UBI: add ubi_leb_map interface
[linux-2.6-block.git] / drivers / mtd / ubi / eba.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
22 * The UBI Eraseblock Association (EBA) unit.
23 *
24 * This unit is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA unit implements per-logical eraseblock locking. Before accessing a
31 * logical eraseblock it is locked for reading or writing. The per-logical
32 * eraseblock locking is implemented by means of the lock tree. The lock tree
33 * is an RB-tree which refers all the currently locked logical eraseblocks. The
34 * lock tree elements are &struct ltree_entry objects. They are indexed by
35 * (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44#include <linux/slab.h>
45#include <linux/crc32.h>
46#include <linux/err.h>
47#include "ubi.h"
48
e8823bd6
AB
49/* Number of physical eraseblocks reserved for atomic LEB change operation */
50#define EBA_RESERVED_PEBS 1
51
801c135c
AB
52/**
53 * struct ltree_entry - an entry in the lock tree.
54 * @rb: links RB-tree nodes
55 * @vol_id: volume ID of the locked logical eraseblock
56 * @lnum: locked logical eraseblock number
57 * @users: how many tasks are using this logical eraseblock or wait for it
58 * @mutex: read/write mutex to implement read/write access serialization to
59 * the (@vol_id, @lnum) logical eraseblock
60 *
61 * When a logical eraseblock is being locked - corresponding &struct ltree_entry
62 * object is inserted to the lock tree (@ubi->ltree).
63 */
64struct ltree_entry {
65 struct rb_node rb;
66 int vol_id;
67 int lnum;
68 int users;
69 struct rw_semaphore mutex;
70};
71
72/* Slab cache for lock-tree entries */
73static struct kmem_cache *ltree_slab;
74
75/**
76 * next_sqnum - get next sequence number.
77 * @ubi: UBI device description object
78 *
79 * This function returns next sequence number to use, which is just the current
80 * global sequence counter value. It also increases the global sequence
81 * counter.
82 */
83static unsigned long long next_sqnum(struct ubi_device *ubi)
84{
85 unsigned long long sqnum;
86
87 spin_lock(&ubi->ltree_lock);
88 sqnum = ubi->global_sqnum++;
89 spin_unlock(&ubi->ltree_lock);
90
91 return sqnum;
92}
93
94/**
95 * ubi_get_compat - get compatibility flags of a volume.
96 * @ubi: UBI device description object
97 * @vol_id: volume ID
98 *
99 * This function returns compatibility flags for an internal volume. User
100 * volumes have no compatibility flags, so %0 is returned.
101 */
102static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
103{
104 if (vol_id == UBI_LAYOUT_VOL_ID)
105 return UBI_LAYOUT_VOLUME_COMPAT;
106 return 0;
107}
108
109/**
110 * ltree_lookup - look up the lock tree.
111 * @ubi: UBI device description object
112 * @vol_id: volume ID
113 * @lnum: logical eraseblock number
114 *
115 * This function returns a pointer to the corresponding &struct ltree_entry
116 * object if the logical eraseblock is locked and %NULL if it is not.
117 * @ubi->ltree_lock has to be locked.
118 */
119static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
120 int lnum)
121{
122 struct rb_node *p;
123
124 p = ubi->ltree.rb_node;
125 while (p) {
126 struct ltree_entry *le;
127
128 le = rb_entry(p, struct ltree_entry, rb);
129
130 if (vol_id < le->vol_id)
131 p = p->rb_left;
132 else if (vol_id > le->vol_id)
133 p = p->rb_right;
134 else {
135 if (lnum < le->lnum)
136 p = p->rb_left;
137 else if (lnum > le->lnum)
138 p = p->rb_right;
139 else
140 return le;
141 }
142 }
143
144 return NULL;
145}
146
147/**
148 * ltree_add_entry - add new entry to the lock tree.
149 * @ubi: UBI device description object
150 * @vol_id: volume ID
151 * @lnum: logical eraseblock number
152 *
153 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
154 * lock tree. If such entry is already there, its usage counter is increased.
155 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
156 * failed.
157 */
158static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
159 int lnum)
160{
161 struct ltree_entry *le, *le1, *le_free;
162
33818bbb 163 le = kmem_cache_alloc(ltree_slab, GFP_NOFS);
801c135c
AB
164 if (!le)
165 return ERR_PTR(-ENOMEM);
166
167 le->vol_id = vol_id;
168 le->lnum = lnum;
169
170 spin_lock(&ubi->ltree_lock);
171 le1 = ltree_lookup(ubi, vol_id, lnum);
172
173 if (le1) {
174 /*
175 * This logical eraseblock is already locked. The newly
176 * allocated lock entry is not needed.
