media: pxa_camera: remove the dmaengine compat need
[linux-2.6-block.git] / drivers / mtd / nand / raw / marvell_nand.c
CommitLineData
02f26ecf
MR
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 */
9
10#include <linux/module.h>
11#include <linux/clk.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/of_platform.h>
14#include <linux/iopoll.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mfd/syscon.h>
18#include <linux/regmap.h>
19#include <asm/unaligned.h>
20
21#include <linux/dmaengine.h>
22#include <linux/dma-mapping.h>
23#include <linux/dma/pxa-dma.h>
24#include <linux/platform_data/mtd-nand-pxa3xx.h>
25
26/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27#define FIFO_DEPTH 8
28#define FIFO_REP(x) (x / sizeof(u32))
29#define BCH_SEQ_READS (32 / FIFO_DEPTH)
30/* NFC does not support transfers of larger chunks at a time */
31#define MAX_CHUNK_SIZE 2112
32/* NFCv1 cannot read more that 7 bytes of ID */
33#define NFCV1_READID_LEN 7
34/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35#define POLL_PERIOD 0
36#define POLL_TIMEOUT 100000
37/* Interrupt maximum wait period in ms */
38#define IRQ_TIMEOUT 1000
39/* Latency in clock cycles between SoC pins and NFC logic */
40#define MIN_RD_DEL_CNT 3
41/* Maximum number of contiguous address cycles */
42#define MAX_ADDRESS_CYC_NFCV1 5
43#define MAX_ADDRESS_CYC_NFCV2 7
44/* System control registers/bits to enable the NAND controller on some SoCs */
45#define GENCONF_SOC_DEVICE_MUX 0x208
46#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50#define GENCONF_CLK_GATING_CTRL 0x220
51#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52#define GENCONF_ND_CLK_CTRL 0x700
53#define GENCONF_ND_CLK_CTRL_EN BIT(0)
54
55/* NAND controller data flash control register */
56#define NDCR 0x00
57#define NDCR_ALL_INT GENMASK(11, 0)
58#define NDCR_CS1_CMDDM BIT(7)
59#define NDCR_CS0_CMDDM BIT(8)
60#define NDCR_RDYM BIT(11)
61#define NDCR_ND_ARB_EN BIT(12)
62#define NDCR_RA_START BIT(15)
63#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
64#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
65#define NDCR_DWIDTH_M BIT(26)
66#define NDCR_DWIDTH_C BIT(27)
67#define NDCR_ND_RUN BIT(28)
68#define NDCR_DMA_EN BIT(29)
69#define NDCR_ECC_EN BIT(30)
70#define NDCR_SPARE_EN BIT(31)
71#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73
74/* NAND interface timing parameter 0 register */
75#define NDTR0 0x04
76#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
78#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79#define NDTR0_SEL_NRE_EDGE BIT(7)
80#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
81#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
82#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
83#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
84#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
85#define NDTR0_SELCNTR BIT(26)
86#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
87
88/* NAND interface timing parameter 1 register */
89#define NDTR1 0x0C
90#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
91#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
92#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
93#define NDTR1_PRESCALE BIT(14)
94#define NDTR1_WAIT_MODE BIT(15)
95#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
96
97/* NAND controller status register */
98#define NDSR 0x14
99#define NDSR_WRCMDREQ BIT(0)
100#define NDSR_RDDREQ BIT(1)
101#define NDSR_WRDREQ BIT(2)
102#define NDSR_CORERR BIT(3)
103#define NDSR_UNCERR BIT(4)
104#define NDSR_CMDD(cs) BIT(8 - cs)
105#define NDSR_RDY(rb) BIT(11 + rb)
106#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
107
108/* NAND ECC control register */
109#define NDECCCTRL 0x28
110#define NDECCCTRL_BCH_EN BIT(0)
111
112/* NAND controller data buffer register */
113#define NDDB 0x40
114
115/* NAND controller command buffer 0 register */
116#define NDCB0 0x48
117#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
118#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
119#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
120#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121#define NDCB0_DBC BIT(19)
122#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
123#define NDCB0_CSEL BIT(24)
124#define NDCB0_RDY_BYP BIT(27)
125#define NDCB0_LEN_OVRD BIT(28)
126#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
127
128/* NAND controller command buffer 1 register */
129#define NDCB1 0x4C
130#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
131#define NDCB1_ADDRS_PAGE(x) (x << 16)
132
133/* NAND controller command buffer 2 register */
134#define NDCB2 0x50
135#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
136#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
137
138/* NAND controller command buffer 3 register */
139#define NDCB3 0x54
140#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
141#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
142
143/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144#define TYPE_READ 0
145#define TYPE_WRITE 1
146#define TYPE_ERASE 2
147#define TYPE_READ_ID 3
148#define TYPE_STATUS 4
149#define TYPE_RESET 5
150#define TYPE_NAKED_CMD 6
151#define TYPE_NAKED_ADDR 7
152#define TYPE_MASK 7
153#define XTYPE_MONOLITHIC_RW 0
154#define XTYPE_LAST_NAKED_RW 1
155#define XTYPE_FINAL_COMMAND 3
156#define XTYPE_READ 4
157#define XTYPE_WRITE_DISPATCH 4
158#define XTYPE_NAKED_RW 5
159#define XTYPE_COMMAND_DISPATCH 6
160#define XTYPE_MASK 7
161
162/**
163 * Marvell ECC engine works differently than the others, in order to limit the
164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165 * per subpage, and depending on a the desired strength needed by the NAND chip,
166 * a particular layout mixing data/spare/ecc is defined, with a possible last
167 * chunk smaller that the others.
168 *
169 * @writesize: Full page size on which the layout applies
170 * @chunk: Desired ECC chunk size on which the layout applies
171 * @strength: Desired ECC strength (per chunk size bytes) on which the
172 * layout applies
173 * @nchunks: Total number of chunks
174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
175 * repetitions of the pattern:
176 * (data_bytes + spare_bytes + ecc_bytes).
177 * @data_bytes: Number of data bytes per chunk
178 * @spare_bytes: Number of spare bytes per chunk
179 * @ecc_bytes: Number of ecc bytes per chunk
180 * @last_data_bytes: Number of data bytes in the last chunk
181 * @last_spare_bytes: Number of spare bytes in the last chunk
182 * @last_ecc_bytes: Number of ecc bytes in the last chunk
183 */
184struct marvell_hw_ecc_layout {
185 /* Constraints */
186 int writesize;
187 int chunk;
188 int strength;
189 /* Corresponding layout */
190 int nchunks;
191 int full_chunk_cnt;
192 int data_bytes;
193 int spare_bytes;
194 int ecc_bytes;
195 int last_data_bytes;
196 int last_spare_bytes;
197 int last_ecc_bytes;
198};
199
200#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
201 { \
202 .writesize = ws, \
203 .chunk = dc, \
204 .strength = ds, \
205 .nchunks = nc, \
206 .full_chunk_cnt = fcc, \
207 .data_bytes = db, \
208 .spare_bytes = sb, \
209 .ecc_bytes = eb, \
210 .last_data_bytes = ldb, \
211 .last_spare_bytes = lsb, \
212 .last_ecc_bytes = leb, \
213 }
214
215/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
222};
223
224/**
225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227 * The datasheet describes the logic with an error: ADDR5 field is once
228 * declared at the beginning of NDCB2, and another time at its end. Because the
229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230 * to use the last bit of this field instead of the first ones.
231 *
232 * @cs: Wanted CE lane.
233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
234 * selecting the wanted CE lane. This is set once when
235 * the Device Tree is probed.
236 * @rb: Ready/Busy pin for the flash chip
237 */
238struct marvell_nand_chip_sel {
239 unsigned int cs;
240 u32 ndcb0_csel;
241 unsigned int rb;
242};
243
244/**
245 * NAND chip structure: stores NAND chip device related information
246 *
247 * @chip: Base NAND chip structure
248 * @node: Used to store NAND chips into a list
249 * @layout NAND layout when using hardware ECC
250 * @ndcr: Controller register value for this NAND chip
251 * @ndtr0: Timing registers 0 value for this NAND chip
252 * @ndtr1: Timing registers 1 value for this NAND chip
253 * @selected_die: Current active CS
254 * @nsels: Number of CS lines required by the NAND chip
255 * @sels: Array of CS lines descriptions
256 */
257struct marvell_nand_chip {
258 struct nand_chip chip;
259 struct list_head node;
260 const struct marvell_hw_ecc_layout *layout;
261 u32 ndcr;
262 u32 ndtr0;
263 u32 ndtr1;
264 int addr_cyc;
265 int selected_die;
266 unsigned int nsels;
267 struct marvell_nand_chip_sel sels[0];
268};
269
270static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271{
272 return container_of(chip, struct marvell_nand_chip, chip);
273}
274
275static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 *nand)
277{
278 return &nand->sels[nand->selected_die];
279}
280
281/**
282 * NAND controller capabilities for distinction between compatible strings
283 *
284 * @max_cs_nb: Number of Chip Select lines available
285 * @max_rb_nb: Number of Ready/Busy lines available
286 * @need_system_controller: Indicates if the SoC needs to have access to the
287 * system controller (ie. to enable the NAND controller)
288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
289 * fashion way
290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
291 * BCH error detection and correction algorithm,
292 * NDCB3 register has been added
293 * @use_dma: Use dma for data transfers
294 */
295struct marvell_nfc_caps {
296 unsigned int max_cs_nb;
297 unsigned int max_rb_nb;
298 bool need_system_controller;
299 bool legacy_of_bindings;
300 bool is_nfcv2;
301 bool use_dma;
302};
303
304/**
305 * NAND controller structure: stores Marvell NAND controller information
306 *
307 * @controller: Base controller structure
308 * @dev: Parent device (used to print error messages)
309 * @regs: NAND controller registers
6b6de654 310 * @core_clk: Core clock
961ba15c 311 * @reg_clk: Regiters clock
02f26ecf
MR
312 * @complete: Completion object to wait for NAND controller events
313 * @assigned_cs: Bitmask describing already assigned CS lines
314 * @chips: List containing all the NAND chips attached to
315 * this NAND controller
316 * @caps: NAND controller capabilities for each compatible string
317 * @dma_chan: DMA channel (NFCv1 only)
318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
319 */
320struct marvell_nfc {
321 struct nand_hw_control controller;
322 struct device *dev;
323 void __iomem *regs;
6b6de654 324 struct clk *core_clk;
961ba15c 325 struct clk *reg_clk;
02f26ecf
MR
326 struct completion complete;
327 unsigned long assigned_cs;
328 struct list_head chips;
329 struct nand_chip *selected_chip;
330 const struct marvell_nfc_caps *caps;
331
332 /* DMA (NFCv1 only) */
333 bool use_dma;
334 struct dma_chan *dma_chan;
335 u8 *dma_buf;
336};
337
338static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
339{
340 return container_of(ctrl, struct marvell_nfc, controller);
341}
342
343/**
344 * NAND controller timings expressed in NAND Controller clock cycles
345 *
346 * @tRP: ND_nRE pulse width
347 * @tRH: ND_nRE high duration
348 * @tWP: ND_nWE pulse time
349 * @tWH: ND_nWE high duration
350 * @tCS: Enable signal setup time
351 * @tCH: Enable signal hold time
352 * @tADL: Address to write data delay
353 * @tAR: ND_ALE low to ND_nRE low delay
354 * @tWHR: ND_nWE high to ND_nRE low for status read
355 * @tRHW: ND_nRE high duration, read to write delay
356 * @tR: ND_nWE high to ND_nRE low for read
357 */
358struct marvell_nfc_timings {
359 /* NDTR0 fields */
360 unsigned int tRP;
361 unsigned int tRH;
362 unsigned int tWP;
363 unsigned int tWH;
364 unsigned int tCS;
365 unsigned int tCH;
366 unsigned int tADL;
367 /* NDTR1 fields */
368 unsigned int tAR;
369 unsigned int tWHR;
370 unsigned int tRHW;
371 unsigned int tR;
372};
373
374/**
375 * Derives a duration in numbers of clock cycles.
