Merge tag 'usb-6.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-block.git] / drivers / mtd / nand / raw / rockchip-nand-controller.c
CommitLineData
058e0e84
YZ
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Rockchip NAND Flash controller driver.
4 * Copyright (C) 2020 Rockchip Inc.
5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/dma-mapping.h>
11#include <linux/dmaengine.h>
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/module.h>
15#include <linux/mtd/mtd.h>
16#include <linux/mtd/rawnand.h>
17#include <linux/of.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21
22/*
23 * NFC Page Data Layout:
24 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
25 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
26 * ......
27 * NAND Page Data Layout:
28 * 1024 * n data + m Bytes oob
29 * Original Bad Block Mask Location:
30 * First byte of oob(spare).
31 * nand_chip->oob_poi data layout:
32 * 4Bytes sys data + .... + 4Bytes sys data + ECC data.
33 */
34
35/* NAND controller register definition */
36#define NFC_READ (0)
37#define NFC_WRITE (1)
38
39#define NFC_FMCTL (0x00)
40#define FMCTL_CE_SEL_M 0xFF
41#define FMCTL_CE_SEL(x) (1 << (x))
42#define FMCTL_WP BIT(8)
43#define FMCTL_RDY BIT(9)
44
45#define NFC_FMWAIT (0x04)
46#define FLCTL_RST BIT(0)
47#define FLCTL_WR (1) /* 0: read, 1: write */
48#define FLCTL_XFER_ST BIT(2)
49#define FLCTL_XFER_EN BIT(3)
50#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
51#define FLCTL_XFER_READY BIT(20)
52#define FLCTL_XFER_SECTOR (22)
53#define FLCTL_TOG_FIX BIT(29)
54
55#define BCHCTL_BANK_M (7 << 5)
56#define BCHCTL_BANK (5)
57
58#define DMA_ST BIT(0)
59#define DMA_WR (1) /* 0: write, 1: read */
60#define DMA_EN BIT(2)
61#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
62#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
63#define DMA_INC_NUM (9) /* 1 - 16 */
64
65#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
66 (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
67#define INT_DMA BIT(0)
68#define NFC_BANK (0x800)
69#define NFC_BANK_STEP (0x100)
70#define BANK_DATA (0x00)
71#define BANK_ADDR (0x04)
72#define BANK_CMD (0x08)
73#define NFC_SRAM0 (0x1000)
74#define NFC_SRAM1 (0x1400)
75#define NFC_SRAM_SIZE (0x400)
76#define NFC_TIMEOUT (500000)
77#define NFC_MAX_OOB_PER_STEP 128
78#define NFC_MIN_OOB_PER_STEP 64
79#define MAX_DATA_SIZE 0xFFFC
80#define MAX_ADDRESS_CYC 6
81#define NFC_ECC_MAX_MODES 4
82#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
83#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
84#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
85#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
86
87enum nfc_type {
88 NFC_V6,
89 NFC_V8,
90 NFC_V9,
91};
92
93/**
94 * struct rk_ecc_cnt_status: represent a ecc status data.
95 * @err_flag_bit: error flag bit index at register.
96 * @low: ECC count low bit index at register.
97 * @low_mask: mask bit.
98 * @low_bn: ECC count low bit number.
99 * @high: ECC count high bit index at register.
100 * @high_mask: mask bit
101 */
102struct ecc_cnt_status {
103 u8 err_flag_bit;
104 u8 low;
105 u8 low_mask;
106 u8 low_bn;
107 u8 high;
108 u8 high_mask;
109};
110
111/**
112 * @type: NFC version
113 * @ecc_strengths: ECC strengths
114 * @ecc_cfgs: ECC config values
115 * @flctl_off: FLCTL register offset
116 * @bchctl_off: BCHCTL register offset
117 * @dma_data_buf_off: DMA_DATA_BUF register offset
118 * @dma_oob_buf_off: DMA_OOB_BUF register offset
119 * @dma_cfg_off: DMA_CFG register offset
120 * @dma_st_off: DMA_ST register offset
121 * @bch_st_off: BCG_ST register offset
122 * @randmz_off: RANDMZ register offset
123 * @int_en_off: interrupt enable register offset
124 * @int_clr_off: interrupt clean register offset
125 * @int_st_off: interrupt status register offset
126 * @oob0_off: oob0 register offset
127 * @oob1_off: oob1 register offset
128 * @ecc0: represent ECC0 status data
129 * @ecc1: represent ECC1 status data
130 */
131struct nfc_cfg {
132 enum nfc_type type;
133 u8 ecc_strengths[NFC_ECC_MAX_MODES];
134 u32 ecc_cfgs[NFC_ECC_MAX_MODES];
135 u32 flctl_off;
136 u32 bchctl_off;
137 u32 dma_cfg_off;
138 u32 dma_data_buf_off;
139 u32 dma_oob_buf_off;
140 u32 dma_st_off;
141 u32 bch_st_off;
142 u32 randmz_off;
143 u32 int_en_off;
144 u32 int_clr_off;
145 u32 int_st_off;
146 u32 oob0_off;
147 u32 oob1_off;
148 struct ecc_cnt_status ecc0;
149 struct ecc_cnt_status ecc1;
150};
151
152struct rk_nfc_nand_chip {
153 struct list_head node;
154 struct nand_chip chip;
155
156 u16 boot_blks;
157 u16 metadata_size;
158 u32 boot_ecc;
159 u32 timing;
160
161 u8 nsels;
5c8a620a 162 u8 sels[];
058e0e84
YZ
163 /* Nothing after this field. */
164};
165
166struct rk_nfc {
167 struct nand_controller controller;
168 const struct nfc_cfg *cfg;
169 struct device *dev;
170
171 struct clk *nfc_clk;
172 struct clk *ahb_clk;
173 void __iomem *regs;
174
175 u32 selected_bank;
176 u32 band_offset;
177 u32 cur_ecc;
178 u32 cur_timing;
179
180 struct completion done;
181 struct list_head chips;
182
183 u8 *page_buf;
184 u32 *oob_buf;
185 u32 page_buf_size;
186 u32 oob_buf_size;
187
188 unsigned long assigned_cs;
189};
190
191static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
192{
193 return container_of(chip, struct rk_nfc_nand_chip, chip);
194}
195
196static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
197{
198 return (u8 *)p + i * chip->ecc.size;
199}
200
201static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
202{
203 u8 *poi;
204
205 poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
206
207 return poi;
208}
209
210static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
211{
212 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
213 u8 *poi;
214
215 poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
216
217 return poi;
218}
219
220static inline int rk_nfc_data_len(struct nand_chip *chip)