177 */
178 le_free = le;
179 le = le1;
180 } else {
181 struct rb_node **p, *parent = NULL;
182
183 /*
184 * No lock entry, add the newly allocated one to the
185 * @ubi->ltree RB-tree.
186 */
187 le_free = NULL;
188
189 p = &ubi->ltree.rb_node;
190 while (*p) {
191 parent = *p;
192 le1 = rb_entry(parent, struct ltree_entry, rb);
193
194 if (vol_id < le1->vol_id)
195 p = &(*p)->rb_left;
196 else if (vol_id > le1->vol_id)
197 p = &(*p)->rb_right;
198 else {
199 ubi_assert(lnum != le1->lnum);
200 if (lnum < le1->lnum)
201 p = &(*p)->rb_left;
202 else
203 p = &(*p)->rb_right;
204 }
205 }
206
207 rb_link_node(&le->rb, parent, p);
208 rb_insert_color(&le->rb, &ubi->ltree);
209 }
210 le->users += 1;
211 spin_unlock(&ubi->ltree_lock);
212
213 if (le_free)
214 kmem_cache_free(ltree_slab, le_free);
215
216 return le;
217}
218
219/**
220 * leb_read_lock - lock logical eraseblock for reading.
221 * @ubi: UBI device description object
222 * @vol_id: volume ID
223 * @lnum: logical eraseblock number
224 *
225 * This function locks a logical eraseblock for reading. Returns zero in case
226 * of success and a negative error code in case of failure.
227 */
228static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
229{
230 struct ltree_entry *le;
231
232 le = ltree_add_entry(ubi, vol_id, lnum);
233 if (IS_ERR(le))
234 return PTR_ERR(le);
235 down_read(&le->mutex);
236 return 0;
237}
238
239/**
240 * leb_read_unlock - unlock logical eraseblock.
241 * @ubi: UBI device description object
242 * @vol_id: volume ID
243 * @lnum: logical eraseblock number
244 */
245static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
246{
247 int free = 0;
248 struct ltree_entry *le;
249
250 spin_lock(&ubi->ltree_lock);
251 le = ltree_lookup(ubi, vol_id, lnum);
252 le->users -= 1;
253 ubi_assert(le->users >= 0);
254 if (le->users == 0) {
255 rb_erase(&le->rb, &ubi->ltree);
256 free = 1;
257 }
258 spin_unlock(&ubi->ltree_lock);
259
260 up_read(&le->mutex);
261 if (free)
262 kmem_cache_free(ltree_slab, le);
263}
264
265/**
266 * leb_write_lock - lock logical eraseblock for writing.
267 * @ubi: UBI device description object
268 * @vol_id: volume ID
269 * @lnum: logical eraseblock number
270 *
271 * This function locks a logical eraseblock for writing. Returns zero in case
272 * of success and a negative error code in case of failure.
273 */
274static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
275{
276 struct ltree_entry *le;
277
278 le = ltree_add_entry(ubi, vol_id, lnum);
279 if (IS_ERR(le))
280 return PTR_ERR(le);
281 down_write(&le->mutex);
282 return 0;
283}
284
285/**
286 * leb_write_unlock - unlock logical eraseblock.
287 * @ubi: UBI device description object
288 * @vol_id: volume ID
289 * @lnum: logical eraseblock number
290 */
291static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
292{
293 int free;
294 struct ltree_entry *le;
295
296 spin_lock(&ubi->ltree_lock);
297 le = ltree_lookup(ubi, vol_id, lnum);
298 le->users -= 1;
299 ubi_assert(le->users >= 0);
300 if (le->users == 0) {
301 rb_erase(&le->rb, &ubi->ltree);
302 free = 1;
303 } else
304 free = 0;
305 spin_unlock(&ubi->ltree_lock);
306
307 up_write(&le->mutex);
308 if (free)
309 kmem_cache_free(ltree_slab, le);
310}
311
312/**
313 * ubi_eba_unmap_leb - un-map logical eraseblock.
314 * @ubi: UBI device description object
315 * @vol_id: volume ID
316 * @lnum: logical eraseblock number
317 *
318 * This function un-maps logical eraseblock @lnum and schedules corresponding
319 * physical eraseblock for erasure. Returns zero in case of success and a
320 * negative error code in case of failure.
321 */
322int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum)
323{
324 int idx = vol_id2idx(ubi, vol_id), err, pnum;
325 struct ubi_volume *vol = ubi->volumes[idx];
326
327 if (ubi->ro_mode)
328 return -EROFS;
329
330 err = leb_write_lock(ubi, vol_id, lnum);
331 if (err)
332 return err;
333
334 pnum = vol->eba_tbl[lnum];
335 if (pnum < 0)
336 /* This logical eraseblock is already unmapped */
337 goto out_unlock;
338
339 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
340
341 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
342 err = ubi_wl_put_peb(ubi, pnum, 0);
343
344out_unlock:
345 leb_write_unlock(ubi, vol_id, lnum);
346 return err;
347}
348
349/**
350 * ubi_eba_read_leb - read data.