376 *
377 * @ps: Duration in pico-seconds
378 * @period_ns: Clock period in nano-seconds
379 *
380 * Convert the duration in nano-seconds, then divide by the period and
381 * return the number of clock periods.
382 */
383#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
07ad5a72
MR
384#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 period_ns))
02f26ecf
MR
386
387/**
388 * NAND driver structure filled during the parsing of the ->exec_op() subop
389 * subset of instructions.
390 *
391 * @ndcb: Array of values written to NDCBx registers
392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
394 * @rdy_delay_ns: Optional delay after waiting for the RB pin
395 * @data_delay_ns: Optional delay after the data xfer
396 * @data_instr_idx: Index of the data instruction in the subop
397 * @data_instr: Pointer to the data instruction in the subop
398 */
399struct marvell_nfc_op {
400 u32 ndcb[4];
401 unsigned int cle_ale_delay_ns;
402 unsigned int rdy_timeout_ms;
403 unsigned int rdy_delay_ns;
404 unsigned int data_delay_ns;
405 unsigned int data_instr_idx;
406 const struct nand_op_instr *data_instr;
407};
408
409/*
410 * Internal helper to conditionnally apply a delay (from the above structure,
411 * most of the time).
412 */
413static void cond_delay(unsigned int ns)
414{
415 if (!ns)
416 return;
417
418 if (ns < 10000)
419 ndelay(ns);
420 else
421 udelay(DIV_ROUND_UP(ns, 1000));
422}
423
424/*
425 * The controller has many flags that could generate interrupts, most of them
426 * are disabled and polling is used. For the very slow signals, using interrupts
427 * may relax the CPU charge.
428 */
429static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430{
431 u32 reg;
432
433 /* Writing 1 disables the interrupt */
434 reg = readl_relaxed(nfc->regs + NDCR);
435 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436}
437
438static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439{
440 u32 reg;
441
442 /* Writing 0 enables the interrupt */
443 reg = readl_relaxed(nfc->regs + NDCR);
444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445}
446
447static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448{
449 writel_relaxed(int_mask, nfc->regs + NDSR);
450}
451
452static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 bool force_8bit)
454{
455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 u32 ndcr;
457
458 /*
459 * Callers of this function do not verify if the NAND is using a 16-bit
460 * an 8-bit bus for normal operations, so we need to take care of that
461 * here by leaving the configuration unchanged if the NAND does not have
462 * the NAND_BUSWIDTH_16 flag set.
463 */
464 if (!(chip->options & NAND_BUSWIDTH_16))
465 return;
466
467 ndcr = readl_relaxed(nfc->regs + NDCR);
468
469 if (force_8bit)
470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 else
472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473
474 writel_relaxed(ndcr, nfc->regs + NDCR);
475}
476
477static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478{
479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 u32 val;
481 int ret;
482
483 /*
484 * The command is being processed, wait for the ND_RUN bit to be
485 * cleared by the NFC. If not, we must clear it by hand.
486 */
487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 (val & NDCR_ND_RUN) == 0,
489 POLL_PERIOD, POLL_TIMEOUT);
490 if (ret) {
491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 nfc->regs + NDCR);
494 return ret;
495 }
496
497 return 0;
498}
499
500/*
501 * Any time a command has to be sent to the controller, the following sequence
502 * has to be followed:
503 * - call marvell_nfc_prepare_cmd()
504 * -> activate the ND_RUN bit that will kind of 'start a job'
505 * -> wait the signal indicating the NFC is waiting for a command
506 * - send the command (cmd and address cycles)
507 * - enventually send or receive the data
508 * - call marvell_nfc_end_cmd() with the corresponding flag
509 * -> wait the flag to be triggered or cancel the job with a timeout
510 *
511 * The following helpers are here to factorize the code a bit so that
512 * specialized functions responsible for executing the actual NAND
513 * operations do not have to replicate the same code blocks.
514 */
515static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516{
517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 u32 ndcr, val;
519 int ret;
520
521 /* Poll ND_RUN and clear NDSR before issuing any command */
522 ret = marvell_nfc_wait_ndrun(chip);
523 if (ret) {
a76497dc 524 dev_err(nfc->dev, "Last operation did not succeed\n");
02f26ecf
MR
525 return ret;
526 }
527
528 ndcr = readl_relaxed(nfc->regs + NDCR);
529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530
531 /* Assert ND_RUN bit and wait the NFC to be ready */
532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 val & NDSR_WRCMDREQ,
535 POLL_PERIOD, POLL_TIMEOUT);
536 if (ret) {
537 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 return -ETIMEDOUT;
539 }
540
541 /* Command may be written, clear WRCMDREQ status bit */
542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543
544 return 0;
545}
546
547static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 struct marvell_nfc_op *nfc_op)
549{
550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552
553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557
558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 nfc->regs + NDCB0);
560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562
563 /*
564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 * fields are used (only available on NFCv2).
566 */
567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 }
572}
573
574static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 const char *label)
576{
577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 u32 val;
579 int ret;
580
581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 val & flag,
583 POLL_PERIOD, POLL_TIMEOUT);
584
585 if (ret) {
586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 label, val);
588 if (nfc->dma_chan)
589 dmaengine_terminate_all(nfc->dma_chan);
590 return ret;
591 }
592
593 /*
594 * DMA function uses this helper to poll on CMDD bits without wanting
595 * them to be cleared.
596 */
597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 return 0;
599
600 writel_relaxed(flag, nfc->regs + NDSR);
601
602 return 0;
603}
604
605static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606{
607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609
610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611}
612
613static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614{
615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 int ret;
617
618 /* Timeout is expressed in ms */
619 if (!timeout_ms)
620 timeout_ms = IRQ_TIMEOUT;
621
622 init_completion(&nfc->complete);
623
624 marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 ret = wait_for_completion_timeout(&nfc->complete,
626 msecs_to_jiffies(timeout_ms));
627 marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 if (!ret) {
630 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 return -ETIMEDOUT;
632 }
633
634 return 0;
635}
636
637static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638{
639 struct nand_chip *chip = mtd_to_nand(mtd);
640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 u32 ndcr_generic;
643
644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 return;
646
647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 nfc->selected_chip = NULL;
649 marvell_nand->selected_die = -1;
650 return;
651 }
652
653 /*
654 * Do not change the timing registers when using the DT property
655 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
656 * marvell_nand structure are supposedly empty.
657 */
658 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
659 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
660
661 /*
662 * Reset the NDCR register to a clean state for this particular chip,
663 * also clear ND_RUN bit.
664 */
665 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
666 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
667 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
668
669 /* Also reset the interrupt status register */
670 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
671
672 nfc->selected_chip = chip;
673 marvell_nand->selected_die = die_nr;
674}
675
676static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
677{
678 struct marvell_nfc *nfc = dev_id;
679 u32 st = readl_relaxed(nfc->regs + NDSR);
680 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
681
682 /*
683 * RDY interrupt mask is one bit in NDCR while there are two status
684 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
685 */
686 if (st & NDSR_RDY(1))
687 st |= NDSR_RDY(0);
688
689 if (!(st & ien))
690 return IRQ_NONE;
691
692 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
693
694 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
695 complete(&nfc->complete);
696
697 return IRQ_HANDLED;
698}
699
700/* HW ECC related functions */
701static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
702{
703 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
704 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
705
706 if (!(ndcr & NDCR_ECC_EN)) {
707 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
708
709 /*
710 * When enabling BCH, set threshold to 0 to always know the
711 * number of corrected bitflips.
712 */
713 if (chip->ecc.algo == NAND_ECC_BCH)
714 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
715 }
716}
717
718static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
719{
720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
722
723 if (ndcr & NDCR_ECC_EN) {
724 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
725 if (chip->ecc.algo == NAND_ECC_BCH)
726 writel_relaxed(0, nfc->regs + NDECCCTRL);
727 }
728}
729
730/* DMA related helpers */
731static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
732{
733 u32 reg;
734
735 reg = readl_relaxed(nfc->regs + NDCR);
736 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
737}
738
739static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
740{
741 u32 reg;
742
743 reg = readl_relaxed(nfc->regs + NDCR);
744 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
745}
746
747/* Read/write PIO/DMA accessors */
748static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
749 enum dma_data_direction direction,
750 unsigned int len)
751{
752 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
753 struct dma_async_tx_descriptor *tx;
754 struct scatterlist sg;
755 dma_cookie_t cookie;
756 int ret;
757
758 marvell_nfc_enable_dma(nfc);
759 /* Prepare the DMA transfer */
760 sg_init_one(&sg, nfc->dma_buf, dma_len);
761 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
762 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
763 direction == DMA_FROM_DEVICE ?
