mtd: rawnand: Get rid of the ->read_word() hook
[linux-2.6-block.git] / drivers / mtd / nand / raw / marvell_nand.c
CommitLineData
02f26ecf
MR
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 */
9
10#include <linux/module.h>
11#include <linux/clk.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/of_platform.h>
14#include <linux/iopoll.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mfd/syscon.h>
18#include <linux/regmap.h>
19#include <asm/unaligned.h>
20
21#include <linux/dmaengine.h>
22#include <linux/dma-mapping.h>
23#include <linux/dma/pxa-dma.h>
24#include <linux/platform_data/mtd-nand-pxa3xx.h>
25
26/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27#define FIFO_DEPTH 8
28#define FIFO_REP(x) (x / sizeof(u32))
29#define BCH_SEQ_READS (32 / FIFO_DEPTH)
30/* NFC does not support transfers of larger chunks at a time */
31#define MAX_CHUNK_SIZE 2112
32/* NFCv1 cannot read more that 7 bytes of ID */
33#define NFCV1_READID_LEN 7
34/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35#define POLL_PERIOD 0
36#define POLL_TIMEOUT 100000
37/* Interrupt maximum wait period in ms */
38#define IRQ_TIMEOUT 1000
39/* Latency in clock cycles between SoC pins and NFC logic */
40#define MIN_RD_DEL_CNT 3
41/* Maximum number of contiguous address cycles */
42#define MAX_ADDRESS_CYC_NFCV1 5
43#define MAX_ADDRESS_CYC_NFCV2 7
44/* System control registers/bits to enable the NAND controller on some SoCs */
45#define GENCONF_SOC_DEVICE_MUX 0x208
46#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50#define GENCONF_CLK_GATING_CTRL 0x220
51#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52#define GENCONF_ND_CLK_CTRL 0x700
53#define GENCONF_ND_CLK_CTRL_EN BIT(0)
54
55/* NAND controller data flash control register */
56#define NDCR 0x00
57#define NDCR_ALL_INT GENMASK(11, 0)
58#define NDCR_CS1_CMDDM BIT(7)
59#define NDCR_CS0_CMDDM BIT(8)
60#define NDCR_RDYM BIT(11)
61#define NDCR_ND_ARB_EN BIT(12)
62#define NDCR_RA_START BIT(15)
63#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
64#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
65#define NDCR_DWIDTH_M BIT(26)
66#define NDCR_DWIDTH_C BIT(27)
67#define NDCR_ND_RUN BIT(28)
68#define NDCR_DMA_EN BIT(29)
69#define NDCR_ECC_EN BIT(30)
70#define NDCR_SPARE_EN BIT(31)
71#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73
74/* NAND interface timing parameter 0 register */
75#define NDTR0 0x04
76#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
78#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79#define NDTR0_SEL_NRE_EDGE BIT(7)
80#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
81#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
82#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
83#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
84#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
85#define NDTR0_SELCNTR BIT(26)
86#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
87
88/* NAND interface timing parameter 1 register */
89#define NDTR1 0x0C
90#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
91#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
92#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
93#define NDTR1_PRESCALE BIT(14)
94#define NDTR1_WAIT_MODE BIT(15)
95#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
96
97/* NAND controller status register */
98#define NDSR 0x14
99#define NDSR_WRCMDREQ BIT(0)
100#define NDSR_RDDREQ BIT(1)
101#define NDSR_WRDREQ BIT(2)
102#define NDSR_CORERR BIT(3)
103#define NDSR_UNCERR BIT(4)
104#define NDSR_CMDD(cs) BIT(8 - cs)
105#define NDSR_RDY(rb) BIT(11 + rb)
106#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
107
108/* NAND ECC control register */
109#define NDECCCTRL 0x28
110#define NDECCCTRL_BCH_EN BIT(0)
111
112/* NAND controller data buffer register */
113#define NDDB 0x40
114
115/* NAND controller command buffer 0 register */
116#define NDCB0 0x48