351 * @ubi: UBI device description object
352 * @vol_id: volume ID
353 * @lnum: logical eraseblock number
354 * @buf: buffer to store the read data
355 * @offset: offset from where to read
356 * @len: how many bytes to read
357 * @check: data CRC check flag
358 *
359 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
360 * bytes. The @check flag only makes sense for static volumes and forces
361 * eraseblock data CRC checking.
362 *
363 * In case of success this function returns zero. In case of a static volume,
364 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
365 * returned for any volume type if an ECC error was detected by the MTD device
366 * driver. Other negative error cored may be returned in case of other errors.
367 */
368int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf,
369 int offset, int len, int check)
370{
371 int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id);
372 struct ubi_vid_hdr *vid_hdr;
373 struct ubi_volume *vol = ubi->volumes[idx];
a6343afb 374 uint32_t uninitialized_var(crc);
801c135c
AB
375
376 err = leb_read_lock(ubi, vol_id, lnum);
377 if (err)
378 return err;
379
380 pnum = vol->eba_tbl[lnum];
381 if (pnum < 0) {
382 /*
383 * The logical eraseblock is not mapped, fill the whole buffer
384 * with 0xFF bytes. The exception is static volumes for which
385 * it is an error to read unmapped logical eraseblocks.
386 */
387 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
388 len, offset, vol_id, lnum);
389 leb_read_unlock(ubi, vol_id, lnum);
390 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
391 memset(buf, 0xFF, len);
392 return 0;
393 }
394
395 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
396 len, offset, vol_id, lnum, pnum);
397
398 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
399 check = 0;
400
401retry:
402 if (check) {
33818bbb 403 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
404 if (!vid_hdr) {
405 err = -ENOMEM;
406 goto out_unlock;
407 }
408
409 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
410 if (err && err != UBI_IO_BITFLIPS) {
411 if (err > 0) {
412 /*
413 * The header is either absent or corrupted.
414 * The former case means there is a bug -
415 * switch to read-only mode just in case.
416 * The latter case means a real corruption - we
417 * may try to recover data. FIXME: but this is
418 * not implemented.
419 */
420 if (err == UBI_IO_BAD_VID_HDR) {
421 ubi_warn("bad VID header at PEB %d, LEB"
422 "%d:%d", pnum, vol_id, lnum);
423 err = -EBADMSG;
424 } else
425 ubi_ro_mode(ubi);
426 }
427 goto out_free;
428 } else if (err == UBI_IO_BITFLIPS)
429 scrub = 1;
430
3261ebd7
CH
431 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
432 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
801c135c 433
3261ebd7 434 crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
435 ubi_free_vid_hdr(ubi, vid_hdr);
436 }
437
438 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
439 if (err) {
440 if (err == UBI_IO_BITFLIPS) {
441 scrub = 1;
442 err = 0;
443 } else if (err == -EBADMSG) {
444 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
445 goto out_unlock;
446 scrub = 1;
447 if (!check) {
448 ubi_msg("force data checking");
449 check = 1;
450 goto retry;
451 }
452 } else
453 goto out_unlock;
454 }
455
456 if (check) {
2ab934b8 457 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
801c135c
AB
458 if (crc1 != crc) {
459 ubi_warn("CRC error: calculated %#08x, must be %#08x",
460 crc1, crc);
461 err = -EBADMSG;
462 goto out_unlock;
463 }
464 }
465
466 if (scrub)
467 err = ubi_wl_scrub_peb(ubi, pnum);
468
469 leb_read_unlock(ubi, vol_id, lnum);
470 return err;
471
472out_free:
473 ubi_free_vid_hdr(ubi, vid_hdr);
474out_unlock:
475 leb_read_unlock(ubi, vol_id, lnum);
476 return err;
477}
478
479/**
480 * recover_peb - recover from write failure.
481 * @ubi: UBI device description object
482 * @pnum: the physical eraseblock to recover
483 * @vol_id: volume ID
484 * @lnum: logical eraseblock number
485 * @buf: data which was not written because of the write failure
486 * @offset: offset of the failed write
487 * @len: how many bytes should have been written
488 *
489 * This function is called in case of a write failure and moves all good data
490 * from the potentially bad physical eraseblock to a good physical eraseblock.
491 * This function also writes the data which was not written due to the failure.
492 * Returns new physical eraseblock number in case of success, and a negative
493 * error code in case of failure.