764 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
765 DMA_PREP_INTERRUPT);
766 if (!tx) {
767 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
768 return -ENXIO;
769 }
770
771 /* Do the task and wait for it to finish */
772 cookie = dmaengine_submit(tx);
773 ret = dma_submit_error(cookie);
774 if (ret)
775 return -EIO;
776
777 dma_async_issue_pending(nfc->dma_chan);
778 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
779 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
780 marvell_nfc_disable_dma(nfc);
781 if (ret) {
782 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
783 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
784 dmaengine_terminate_all(nfc->dma_chan);
785 return -ETIMEDOUT;
786 }
787
788 return 0;
789}
790
791static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
792 unsigned int len)
793{
794 unsigned int last_len = len % FIFO_DEPTH;
795 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
796 int i;
797
798 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
799 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
800
801 if (last_len) {
802 u8 tmp_buf[FIFO_DEPTH];
803
804 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
805 memcpy(in + last_full_offset, tmp_buf, last_len);
806 }
807
808 return 0;
809}
810
811static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
812 unsigned int len)
813{
814 unsigned int last_len = len % FIFO_DEPTH;
815 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
816 int i;
817
818 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
819 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
820
821 if (last_len) {
822 u8 tmp_buf[FIFO_DEPTH];
823
824 memcpy(tmp_buf, out + last_full_offset, last_len);
825 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
826 }
827
828 return 0;
829}
830
831static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
832 u8 *data, int data_len,
833 u8 *spare, int spare_len,
834 u8 *ecc, int ecc_len,
835 unsigned int *max_bitflips)
836{
837 struct mtd_info *mtd = nand_to_mtd(chip);
838 int bf;
839
840 /*
841 * Blank pages (all 0xFF) that have not been written may be recognized
842 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
843 * check if the entire page (with ECC bytes) is actually blank or not.
844 */
845 if (!data)
846 data_len = 0;
847 if (!spare)
848 spare_len = 0;
849 if (!ecc)
850 ecc_len = 0;
851
852 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
853 spare, spare_len, chip->ecc.strength);
854 if (bf < 0) {
855 mtd->ecc_stats.failed++;
856 return;
857 }
858
859 /* Update the stats and max_bitflips */
860 mtd->ecc_stats.corrected += bf;
861 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
862}
863
864/*
865 * Check a chunk is correct or not according to hardware ECC engine.
866 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
867 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
868 * value indicating that a check on the emptyness of the subpage must be
869 * performed before declaring the subpage corrupted.
870 */
871static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
872 unsigned int *max_bitflips)
873{
874 struct mtd_info *mtd = nand_to_mtd(chip);
875 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
876 int bf = 0;
877 u32 ndsr;
878
879 ndsr = readl_relaxed(nfc->regs + NDSR);
880
881 /* Check uncorrectable error flag */
882 if (ndsr & NDSR_UNCERR) {
883 writel_relaxed(ndsr, nfc->regs + NDSR);
884
885 /*
886 * Do not increment ->ecc_stats.failed now, instead, return a
887 * non-zero value to indicate that this chunk was apparently
888 * bad, and it should be check to see if it empty or not. If
889 * the chunk (with ECC bytes) is not declared empty, the calling
890 * function must increment the failure count.
891 */
892 return -EBADMSG;
893 }
894
895 /* Check correctable error flag */
896 if (ndsr & NDSR_CORERR) {
897 writel_relaxed(ndsr, nfc->regs + NDSR);
898
899 if (chip->ecc.algo == NAND_ECC_BCH)
900 bf = NDSR_ERRCNT(ndsr);
901 else
902 bf = 1;
903 }
904
905 /* Update the stats and max_bitflips */
906 mtd->ecc_stats.corrected += bf;
907 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
908
909 return 0;
910}
911
912/* Hamming read helpers */
913static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
914 u8 *data_buf, u8 *oob_buf,
915 bool raw, int page)
916{
917 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
918 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
919 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
920 struct marvell_nfc_op nfc_op = {
921 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
922 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
923 NDCB0_DBC |
924 NDCB0_CMD1(NAND_CMD_READ0) |
925 NDCB0_CMD2(NAND_CMD_READSTART),
926 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
927 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
928 };
929 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
930 int ret;
931
932 /* NFCv2 needs more information about the operation being executed */
933 if (nfc->caps->is_nfcv2)
934 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
935
936 ret = marvell_nfc_prepare_cmd(chip);
937 if (ret)
938 return ret;
939
940 marvell_nfc_send_cmd(chip, &nfc_op);
941 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
942 "RDDREQ while draining FIFO (data/oob)");
943 if (ret)
944 return ret;
945
946 /*
947 * Read the page then the OOB area. Unlike what is shown in current
948 * documentation, spare bytes are protected by the ECC engine, and must
949 * be at the beginning of the OOB area or running this driver on legacy
950 * systems will prevent the discovery of the BBM/BBT.
951 */
952 if (nfc->use_dma) {
953 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
954 lt->data_bytes + oob_bytes);
955 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
956 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
957 } else {
958 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
959 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
960 }
961
962 ret = marvell_nfc_wait_cmdd(chip);
963
964 return ret;
965}
966
967static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
968 struct nand_chip *chip, u8 *buf,
969 int oob_required, int page)
970{
971 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
972 true, page);
973}
974
975static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
976 struct nand_chip *chip,
977 u8 *buf, int oob_required,
978 int page)
979{
980 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
981 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
982 int max_bitflips = 0, ret;
983 u8 *raw_buf;
984
985 marvell_nfc_enable_hw_ecc(chip);
986 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
987 page);
988 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
989 marvell_nfc_disable_hw_ecc(chip);
990
991 if (!ret)
992 return max_bitflips;
993
994 /*
995 * When ECC failures are detected, check if the full page has been
996 * written or not. Ignore the failure if it is actually empty.
997 */
998 raw_buf = kmalloc(full_sz, GFP_KERNEL);
999 if (!raw_buf)
1000 return -ENOMEM;
1001
1002 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1003 lt->data_bytes, true, page);
1004 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1005 &max_bitflips);
1006 kfree(raw_buf);
1007
1008 return max_bitflips;
1009}
1010
1011/*
1012 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1013 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1014 * also stands for ->read_oob().
1015 */
1016static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1017 struct nand_chip *chip, int page)
1018{
1019 /* Invalidate page cache */
1020 chip->pagebuf = -1;
1021
1022 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1023 chip->oob_poi, true, page);
1024}
1025
1026/* Hamming write helpers */
1027static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1028 const u8 *data_buf,
1029 const u8 *oob_buf, bool raw,
1030 int page)
1031{
1032 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1033 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1034 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1035 struct marvell_nfc_op nfc_op = {
1036 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1037 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1038 NDCB0_CMD1(NAND_CMD_SEQIN) |
1039 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1040 NDCB0_DBC,
1041 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1042 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1043 };
1044 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1045 int ret;
1046
1047 /* NFCv2 needs more information about the operation being executed */
1048 if (nfc->caps->is_nfcv2)
1049 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1050
1051 ret = marvell_nfc_prepare_cmd(chip);
1052 if (ret)
1053 return ret;
1054
1055 marvell_nfc_send_cmd(chip, &nfc_op);
1056 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1057 "WRDREQ while loading FIFO (data)");
1058 if (ret)
1059 return ret;
1060
1061 /* Write the page then the OOB area */
1062 if (nfc->use_dma) {
1063 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1064 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1065 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1066 lt->ecc_bytes + lt->spare_bytes);
1067 } else {
1068 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1069 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1070 }
1071
1072 ret = marvell_nfc_wait_cmdd(chip);
1073 if (ret)
1074 return ret;
1075
1076 ret = marvell_nfc_wait_op(chip,
b76401fc 1077 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
02f26ecf
MR
1078 return ret;
1079}
1080
1081static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1082 struct nand_chip *chip,
1083 const u8 *buf,
1084 int oob_required, int page)
1085{
1086 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1087 true, page);
1088}
1089
1090static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1091 struct nand_chip *chip,
1092 const u8 *buf,
1093 int oob_required, int page)
1094{
1095 int ret;
1096
1097 marvell_nfc_enable_hw_ecc(chip);
1098 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1099 false, page);
1100 marvell_nfc_disable_hw_ecc(chip);
1101
1102 return ret;
1103}
1104
1105/*
1106 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1107 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1108 * also stands for ->write_oob().
1109 */
1110static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1111 struct nand_chip *chip,
1112 int page)
1113{
1114 /* Invalidate page cache */
1115 chip->pagebuf = -1;
1116
1117 memset(chip->data_buf, 0xFF, mtd->writesize);
1118
1119 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1120 chip->oob_poi, true, page);
1121}
1122
1123/* BCH read helpers */
1124static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1125 struct nand_chip *chip, u8 *buf,
1126 int oob_required, int page)
1127{
1128 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1129 u8 *oob = chip->oob_poi;
1130 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1131 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1132 lt->last_spare_bytes;
1133 int data_len = lt->data_bytes;
1134 int spare_len = lt->spare_bytes;
1135 int ecc_len = lt->ecc_bytes;
1136 int chunk;
1137
1138 if (oob_required)
1139 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1140
1141 nand_read_page_op(chip, page, 0, NULL, 0);
1142
1143 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1144 /* Update last chunk length */
1145 if (chunk >= lt->full_chunk_cnt) {
1146 data_len = lt->last_data_bytes;
1147 spare_len = lt->last_spare_bytes;
1148 ecc_len = lt->last_ecc_bytes;
1149 }
1150
1151 /* Read data bytes*/
1152 nand_change_read_column_op(chip, chunk * chunk_size,
1153 buf + (lt->data_bytes * chunk),
1154 data_len, false);
1155
1156 /* Read spare bytes */
1157 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1158 spare_len, false);
1159
1160 /* Read ECC bytes */
1161 nand_read_data_op(chip, oob + ecc_offset +
1162 (ALIGN(lt->ecc_bytes, 32) * chunk),
1163 ecc_len, false);
1164 }
1165
1166 return 0;
1167}
1168
1169static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1170 u8 *data, unsigned int data_len,
1171 u8 *spare, unsigned int spare_len,
1172 int page)
1173{
1174 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1175 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1176 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1177 int i, ret;
1178 struct marvell_nfc_op nfc_op = {
1179 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1180 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1181 NDCB0_LEN_OVRD,
1182 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1183 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1184 .ndcb[3] = data_len + spare_len,
1185 };
1186
1187 ret = marvell_nfc_prepare_cmd(chip);
1188 if (ret)
1189 return;
1190
1191 if (chunk == 0)
1192 nfc_op.ndcb[0] |= NDCB0_DBC |
1193 NDCB0_CMD1(NAND_CMD_READ0) |
1194 NDCB0_CMD2(NAND_CMD_READSTART);
1195
1196 /*
90d61763
BB
1197 * Trigger the monolithic read on the first chunk, then naked read on
1198 * intermediate chunks and finally a last naked read on the last chunk.