117#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
118#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
119#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
120#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121#define NDCB0_DBC BIT(19)
122#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
123#define NDCB0_CSEL BIT(24)
124#define NDCB0_RDY_BYP BIT(27)
125#define NDCB0_LEN_OVRD BIT(28)
126#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
127
128/* NAND controller command buffer 1 register */
129#define NDCB1 0x4C
130#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
131#define NDCB1_ADDRS_PAGE(x) (x << 16)
132
133/* NAND controller command buffer 2 register */
134#define NDCB2 0x50
135#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
136#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
137
138/* NAND controller command buffer 3 register */
139#define NDCB3 0x54
140#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
141#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
142
143/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144#define TYPE_READ 0
145#define TYPE_WRITE 1
146#define TYPE_ERASE 2
147#define TYPE_READ_ID 3
148#define TYPE_STATUS 4
149#define TYPE_RESET 5
150#define TYPE_NAKED_CMD 6
151#define TYPE_NAKED_ADDR 7
152#define TYPE_MASK 7
153#define XTYPE_MONOLITHIC_RW 0
154#define XTYPE_LAST_NAKED_RW 1
155#define XTYPE_FINAL_COMMAND 3
156#define XTYPE_READ 4
157#define XTYPE_WRITE_DISPATCH 4
158#define XTYPE_NAKED_RW 5
159#define XTYPE_COMMAND_DISPATCH 6
160#define XTYPE_MASK 7
161
162/**
163 * Marvell ECC engine works differently than the others, in order to limit the
164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165 * per subpage, and depending on a the desired strength needed by the NAND chip,
166 * a particular layout mixing data/spare/ecc is defined, with a possible last
167 * chunk smaller that the others.
168 *
169 * @writesize: Full page size on which the layout applies
170 * @chunk: Desired ECC chunk size on which the layout applies
171 * @strength: Desired ECC strength (per chunk size bytes) on which the
172 * layout applies
173 * @nchunks: Total number of chunks
174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
175 * repetitions of the pattern:
176 * (data_bytes + spare_bytes + ecc_bytes).
177 * @data_bytes: Number of data bytes per chunk
178 * @spare_bytes: Number of spare bytes per chunk
179 * @ecc_bytes: Number of ecc bytes per chunk
180 * @last_data_bytes: Number of data bytes in the last chunk
181 * @last_spare_bytes: Number of spare bytes in the last chunk
182 * @last_ecc_bytes: Number of ecc bytes in the last chunk
183 */
184struct marvell_hw_ecc_layout {
185 /* Constraints */
186 int writesize;
187 int chunk;
188 int strength;
189 /* Corresponding layout */
190 int nchunks;
191 int full_chunk_cnt;
192 int data_bytes;
193 int spare_bytes;
194 int ecc_bytes;
195 int last_data_bytes;
196 int last_spare_bytes;
197 int last_ecc_bytes;
198};
199
200#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
201 { \
202 .writesize = ws, \
203 .chunk = dc, \
204 .strength = ds, \
205 .nchunks = nc, \
206 .full_chunk_cnt = fcc, \
207 .data_bytes = db, \
208 .spare_bytes = sb, \
209 .ecc_bytes = eb, \
210 .last_data_bytes = ldb, \
211 .last_spare_bytes = lsb, \
212 .last_ecc_bytes = leb, \
213 }
214
215/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
222};
223
224/**
225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227 * The datasheet describes the logic with an error: ADDR5 field is once
228 * declared at the beginning of NDCB2, and another time at its end. Because the
229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230 * to use the last bit of this field instead of the first ones.
231 *
232 * @cs: Wanted CE lane.
233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
234 * selecting the wanted CE lane. This is set once when
235 * the Device Tree is probed.