221{
222 return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
223}
224
225static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
226{
227 struct rk_nfc *nfc = nand_get_controller_data(chip);
228
229 return nfc->page_buf + i * rk_nfc_data_len(chip);
230}
231
232static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
233{
234 struct rk_nfc *nfc = nand_get_controller_data(chip);
235
236 return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
237}
238
239static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
240{
241 struct rk_nfc *nfc = nand_get_controller_data(chip);
242 u32 reg, i;
243
244 for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
245 if (strength == nfc->cfg->ecc_strengths[i]) {
246 reg = nfc->cfg->ecc_cfgs[i];
247 break;
248 }
249 }
250
251 if (i >= NFC_ECC_MAX_MODES)
252 return -EINVAL;
253
254 writel(reg, nfc->regs + nfc->cfg->bchctl_off);
255
256 /* Save chip ECC setting */
257 nfc->cur_ecc = strength;
258
259 return 0;
260}
261
262static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
263{
264 struct rk_nfc *nfc = nand_get_controller_data(chip);
265 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
266 struct nand_ecc_ctrl *ecc = &chip->ecc;
267 u32 val;
268
269 if (cs < 0) {
270 nfc->selected_bank = -1;
271 /* Deselect the currently selected target. */
272 val = readl_relaxed(nfc->regs + NFC_FMCTL);
273 val &= ~FMCTL_CE_SEL_M;
274 writel(val, nfc->regs + NFC_FMCTL);
275 return;
276 }
277
278 nfc->selected_bank = rknand->sels[cs];
279 nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
280
281 val = readl_relaxed(nfc->regs + NFC_FMCTL);
282 val &= ~FMCTL_CE_SEL_M;
283 val |= FMCTL_CE_SEL(nfc->selected_bank);
284
285 writel(val, nfc->regs + NFC_FMCTL);
286
287 /*
288 * Compare current chip timing with selected chip timing and
289 * change if needed.
290 */
291 if (nfc->cur_timing != rknand->timing) {
292 writel(rknand->timing, nfc->regs + NFC_FMWAIT);
293 nfc->cur_timing = rknand->timing;
294 }
295
296 /*
297 * Compare current chip ECC setting with selected chip ECC setting and
298 * change if needed.
299 */
300 if (nfc->cur_ecc != ecc->strength)
301 rk_nfc_hw_ecc_setup(chip, ecc->strength);
302}
303
304static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
305{
306 int rc;
307 u32 val;
308
309 rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
310 val & FMCTL_RDY, 10, NFC_TIMEOUT);
311
312 return rc;
313}
314
315static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
316{
317 int i;
318
319 for (i = 0; i < len; i++)
320 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
321 BANK_DATA);
322}
323
324static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
325{
326 int i;
327
328 for (i = 0; i < len; i++)
329 writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
330}
331
332static int rk_nfc_cmd(struct nand_chip *chip,
333 const struct nand_subop *subop)
334{
335 struct rk_nfc *nfc = nand_get_controller_data(chip);
336 unsigned int i, j, remaining, start;
337 int reg_offset = nfc->band_offset;
338 u8 *inbuf = NULL;
339 const u8 *outbuf;
340 u32 cnt = 0;
341 int ret = 0;
342
343 for (i = 0; i < subop->ninstrs; i++) {
344 const struct nand_op_instr *instr = &subop->instrs[i];
345
346 switch (instr->type) {
347 case NAND_OP_CMD_INSTR:
348 writeb(instr->ctx.cmd.opcode,
349 nfc->regs + reg_offset + BANK_CMD);
350 break;
351
352 case NAND_OP_ADDR_INSTR:
353 remaining = nand_subop_get_num_addr_cyc(subop, i);
354 start = nand_subop_get_addr_start_off(subop, i);
355
356 for (j = 0; j < 8 && j + start < remaining; j++)
357 writeb(instr->ctx.addr.addrs[j + start],
358 nfc->regs + reg_offset + BANK_ADDR);
359 break;
360
361 case NAND_OP_DATA_IN_INSTR:
362 case NAND_OP_DATA_OUT_INSTR:
363 start = nand_subop_get_data_start_off(subop, i);
364 cnt = nand_subop_get_data_len(subop, i);
365
366 if (instr->type == NAND_OP_DATA_OUT_INSTR) {
367 outbuf = instr->ctx.data.buf.out + start;
368 rk_nfc_write_buf(nfc, outbuf, cnt);
369 } else {
370 inbuf = instr->ctx.data.buf.in + start;
371 rk_nfc_read_buf(nfc, inbuf, cnt);
372 }
373 break;
374
375 case NAND_OP_WAITRDY_INSTR:
376 if (rk_nfc_wait_ioready(nfc) < 0) {
377 ret = -ETIMEDOUT;
378 dev_err(nfc->dev, "IO not ready\n");
379 }
380 break;
381 }
382 }
383
384 return ret;
385}
386
387static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
388 NAND_OP_PARSER_PATTERN(
389 rk_nfc_cmd,
390 NAND_OP_PARSER_PAT_CMD_ELEM(true),
391 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
392 NAND_OP_PARSER_PAT_CMD_ELEM(true),
393 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
394 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
395 NAND_OP_PARSER_PATTERN(
396 rk_nfc_cmd,
397 NAND_OP_PARSER_PAT_CMD_ELEM(true),
398 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
399 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
400 NAND_OP_PARSER_PAT_CMD_ELEM(true),
401 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
402);
403
404static int rk_nfc_exec_op(struct nand_chip *chip,
405 const struct nand_operation *op,
406 bool check_only)
407{
408 if (!check_only)
409 rk_nfc_select_chip(chip, op->cs);
410
411 return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
412 check_only);
413}
414
415static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
416 const struct nand_interface_config *conf)
417{
418 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
419 struct rk_nfc *nfc = nand_get_controller_data(chip);
420 const struct nand_sdr_timings *timings;
421 u32 rate, tc2rw, trwpw, trw2c;
422 u32 temp;
423
424 if (target < 0)
425 return 0;
426
427 timings = nand_get_sdr_timings(conf);
428 if (IS_ERR(timings))
429 return -EOPNOTSUPP;
430
431 if (IS_ERR(nfc->nfc_clk))
432 rate = clk_get_rate(nfc->ahb_clk);
433 else
434 rate = clk_get_rate(nfc->nfc_clk);
435
436 /* Turn clock rate into kHz. */
437 rate /= 1000;
438
439 tc2rw = 1;
440 trw2c = 1;
441