02f26ecf 1199 */
90d61763 1200 if (chunk == 0)
02f26ecf 1201 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
90d61763
BB
1202 else if (chunk < lt->nchunks - 1)
1203 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
02f26ecf
MR
1204 else
1205 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1206
1207 marvell_nfc_send_cmd(chip, &nfc_op);
1208
1209 /*
1210 * According to the datasheet, when reading from NDDB
1211 * with BCH enabled, after each 32 bytes reads, we
1212 * have to make sure that the NDSR.RDDREQ bit is set.
1213 *
1214 * Drain the FIFO, 8 32-bit reads at a time, and skip
1215 * the polling on the last read.
1216 *
1217 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1218 */
1219 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1220 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1221 "RDDREQ while draining FIFO (data)");
1222 marvell_nfc_xfer_data_in_pio(nfc, data,
1223 FIFO_DEPTH * BCH_SEQ_READS);
1224 data += FIFO_DEPTH * BCH_SEQ_READS;
1225 }
1226
1227 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1228 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1229 "RDDREQ while draining FIFO (OOB)");
1230 marvell_nfc_xfer_data_in_pio(nfc, spare,
1231 FIFO_DEPTH * BCH_SEQ_READS);
1232 spare += FIFO_DEPTH * BCH_SEQ_READS;
1233 }
1234}
1235
1236static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1237 struct nand_chip *chip,
1238 u8 *buf, int oob_required,
1239 int page)
1240{
1241 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1242 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1243 u8 *data = buf, *spare = chip->oob_poi, *ecc;
1244 int max_bitflips = 0;
1245 u32 failure_mask = 0;
1246 int chunk, ecc_offset_in_page, ret;
1247
1248 /*
1249 * With BCH, OOB is not fully used (and thus not read entirely), not
1250 * expected bytes could show up at the end of the OOB buffer if not
1251 * explicitly erased.
1252 */
1253 if (oob_required)
1254 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1255
1256 marvell_nfc_enable_hw_ecc(chip);
1257
1258 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1259 /* Update length for the last chunk */
1260 if (chunk >= lt->full_chunk_cnt) {
1261 data_len = lt->last_data_bytes;
1262 spare_len = lt->last_spare_bytes;
1263 }
1264
1265 /* Read the chunk and detect number of bitflips */
1266 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1267 spare, spare_len, page);
1268 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1269 if (ret)
1270 failure_mask |= BIT(chunk);
1271
1272 data += data_len;
1273 spare += spare_len;
1274 }
1275
1276 marvell_nfc_disable_hw_ecc(chip);
1277
1278 if (!failure_mask)
1279 return max_bitflips;
1280
1281 /*
1282 * Please note that dumping the ECC bytes during a normal read with OOB
1283 * area would add a significant overhead as ECC bytes are "consumed" by
1284 * the controller in normal mode and must be re-read in raw mode. To
1285 * avoid dropping the performances, we prefer not to include them. The
1286 * user should re-read the page in raw mode if ECC bytes are required.
1287 *
1288 * However, for any subpage read error reported by ->correct(), the ECC
1289 * bytes must be read in raw mode and the full subpage must be checked
1290 * to see if it is entirely empty of if there was an actual error.
1291 */
1292 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1293 /* No failure reported for this chunk, move to the next one */
1294 if (!(failure_mask & BIT(chunk)))
1295 continue;
1296
1297 /* Derive ECC bytes positions (in page/buffer) and length */
1298 ecc = chip->oob_poi +
1299 (lt->full_chunk_cnt * lt->spare_bytes) +
1300 lt->last_spare_bytes +
1301 (chunk * ALIGN(lt->ecc_bytes, 32));
1302 ecc_offset_in_page =
1303 (chunk * (lt->data_bytes + lt->spare_bytes +
1304 lt->ecc_bytes)) +
1305 (chunk < lt->full_chunk_cnt ?
1306 lt->data_bytes + lt->spare_bytes :
1307 lt->last_data_bytes + lt->last_spare_bytes);
1308 ecc_len = chunk < lt->full_chunk_cnt ?
1309 lt->ecc_bytes : lt->last_ecc_bytes;
1310
1311 /* Do the actual raw read of the ECC bytes */
1312 nand_change_read_column_op(chip, ecc_offset_in_page,
1313 ecc, ecc_len, false);
1314
1315 /* Derive data/spare bytes positions (in buffer) and length */
1316 data = buf + (chunk * lt->data_bytes);
1317 data_len = chunk < lt->full_chunk_cnt ?
1318 lt->data_bytes : lt->last_data_bytes;
1319 spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1320 lt->ecc_bytes));
1321 spare_len = chunk < lt->full_chunk_cnt ?
1322 lt->spare_bytes : lt->last_spare_bytes;
1323
1324 /* Check the entire chunk (data + spare + ecc) for emptyness */
1325 marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1326 spare_len, ecc, ecc_len,
1327 &max_bitflips);
1328 }
1329
1330 return max_bitflips;
1331}
1332
1333static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1334 struct nand_chip *chip, int page)
1335{
1336 /* Invalidate page cache */
1337 chip->pagebuf = -1;
1338
1339 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1340}
1341
1342static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1343 struct nand_chip *chip, int page)
1344{
1345 /* Invalidate page cache */
1346 chip->pagebuf = -1;
1347
1348 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1349}
1350
1351/* BCH write helpers */
1352static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1353 struct nand_chip *chip,
1354 const u8 *buf,
1355 int oob_required, int page)
1356{
1357 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1358 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1359 int data_len = lt->data_bytes;
1360 int spare_len = lt->spare_bytes;
1361 int ecc_len = lt->ecc_bytes;
02f26ecf
MR
1362 int spare_offset = 0;
1363 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1364 lt->last_spare_bytes;
1365 int chunk;
1366
1367 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1368
1369 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1370 if (chunk >= lt->full_chunk_cnt) {
1371 data_len = lt->last_data_bytes;
1372 spare_len = lt->last_spare_bytes;
1373 ecc_len = lt->last_ecc_bytes;
02f26ecf
MR
1374 }
1375
1376 /* Point to the column of the next chunk */
1377 nand_change_write_column_op(chip, chunk * full_chunk_size,
1378 NULL, 0, false);
1379
1380 /* Write the data */
1381 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1382 data_len, false);
1383
1384 if (!oob_required)
1385 continue;
1386
1387 /* Write the spare bytes */
1388 if (spare_len)
1389 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1390 spare_len, false);
1391
1392 /* Write the ECC bytes */
1393 if (ecc_len)
1394 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1395 ecc_len, false);
1396
1397 spare_offset += spare_len;
1398 ecc_offset += ALIGN(ecc_len, 32);
1399 }
1400
1401 return nand_prog_page_end_op(chip);
1402}
1403
1404static int
1405marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1406 const u8 *data, unsigned int data_len,
1407 const u8 *spare, unsigned int spare_len,
1408 int page)
1409{
1410 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1411 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1412 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
a2ee41fd 1413 u32 xtype;
02f26ecf
MR
1414 int ret;
1415 struct marvell_nfc_op nfc_op = {
1416 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1417 .ndcb[3] = data_len + spare_len,
1418 };
1419
1420 /*
1421 * First operation dispatches the CMD_SEQIN command, issue the address
1422 * cycles and asks for the first chunk of data.
1423 * All operations in the middle (if any) will issue a naked write and
1424 * also ask for data.
1425 * Last operation (if any) asks for the last chunk of data through a
1426 * last naked write.
1427 */
1428 if (chunk == 0) {
a2ee41fd
MR
1429 if (lt->nchunks == 1)
1430 xtype = XTYPE_MONOLITHIC_RW;
1431 else
1432 xtype = XTYPE_WRITE_DISPATCH;
1433
1434 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
02f26ecf
MR
1435 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1436 NDCB0_CMD1(NAND_CMD_SEQIN);
1437 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1438 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1439 } else if (chunk < lt->nchunks - 1) {
1440 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1441 } else {
1442 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1443 }
1444
1445 /* Always dispatch the PAGEPROG command on the last chunk */
1446 if (chunk == lt->nchunks - 1)
1447 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1448
1449 ret = marvell_nfc_prepare_cmd(chip);
1450 if (ret)
1451 return ret;
1452
1453 marvell_nfc_send_cmd(chip, &nfc_op);
1454 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1455 "WRDREQ while loading FIFO (data)");
1456 if (ret)
1457 return ret;
1458
1459 /* Transfer the contents */
1460 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1461 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1462
1463 return 0;
1464}
1465
1466static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1467 struct nand_chip *chip,
1468 const u8 *buf,
1469 int oob_required, int page)
1470{
1471 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1472 const u8 *data = buf;
1473 const u8 *spare = chip->oob_poi;
1474 int data_len = lt->data_bytes;
1475 int spare_len = lt->spare_bytes;
1476 int chunk, ret;
1477
1478 /* Spare data will be written anyway, so clear it to avoid garbage */
1479 if (!oob_required)
1480 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1481
1482 marvell_nfc_enable_hw_ecc(chip);
1483
1484 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1485 if (chunk >= lt->full_chunk_cnt) {
1486 data_len = lt->last_data_bytes;
1487 spare_len = lt->last_spare_bytes;
1488 }
1489
1490 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1491 spare, spare_len, page);
1492 data += data_len;
1493 spare += spare_len;
1494
1495 /*
1496 * Waiting only for CMDD or PAGED is not enough, ECC are
1497 * partially written. No flag is set once the operation is
1498 * really finished but the ND_RUN bit is cleared, so wait for it
1499 * before stepping into the next command.