236 * @rb: Ready/Busy pin for the flash chip
237 */
238struct marvell_nand_chip_sel {
239 unsigned int cs;
240 u32 ndcb0_csel;
241 unsigned int rb;
242};
243
244/**
245 * NAND chip structure: stores NAND chip device related information
246 *
247 * @chip: Base NAND chip structure
248 * @node: Used to store NAND chips into a list
249 * @layout NAND layout when using hardware ECC
250 * @ndcr: Controller register value for this NAND chip
251 * @ndtr0: Timing registers 0 value for this NAND chip
252 * @ndtr1: Timing registers 1 value for this NAND chip
253 * @selected_die: Current active CS
254 * @nsels: Number of CS lines required by the NAND chip
255 * @sels: Array of CS lines descriptions
256 */
257struct marvell_nand_chip {
258 struct nand_chip chip;
259 struct list_head node;
260 const struct marvell_hw_ecc_layout *layout;
261 u32 ndcr;
262 u32 ndtr0;
263 u32 ndtr1;
264 int addr_cyc;
265 int selected_die;
266 unsigned int nsels;
267 struct marvell_nand_chip_sel sels[0];
268};
269
270static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271{
272 return container_of(chip, struct marvell_nand_chip, chip);
273}
274
275static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 *nand)
277{
278 return &nand->sels[nand->selected_die];
279}
280
281/**
282 * NAND controller capabilities for distinction between compatible strings
283 *
284 * @max_cs_nb: Number of Chip Select lines available
285 * @max_rb_nb: Number of Ready/Busy lines available
286 * @need_system_controller: Indicates if the SoC needs to have access to the
287 * system controller (ie. to enable the NAND controller)
288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
289 * fashion way
290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
291 * BCH error detection and correction algorithm,
292 * NDCB3 register has been added
293 * @use_dma: Use dma for data transfers
294 */
295struct marvell_nfc_caps {
296 unsigned int max_cs_nb;
297 unsigned int max_rb_nb;
298 bool need_system_controller;
299 bool legacy_of_bindings;
300 bool is_nfcv2;
301 bool use_dma;
302};
303
304/**
305 * NAND controller structure: stores Marvell NAND controller information
306 *
307 * @controller: Base controller structure
308 * @dev: Parent device (used to print error messages)
309 * @regs: NAND controller registers
6b6de654 310 * @core_clk: Core clock
961ba15c 311 * @reg_clk: Regiters clock
02f26ecf
MR
312 * @complete: Completion object to wait for NAND controller events
313 * @assigned_cs: Bitmask describing already assigned CS lines
314 * @chips: List containing all the NAND chips attached to
315 * this NAND controller
316 * @caps: NAND controller capabilities for each compatible string
317 * @dma_chan: DMA channel (NFCv1 only)
318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
319 */
320struct marvell_nfc {
7da45139 321 struct nand_controller controller;
02f26ecf
MR
322 struct device *dev;
323 void __iomem *regs;
6b6de654 324 struct clk *core_clk;
961ba15c 325 struct clk *reg_clk;
02f26ecf
MR
326 struct completion complete;
327 unsigned long assigned_cs;
328 struct list_head chips;
329 struct nand_chip *selected_chip;
330 const struct marvell_nfc_caps *caps;
331
332 /* DMA (NFCv1 only) */
333 bool use_dma;
334 struct dma_chan *dma_chan;
335 u8 *dma_buf;
336};
337
7da45139 338static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
02f26ecf
MR
339{
340 return container_of(ctrl, struct marvell_nfc, controller);
341}
342
343/**
344 * NAND controller timings expressed in NAND Controller clock cycles
345 *
346 * @tRP: ND_nRE pulse width
347 * @tRH: ND_nRE high duration
348 * @tWP: ND_nWE pulse time
349 * @tWH: ND_nWE high duration
350 * @tCS: Enable signal setup time
351 * @tCH: Enable signal hold time
352 * @tADL: Address to write data delay
353 * @tAR: ND_ALE low to ND_nRE low delay
354 * @tWHR: ND_nWE high to ND_nRE low for status read
355 * @tRHW: ND_nRE high duration, read to write delay
356 * @tR: ND_nWE high to ND_nRE low for read
357 */
358struct marvell_nfc_timings {
359 /* NDTR0 fields */
360 unsigned int tRP;
361 unsigned int tRH;
362 unsigned int tWP;
363 unsigned int tWH;
364 unsigned int tCS;
365 unsigned int tCH;
366 unsigned int tADL;
367 /* NDTR1 fields */
368 unsigned int tAR;
369 unsigned int tWHR;
370 unsigned int tRHW;
371 unsigned int tR;
372};
373
374/**
375 * Derives a duration in numbers of clock cycles.
376 *
377 * @ps: Duration in pico-seconds
378 * @period_ns: Clock period in nano-seconds
379 *
380 * Convert the duration in nano-seconds, then divide by the period and
381 * return the number of clock periods.