442 trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
443 trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
444
445 temp = timings->tREA_max / 1000;
446 temp = DIV_ROUND_UP(temp * rate, 1000000);
447
448 if (trwpw < temp)
449 trwpw = temp;
450
451 /*
452 * ACCON: access timing control register
453 * -------------------------------------
454 * 31:18: reserved
455 * 17:12: csrw, clock cycles from the falling edge of CSn to the
456 * falling edge of RDn or WRn
457 * 11:11: reserved
458 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
459 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
460 * rising edge of CSn
461 */
462
463 /* Save chip timing */
464 rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
465
466 return 0;
467}
468
469static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
470 dma_addr_t dma_data, dma_addr_t dma_oob)
471{
472 u32 dma_reg, fl_reg, bch_reg;
473
474 dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
475 (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
476
477 fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
478 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
479
480 if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
481 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
482 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
483 (nfc->selected_bank << BCHCTL_BANK);
484 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
485 }
486
487 writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
488 writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
489 writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
490 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
491 fl_reg |= FLCTL_XFER_ST;
492 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
493}
494
495static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
496{
497 void __iomem *ptr;
498 u32 reg;
499
500 ptr = nfc->regs + nfc->cfg->flctl_off;
501
502 return readl_relaxed_poll_timeout(ptr, reg,
503 reg & FLCTL_XFER_READY,
504 10, NFC_TIMEOUT);
505}
506
507static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
508 int oob_on, int page)
509{
510 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
511 struct rk_nfc *nfc = nand_get_controller_data(chip);
512 struct mtd_info *mtd = nand_to_mtd(chip);
513 struct nand_ecc_ctrl *ecc = &chip->ecc;
514 int i, pages_per_blk;
515
516 pages_per_blk = mtd->erasesize / mtd->writesize;
517 if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
518 (page < (pages_per_blk * rknand->boot_blks)) &&
519 rknand->boot_ecc != ecc->strength) {
520 /*
521 * There's currently no method to notify the MTD framework that
522 * a different ECC strength is in use for the boot blocks.
523 */
524 return -EIO;
525 }
526
527 if (!buf)
528 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
529
530 for (i = 0; i < ecc->steps; i++) {
531 /* Copy data to the NFC buffer. */
532 if (buf)
533 memcpy(rk_nfc_data_ptr(chip, i),
534 rk_nfc_buf_to_data_ptr(chip, buf, i),
535 ecc->size);
536 /*
537 * The first four bytes of OOB are reserved for the
538 * boot ROM. In some debugging cases, such as with a
539 * read, erase and write back test these 4 bytes stored
540 * in OOB also need to be written back.
541 *
542 * The function nand_block_bad detects bad blocks like:
543 *
544 * bad = chip->oob_poi[chip->badblockpos];
545 *
546 * chip->badblockpos == 0 for a large page NAND Flash,
547 * so chip->oob_poi[0] is the bad block mask (BBM).
548 *
549 * The OOB data layout on the NFC is:
550 *
551 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
552 *
553 * or
554 *
555 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
556 *
557 * The code here just swaps the first 4 bytes with the last
558 * 4 bytes without losing any data.
559 *
560 * The chip->oob_poi data layout:
561 *
562 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
563 *
564 * The rk_nfc_ooblayout_free() function already has reserved
d0ca3b92
JJ
565 * these 4 bytes together with 2 bytes for BBM
566 * by reducing it's length:
058e0e84 567 *
d0ca3b92 568 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
058e0e84
YZ
569 */
570 if (!i)
571 memcpy(rk_nfc_oob_ptr(chip, i),
572 rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
573 NFC_SYS_DATA_SIZE);
574 else
575 memcpy(rk_nfc_oob_ptr(chip, i),
576 rk_nfc_buf_to_oob_ptr(chip, i - 1),
577 NFC_SYS_DATA_SIZE);
578 /* Copy ECC data to the NFC buffer. */
579 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
580 rk_nfc_buf_to_oob_ecc_ptr(chip, i),
581 ecc->bytes);
582 }
583
584 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
585 rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
586 return nand_prog_page_end_op(chip);
587}
588
589static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
590 int oob_on, int page)
591{
592 struct mtd_info *mtd = nand_to_mtd(chip);
593 struct rk_nfc *nfc = nand_get_controller_data(chip);
594 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
595 struct nand_ecc_ctrl *ecc = &chip->ecc;
596 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
597 NFC_MIN_OOB_PER_STEP;
598 int pages_per_blk = mtd->erasesize / mtd->writesize;
599 int ret = 0, i, boot_rom_mode = 0;
600 dma_addr_t dma_data, dma_oob;
ea690ad7 601 u32 tmp;
058e0e84
YZ
602 u8 *oob;
603
604 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
605
606 if (buf)
607 memcpy(nfc->page_buf, buf, mtd->writesize);
608 else
609 memset(nfc->page_buf, 0xFF, mtd->writesize);
610
611 /*
612 * The first blocks (4, 8 or 16 depending on the device) are used
613 * by the boot ROM and the first 32 bits of OOB need to link to
614 * the next page address in the same block. We can't directly copy
615 * OOB data from the MTD framework, because this page address
616 * conflicts for example with the bad block marker (BBM),
617 * so we shift all OOB data including the BBM with 4 byte positions.