494 */
495static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
496 const void *buf, int offset, int len)
497{
498 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
499 struct ubi_volume *vol = ubi->volumes[idx];
500 struct ubi_vid_hdr *vid_hdr;
801c135c 501
33818bbb 502 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
503 if (!vid_hdr) {
504 return -ENOMEM;
505 }
506
e88d6e10
AB
507 mutex_lock(&ubi->buf_mutex);
508
801c135c
AB
509retry:
510 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
511 if (new_pnum < 0) {
e88d6e10 512 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
513 ubi_free_vid_hdr(ubi, vid_hdr);
514 return new_pnum;
515 }
516
517 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
518
519 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
520 if (err && err != UBI_IO_BITFLIPS) {
521 if (err > 0)
522 err = -EIO;
523 goto out_put;
524 }
525
3261ebd7 526 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
527 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
528 if (err)
529 goto write_error;
530
531 data_size = offset + len;
e88d6e10 532 memset(ubi->peb_buf1 + offset, 0xFF, len);
801c135c
AB
533
534 /* Read everything before the area where the write failure happened */
535 if (offset > 0) {
e88d6e10
AB
536 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
537 if (err && err != UBI_IO_BITFLIPS)
801c135c 538 goto out_put;
801c135c
AB
539 }
540
e88d6e10 541 memcpy(ubi->peb_buf1 + offset, buf, len);
801c135c 542
e88d6e10
AB
543 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
544 if (err)
801c135c 545 goto write_error;
801c135c 546
e88d6e10 547 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
548 ubi_free_vid_hdr(ubi, vid_hdr);
549
550 vol->eba_tbl[lnum] = new_pnum;
551 ubi_wl_put_peb(ubi, pnum, 1);
552
553 ubi_msg("data was successfully recovered");
554 return 0;
555
556out_put:
e88d6e10 557 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
558 ubi_wl_put_peb(ubi, new_pnum, 1);
559 ubi_free_vid_hdr(ubi, vid_hdr);
560 return err;
561
562write_error:
563 /*
564 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
565 * get another one.
566 */
567 ubi_warn("failed to write to PEB %d", new_pnum);
568 ubi_wl_put_peb(ubi, new_pnum, 1);
569 if (++tries > UBI_IO_RETRIES) {
e88d6e10 570 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
571 ubi_free_vid_hdr(ubi, vid_hdr);
572 return err;
573 }
574 ubi_msg("try again");
575 goto retry;
576}
577
578/**
579 * ubi_eba_write_leb - write data to dynamic volume.
580 * @ubi: UBI device description object
581 * @vol_id: volume ID
582 * @lnum: logical eraseblock number
583 * @buf: the data to write
584 * @offset: offset within the logical eraseblock where to write
585 * @len: how many bytes to write
586 * @dtype: data type
587 *
588 * This function writes data to logical eraseblock @lnum of a dynamic volume
589 * @vol_id. Returns zero in case of success and a negative error code in case
590 * of failure. In case of error, it is possible that something was still
591 * written to the flash media, but may be some garbage.
592 */
593int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum,
594 const void *buf, int offset, int len, int dtype)
595{
596 int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0;
597 struct ubi_volume *vol = ubi->volumes[idx];
598 struct ubi_vid_hdr *vid_hdr;
599
600 if (ubi->ro_mode)
601 return -EROFS;
602
603 err = leb_write_lock(ubi, vol_id, lnum);
604 if (err)
605 return err;
606
607 pnum = vol->eba_tbl[lnum];
608 if (pnum >= 0) {
609 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
610 len, offset, vol_id, lnum, pnum);
611
612 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
613 if (err) {
614 ubi_warn("failed to write data to PEB %d", pnum);
615 if (err == -EIO && ubi->bad_allowed)
616 err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len);
617 if (err)
618 ubi_ro_mode(ubi);
619 }
620 leb_write_unlock(ubi, vol_id, lnum);
621 return err;
622 }
623
624 /*
625 * The logical eraseblock is not mapped. We have to get a free physical
626 * eraseblock and write the volume identifier header there first.