382 */
383#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
07ad5a72
MR
384#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 period_ns))
02f26ecf
MR
386
387/**
388 * NAND driver structure filled during the parsing of the ->exec_op() subop
389 * subset of instructions.
390 *
391 * @ndcb: Array of values written to NDCBx registers
392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
394 * @rdy_delay_ns: Optional delay after waiting for the RB pin
395 * @data_delay_ns: Optional delay after the data xfer
396 * @data_instr_idx: Index of the data instruction in the subop
397 * @data_instr: Pointer to the data instruction in the subop
398 */
399struct marvell_nfc_op {
400 u32 ndcb[4];
401 unsigned int cle_ale_delay_ns;
402 unsigned int rdy_timeout_ms;
403 unsigned int rdy_delay_ns;
404 unsigned int data_delay_ns;
405 unsigned int data_instr_idx;
406 const struct nand_op_instr *data_instr;
407};
408
409/*
410 * Internal helper to conditionnally apply a delay (from the above structure,
411 * most of the time).
412 */
413static void cond_delay(unsigned int ns)
414{
415 if (!ns)
416 return;
417
418 if (ns < 10000)
419 ndelay(ns);
420 else
421 udelay(DIV_ROUND_UP(ns, 1000));
422}
423
424/*
425 * The controller has many flags that could generate interrupts, most of them
426 * are disabled and polling is used. For the very slow signals, using interrupts
427 * may relax the CPU charge.
428 */
429static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430{
431 u32 reg;
432
433 /* Writing 1 disables the interrupt */
434 reg = readl_relaxed(nfc->regs + NDCR);
435 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436}
437
438static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439{
440 u32 reg;
441
442 /* Writing 0 enables the interrupt */
443 reg = readl_relaxed(nfc->regs + NDCR);
444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445}
446
447static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448{
449 writel_relaxed(int_mask, nfc->regs + NDSR);
450}
451
452static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 bool force_8bit)
454{
455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 u32 ndcr;
457
458 /*
459 * Callers of this function do not verify if the NAND is using a 16-bit
460 * an 8-bit bus for normal operations, so we need to take care of that
461 * here by leaving the configuration unchanged if the NAND does not have
462 * the NAND_BUSWIDTH_16 flag set.
463 */
464 if (!(chip->options & NAND_BUSWIDTH_16))
465 return;
466
467 ndcr = readl_relaxed(nfc->regs + NDCR);
468
469 if (force_8bit)
470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 else
472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473
474 writel_relaxed(ndcr, nfc->regs + NDCR);
475}
476
477static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478{
479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 u32 val;
481 int ret;
482
483 /*
484 * The command is being processed, wait for the ND_RUN bit to be
485 * cleared by the NFC. If not, we must clear it by hand.
486 */
487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 (val & NDCR_ND_RUN) == 0,
489 POLL_PERIOD, POLL_TIMEOUT);
490 if (ret) {
491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 nfc->regs + NDCR);
494 return ret;
495 }
496
497 return 0;
498}
499
500/*
501 * Any time a command has to be sent to the controller, the following sequence
502 * has to be followed:
503 * - call marvell_nfc_prepare_cmd()
504 * -> activate the ND_RUN bit that will kind of 'start a job'
505 * -> wait the signal indicating the NFC is waiting for a command
506 * - send the command (cmd and address cycles)
507 * - enventually send or receive the data
508 * - call marvell_nfc_end_cmd() with the corresponding flag
509 * -> wait the flag to be triggered or cancel the job with a timeout
510 *
511 * The following helpers are here to factorize the code a bit so that
512 * specialized functions responsible for executing the actual NAND
513 * operations do not have to replicate the same code blocks.
514 */
515static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516{
517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 u32 ndcr, val;
519 int ret;
520
521 /* Poll ND_RUN and clear NDSR before issuing any command */
522 ret = marvell_nfc_wait_ndrun(chip);
523 if (ret) {
a76497dc 524 dev_err(nfc->dev, "Last operation did not succeed\n");
02f26ecf
MR
525 return ret;
526 }
527
528 ndcr = readl_relaxed(nfc->regs + NDCR);
529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530
531 /* Assert ND_RUN bit and wait the NFC to be ready */
532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 val & NDSR_WRCMDREQ,
535 POLL_PERIOD, POLL_TIMEOUT);
536 if (ret) {
537 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 return -ETIMEDOUT;
539 }
540
541 /* Command may be written, clear WRCMDREQ status bit */
542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543
544 return 0;
545}
546
547static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 struct marvell_nfc_op *nfc_op)
549{
550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552
553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557
558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 nfc->regs + NDCB0);
560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562
563 /*
564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 * fields are used (only available on NFCv2).