618 * As a consequence the OOB size available to the MTD framework is
619 * also reduced with 4 bytes.
620 *
621 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
622 *
623 * If a NAND is not a boot medium or the page is not a boot block,
624 * the first 4 bytes are left untouched by writing 0xFF to them.
625 *
626 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
627 *
ea690ad7
JJ
628 * The code here just swaps the first 4 bytes with the last
629 * 4 bytes without losing any data.
630 *
631 * The chip->oob_poi data layout:
632 *
633 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
634 *
058e0e84
YZ
635 * Configure the ECC algorithm supported by the boot ROM.
636 */
637 if ((page < (pages_per_blk * rknand->boot_blks)) &&
638 (chip->options & NAND_IS_BOOT_MEDIUM)) {
639 boot_rom_mode = 1;
640 if (rknand->boot_ecc != ecc->strength)
641 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
642 }
643
644 for (i = 0; i < ecc->steps; i++) {
ea690ad7
JJ
645 if (!i)
646 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
647 else
058e0e84 648 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
058e0e84 649
ea690ad7 650 tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
058e0e84
YZ
651
652 if (nfc->cfg->type == NFC_V9)
ea690ad7 653 nfc->oob_buf[i] = tmp;
058e0e84 654 else
ea690ad7 655 nfc->oob_buf[i * (oob_step / 4)] = tmp;
058e0e84
YZ
656 }
657
658 dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
659 mtd->writesize, DMA_TO_DEVICE);
660 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
661 ecc->steps * oob_step,
662 DMA_TO_DEVICE);
663
664 reinit_completion(&nfc->done);
665 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
666
667 rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
668 dma_oob);
669 ret = wait_for_completion_timeout(&nfc->done,
670 msecs_to_jiffies(100));
671 if (!ret)
672 dev_warn(nfc->dev, "write: wait dma done timeout.\n");
673 /*
674 * Whether the DMA transfer is completed or not. The driver
675 * needs to check the NFC`s status register to see if the data
676 * transfer was completed.
677 */
678 ret = rk_nfc_wait_for_xfer_done(nfc);
679
680 dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
681 DMA_TO_DEVICE);
682 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
683 DMA_TO_DEVICE);
684
685 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
686 rk_nfc_hw_ecc_setup(chip, ecc->strength);
687
688 if (ret) {
689 dev_err(nfc->dev, "write: wait transfer done timeout.\n");
690 return -ETIMEDOUT;
691 }
692
693 return nand_prog_page_end_op(chip);
694}
695
696static int rk_nfc_write_oob(struct nand_chip *chip, int page)
697{
698 return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
699}
700
701static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
702 int page)
703{
704 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
705 struct rk_nfc *nfc = nand_get_controller_data(chip);
706 struct mtd_info *mtd = nand_to_mtd(chip);
707 struct nand_ecc_ctrl *ecc = &chip->ecc;
708 int i, pages_per_blk;
709
710 pages_per_blk = mtd->erasesize / mtd->writesize;
711 if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
712 (page < (pages_per_blk * rknand->boot_blks)) &&
713 rknand->boot_ecc != ecc->strength) {
714 /*
715 * There's currently no method to notify the MTD framework that
716 * a different ECC strength is in use for the boot blocks.
717 */
718 return -EIO;
719 }
720
721 nand_read_page_op(chip, page, 0, NULL, 0);
722 rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
723 for (i = 0; i < ecc->steps; i++) {
724 /*
725 * The first four bytes of OOB are reserved for the
726 * boot ROM. In some debugging cases, such as with a read,
727 * erase and write back test, these 4 bytes also must be
728 * saved somewhere, otherwise this information will be
729 * lost during a write back.
730 */
731 if (!i)
732 memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
733 rk_nfc_oob_ptr(chip, i),
734 NFC_SYS_DATA_SIZE);
735 else
736 memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
737 rk_nfc_oob_ptr(chip, i),
738 NFC_SYS_DATA_SIZE);
739
740 /* Copy ECC data from the NFC buffer. */
741 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
742 rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
743 ecc->bytes);
744
745 /* Copy data from the NFC buffer. */
746 if (buf)
747 memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
748 rk_nfc_data_ptr(chip, i),
749 ecc->size);
750 }
751
752 return 0;
753}
754
755static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
756 int page)
757{
758 struct mtd_info *mtd = nand_to_mtd(chip);
759 struct rk_nfc *nfc = nand_get_controller_data(chip);
760 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
761 struct nand_ecc_ctrl *ecc = &chip->ecc;
762 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
763 NFC_MIN_OOB_PER_STEP;
764 int pages_per_blk = mtd->erasesize / mtd->writesize;
765 dma_addr_t dma_data, dma_oob;
766 int ret = 0, i, cnt, boot_rom_mode = 0;
767 int max_bitflips = 0, bch_st, ecc_fail = 0;
768 u8 *oob;
769 u32 tmp;
770
771 nand_read_page_op(chip, page, 0, NULL, 0);
772
773 dma_data = dma_map_single(nfc->dev, nfc->page_buf,
774 mtd->writesize,
775 DMA_FROM_DEVICE);
776 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
777 ecc->steps * oob_step,
778 DMA_FROM_DEVICE);
779
780 /*
781 * The first blocks (4, 8 or 16 depending on the device)
782 * are used by the boot ROM.