1500 */
1501 marvell_nfc_wait_ndrun(chip);
1502 }
1503
1504 ret = marvell_nfc_wait_op(chip,
b76401fc 1505 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
02f26ecf
MR
1506
1507 marvell_nfc_disable_hw_ecc(chip);
1508
1509 if (ret)
1510 return ret;
1511
1512 return 0;
1513}
1514
1515static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1516 struct nand_chip *chip,
1517 int page)
1518{
1519 /* Invalidate page cache */
1520 chip->pagebuf = -1;
1521
1522 memset(chip->data_buf, 0xFF, mtd->writesize);
1523
1524 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1525}
1526
1527static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1528 struct nand_chip *chip, int page)
1529{
1530 /* Invalidate page cache */
1531 chip->pagebuf = -1;
1532
1533 memset(chip->data_buf, 0xFF, mtd->writesize);
1534
1535 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1536}
1537
1538/* NAND framework ->exec_op() hooks and related helpers */
1539static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1540 const struct nand_subop *subop,
1541 struct marvell_nfc_op *nfc_op)
1542{
1543 const struct nand_op_instr *instr = NULL;
1544 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1545 bool first_cmd = true;
1546 unsigned int op_id;
1547 int i;
1548
1549 /* Reset the input structure as most of its fields will be OR'ed */
1550 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1551
1552 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1553 unsigned int offset, naddrs;
1554 const u8 *addrs;
1555 int len = nand_subop_get_data_len(subop, op_id);
1556
1557 instr = &subop->instrs[op_id];
1558
1559 switch (instr->type) {
1560 case NAND_OP_CMD_INSTR:
1561 if (first_cmd)
1562 nfc_op->ndcb[0] |=
1563 NDCB0_CMD1(instr->ctx.cmd.opcode);
1564 else
1565 nfc_op->ndcb[0] |=
1566 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1567 NDCB0_DBC;
1568
1569 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1570 first_cmd = false;
1571 break;
1572
1573 case NAND_OP_ADDR_INSTR:
1574 offset = nand_subop_get_addr_start_off(subop, op_id);
1575 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1576 addrs = &instr->ctx.addr.addrs[offset];
1577
1578 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1579
1580 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1581 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1582
1583 if (naddrs >= 5)
1584 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1585 if (naddrs >= 6)
1586 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1587 if (naddrs == 7)
1588 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1589
1590 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1591 break;
1592
1593 case NAND_OP_DATA_IN_INSTR:
1594 nfc_op->data_instr = instr;
1595 nfc_op->data_instr_idx = op_id;
1596 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1597 if (nfc->caps->is_nfcv2) {
1598 nfc_op->ndcb[0] |=
1599 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1600 NDCB0_LEN_OVRD;
1601 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1602 }
1603 nfc_op->data_delay_ns = instr->delay_ns;
1604 break;
1605
1606 case NAND_OP_DATA_OUT_INSTR:
1607 nfc_op->data_instr = instr;
1608 nfc_op->data_instr_idx = op_id;
1609 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1610 if (nfc->caps->is_nfcv2) {
1611 nfc_op->ndcb[0] |=
1612 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1613 NDCB0_LEN_OVRD;
1614 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1615 }
1616 nfc_op->data_delay_ns = instr->delay_ns;
1617 break;
1618
1619 case NAND_OP_WAITRDY_INSTR:
1620 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1621 nfc_op->rdy_delay_ns = instr->delay_ns;
1622 break;
1623 }
1624 }
1625}
1626
1627static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1628 const struct nand_subop *subop,
1629 struct marvell_nfc_op *nfc_op)
1630{
1631 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1632 const struct nand_op_instr *instr = nfc_op->data_instr;
1633 unsigned int op_id = nfc_op->data_instr_idx;
1634 unsigned int len = nand_subop_get_data_len(subop, op_id);
1635 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1636 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1637 int ret;
1638
1639 if (instr->ctx.data.force_8bit)
1640 marvell_nfc_force_byte_access(chip, true);
1641
1642 if (reading) {
1643 u8 *in = instr->ctx.data.buf.in + offset;
1644
1645 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1646 } else {
1647 const u8 *out = instr->ctx.data.buf.out + offset;
1648
1649 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1650 }
1651
1652 if (instr->ctx.data.force_8bit)
1653 marvell_nfc_force_byte_access(chip, false);
1654
1655 return ret;
1656}
1657
1658static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1659 const struct nand_subop *subop)
1660{
1661 struct marvell_nfc_op nfc_op;
1662 bool reading;
1663 int ret;
1664
1665 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1666 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1667
1668 ret = marvell_nfc_prepare_cmd(chip);
1669 if (ret)
1670 return ret;
1671
1672 marvell_nfc_send_cmd(chip, &nfc_op);
1673 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1674 "RDDREQ/WRDREQ while draining raw data");
1675 if (ret)
1676 return ret;
1677
1678 cond_delay(nfc_op.cle_ale_delay_ns);
1679
1680 if (reading) {
1681 if (nfc_op.rdy_timeout_ms) {
1682 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1683 if (ret)
1684 return ret;
1685 }
1686
1687 cond_delay(nfc_op.rdy_delay_ns);
1688 }
1689
1690 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1691 ret = marvell_nfc_wait_cmdd(chip);
1692 if (ret)
1693 return ret;
1694
1695 cond_delay(nfc_op.data_delay_ns);
1696
1697 if (!reading) {
1698 if (nfc_op.rdy_timeout_ms) {
1699 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1700 if (ret)
1701 return ret;
1702 }
1703
1704 cond_delay(nfc_op.rdy_delay_ns);
1705 }
1706
1707 /*
1708 * NDCR ND_RUN bit should be cleared automatically at the end of each
1709 * operation but experience shows that the behavior is buggy when it
1710 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1711 */
1712 if (!reading) {
1713 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1714
1715 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1716 nfc->regs + NDCR);
1717 }
1718
1719 return 0;
1720}
1721
1722static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1723 const struct nand_subop *subop)
1724{
1725 struct marvell_nfc_op nfc_op;
1726 int ret;
1727
1728 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1729
1730 /*
1731 * Naked access are different in that they need to be flagged as naked
1732 * by the controller. Reset the controller registers fields that inform
1733 * on the type and refill them according to the ongoing operation.
1734 */
1735 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1736 NDCB0_CMD_XTYPE(XTYPE_MASK));
1737 switch (subop->instrs[0].type) {
1738 case NAND_OP_CMD_INSTR:
1739 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1740 break;
1741 case NAND_OP_ADDR_INSTR:
1742 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1743 break;
1744 case NAND_OP_DATA_IN_INSTR:
1745 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1746 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1747 break;
1748 case NAND_OP_DATA_OUT_INSTR:
1749 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1750 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1751 break;
1752 default:
1753 /* This should never happen */
1754 break;
1755 }
1756
1757 ret = marvell_nfc_prepare_cmd(chip);
1758 if (ret)
1759 return ret;
1760
1761 marvell_nfc_send_cmd(chip, &nfc_op);
1762
1763 if (!nfc_op.data_instr) {
1764 ret = marvell_nfc_wait_cmdd(chip);
1765 cond_delay(nfc_op.cle_ale_delay_ns);
1766 return ret;
1767 }
1768
1769 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1770 "RDDREQ/WRDREQ while draining raw data");
1771 if (ret)
1772 return ret;
1773
1774 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1775 ret = marvell_nfc_wait_cmdd(chip);
1776 if (ret)
1777 return ret;
1778
1779 /*
1780 * NDCR ND_RUN bit should be cleared automatically at the end of each
1781 * operation but experience shows that the behavior is buggy when it
1782 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1783 */
1784 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1785 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1786
1787 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1788 nfc->regs + NDCR);
1789 }
1790
1791 return 0;
1792}
1793
1794static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1795 const struct nand_subop *subop)
1796{
1797 struct marvell_nfc_op nfc_op;
1798 int ret;
1799
1800 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1801
1802 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1803 cond_delay(nfc_op.rdy_delay_ns);
1804
1805 return ret;
1806}
1807
1808static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1809 const struct nand_subop *subop)
1810{
1811 struct marvell_nfc_op nfc_op;
1812 int ret;
1813
1814 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1815 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1816 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1817
1818 ret = marvell_nfc_prepare_cmd(chip);
1819 if (ret)
1820 return ret;
1821
1822 marvell_nfc_send_cmd(chip, &nfc_op);
1823 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1824 "RDDREQ while reading ID");
1825 if (ret)
1826 return ret;
1827
1828 cond_delay(nfc_op.cle_ale_delay_ns);
1829
1830 if (nfc_op.rdy_timeout_ms) {
1831 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1832 if (ret)
1833 return ret;
1834 }
1835
1836 cond_delay(nfc_op.rdy_delay_ns);
1837
1838 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1839 ret = marvell_nfc_wait_cmdd(chip);
1840 if (ret)
1841 return ret;
1842
1843 cond_delay(nfc_op.data_delay_ns);
1844
1845 return 0;
1846}
1847
1848static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1849 const struct nand_subop *subop)
1850{
1851 struct marvell_nfc_op nfc_op;
1852 int ret;
1853
1854 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1855 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1856 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1857
1858 ret = marvell_nfc_prepare_cmd(chip);
1859 if (ret)
1860 return ret;
1861
1862 marvell_nfc_send_cmd(chip, &nfc_op);
1863 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1864 "RDDREQ while reading status");
1865 if (ret)
1866 return ret;
1867
1868 cond_delay(nfc_op.cle_ale_delay_ns);
1869
1870 if (nfc_op.rdy_timeout_ms) {
1871 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1872 if (ret)
1873 return ret;
1874 }
1875
1876 cond_delay(nfc_op.rdy_delay_ns);
1877
1878 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1879 ret = marvell_nfc_wait_cmdd(chip);
1880 if (ret)
1881 return ret;
1882
1883 cond_delay(nfc_op.data_delay_ns);
1884
1885 return 0;
1886}
1887
1888static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1889 const struct nand_subop *subop)
1890{
1891 struct marvell_nfc_op nfc_op;
1892 int ret;
1893
1894 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1895 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1896
1897 ret = marvell_nfc_prepare_cmd(chip);
1898 if (ret)
1899 return ret;
1900
1901 marvell_nfc_send_cmd(chip, &nfc_op);
1902 ret = marvell_nfc_wait_cmdd(chip);
1903 if (ret)
1904 return ret;
1905
1906 cond_delay(nfc_op.cle_ale_delay_ns);
1907
1908 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1909 if (ret)
1910 return ret;
1911
1912 cond_delay(nfc_op.rdy_delay_ns);
1913
1914 return 0;
1915}
1916
1917static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1918 const struct nand_subop *subop)
1919{
1920 struct marvell_nfc_op nfc_op;
1921 int ret;
1922
1923 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1924 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1925
1926 ret = marvell_nfc_prepare_cmd(chip);
1927 if (ret)
1928 return ret;
1929
1930 marvell_nfc_send_cmd(chip, &nfc_op);
1931 ret = marvell_nfc_wait_cmdd(chip);
1932 if (ret)
1933 return ret;
1934
1935 cond_delay(nfc_op.cle_ale_delay_ns);
1936
1937 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1938 if (ret)
1939 return ret;
1940
1941 cond_delay(nfc_op.rdy_delay_ns);
1942
1943 return 0;
1944}
1945
1946static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1947 /* Monolithic reads/writes */
1948 NAND_OP_PARSER_PATTERN(
1949 marvell_nfc_monolithic_access_exec,
1950 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1951 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1952 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1953 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1954 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1955 NAND_OP_PARSER_PATTERN(
1956 marvell_nfc_monolithic_access_exec,
1957 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1958 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1959 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1960 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1961 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1962 /* Naked commands */
1963 NAND_OP_PARSER_PATTERN(
1964 marvell_nfc_naked_access_exec,
1965 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1966 NAND_OP_PARSER_PATTERN(
1967 marvell_nfc_naked_access_exec,
1968 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1969 NAND_OP_PARSER_PATTERN(
1970 marvell_nfc_naked_access_exec,
1971 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1972 NAND_OP_PARSER_PATTERN(
1973 marvell_nfc_naked_access_exec,
1974 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1975 NAND_OP_PARSER_PATTERN(
1976 marvell_nfc_naked_waitrdy_exec,
1977 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1978 );
1979
1980static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1981 /* Naked commands not supported, use a function for each pattern */
1982 NAND_OP_PARSER_PATTERN(
1983 marvell_nfc_read_id_type_exec,
1984 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1985 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1986 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1987 NAND_OP_PARSER_PATTERN(
1988 marvell_nfc_erase_cmd_type_exec,
1989 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1990 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1991 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1992 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1993 NAND_OP_PARSER_PATTERN(
1994 marvell_nfc_read_status_exec,
1995 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1996 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1997 NAND_OP_PARSER_PATTERN(
1998 marvell_nfc_reset_cmd_type_exec,
1999 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2000 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2001 NAND_OP_PARSER_PATTERN(
2002 marvell_nfc_naked_waitrdy_exec,
2003 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2004 );
2005
2006static int marvell_nfc_exec_op(struct nand_chip *chip,
2007 const struct nand_operation *op,
2008 bool check_only)
2009{
2010 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2011
2012 if (nfc->caps->is_nfcv2)
2013 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2014 op, check_only);
2015 else
2016 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2017 op, check_only);
2018}
2019
2020/*
2021 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2022 * usable.