566 */
567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 }
572}
573
574static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 const char *label)
576{
577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 u32 val;
579 int ret;
580
581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 val & flag,
583 POLL_PERIOD, POLL_TIMEOUT);
584
585 if (ret) {
586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 label, val);
588 if (nfc->dma_chan)
589 dmaengine_terminate_all(nfc->dma_chan);
590 return ret;
591 }
592
593 /*
594 * DMA function uses this helper to poll on CMDD bits without wanting
595 * them to be cleared.
596 */
597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 return 0;
599
600 writel_relaxed(flag, nfc->regs + NDSR);
601
602 return 0;
603}
604
605static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606{
607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609
610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611}
612
613static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614{
615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 int ret;
617
618 /* Timeout is expressed in ms */
619 if (!timeout_ms)
620 timeout_ms = IRQ_TIMEOUT;
621
622 init_completion(&nfc->complete);
623
624 marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 ret = wait_for_completion_timeout(&nfc->complete,
626 msecs_to_jiffies(timeout_ms));
627 marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 if (!ret) {
630 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 return -ETIMEDOUT;
632 }
633
634 return 0;
635}
636
637static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638{
639 struct nand_chip *chip = mtd_to_nand(mtd);
640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 u32 ndcr_generic;
643
644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 return;
646
647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 nfc->selected_chip = NULL;
649 marvell_nand->selected_die = -1;
650 return;
651 }
652
02f26ecf
MR
653 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
654 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
655
656 /*
657 * Reset the NDCR register to a clean state for this particular chip,
658 * also clear ND_RUN bit.
659 */
660 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
661 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
662 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
663
664 /* Also reset the interrupt status register */
665 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
666
667 nfc->selected_chip = chip;
668 marvell_nand->selected_die = die_nr;
669}
670
671static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
672{
673 struct marvell_nfc *nfc = dev_id;
674 u32 st = readl_relaxed(nfc->regs + NDSR);
675 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
676
677 /*
678 * RDY interrupt mask is one bit in NDCR while there are two status
679 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
680 */
681 if (st & NDSR_RDY(1))
682 st |= NDSR_RDY(0);
683
684 if (!(st & ien))
685 return IRQ_NONE;
686
687 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
688
689 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
690 complete(&nfc->complete);
691
692 return IRQ_HANDLED;
693}
694
695/* HW ECC related functions */
696static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
697{
698 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
699 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
700
701 if (!(ndcr & NDCR_ECC_EN)) {
702 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
703
704 /*
705 * When enabling BCH, set threshold to 0 to always know the
706 * number of corrected bitflips.
707 */
708 if (chip->ecc.algo == NAND_ECC_BCH)
709 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
710 }
711}
712
713static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
714{
715 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
716 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
717
718 if (ndcr & NDCR_ECC_EN) {
719 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
720 if (chip->ecc.algo == NAND_ECC_BCH)
721 writel_relaxed(0, nfc->regs + NDECCCTRL);
722 }
723}
724
725/* DMA related helpers */
726static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
727{
728 u32 reg;
729
730 reg = readl_relaxed(nfc->regs + NDCR);
731 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
732}
733
734static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
735{
736 u32 reg;
737
738 reg = readl_relaxed(nfc->regs + NDCR);
739 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
740}
741
742/* Read/write PIO/DMA accessors */
743static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
744 enum dma_data_direction direction,
745 unsigned int len)
746{
747 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
748 struct dma_async_tx_descriptor *tx;
749 struct scatterlist sg;
750 dma_cookie_t cookie;
751 int ret;
752
753 marvell_nfc_enable_dma(nfc);
754 /* Prepare the DMA transfer */
755 sg_init_one(&sg, nfc->dma_buf, dma_len);
756 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
757 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
758 direction == DMA_FROM_DEVICE ?