783 * Configure the ECC algorithm supported by the boot ROM.
784 */
785 if ((page < (pages_per_blk * rknand->boot_blks)) &&
786 (chip->options & NAND_IS_BOOT_MEDIUM)) {
787 boot_rom_mode = 1;
788 if (rknand->boot_ecc != ecc->strength)
789 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
790 }
791
792 reinit_completion(&nfc->done);
793 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
794 rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
795 dma_oob);
796 ret = wait_for_completion_timeout(&nfc->done,
797 msecs_to_jiffies(100));
798 if (!ret)
799 dev_warn(nfc->dev, "read: wait dma done timeout.\n");
800 /*
801 * Whether the DMA transfer is completed or not. The driver
802 * needs to check the NFC`s status register to see if the data
803 * transfer was completed.
804 */
805 ret = rk_nfc_wait_for_xfer_done(nfc);
806
807 dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
808 DMA_FROM_DEVICE);
809 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
810 DMA_FROM_DEVICE);
811
812 if (ret) {
813 ret = -ETIMEDOUT;
814 dev_err(nfc->dev, "read: wait transfer done timeout.\n");
815 goto timeout_err;
816 }
817
ea690ad7
JJ
818 for (i = 0; i < ecc->steps; i++) {
819 if (!i)
820 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
821 else
822 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
823
058e0e84
YZ
824 if (nfc->cfg->type == NFC_V9)
825 tmp = nfc->oob_buf[i];
826 else
827 tmp = nfc->oob_buf[i * (oob_step / 4)];
ea690ad7 828
058e0e84
YZ
829 *oob++ = (u8)tmp;
830 *oob++ = (u8)(tmp >> 8);
831 *oob++ = (u8)(tmp >> 16);
832 *oob++ = (u8)(tmp >> 24);
833 }
834
835 for (i = 0; i < (ecc->steps / 2); i++) {
836 bch_st = readl_relaxed(nfc->regs +
837 nfc->cfg->bch_st_off + i * 4);
838 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
839 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
840 mtd->ecc_stats.failed++;
841 ecc_fail = 1;
842 } else {
843 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
844 mtd->ecc_stats.corrected += cnt;
845 max_bitflips = max_t(u32, max_bitflips, cnt);
846
847 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
848 mtd->ecc_stats.corrected += cnt;
849 max_bitflips = max_t(u32, max_bitflips, cnt);
850 }
851 }
852
853 if (buf)
854 memcpy(buf, nfc->page_buf, mtd->writesize);
855
856timeout_err:
857 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
858 rk_nfc_hw_ecc_setup(chip, ecc->strength);
859
860 if (ret)
861 return ret;
862
863 if (ecc_fail) {
864 dev_err(nfc->dev, "read page: %x ecc error!\n", page);
865 return 0;
866 }
867
868 return max_bitflips;
869}
870
871static int rk_nfc_read_oob(struct nand_chip *chip, int page)
872{
873 return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
874}
875
876static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
877{
878 /* Disable flash wp. */
879 writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
880 /* Config default timing 40ns at 150 Mhz NFC clock. */
881 writel(0x1081, nfc->regs + NFC_FMWAIT);
882 nfc->cur_timing = 0x1081;
883 /* Disable randomizer and DMA. */
884 writel(0, nfc->regs + nfc->cfg->randmz_off);
885 writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
886 writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
887}
888
889static irqreturn_t rk_nfc_irq(int irq, void *id)
890{
891 struct rk_nfc *nfc = id;
892 u32 sta, ien;
893
894 sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
895 ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
896
897 if (!(sta & ien))
898 return IRQ_NONE;
899
900 writel(sta, nfc->regs + nfc->cfg->int_clr_off);
901 writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
902
903 complete(&nfc->done);
904
905 return IRQ_HANDLED;
906}
907
908static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
909{
910 int ret;
911
912 if (!IS_ERR(nfc->nfc_clk)) {
913 ret = clk_prepare_enable(nfc->nfc_clk);
914 if (ret) {
915 dev_err(dev, "failed to enable NFC clk\n");
916 return ret;
917 }
918 }
919
920 ret = clk_prepare_enable(nfc->ahb_clk);
921 if (ret) {
922 dev_err(dev, "failed to enable ahb clk\n");
6879854d 923 clk_disable_unprepare(nfc->nfc_clk);
058e0e84
YZ
924 return ret;
925 }
926
927 return 0;
928}
929
930static void rk_nfc_disable_clks(struct rk_nfc *nfc)
931{
6879854d 932 clk_disable_unprepare(nfc->nfc_clk);
058e0e84
YZ
933 clk_disable_unprepare(nfc->ahb_clk);
934}
935
936static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
937 struct mtd_oob_region *oob_region)
938{
939 struct nand_chip *chip = mtd_to_nand(mtd);
940 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
941
942 if (section)
943 return -ERANGE;
944
058e0e84 945 oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
d0ca3b92 946 oob_region->offset = 2;
058e0e84
YZ
947
948 return 0;
949}
950
951static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
952 struct mtd_oob_region *oob_region)
953{
954 struct nand_chip *chip = mtd_to_nand(mtd);
955 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
956
957 if (section)
958 return -ERANGE;
959
960 oob_region->length = mtd->oobsize - rknand->metadata_size;
961 oob_region->offset = rknand->metadata_size;
962
963 return 0;
964}
965
966static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
967 .free = rk_nfc_ooblayout_free,
968 .ecc = rk_nfc_ooblayout_ecc,
969};
970
971static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
972{
973 struct nand_chip *chip = mtd_to_nand(mtd);
974 struct rk_nfc *nfc = nand_get_controller_data(chip);
975 struct nand_ecc_ctrl *ecc = &chip->ecc;
976 const u8 *strengths = nfc->cfg->ecc_strengths;
977 u8 max_strength, nfc_max_strength;
978 int i;
979
980 nfc_max_strength = nfc->cfg->ecc_strengths[0];
981 /* If optional dt settings not present. */
982 if (!ecc->size || !ecc->strength ||
983 ecc->strength > nfc_max_strength) {
984 chip->ecc.size = 1024;
985 ecc->steps = mtd->writesize / ecc->size;
986
987 /*
988 * HW ECC always requests the number of ECC bytes per 1024 byte
989 * blocks. The first 4 OOB bytes are reserved for sys data.