627 */
33818bbb 628 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
629 if (!vid_hdr) {
630 leb_write_unlock(ubi, vol_id, lnum);
631 return -ENOMEM;
632 }
633
634 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7
CH
635 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
636 vid_hdr->vol_id = cpu_to_be32(vol_id);
637 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 638 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 639 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
640
641retry:
642 pnum = ubi_wl_get_peb(ubi, dtype);
643 if (pnum < 0) {
644 ubi_free_vid_hdr(ubi, vid_hdr);
645 leb_write_unlock(ubi, vol_id, lnum);
646 return pnum;
647 }
648
649 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
650 len, offset, vol_id, lnum, pnum);
651
652 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
653 if (err) {
654 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
655 vol_id, lnum, pnum);
656 goto write_error;
657 }
658
393852ec
AB
659 if (len) {
660 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
661 if (err) {
662 ubi_warn("failed to write %d bytes at offset %d of "
663 "LEB %d:%d, PEB %d", len, offset, vol_id,
664 lnum, pnum);
665 goto write_error;
666 }
801c135c
AB
667 }
668
669 vol->eba_tbl[lnum] = pnum;
670
671 leb_write_unlock(ubi, vol_id, lnum);
672 ubi_free_vid_hdr(ubi, vid_hdr);
673 return 0;
674
675write_error:
676 if (err != -EIO || !ubi->bad_allowed) {
677 ubi_ro_mode(ubi);
678 leb_write_unlock(ubi, vol_id, lnum);
679 ubi_free_vid_hdr(ubi, vid_hdr);
680 return err;
681 }
682
683 /*
684 * Fortunately, this is the first write operation to this physical
685 * eraseblock, so just put it and request a new one. We assume that if
686 * this physical eraseblock went bad, the erase code will handle that.
687 */
688 err = ubi_wl_put_peb(ubi, pnum, 1);
689 if (err || ++tries > UBI_IO_RETRIES) {
690 ubi_ro_mode(ubi);
691 leb_write_unlock(ubi, vol_id, lnum);
692 ubi_free_vid_hdr(ubi, vid_hdr);
693 return err;
694 }
695
3261ebd7 696 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
697 ubi_msg("try another PEB");
698 goto retry;
699}
700
701/**
702 * ubi_eba_write_leb_st - write data to static volume.
703 * @ubi: UBI device description object
704 * @vol_id: volume ID
705 * @lnum: logical eraseblock number
706 * @buf: data to write
707 * @len: how many bytes to write
708 * @dtype: data type
709 * @used_ebs: how many logical eraseblocks will this volume contain
710 *
711 * This function writes data to logical eraseblock @lnum of static volume
712 * @vol_id. The @used_ebs argument should contain total number of logical
713 * eraseblock in this static volume.
714 *
715 * When writing to the last logical eraseblock, the @len argument doesn't have
716 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
717 * to the real data size, although the @buf buffer has to contain the
718 * alignment. In all other cases, @len has to be aligned.
719 *
720 * It is prohibited to write more then once to logical eraseblocks of static
721 * volumes. This function returns zero in case of success and a negative error
722 * code in case of failure.
723 */
724int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum,
725 const void *buf, int len, int dtype, int used_ebs)
726{
727 int err, pnum, tries = 0, data_size = len;
728 int idx = vol_id2idx(ubi, vol_id);
729 struct ubi_volume *vol = ubi->volumes[idx];
730 struct ubi_vid_hdr *vid_hdr;
731 uint32_t crc;
732
733 if (ubi->ro_mode)
734 return -EROFS;
735
736 if (lnum == used_ebs - 1)
737 /* If this is the last LEB @len may be unaligned */
738 len = ALIGN(data_size, ubi->min_io_size);
739 else
740 ubi_assert(len % ubi->min_io_size == 0);
741
33818bbb 742 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
743 if (!vid_hdr)
744 return -ENOMEM;
745
746 err = leb_write_lock(ubi, vol_id, lnum);
747 if (err) {
748 ubi_free_vid_hdr(ubi, vid_hdr);
749 return err;
750 }
751
3261ebd7
CH
752 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
753 vid_hdr->vol_id = cpu_to_be32(vol_id);
754 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 755 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 756 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
757
758 crc = crc32(UBI_CRC32_INIT, buf, data_size);
759 vid_hdr->vol_type = UBI_VID_STATIC;
3261ebd7
CH
760 vid_hdr->data_size = cpu_to_be32(data_size);
761 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
762 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
763
764retry:
765 pnum = ubi_wl_get_peb(ubi, dtype);
766 if (pnum < 0) {
767 ubi_free_vid_hdr(ubi, vid_hdr);
768 leb_write_unlock(ubi, vol_id, lnum);
769 return pnum;
770 }
771
772 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
773 len, vol_id, lnum, pnum, used_ebs);
774
775 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
776 if (err) {
777 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
778 vol_id, lnum, pnum);
779 goto write_error;
780 }
781
782 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
783 if (err) {
784 ubi_warn("failed to write %d bytes of data to PEB %d",
785 len, pnum);
786 goto write_error;
787 }
788
789 ubi_assert(vol->eba_tbl[lnum] < 0);
790 vol->eba_tbl[lnum] = pnum;
791
792 leb_write_unlock(ubi, vol_id, lnum);
793 ubi_free_vid_hdr(ubi, vid_hdr);
794 return 0;
795
796write_error:
797 if (err != -EIO || !ubi->bad_allowed) {
798 /*
799 * This flash device does not admit of bad eraseblocks or
800 * something nasty and unexpected happened. Switch to read-only
801 * mode just in case.