2023 */
2024static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2025 struct mtd_oob_region *oobregion)
2026{
2027 struct nand_chip *chip = mtd_to_nand(mtd);
2028 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2029
2030 if (section)
2031 return -ERANGE;
2032
2033 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2034 lt->last_ecc_bytes;
2035 oobregion->offset = mtd->oobsize - oobregion->length;
2036
2037 return 0;
2038}
2039
2040static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2041 struct mtd_oob_region *oobregion)
2042{
2043 struct nand_chip *chip = mtd_to_nand(mtd);
2044 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2045
2046 if (section)
2047 return -ERANGE;
2048
2049 /*
2050 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2051 * 4KB page / 4bit BCH combination.
2052 */
2053 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2054 oobregion->offset = 6;
2055 else
2056 oobregion->offset = 2;
2057
2058 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2059 lt->last_spare_bytes - oobregion->offset;
2060
2061 return 0;
2062}
2063
2064static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2065 .ecc = marvell_nand_ooblayout_ecc,
2066 .free = marvell_nand_ooblayout_free,
2067};
2068
2069static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2070 struct nand_ecc_ctrl *ecc)
2071{
2072 struct nand_chip *chip = mtd_to_nand(mtd);
2073 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2074 const struct marvell_hw_ecc_layout *l;
2075 int i;
2076
2077 if (!nfc->caps->is_nfcv2 &&
2078 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2079 dev_err(nfc->dev,
2080 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2081 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2082 return -ENOTSUPP;
2083 }
2084
2085 to_marvell_nand(chip)->layout = NULL;
2086 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2087 l = &marvell_nfc_layouts[i];
2088 if (mtd->writesize == l->writesize &&
2089 ecc->size == l->chunk && ecc->strength == l->strength) {
2090 to_marvell_nand(chip)->layout = l;
2091 break;
2092 }
2093 }
2094
2095 if (!to_marvell_nand(chip)->layout ||
2096 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2097 dev_err(nfc->dev,
2098 "ECC strength %d at page size %d is not supported\n",
2099 ecc->strength, mtd->writesize);
2100 return -ENOTSUPP;
2101 }
2102
2103 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2104 ecc->steps = l->nchunks;
2105 ecc->size = l->data_bytes;
2106
2107 if (ecc->strength == 1) {
2108 chip->ecc.algo = NAND_ECC_HAMMING;
2109 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2110 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2111 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2112 ecc->read_oob = ecc->read_oob_raw;
2113 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2114 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2115 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2116 ecc->write_oob = ecc->write_oob_raw;
2117 } else {
2118 chip->ecc.algo = NAND_ECC_BCH;
2119 ecc->strength = 16;
2120 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2121 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2122 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2123 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2124 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2125 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2126 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2127 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2128 }
2129
2130 return 0;
2131}
2132
2133static int marvell_nand_ecc_init(struct mtd_info *mtd,
2134 struct nand_ecc_ctrl *ecc)
2135{
2136 struct nand_chip *chip = mtd_to_nand(mtd);
2137 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2138 int ret;
2139
2140 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2141 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2142 ecc->size = chip->ecc_step_ds;
2143 ecc->strength = chip->ecc_strength_ds;
2144 } else {
2145 dev_info(nfc->dev,
2146 "No minimum ECC strength, using 1b/512B\n");
2147 ecc->size = 512;
2148 ecc->strength = 1;
2149 }
2150 }
2151
2152 switch (ecc->mode) {
2153 case NAND_ECC_HW:
2154 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2155 if (ret)
2156 return ret;
2157 break;
2158 case NAND_ECC_NONE:
2159 case NAND_ECC_SOFT:
2160 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2161 mtd->writesize != SZ_2K) {
2162 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2163 mtd->writesize);
2164 return -EINVAL;
2165 }
2166 break;
2167 default:
2168 return -EINVAL;
2169 }
2170
2171 return 0;
2172}
2173
2174static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2175static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2176
2177static struct nand_bbt_descr bbt_main_descr = {
2178 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2179 NAND_BBT_2BIT | NAND_BBT_VERSION,
2180 .offs = 8,
2181 .len = 6,
2182 .veroffs = 14,
2183 .maxblocks = 8, /* Last 8 blocks in each chip */
2184 .pattern = bbt_pattern
2185};
2186
2187static struct nand_bbt_descr bbt_mirror_descr = {
2188 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2189 NAND_BBT_2BIT | NAND_BBT_VERSION,
2190 .offs = 8,
2191 .len = 6,
2192 .veroffs = 14,
2193 .maxblocks = 8, /* Last 8 blocks in each chip */
2194 .pattern = bbt_mirror_pattern
2195};
2196
2197static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2198 const struct nand_data_interface
2199 *conf)
2200{
2201 struct nand_chip *chip = mtd_to_nand(mtd);
2202 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2203 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
6b6de654 2204 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
02f26ecf
MR
2205 const struct nand_sdr_timings *sdr;
2206 struct marvell_nfc_timings nfc_tmg;
2207 int read_delay;
2208
2209 sdr = nand_get_sdr_timings(conf);
2210 if (IS_ERR(sdr))
2211 return PTR_ERR(sdr);
2212
2213 /*
2214 * SDR timings are given in pico-seconds while NFC timings must be
2215 * expressed in NAND controller clock cycles, which is half of the
2216 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2217 * This is not written anywhere in the datasheet but was observed
2218 * with an oscilloscope.
2219 *
2220 * NFC datasheet gives equations from which thoses calculations
2221 * are derived, they tend to be slightly more restrictives than the
2222 * given core timings and may improve the overall speed.
2223 */
2224 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2225 nfc_tmg.tRH = nfc_tmg.tRP;
2226 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2227 nfc_tmg.tWH = nfc_tmg.tWP;
2228 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2229 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2230 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2231 /*
2232 * Read delay is the time of propagation from SoC pins to NFC internal
2233 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2234 * EDO mode, an additional delay of tRH must be taken into account so
2235 * the data is sampled on the falling edge instead of the rising edge.
2236 */
2237 read_delay = sdr->tRC_min >= 30000 ?
2238 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2239
2240 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2241 /*
2242 * tWHR and tRHW are supposed to be read to write delays (and vice
2243 * versa) but in some cases, ie. when doing a change column, they must
2244 * be greater than that to be sure tCCS delay is respected.
2245 */
2246 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2247 period_ns) - 2,
2248 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2249 period_ns);
2250
07ad5a72
MR
2251 /*
2252 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2253 * NFCv1: No WAIT_MODE, tR must be maximal.