990 */
991 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
992 fls(8 * 1024);
993 if (max_strength > nfc_max_strength)
994 max_strength = nfc_max_strength;
995
996 for (i = 0; i < 4; i++) {
997 if (max_strength >= strengths[i])
998 break;
999 }
1000
1001 if (i >= 4) {
1002 dev_err(nfc->dev, "unsupported ECC strength\n");
1003 return -EOPNOTSUPP;
1004 }
1005
1006 ecc->strength = strengths[i];
1007 }
1008 ecc->steps = mtd->writesize / ecc->size;
1009 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1010
1011 return 0;
1012}
1013
1014static int rk_nfc_attach_chip(struct nand_chip *chip)
1015{
1016 struct mtd_info *mtd = nand_to_mtd(chip);
1017 struct device *dev = mtd->dev.parent;
1018 struct rk_nfc *nfc = nand_get_controller_data(chip);
1019 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1020 struct nand_ecc_ctrl *ecc = &chip->ecc;
1021 int new_page_len, new_oob_len;
1022 void *buf;
1023 int ret;
1024
1025 if (chip->options & NAND_BUSWIDTH_16) {
1026 dev_err(dev, "16 bits bus width not supported");
1027 return -EINVAL;
1028 }
1029
1030 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1031 return 0;
1032
1033 ret = rk_nfc_ecc_init(dev, mtd);
1034 if (ret)
1035 return ret;
1036
1037 rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1038
1039 if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1040 dev_err(dev,
1041 "driver needs at least %d bytes of meta data\n",
1042 NFC_SYS_DATA_SIZE + 2);
1043 return -EIO;
1044 }
1045
1046 /* Check buffer first, avoid duplicate alloc buffer. */
1047 new_page_len = mtd->writesize + mtd->oobsize;
1048 if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1049 buf = krealloc(nfc->page_buf, new_page_len,
1050 GFP_KERNEL | GFP_DMA);
1051 if (!buf)
1052 return -ENOMEM;
1053 nfc->page_buf = buf;
1054 nfc->page_buf_size = new_page_len;
1055 }
1056
1057 new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1058 if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1059 buf = krealloc(nfc->oob_buf, new_oob_len,
1060 GFP_KERNEL | GFP_DMA);
1061 if (!buf) {
1062 kfree(nfc->page_buf);
1063 nfc->page_buf = NULL;
1064 return -ENOMEM;
1065 }
1066 nfc->oob_buf = buf;
1067 nfc->oob_buf_size = new_oob_len;
1068 }
1069
1070 if (!nfc->page_buf) {
1071 nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
1072 if (!nfc->page_buf)
1073 return -ENOMEM;
1074 nfc->page_buf_size = new_page_len;
1075 }
1076
1077 if (!nfc->oob_buf) {
1078 nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
1079 if (!nfc->oob_buf) {
1080 kfree(nfc->page_buf);
1081 nfc->page_buf = NULL;
1082 return -ENOMEM;
1083 }
1084 nfc->oob_buf_size = new_oob_len;
1085 }
1086
1087 chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1088 chip->ecc.write_page = rk_nfc_write_page_hwecc;
1089 chip->ecc.write_oob = rk_nfc_write_oob;
1090
1091 chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1092 chip->ecc.read_page = rk_nfc_read_page_hwecc;
1093 chip->ecc.read_oob = rk_nfc_read_oob;
1094
1095 return 0;
1096}
1097
1098static const struct nand_controller_ops rk_nfc_controller_ops = {
1099 .attach_chip = rk_nfc_attach_chip,
1100 .exec_op = rk_nfc_exec_op,
1101 .setup_interface = rk_nfc_setup_interface,
1102};
1103
1104static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1105 struct device_node *np)
1106{
1107 struct rk_nfc_nand_chip *rknand;
1108 struct nand_chip *chip;
1109 struct mtd_info *mtd;
1110 int nsels;
1111 u32 tmp;
1112 int ret;
1113 int i;
1114
1115 if (!of_get_property(np, "reg", &nsels))
1116 return -ENODEV;
1117 nsels /= sizeof(u32);
1118 if (!nsels || nsels > NFC_MAX_NSELS) {
1119 dev_err(dev, "invalid reg property size %d\n", nsels);
1120 return -EINVAL;
1121 }
1122
1123 rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
1124 GFP_KERNEL);
1125 if (!rknand)
1126 return -ENOMEM;
1127
1128 rknand->nsels = nsels;
1129 for (i = 0; i < nsels; i++) {
1130 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1131 if (ret) {
1132 dev_err(dev, "reg property failure : %d\n", ret);
1133 return ret;
1134 }
1135
1136 if (tmp >= NFC_MAX_NSELS) {
1137 dev_err(dev, "invalid CS: %u\n", tmp);
1138 return -EINVAL;
1139 }
1140
1141 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1142 dev_err(dev, "CS %u already assigned\n", tmp);
1143 return -EINVAL;
1144 }
1145
1146 rknand->sels[i] = tmp;