759 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
760 DMA_PREP_INTERRUPT);
761 if (!tx) {
762 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
763 return -ENXIO;
764 }
765
766 /* Do the task and wait for it to finish */
767 cookie = dmaengine_submit(tx);
768 ret = dma_submit_error(cookie);
769 if (ret)
770 return -EIO;
771
772 dma_async_issue_pending(nfc->dma_chan);
773 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
774 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
775 marvell_nfc_disable_dma(nfc);
776 if (ret) {
777 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
778 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
779 dmaengine_terminate_all(nfc->dma_chan);
780 return -ETIMEDOUT;
781 }
782
783 return 0;
784}
785
786static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
787 unsigned int len)
788{
789 unsigned int last_len = len % FIFO_DEPTH;
790 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
791 int i;
792
793 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
794 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
795
796 if (last_len) {
797 u8 tmp_buf[FIFO_DEPTH];
798
799 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
800 memcpy(in + last_full_offset, tmp_buf, last_len);
801 }
802
803 return 0;
804}
805
806static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
807 unsigned int len)
808{
809 unsigned int last_len = len % FIFO_DEPTH;
810 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
811 int i;
812
813 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
814 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
815
816 if (last_len) {
817 u8 tmp_buf[FIFO_DEPTH];
818
819 memcpy(tmp_buf, out + last_full_offset, last_len);
820 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
821 }
822
823 return 0;
824}
825
826static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
827 u8 *data, int data_len,
828 u8 *spare, int spare_len,
829 u8 *ecc, int ecc_len,
830 unsigned int *max_bitflips)
831{
832 struct mtd_info *mtd = nand_to_mtd(chip);
833 int bf;
834
835 /*
836 * Blank pages (all 0xFF) that have not been written may be recognized
837 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
838 * check if the entire page (with ECC bytes) is actually blank or not.
839 */
840 if (!data)
841 data_len = 0;
842 if (!spare)
843 spare_len = 0;
844 if (!ecc)
845 ecc_len = 0;
846
847 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
848 spare, spare_len, chip->ecc.strength);
849 if (bf < 0) {
850 mtd->ecc_stats.failed++;
851 return;
852 }
853
854 /* Update the stats and max_bitflips */
855 mtd->ecc_stats.corrected += bf;
856 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
857}
858
859/*
860 * Check a chunk is correct or not according to hardware ECC engine.
861 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
862 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
863 * value indicating that a check on the emptyness of the subpage must be
864 * performed before declaring the subpage corrupted.
865 */
866static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
867 unsigned int *max_bitflips)
868{
869 struct mtd_info *mtd = nand_to_mtd(chip);
870 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
871 int bf = 0;
872 u32 ndsr;
873
874 ndsr = readl_relaxed(nfc->regs + NDSR);
875
876 /* Check uncorrectable error flag */
877 if (ndsr & NDSR_UNCERR) {
878 writel_relaxed(ndsr, nfc->regs + NDSR);
879
880 /*
881 * Do not increment ->ecc_stats.failed now, instead, return a
882 * non-zero value to indicate that this chunk was apparently
883 * bad, and it should be check to see if it empty or not. If
884 * the chunk (with ECC bytes) is not declared empty, the calling
885 * function must increment the failure count.
886 */
887 return -EBADMSG;
888 }
889
890 /* Check correctable error flag */
891 if (ndsr & NDSR_CORERR) {
892 writel_relaxed(ndsr, nfc->regs + NDSR);
893
894 if (chip->ecc.algo == NAND_ECC_BCH)
895 bf = NDSR_ERRCNT(ndsr);
896 else
897 bf = 1;
898 }
899
900 /* Update the stats and max_bitflips */
901 mtd->ecc_stats.corrected += bf;
902 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
903
904 return 0;
905}
906
907/* Hamming read helpers */
908static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
909 u8 *data_buf, u8 *oob_buf,
910 bool raw, int page)
911{
912 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
913 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
914 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
915 struct marvell_nfc_op nfc_op = {
916 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
917 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
918 NDCB0_DBC |
919 NDCB0_CMD1(NAND_CMD_READ0) |
920 NDCB0_CMD2(NAND_CMD_READSTART),
921 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
922 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
923 };
924 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
925 int ret;
926
927 /* NFCv2 needs more information about the operation being executed */
928 if (nfc->caps->is_nfcv2)
929 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
930
931 ret = marvell_nfc_prepare_cmd(chip);
932 if (ret)
933 return ret;
934
935 marvell_nfc_send_cmd(chip, &nfc_op);
936 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
937 "RDDREQ while draining FIFO (data/oob)");
938 if (ret)
939 return ret;
940
941 /*
942 * Read the page then the OOB area. Unlike what is shown in current
943 * documentation, spare bytes are protected by the ECC engine, and must
944 * be at the beginning of the OOB area or running this driver on legacy
945 * systems will prevent the discovery of the BBM/BBT.