2254 */
2255 if (nfc->caps->is_nfcv2) {
2256 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2257 } else {
2258 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2259 period_ns);
2260 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2261 nfc_tmg.tR = nfc_tmg.tCH - 3;
2262 else
2263 nfc_tmg.tR = 0;
2264 }
02f26ecf
MR
2265
2266 if (chipnr < 0)
2267 return 0;
2268
2269 marvell_nand->ndtr0 =
2270 NDTR0_TRP(nfc_tmg.tRP) |
2271 NDTR0_TRH(nfc_tmg.tRH) |
2272 NDTR0_ETRP(nfc_tmg.tRP) |
2273 NDTR0_TWP(nfc_tmg.tWP) |
2274 NDTR0_TWH(nfc_tmg.tWH) |
2275 NDTR0_TCS(nfc_tmg.tCS) |
07ad5a72 2276 NDTR0_TCH(nfc_tmg.tCH);
02f26ecf
MR
2277
2278 marvell_nand->ndtr1 =
2279 NDTR1_TAR(nfc_tmg.tAR) |
2280 NDTR1_TWHR(nfc_tmg.tWHR) |
02f26ecf
MR
2281 NDTR1_TR(nfc_tmg.tR);
2282
07ad5a72
MR
2283 if (nfc->caps->is_nfcv2) {
2284 marvell_nand->ndtr0 |=
2285 NDTR0_RD_CNT_DEL(read_delay) |
2286 NDTR0_SELCNTR |
2287 NDTR0_TADL(nfc_tmg.tADL);
2288
2289 marvell_nand->ndtr1 |=
2290 NDTR1_TRHW(nfc_tmg.tRHW) |
2291 NDTR1_WAIT_MODE;
2292 }
2293
02f26ecf
MR
2294 return 0;
2295}
2296
2297static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2298 struct device_node *np)
2299{
2300 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2301 struct marvell_nand_chip *marvell_nand;
2302 struct mtd_info *mtd;
2303 struct nand_chip *chip;
2304 int nsels, ret, i;
2305 u32 cs, rb;
2306
2307 /*
2308 * The legacy "num-cs" property indicates the number of CS on the only
2309 * chip connected to the controller (legacy bindings does not support
f6997bec 2310 * more than one chip). The CS and RB pins are always the #0.
02f26ecf
MR
2311 *
2312 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2313 * properties must be filled. For each chip, expressed as a subnode,
2314 * "reg" points to the CS lines and "nand-rb" to the RB line.
2315 */
f6997bec 2316 if (pdata || nfc->caps->legacy_of_bindings) {
02f26ecf 2317 nsels = 1;
f6997bec
MR
2318 } else {
2319 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2320 if (nsels <= 0) {
2321 dev_err(dev, "missing/invalid reg property\n");
2322 return -EINVAL;
2323 }
02f26ecf
MR
2324 }
2325
2326 /* Alloc the nand chip structure */
2327 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2328 (nsels *
2329 sizeof(struct marvell_nand_chip_sel)),
2330 GFP_KERNEL);
2331 if (!marvell_nand) {
2332 dev_err(dev, "could not allocate chip structure\n");
2333 return -ENOMEM;
2334 }
2335
2336 marvell_nand->nsels = nsels;
2337 marvell_nand->selected_die = -1;
2338
2339 for (i = 0; i < nsels; i++) {
2340 if (pdata || nfc->caps->legacy_of_bindings) {
2341 /*
2342 * Legacy bindings use the CS lines in natural
2343 * order (0, 1, ...)
2344 */
2345 cs = i;
2346 } else {
2347 /* Retrieve CS id */
2348 ret = of_property_read_u32_index(np, "reg", i, &cs);
2349 if (ret) {
2350 dev_err(dev, "could not retrieve reg property: %d\n",
2351 ret);
2352 return ret;
2353 }
2354 }
2355
2356 if (cs >= nfc->caps->max_cs_nb) {
2357 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2358 cs, nfc->caps->max_cs_nb);
2359 return -EINVAL;
2360 }
2361
2362 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2363 dev_err(dev, "CS %d already assigned\n", cs);
2364 return -EINVAL;
2365 }
2366
2367 /*
2368 * The cs variable represents the chip select id, which must be
2369 * converted in bit fields for NDCB0 and NDCB2 to select the
2370 * right chip. Unfortunately, due to a lack of information on
2371 * the subject and incoherent documentation, the user should not
2372 * use CS1 and CS3 at all as asserting them is not supported in
2373 * a reliable way (due to multiplexing inside ADDR5 field).
2374 */
2375 marvell_nand->sels[i].cs = cs;
2376 switch (cs) {
2377 case 0:
2378 case 2:
2379 marvell_nand->sels[i].ndcb0_csel = 0;
2380 break;
2381 case 1:
2382 case 3:
2383 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2384 break;
2385 default:
2386 return -EINVAL;
2387 }
2388
2389 /* Retrieve RB id */
2390 if (pdata || nfc->caps->legacy_of_bindings) {
2391 /* Legacy bindings always use RB #0 */
2392 rb = 0;
2393 } else {
2394 ret = of_property_read_u32_index(np, "nand-rb", i,
2395 &rb);
2396 if (ret) {
2397 dev_err(dev,
2398 "could not retrieve RB property: %d\n",
2399 ret);
2400 return ret;
2401 }
2402 }
2403
2404 if (rb >= nfc->caps->max_rb_nb) {
2405 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2406 rb, nfc->caps->max_rb_nb);
2407 return -EINVAL;
2408 }
2409
2410 marvell_nand->sels[i].rb = rb;
2411 }
2412
2413 chip = &marvell_nand->chip;
2414 chip->controller = &nfc->controller;
2415 nand_set_flash_node(chip, np);
2416
2417 chip->exec_op = marvell_nfc_exec_op;
2418 chip->select_chip = marvell_nfc_select_chip;
07ad5a72 2419 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
02f26ecf
MR
2420 chip->setup_data_interface = marvell_nfc_setup_data_interface;
2421
2422 mtd = nand_to_mtd(chip);
2423 mtd->dev.parent = dev;
2424
2425 /*
2426 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2427 * in the DT node, this entry will be overwritten in nand_scan_ident().
2428 */
2429 chip->ecc.mode = NAND_ECC_HW;
2430
2431 /*
2432 * Save a reference value for timing registers before
2433 * ->setup_data_interface() is called.
2434 */
2435 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2436 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2437
2438 chip->options |= NAND_BUSWIDTH_AUTO;
2439 ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
2440 if (ret) {
2441 dev_err(dev, "could not identify the nand chip\n");
2442 return ret;
2443 }
2444
2445 if (pdata && pdata->flash_bbt)
2446 chip->bbt_options |= NAND_BBT_USE_FLASH;
2447
2448 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2449 /*
2450 * We'll use a bad block table stored in-flash and don't
2451 * allow writing the bad block marker to the flash.
2452 */
2453 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2454 chip->bbt_td = &bbt_main_descr;
2455 chip->bbt_md = &bbt_mirror_descr;
2456 }
2457
2458 /* Save the chip-specific fields of NDCR */
2459 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2460 if (chip->options & NAND_BUSWIDTH_16)
2461 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2462
2463 /*
2464 * On small page NANDs, only one cycle is needed to pass the
2465 * column address.
2466 */
2467 if (mtd->writesize <= 512) {
2468 marvell_nand->addr_cyc = 1;
2469 } else {
2470 marvell_nand->addr_cyc = 2;
2471 marvell_nand->ndcr |= NDCR_RA_START;
2472 }
2473
2474 /*
2475 * Now add the number of cycles needed to pass the row
2476 * address.
2477 *
2478 * Addressing a chip using CS 2 or 3 should also need the third row
2479 * cycle but due to inconsistance in the documentation and lack of
2480 * hardware to test this situation, this case is not supported.
2481 */
2482 if (chip->options & NAND_ROW_ADDR_3)
2483 marvell_nand->addr_cyc += 3;
2484 else
2485 marvell_nand->addr_cyc += 2;
2486
2487 if (pdata) {
2488 chip->ecc.size = pdata->ecc_step_size;
2489 chip->ecc.strength = pdata->ecc_strength;
2490 }
2491
2492 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2493 if (ret) {
2494 dev_err(dev, "ECC init failed: %d\n", ret);
2495 return ret;
2496 }
2497
2498 if (chip->ecc.mode == NAND_ECC_HW) {
2499 /*
2500 * Subpage write not available with hardware ECC, prohibit also
2501 * subpage read as in userspace subpage access would still be
2502 * allowed and subpage write, if used, would lead to numerous
2503 * uncorrectable ECC errors.
2504 */
2505 chip->options |= NAND_NO_SUBPAGE_WRITE;
2506 }
2507
2508 if (pdata || nfc->caps->legacy_of_bindings) {
2509 /*
2510 * We keep the MTD name unchanged to avoid breaking platforms
2511 * where the MTD cmdline parser is used and the bootloader
2512 * has not been updated to use the new naming scheme.
2513 */
2514 mtd->name = "pxa3xx_nand-0";
2515 } else if (!mtd->name) {
2516 /*
2517 * If the new bindings are used and the bootloader has not been
2518 * updated to pass a new mtdparts parameter on the cmdline, you
2519 * should define the following property in your NAND node, ie:
2520 *
2521 * label = "main-storage";
2522 *
2523 * This way, mtd->name will be set by the core when
2524 * nand_set_flash_node() is called.
2525 */
2526 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2527 "%s:nand.%d", dev_name(nfc->dev),
2528 marvell_nand->sels[0].cs);
2529 if (!mtd->name) {
2530 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2531 return -ENOMEM;
2532 }
2533 }
2534
2535 ret = nand_scan_tail(mtd);
2536 if (ret) {
2537 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2538 return ret;
2539 }
2540
2541 if (pdata)
2542 /* Legacy bindings support only one chip */
7576594c 2543 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
02f26ecf
MR
2544 else
2545 ret = mtd_device_register(mtd, NULL, 0);
2546 if (ret) {
2547 dev_err(dev, "failed to register mtd device: %d\n", ret);
2548 nand_release(mtd);
2549 return ret;
2550 }
2551
2552 list_add_tail(&marvell_nand->node, &nfc->chips);
2553
2554 return 0;
2555}
2556
2557static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2558{
2559 struct device_node *np = dev->of_node;
2560 struct device_node *nand_np;
2561 int max_cs = nfc->caps->max_cs_nb;
2562 int nchips;
2563 int ret;
2564
2565 if (!np)
2566 nchips = 1;
2567 else
2568 nchips = of_get_child_count(np);
2569
2570 if (nchips > max_cs) {
2571 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2572 max_cs);
2573 return -EINVAL;
2574 }
2575
2576 /*
2577 * Legacy bindings do not use child nodes to exhibit NAND chip
2578 * properties and layout. Instead, NAND properties are mixed with the
2579 * controller ones, and partitions are defined as direct subnodes of the
2580 * NAND controller node.