1147 }
1148
1149 chip = &rknand->chip;
1150 chip->controller = &nfc->controller;
1151
1152 nand_set_flash_node(chip, np);
1153
1154 nand_set_controller_data(chip, nfc);
1155
1156 chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1157 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1158
1159 /* Set default mode in case dt entry is missing. */
1160 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1161
1162 mtd = nand_to_mtd(chip);
1163 mtd->owner = THIS_MODULE;
1164 mtd->dev.parent = dev;
1165
1166 if (!mtd->name) {
1167 dev_err(nfc->dev, "NAND label property is mandatory\n");
1168 return -EINVAL;
1169 }
1170
1171 mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
1172 rk_nfc_hw_init(nfc);
1173 ret = nand_scan(chip, nsels);
1174 if (ret)
1175 return ret;
1176
1177 if (chip->options & NAND_IS_BOOT_MEDIUM) {
1178 ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
1179 rknand->boot_blks = ret ? 0 : tmp;
1180
1181 ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
1182 &tmp);
1183 rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1184 }
1185
1186 ret = mtd_device_register(mtd, NULL, 0);
1187 if (ret) {
1188 dev_err(dev, "MTD parse partition error\n");
1189 nand_cleanup(chip);
1190 return ret;
1191 }
1192
1193 list_add_tail(&rknand->node, &nfc->chips);
1194
1195 return 0;
1196}
1197
1198static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1199{
1200 struct rk_nfc_nand_chip *rknand, *tmp;
1201 struct nand_chip *chip;
1202 int ret;
1203
1204 list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1205 chip = &rknand->chip;
1206 ret = mtd_device_unregister(nand_to_mtd(chip));
1207 WARN_ON(ret);
1208 nand_cleanup(chip);
1209 list_del(&rknand->node);
1210 }
1211}
1212
1213static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1214{
1215 struct device_node *np = dev->of_node, *nand_np;
1216 int nchips = of_get_child_count(np);
1217 int ret;
1218
1219 if (!nchips || nchips > NFC_MAX_NSELS) {
1220 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1221 nchips);
1222 return -EINVAL;
1223 }
1224
1225 for_each_child_of_node(np, nand_np) {
1226 ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
1227 if (ret) {
1228 of_node_put(nand_np);
1229 rk_nfc_chips_cleanup(nfc);
1230 return ret;
1231 }
1232 }
1233
1234 return 0;
1235}
1236
1237static struct nfc_cfg nfc_v6_cfg = {
1238 .type = NFC_V6,
1239 .ecc_strengths = {60, 40, 24, 16},
1240 .ecc_cfgs = {
1241 0x00040011, 0x00040001, 0x00000011, 0x00000001,
1242 },
1243 .flctl_off = 0x08,
1244 .bchctl_off = 0x0C,
1245 .dma_cfg_off = 0x10,
1246 .dma_data_buf_off = 0x14,
1247 .dma_oob_buf_off = 0x18,
1248 .dma_st_off = 0x1C,
1249 .bch_st_off = 0x20,
1250 .randmz_off = 0x150,
1251 .int_en_off = 0x16C,
1252 .int_clr_off = 0x170,
1253 .int_st_off = 0x174,
1254 .oob0_off = 0x200,
1255 .oob1_off = 0x230,
1256 .ecc0 = {
1257 .err_flag_bit = 2,
1258 .low = 3,
1259 .low_mask = 0x1F,
1260 .low_bn = 5,
1261 .high = 27,
1262 .high_mask = 0x1,
1263 },
1264 .ecc1 = {
1265 .err_flag_bit = 15,
1266 .low = 16,
1267 .low_mask = 0x1F,
1268 .low_bn = 5,
1269 .high = 29,
1270 .high_mask = 0x1,
1271 },
1272};
1273
1274static struct nfc_cfg nfc_v8_cfg = {
1275 .type = NFC_V8,
1276 .ecc_strengths = {16, 16, 16, 16},
1277 .ecc_cfgs = {
1278 0x00000001, 0x00000001, 0x00000001, 0x00000001,
1279 },
1280 .flctl_off = 0x08,
1281 .bchctl_off = 0x0C,
1282 .dma_cfg_off = 0x10,
1283 .dma_data_buf_off = 0x14,
1284 .dma_oob_buf_off = 0x18,
1285 .dma_st_off = 0x1C,
1286 .bch_st_off = 0x20,
1287 .randmz_off = 0x150,
1288 .int_en_off = 0x16C,
1289 .int_clr_off = 0x170,
1290 .int_st_off = 0x174,
1291 .oob0_off = 0x200,
1292 .oob1_off = 0x230,
1293 .ecc0 = {
1294 .err_flag_bit = 2,
1295 .low = 3,
1296 .low_mask = 0x1F,
1297 .low_bn = 5,
1298 .high = 27,
1299 .high_mask = 0x1,
1300 },
1301 .ecc1 = {
1302 .err_flag_bit = 15,
1303 .low = 16,
1304 .low_mask = 0x1F,
1305 .low_bn = 5,
1306 .high = 29,
1307 .high_mask = 0x1,
1308 },
1309};
1310
1311static struct nfc_cfg nfc_v9_cfg = {
1312 .type = NFC_V9,
1313 .ecc_strengths = {70, 60, 40, 16},
1314 .ecc_cfgs = {
1315 0x00000001, 0x06000001, 0x04000001, 0x02000001,
1316 },
1317 .flctl_off = 0x10,
1318 .bchctl_off = 0x20,
1319 .dma_cfg_off = 0x30,
1320 .dma_data_buf_off = 0x34,
1321 .dma_oob_buf_off = 0x38,