802 */
803 ubi_ro_mode(ubi);
804 leb_write_unlock(ubi, vol_id, lnum);
805 ubi_free_vid_hdr(ubi, vid_hdr);
806 return err;
807 }
808
809 err = ubi_wl_put_peb(ubi, pnum, 1);
810 if (err || ++tries > UBI_IO_RETRIES) {
811 ubi_ro_mode(ubi);
812 leb_write_unlock(ubi, vol_id, lnum);
813 ubi_free_vid_hdr(ubi, vid_hdr);
814 return err;
815 }
816
3261ebd7 817 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
818 ubi_msg("try another PEB");
819 goto retry;
820}
821
822/*
823 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
824 * @ubi: UBI device description object
825 * @vol_id: volume ID
826 * @lnum: logical eraseblock number
827 * @buf: data to write
828 * @len: how many bytes to write
829 * @dtype: data type
830 *
831 * This function changes the contents of a logical eraseblock atomically. @buf
832 * has to contain new logical eraseblock data, and @len - the length of the
833 * data, which has to be aligned. This function guarantees that in case of an
834 * unclean reboot the old contents is preserved. Returns zero in case of
835 * success and a negative error code in case of failure.
e8823bd6
AB
836 *
837 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
838 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
801c135c
AB
839 */
840int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum,
841 const void *buf, int len, int dtype)
842{
843 int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id);
844 struct ubi_volume *vol = ubi->volumes[idx];
845 struct ubi_vid_hdr *vid_hdr;
846 uint32_t crc;
847
848 if (ubi->ro_mode)
849 return -EROFS;
850
33818bbb 851 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
852 if (!vid_hdr)
853 return -ENOMEM;
854
e8823bd6 855 mutex_lock(&ubi->alc_mutex);
801c135c 856 err = leb_write_lock(ubi, vol_id, lnum);
e8823bd6
AB
857 if (err)
858 goto out_mutex;
801c135c 859
3261ebd7
CH
860 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
861 vid_hdr->vol_id = cpu_to_be32(vol_id);
862 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 863 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 864 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
865
866 crc = crc32(UBI_CRC32_INIT, buf, len);
84a92580 867 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7 868 vid_hdr->data_size = cpu_to_be32(len);
801c135c 869 vid_hdr->copy_flag = 1;
3261ebd7 870 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
871
872retry:
873 pnum = ubi_wl_get_peb(ubi, dtype);
874 if (pnum < 0) {
e8823bd6
AB
875 err = pnum;
876 goto out_leb_unlock;
801c135c
AB
877 }
878
879 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
880 vol_id, lnum, vol->eba_tbl[lnum], pnum);
881
882 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
883 if (err) {
884 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
885 vol_id, lnum, pnum);
886 goto write_error;
887 }
888
889 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
890 if (err) {
891 ubi_warn("failed to write %d bytes of data to PEB %d",
892 len, pnum);
893 goto write_error;
894 }
895
a443db48
AB
896 if (vol->eba_tbl[lnum] >= 0) {
897 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
e8823bd6
AB
898 if (err)
899 goto out_leb_unlock;
801c135c
AB
900 }
901
902 vol->eba_tbl[lnum] = pnum;
e8823bd6
AB
903
904out_leb_unlock:
801c135c 905 leb_write_unlock(ubi, vol_id, lnum);
e8823bd6
AB
906out_mutex:
907 mutex_unlock(&ubi->alc_mutex);
801c135c 908 ubi_free_vid_hdr(ubi, vid_hdr);
e8823bd6 909 return err;
801c135c
AB
910
911write_error:
912 if (err != -EIO || !ubi->bad_allowed) {
913 /*
914 * This flash device does not admit of bad eraseblocks or
915 * something nasty and unexpected happened. Switch to read-only
916 * mode just in case.
917 */
918 ubi_ro_mode(ubi);
e8823bd6 919 goto out_leb_unlock;
801c135c
AB
920 }
921
922 err = ubi_wl_put_peb(ubi, pnum, 1);
923 if (err || ++tries > UBI_IO_RETRIES) {
924 ubi_ro_mode(ubi);
e8823bd6 925 goto out_leb_unlock;
801c135c
AB
926 }
927
3261ebd7 928 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
929 ubi_msg("try another PEB");
930 goto retry;
931}
932
933/**
934 * ltree_entry_ctor - lock tree entries slab cache constructor.
935 * @obj: the lock-tree entry to construct
936 * @cache: the lock tree entry slab cache
937 * @flags: constructor flags
938 */
4ba9b9d0 939static void ltree_entry_ctor(struct kmem_cache *cache, void *obj)
801c135c
AB
940{
941 struct ltree_entry *le = obj;
942
801c135c
AB
943 le->users = 0;
944 init_rwsem(&le->mutex);
945}
946
947/**
948 * ubi_eba_copy_leb - copy logical eraseblock.
