3f1 1313 ubi_dump_vid_hdr(vid_hdr);
25886a36 1314 dump_stack();
adbf05e3 1315 err = -EINVAL;
801c135c
AB
1316 goto exit;
1317 }
1318
8056eb4a 1319 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
801c135c
AB
1320
1321exit:
3291b52f 1322 ubi_free_vid_buf(vidb);
801c135c
AB
1323 return err;
1324}
1325
6e9065d7 1326/**
97d6104b 1327 * self_check_write - make sure write succeeded.
6e9065d7
AB
1328 * @ubi: UBI device description object
1329 * @buf: buffer with data which were written
1330 * @pnum: physical eraseblock number the data were written to
1331 * @offset: offset within the physical eraseblock the data were written to
1332 * @len: how many bytes were written
1333 *
1334 * This functions reads data which were recently written and compares it with
1335 * the original data buffer - the data have to match. Returns zero if the data
1336 * match and a negative error code if not or in case of failure.
1337 */
97d6104b
AB
1338static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1339 int offset, int len)
6e9065d7
AB
1340{
1341 int err, i;
7950d023 1342 size_t read;
a7586743 1343 void *buf1;
7950d023 1344 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
6e9065d7 1345
64575574 1346 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1347 return 0;
1348
3d46b316 1349 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
a7586743 1350 if (!buf1) {
32608703 1351 ubi_err(ubi, "cannot allocate memory to check writes");
a7586743
AB
1352 return 0;
1353 }
1354
329ad399 1355 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
d57f4054 1356 if (err && !mtd_is_bitflip(err))
a7586743 1357 goto out_free;
6e9065d7
AB
1358
1359 for (i = 0; i < len; i++) {
1360 uint8_t c = ((uint8_t *)buf)[i];
a7586743 1361 uint8_t c1 = ((uint8_t *)buf1)[i];
6e9065d7
AB
1362 int dump_len;
1363
1364 if (c == c1)
1365 continue;
1366
32608703 1367 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
6e9065d7 1368 pnum, offset, len);
32608703 1369 ubi_msg(ubi, "data differ at position %d", i);
6e9065d7 1370 dump_len = max_t(int, 128, len - i);
32608703 1371 ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
6e9065d7
AB
1372 i, i + dump_len);
1373 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1374 buf + i, dump_len, 1);
32608703 1375 ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
6e9065d7
AB
1376 i, i + dump_len);
1377 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
a7586743 1378 buf1 + i, dump_len, 1);
25886a36 1379 dump_stack();
6e9065d7 1380 err = -EINVAL;
a7586743 1381 goto out_free;
6e9065d7 1382 }
6e9065d7 1383
a7586743 1384 vfree(buf1);
6e9065d7
AB
1385 return 0;
1386
a7586743
AB
1387out_free:
1388 vfree(buf1);
6e9065d7
AB
1389 return err;
1390}
1391
801c135c 1392/**
97d6104b 1393 * ubi_self_check_all_ff - check that a region of flash is empty.
801c135c
AB
1394 * @ubi: UBI device description object
1395 * @pnum: the physical eraseblock number to check
1396 * @offset: the starting offset within the physical eraseblock to check
1397 * @len: the length of the region to check
1398 *
1399 * This function returns zero if only 0xFF bytes are present at offset
adbf05e3
AB
1400 * @offset of the physical eraseblock @pnum, and a negative error code if not
1401 * or if an error occurred.
801c135c 1402 */
97d6104b 1403int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
801c135c
AB
1404{
1405 size_t read;
1406 int err;
332873d6 1407 void *buf;
801c135c
AB
1408 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1409
64575574 1410 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1411 return 0;
1412
3d46b316 1413 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
332873d6 1414 if (!buf) {
32608703 1415 ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
332873d6
AB
1416 return 0;
1417 }
1418
329ad399 1419 err = mtd_read(ubi->mtd, addr, len, &read, buf);
d57f4054 1420 if (err && !mtd_is_bitflip(err)) {
32608703 1421 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
049333ce 1422 err, len, pnum, offset, read);
801c135c
AB
1423 goto error;
1424 }
1425
332873d6 1426 err = ubi_check_pattern(buf, 0xFF, len);
801c135c 1427 if (err == 0) {
32608703 1428 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
049333ce 1429 pnum, offset, len);
801c135c
AB
1430 goto fail;
1431 }
1432
332873d6 1433 vfree(buf);
801c135c
AB
1434 return 0;
1435
1436fail:
32608703 1437 ubi_err(ubi, "self-check failed for PEB %d", pnum);
45fc5c81 1438 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
332873d6 1439 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
adbf05e3 1440 err = -EINVAL;
801c135c 1441error:
25886a36 1442 dump_stack();
332873d6 1443 vfree(buf);
801c135c
AB
1444 return err;
1445}