2581 */
2582 if (nfc->caps->legacy_of_bindings) {
2583 ret = marvell_nand_chip_init(dev, nfc, np);
2584 return ret;
2585 }
2586
2587 for_each_child_of_node(np, nand_np) {
2588 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2589 if (ret) {
2590 of_node_put(nand_np);
2591 return ret;
2592 }
2593 }
2594
2595 return 0;
2596}
2597
2598static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2599{
2600 struct marvell_nand_chip *entry, *temp;
2601
2602 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2603 nand_release(nand_to_mtd(&entry->chip));
2604 list_del(&entry->node);
2605 }
2606}
2607
2608static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2609{
2610 struct platform_device *pdev = container_of(nfc->dev,
2611 struct platform_device,
2612 dev);
2613 struct dma_slave_config config = {};
2614 struct resource *r;
2615 dma_cap_mask_t mask;
2616 struct pxad_param param;
2617 int ret;
2618
2619 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2620 dev_warn(nfc->dev,
2621 "DMA not enabled in configuration\n");
2622 return -ENOTSUPP;
2623 }
2624
2625 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2626 if (ret)
2627 return ret;
2628
2629 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
2630 if (!r) {
2631 dev_err(nfc->dev, "No resource defined for data DMA\n");
2632 return -ENXIO;
2633 }
2634
2635 param.drcmr = r->start;
2636 param.prio = PXAD_PRIO_LOWEST;
2637 dma_cap_zero(mask);
2638 dma_cap_set(DMA_SLAVE, mask);
2639 nfc->dma_chan =
2640 dma_request_slave_channel_compat(mask, pxad_filter_fn,
2641 &param, nfc->dev,
2642 "data");
2643 if (!nfc->dma_chan) {
2644 dev_err(nfc->dev,
2645 "Unable to request data DMA channel\n");
2646 return -ENODEV;
2647 }
2648
2649 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2650 if (!r)
2651 return -ENXIO;
2652
2653 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2654 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2655 config.src_addr = r->start + NDDB;
2656 config.dst_addr = r->start + NDDB;
2657 config.src_maxburst = 32;
2658 config.dst_maxburst = 32;
2659 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2660 if (ret < 0) {
2661 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2662 return ret;
2663 }
2664
2665 /*
2666 * DMA must act on length multiple of 32 and this length may be
2667 * bigger than the destination buffer. Use this buffer instead
2668 * for DMA transfers and then copy the desired amount of data to
2669 * the provided buffer.
2670 */
c495a927 2671 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
02f26ecf
MR
2672 if (!nfc->dma_buf)
2673 return -ENOMEM;
2674
2675 nfc->use_dma = true;
2676
2677 return 0;
2678}
2679
2680static int marvell_nfc_init(struct marvell_nfc *nfc)
2681{
2682 struct device_node *np = nfc->dev->of_node;
2683
2684 /*
2685 * Some SoCs like A7k/A8k need to enable manually the NAND
2686 * controller, gated clocks and reset bits to avoid being bootloader
2687 * dependent. This is done through the use of the System Functions
2688 * registers.
2689 */
2690 if (nfc->caps->need_system_controller) {
2691 struct regmap *sysctrl_base =
2692 syscon_regmap_lookup_by_phandle(np,
2693 "marvell,system-controller");
2694 u32 reg;
2695
2696 if (IS_ERR(sysctrl_base))
2697 return PTR_ERR(sysctrl_base);
2698
2699 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2700 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2701 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2702 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2703 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2704
2705 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2706 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2707 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2708
2709 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2710 reg |= GENCONF_ND_CLK_CTRL_EN;
2711 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2712 }
2713
2714 /* Configure the DMA if appropriate */
2715 if (!nfc->caps->is_nfcv2)
2716 marvell_nfc_init_dma(nfc);
2717
2718 /*
2719 * ECC operations and interruptions are only enabled when specifically
2720 * needed. ECC shall not be activated in the early stages (fails probe).
2721 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2722 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2723 * offset in the read page and this will fail the protection.
2724 */
2725 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2726 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2727 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2728 writel_relaxed(0, nfc->regs + NDECCCTRL);
2729
2730 return 0;
2731}
2732
2733static int marvell_nfc_probe(struct platform_device *pdev)
2734{
2735 struct device *dev = &pdev->dev;
2736 struct resource *r;
2737 struct marvell_nfc *nfc;
2738 int ret;
2739 int irq;
2740
2741 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2742 GFP_KERNEL);
2743 if (!nfc)
2744 return -ENOMEM;
2745
2746 nfc->dev = dev;
2747 nand_hw_control_init(&nfc->controller);
2748 INIT_LIST_HEAD(&nfc->chips);
2749
2750 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2751 nfc->regs = devm_ioremap_resource(dev, r);
2752 if (IS_ERR(nfc->regs))
2753 return PTR_ERR(nfc->regs);
2754
2755 irq = platform_get_irq(pdev, 0);
2756 if (irq < 0) {
2757 dev_err(dev, "failed to retrieve irq\n");
2758 return irq;
2759 }
2760
6b6de654 2761 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
961ba15c
GC
2762
2763 /* Managed the legacy case (when the first clock was not named) */
6b6de654
BB
2764 if (nfc->core_clk == ERR_PTR(-ENOENT))
2765 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
961ba15c 2766
6b6de654
BB
2767 if (IS_ERR(nfc->core_clk))
2768 return PTR_ERR(nfc->core_clk);
02f26ecf 2769
6b6de654 2770 ret = clk_prepare_enable(nfc->core_clk);
02f26ecf
MR
2771 if (ret)
2772 return ret;
2773
961ba15c
GC
2774 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2775 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2776 if (!IS_ERR(nfc->reg_clk)) {
2777 ret = clk_prepare_enable(nfc->reg_clk);
2778 if (ret)
6b6de654 2779 goto unprepare_core_clk;
961ba15c
GC
2780 } else {
2781 ret = PTR_ERR(nfc->reg_clk);
6b6de654 2782 goto unprepare_core_clk;
961ba15c
GC
2783 }
2784 }
2785
02f26ecf
MR
2786 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2787 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2788 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2789 0, "marvell-nfc", nfc);
2790 if (ret)
961ba15c 2791 goto unprepare_reg_clk;
02f26ecf
MR
2792
2793 /* Get NAND controller capabilities */
2794 if (pdev->id_entry)
2795 nfc->caps = (void *)pdev->id_entry->driver_data;
2796 else
2797 nfc->caps = of_device_get_match_data(&pdev->dev);
2798
2799 if (!nfc->caps) {
2800 dev_err(dev, "Could not retrieve NFC caps\n");
2801 ret = -EINVAL;
961ba15c 2802 goto unprepare_reg_clk;
02f26ecf
MR
2803 }
2804
2805 /* Init the controller and then probe the chips */
2806 ret = marvell_nfc_init(nfc);
2807 if (ret)
961ba15c 2808 goto unprepare_reg_clk;
02f26ecf
MR
2809
2810 platform_set_drvdata(pdev, nfc);
2811
2812 ret = marvell_nand_chips_init(dev, nfc);
2813 if (ret)
961ba15c 2814 goto unprepare_reg_clk;
02f26ecf
MR
2815
2816 return 0;
2817
961ba15c
GC
2818unprepare_reg_clk:
2819 clk_disable_unprepare(nfc->reg_clk);
6b6de654
BB
2820unprepare_core_clk:
2821 clk_disable_unprepare(nfc->core_clk);
02f26ecf
MR
2822
2823 return ret;
2824}
2825
2826static int marvell_nfc_remove(struct platform_device *pdev)
2827{
2828 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2829
2830 marvell_nand_chips_cleanup(nfc);
2831
2832 if (nfc->use_dma) {
2833 dmaengine_terminate_all(nfc->dma_chan);
2834 dma_release_channel(nfc->dma_chan);
2835 }
2836
961ba15c 2837 clk_disable_unprepare(nfc->reg_clk);
6b6de654 2838 clk_disable_unprepare(nfc->core_clk);
02f26ecf
MR
2839
2840 return 0;
2841}
2842
2843static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2844 .max_cs_nb = 4,
2845 .max_rb_nb = 2,
2846 .need_system_controller = true,
2847 .is_nfcv2 = true,
2848};
2849
2850static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2851 .max_cs_nb = 4,
2852 .max_rb_nb = 2,
2853 .is_nfcv2 = true,
2854};
2855
2856static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2857 .max_cs_nb = 2,
2858 .max_rb_nb = 1,
2859 .use_dma = true,
2860};
2861
2862static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2863 .max_cs_nb = 4,
2864 .max_rb_nb = 2,
2865 .need_system_controller = true,
2866 .legacy_of_bindings = true,
2867 .is_nfcv2 = true,
2868};
2869
2870static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2871 .max_cs_nb = 4,
2872 .max_rb_nb = 2,
2873 .legacy_of_bindings = true,
2874 .is_nfcv2 = true,
2875};
2876
2877static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2878 .max_cs_nb = 2,
2879 .max_rb_nb = 1,
2880 .legacy_of_bindings = true,
2881 .use_dma = true,
2882};
2883
2884static const struct platform_device_id marvell_nfc_platform_ids[] = {
2885 {
2886 .name = "pxa3xx-nand",
2887 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2888 },
2889 { /* sentinel */ },
2890};
2891MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2892
2893static const struct of_device_id marvell_nfc_of_ids[] = {
2894 {
2895 .compatible = "marvell,armada-8k-nand-controller",
2896 .data = &marvell_armada_8k_nfc_caps,
2897 },
2898 {
2899 .compatible = "marvell,armada370-nand-controller",
2900 .data = &marvell_armada370_nfc_caps,
2901 },
2902 {
2903 .compatible = "marvell,pxa3xx-nand-controller",
2904 .data = &marvell_pxa3xx_nfc_caps,
2905 },
2906 /* Support for old/deprecated bindings: */
2907 {
2908 .compatible = "marvell,armada-8k-nand",
2909 .data = &marvell_armada_8k_nfc_legacy_caps,
2910 },
2911 {
2912 .compatible = "marvell,armada370-nand",
2913 .data = &marvell_armada370_nfc_legacy_caps,
2914 },
2915 {
2916 .compatible = "marvell,pxa3xx-nand",
2917 .data = &marvell_pxa3xx_nfc_legacy_caps,
2918 },
2919 { /* sentinel */ },
2920};
2921MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2922
2923static struct platform_driver marvell_nfc_driver = {
2924 .driver = {
2925 .name = "marvell-nfc",
2926 .of_match_table = marvell_nfc_of_ids,
2927 },
2928 .id_table = marvell_nfc_platform_ids,
2929 .probe = marvell_nfc_probe,
2930 .remove = marvell_nfc_remove,
2931};
2932module_platform_driver(marvell_nfc_driver);
2933
2934MODULE_LICENSE("GPL");
2935MODULE_DESCRIPTION("Marvell NAND controller driver");