949 * @ubi: UBI device description object
950 * @from: physical eraseblock number from where to copy
951 * @to: physical eraseblock number where to copy
952 * @vid_hdr: VID header of the @from physical eraseblock
953 *
954 * This function copies logical eraseblock from physical eraseblock @from to
955 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
956 * function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation
957 * was canceled because bit-flips were detected at the target PEB, and a
958 * negative error code in case of failure.
959 */
960int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
961 struct ubi_vid_hdr *vid_hdr)
962{
963 int err, vol_id, lnum, data_size, aldata_size, pnum, idx;
964 struct ubi_volume *vol;
965 uint32_t crc;
801c135c 966
3261ebd7
CH
967 vol_id = be32_to_cpu(vid_hdr->vol_id);
968 lnum = be32_to_cpu(vid_hdr->lnum);
801c135c
AB
969
970 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
971
972 if (vid_hdr->vol_type == UBI_VID_STATIC) {
3261ebd7 973 data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
974 aldata_size = ALIGN(data_size, ubi->min_io_size);
975 } else
976 data_size = aldata_size =
3261ebd7 977 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
801c135c 978
801c135c
AB
979 /*
980 * We do not want anybody to write to this logical eraseblock while we
981 * are moving it, so we lock it.
982 */
983 err = leb_write_lock(ubi, vol_id, lnum);
e88d6e10 984 if (err)
801c135c 985 return err;
e88d6e10
AB
986
987 mutex_lock(&ubi->buf_mutex);
801c135c
AB
988
989 /*
990 * But the logical eraseblock might have been put by this time.
991 * Cancel if it is true.
992 */
993 idx = vol_id2idx(ubi, vol_id);
994
995 /*
996 * We may race with volume deletion/re-size, so we have to hold
997 * @ubi->volumes_lock.
998 */
999 spin_lock(&ubi->volumes_lock);
1000 vol = ubi->volumes[idx];
1001 if (!vol) {
1002 dbg_eba("volume %d was removed meanwhile", vol_id);
1003 spin_unlock(&ubi->volumes_lock);
1004 goto out_unlock;
1005 }
1006
1007 pnum = vol->eba_tbl[lnum];
1008 if (pnum != from) {
1009 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1010 "PEB %d, cancel", vol_id, lnum, from, pnum);
1011 spin_unlock(&ubi->volumes_lock);
1012 goto out_unlock;
1013 }
1014 spin_unlock(&ubi->volumes_lock);
1015
1016 /* OK, now the LEB is locked and we can safely start moving it */
1017
1018 dbg_eba("read %d bytes of data", aldata_size);
e88d6e10 1019 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
801c135c
AB
1020 if (err && err != UBI_IO_BITFLIPS) {
1021 ubi_warn("error %d while reading data from PEB %d",
1022 err, from);
1023 goto out_unlock;
1024 }
1025
1026 /*
1027 * Now we have got to calculate how much data we have to to copy. In
1028 * case of a static volume it is fairly easy - the VID header contains
1029 * the data size. In case of a dynamic volume it is more difficult - we
1030 * have to read the contents, cut 0xFF bytes from the end and copy only
1031 * the first part. We must do this to avoid writing 0xFF bytes as it
1032 * may have some side-effects. And not only this. It is important not
1033 * to include those 0xFFs to CRC because later the they may be filled
1034 * by data.
1035 */
1036 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1037 aldata_size = data_size =
e88d6e10 1038 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
801c135c
AB
1039
1040 cond_resched();
e88d6e10 1041 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
801c135c
AB
1042 cond_resched();
1043
1044 /*
1045 * It may turn out to me that the whole @from physical eraseblock
1046 * contains only 0xFF bytes. Then we have to only write the VID header
1047 * and do not write any data. This also means we should not set
1048 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1049 */
1050 if (data_size > 0) {
1051 vid_hdr->copy_flag = 1;
3261ebd7
CH
1052 vid_hdr->data_size = cpu_to_be32(data_size);
1053 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c 1054 }
3261ebd7 1055 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
1056
1057 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1058 if (err)
1059 goto out_unlock;
1060
1061 cond_resched();
1062
1063 /* Read the VID header back and check if it was written correctly */
1064 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1065 if (err) {
1066 if (err != UBI_IO_BITFLIPS)
1067 ubi_warn("cannot read VID header back from PEB %d", to);
1068 goto out_unlock;
1069 }
1070
1071 if (data_size > 0) {
e88d6e10 1072 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
801c135c
AB
1073 if (err)
1074 goto out_unlock;
1075
e88d6e10
AB
1076 cond_resched();
1077
801c135c
AB
1078 /*
1079 * We've written the data and are going to read it back to make
1080 * sure it was written correctly.