1322 .dma_st_off = 0x3C,
1323 .bch_st_off = 0x150,
1324 .randmz_off = 0x208,
1325 .int_en_off = 0x120,
1326 .int_clr_off = 0x124,
1327 .int_st_off = 0x128,
1328 .oob0_off = 0x200,
1329 .oob1_off = 0x204,
1330 .ecc0 = {
1331 .err_flag_bit = 2,
1332 .low = 3,
1333 .low_mask = 0x7F,
1334 .low_bn = 7,
1335 .high = 0,
1336 .high_mask = 0x0,
1337 },
1338 .ecc1 = {
1339 .err_flag_bit = 18,
1340 .low = 19,
1341 .low_mask = 0x7F,
1342 .low_bn = 7,
1343 .high = 0,
1344 .high_mask = 0x0,
1345 },
1346};
1347
1348static const struct of_device_id rk_nfc_id_table[] = {
1349 {
1350 .compatible = "rockchip,px30-nfc",
1351 .data = &nfc_v9_cfg
1352 },
1353 {
1354 .compatible = "rockchip,rk2928-nfc",
1355 .data = &nfc_v6_cfg
1356 },
1357 {
1358 .compatible = "rockchip,rv1108-nfc",
1359 .data = &nfc_v8_cfg
1360 },
1361 { /* sentinel */ }
1362};
1363MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1364
1365static int rk_nfc_probe(struct platform_device *pdev)
1366{
1367 struct device *dev = &pdev->dev;
1368 struct rk_nfc *nfc;
1369 int ret, irq;
1370
1371 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1372 if (!nfc)
1373 return -ENOMEM;
1374
1375 nand_controller_init(&nfc->controller);
1376 INIT_LIST_HEAD(&nfc->chips);
1377 nfc->controller.ops = &rk_nfc_controller_ops;
1378
1379 nfc->cfg = of_device_get_match_data(dev);
1380 nfc->dev = dev;
1381
1382 init_completion(&nfc->done);
1383
1384 nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1385 if (IS_ERR(nfc->regs)) {
1386 ret = PTR_ERR(nfc->regs);
1387 goto release_nfc;
1388 }
1389
1390 nfc->nfc_clk = devm_clk_get(dev, "nfc");
1391 if (IS_ERR(nfc->nfc_clk)) {
1392 dev_dbg(dev, "no NFC clk\n");
1393 /* Some earlier models, such as rk3066, have no NFC clk. */
1394 }
1395
1396 nfc->ahb_clk = devm_clk_get(dev, "ahb");
1397 if (IS_ERR(nfc->ahb_clk)) {
1398 dev_err(dev, "no ahb clk\n");
1399 ret = PTR_ERR(nfc->ahb_clk);
1400 goto release_nfc;
1401 }
1402
1403 ret = rk_nfc_enable_clks(dev, nfc);
1404 if (ret)
1405 goto release_nfc;
1406
1407 irq = platform_get_irq(pdev, 0);
1408 if (irq < 0) {
058e0e84
YZ
1409 ret = -EINVAL;
1410 goto clk_disable;
1411 }
1412
1413 writel(0, nfc->regs + nfc->cfg->int_en_off);
1414 ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
1415 if (ret) {
1416 dev_err(dev, "failed to request NFC irq\n");
1417 goto clk_disable;
1418 }
1419
1420 platform_set_drvdata(pdev, nfc);
1421
1422 ret = rk_nfc_nand_chips_init(dev, nfc);
1423 if (ret) {
1424 dev_err(dev, "failed to init NAND chips\n");
1425 goto clk_disable;
1426 }
1427 return 0;
1428
1429clk_disable:
1430 rk_nfc_disable_clks(nfc);
1431release_nfc:
1432 return ret;
1433}
1434
ec185b18 1435static void rk_nfc_remove(struct platform_device *pdev)
058e0e84
YZ
1436{
1437 struct rk_nfc *nfc = platform_get_drvdata(pdev);
1438
1439 kfree(nfc->page_buf);
1440 kfree(nfc->oob_buf);
1441 rk_nfc_chips_cleanup(nfc);
1442 rk_nfc_disable_clks(nfc);
058e0e84
YZ
1443}
1444
1445static int __maybe_unused rk_nfc_suspend(struct device *dev)
1446{
1447 struct rk_nfc *nfc = dev_get_drvdata(dev);
1448
1449 rk_nfc_disable_clks(nfc);
1450
1451 return 0;
1452}
1453
1454static int __maybe_unused rk_nfc_resume(struct device *dev)
1455{
1456 struct rk_nfc *nfc = dev_get_drvdata(dev);
1457 struct rk_nfc_nand_chip *rknand;
1458 struct nand_chip *chip;
1459 int ret;
1460 u32 i;
1461
1462 ret = rk_nfc_enable_clks(dev, nfc);
1463 if (ret)
1464 return ret;
1465
1466 /* Reset NAND chip if VCC was powered off. */
1467 list_for_each_entry(rknand, &nfc->chips, node) {
1468 chip = &rknand->chip;
1469 for (i = 0; i < rknand->nsels; i++)
1470 nand_reset(chip, i);
1471 }
1472
1473 return 0;
1474}
1475
1476static const struct dev_pm_ops rk_nfc_pm_ops = {
1477 SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1478};
1479
1480static struct platform_driver rk_nfc_driver = {
1481 .probe = rk_nfc_probe,
ec185b18 1482 .remove_new = rk_nfc_remove,
058e0e84
YZ
1483 .driver = {
1484 .name = "rockchip-nfc",
1485 .of_match_table = rk_nfc_id_table,
1486 .pm = &rk_nfc_pm_ops,
1487 },
1488};
1489
1490module_platform_driver(rk_nfc_driver);
1491
1492MODULE_LICENSE("Dual MIT/GPL");
1493MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
1494MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1495MODULE_ALIAS("platform:rockchip-nand-controller");