1081 */
801c135c 1082
e88d6e10 1083 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
801c135c
AB
1084 if (err) {
1085 if (err != UBI_IO_BITFLIPS)
1086 ubi_warn("cannot read data back from PEB %d",
1087 to);
1088 goto out_unlock;
1089 }
1090
1091 cond_resched();
1092
e88d6e10 1093 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
801c135c
AB
1094 ubi_warn("read data back from PEB %d - it is different",
1095 to);
1096 goto out_unlock;
1097 }
1098 }
1099
1100 ubi_assert(vol->eba_tbl[lnum] == from);
1101 vol->eba_tbl[lnum] = to;
1102
801c135c 1103out_unlock:
e88d6e10 1104 mutex_unlock(&ubi->buf_mutex);
801c135c 1105 leb_write_unlock(ubi, vol_id, lnum);
801c135c
AB
1106 return err;
1107}
1108
1109/**
1110 * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1111 * @ubi: UBI device description object
1112 * @si: scanning information
1113 *
1114 * This function returns zero in case of success and a negative error code in
1115 * case of failure.
1116 */
1117int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1118{
1119 int i, j, err, num_volumes;
1120 struct ubi_scan_volume *sv;
1121 struct ubi_volume *vol;
1122 struct ubi_scan_leb *seb;
1123 struct rb_node *rb;
1124
1125 dbg_eba("initialize EBA unit");
1126
1127 spin_lock_init(&ubi->ltree_lock);
e8823bd6 1128 mutex_init(&ubi->alc_mutex);
801c135c
AB
1129 ubi->ltree = RB_ROOT;
1130
1131 if (ubi_devices_cnt == 0) {
1132 ltree_slab = kmem_cache_create("ubi_ltree_slab",
1133 sizeof(struct ltree_entry), 0,
20c2df83 1134 0, &ltree_entry_ctor);
801c135c
AB
1135 if (!ltree_slab)
1136 return -ENOMEM;
1137 }
1138
1139 ubi->global_sqnum = si->max_sqnum + 1;
1140 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1141
1142 for (i = 0; i < num_volumes; i++) {
1143 vol = ubi->volumes[i];
1144 if (!vol)
1145 continue;
1146
1147 cond_resched();
1148
1149 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1150 GFP_KERNEL);
1151 if (!vol->eba_tbl) {
1152 err = -ENOMEM;
1153 goto out_free;
1154 }
1155
1156 for (j = 0; j < vol->reserved_pebs; j++)
1157 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1158
1159 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1160 if (!sv)
1161 continue;
1162
1163 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1164 if (seb->lnum >= vol->reserved_pebs)
1165 /*
1166 * This may happen in case of an unclean reboot
1167 * during re-size.
1168 */
1169 ubi_scan_move_to_list(sv, seb, &si->erase);
1170 vol->eba_tbl[seb->lnum] = seb->pnum;
1171 }
1172 }
1173
94780d4d
AB
1174 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1175 ubi_err("no enough physical eraseblocks (%d, need %d)",
1176 ubi->avail_pebs, EBA_RESERVED_PEBS);
1177 err = -ENOSPC;
1178 goto out_free;
1179 }
1180 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1181 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1182
801c135c
AB
1183 if (ubi->bad_allowed) {
1184 ubi_calculate_reserved(ubi);
1185
1186 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1187 /* No enough free physical eraseblocks */
1188 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1189 ubi_warn("cannot reserve enough PEBs for bad PEB "
1190 "handling, reserved %d, need %d",
1191 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1192 } else
1193 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1194
1195 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1196 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1197 }
1198
1199 dbg_eba("EBA unit is initialized");
1200 return 0;
1201
1202out_free:
1203 for (i = 0; i < num_volumes; i++) {
1204 if (!ubi->volumes[i])
1205 continue;
1206 kfree(ubi->volumes[i]->eba_tbl);
1207 }
1208 if (ubi_devices_cnt == 0)
1209 kmem_cache_destroy(ltree_slab);
1210 return err;
1211}
1212
1213/**
1214 * ubi_eba_close - close EBA unit.
1215 * @ubi: UBI device description object
1216 */
1217void ubi_eba_close(const struct ubi_device *ubi)
1218{
1219 int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1220
1221 dbg_eba("close EBA unit");
1222
1223 for (i = 0; i < num_volumes; i++) {
1224 if (!ubi->volumes[i])
1225 continue;
1226 kfree(ubi->volumes[i]->eba_tbl);
1227 }
1228 if (ubi_devices_cnt == 1)
1229 kmem_cache_destroy(ltree_slab);
1230}