946 */
947 if (nfc->use_dma) {
948 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
949 lt->data_bytes + oob_bytes);
950 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
951 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
952 } else {
953 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
954 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
955 }
956
957 ret = marvell_nfc_wait_cmdd(chip);
958
959 return ret;
960}
961
962static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
963 struct nand_chip *chip, u8 *buf,
964 int oob_required, int page)
965{
966 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
967 true, page);
968}
969
970static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
971 struct nand_chip *chip,
972 u8 *buf, int oob_required,
973 int page)
974{
975 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
976 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
977 int max_bitflips = 0, ret;
978 u8 *raw_buf;
979
980 marvell_nfc_enable_hw_ecc(chip);
981 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
982 page);
983 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
984 marvell_nfc_disable_hw_ecc(chip);
985
986 if (!ret)
987 return max_bitflips;
988
989 /*
990 * When ECC failures are detected, check if the full page has been
991 * written or not. Ignore the failure if it is actually empty.
992 */
993 raw_buf = kmalloc(full_sz, GFP_KERNEL);
994 if (!raw_buf)
995 return -ENOMEM;
996
997 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
998 lt->data_bytes, true, page);
999 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1000 &max_bitflips);
1001 kfree(raw_buf);
1002
1003 return max_bitflips;
1004}
1005
1006/*
1007 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1008 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1009 * also stands for ->read_oob().
1010 */
1011static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1012 struct nand_chip *chip, int page)
1013{
1014 /* Invalidate page cache */
1015 chip->pagebuf = -1;
1016
1017 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1018 chip->oob_poi, true, page);
1019}
1020
1021/* Hamming write helpers */
1022static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1023 const u8 *data_buf,
1024 const u8 *oob_buf, bool raw,
1025 int page)
1026{
1027 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1028 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1029 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1030 struct marvell_nfc_op nfc_op = {
1031 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1032 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1033 NDCB0_CMD1(NAND_CMD_SEQIN) |
1034 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1035 NDCB0_DBC,
1036 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1037 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1038 };
1039 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1040 int ret;
1041
1042 /* NFCv2 needs more information about the operation being executed */
1043 if (nfc->caps->is_nfcv2)
1044 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1045
1046 ret = marvell_nfc_prepare_cmd(chip);
1047 if (ret)
1048 return ret;
1049
1050 marvell_nfc_send_cmd(chip, &nfc_op);
1051 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1052 "WRDREQ while loading FIFO (data)");
1053 if (ret)
1054 return ret;
1055
1056 /* Write the page then the OOB area */
1057 if (nfc->use_dma) {
1058 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1059 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1060 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1061 lt->ecc_bytes + lt->spare_bytes);
1062 } else {
1063 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1064 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1065 }
1066
1067 ret = marvell_nfc_wait_cmdd(chip);
1068 if (ret)
1069 return ret;
1070
1071 ret = marvell_nfc_wait_op(chip,
b76401fc 1072 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
02f26ecf
MR
1073 return ret;
1074}
1075
1076static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1077 struct nand_chip *chip,
1078 const u8 *buf,
1079 int oob_required, int page)
1080{
1081 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1082 true, page);
1083}
1084
1085static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1086 struct nand_chip *chip,
1087 const u8 *buf,
1088 int oob_required, int page)
1089{
1090 int ret;
1091
1092 marvell_nfc_enable_hw_ecc(chip);
1093 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1094 false, page);
1095 marvell_nfc_disable_hw_ecc(chip);
1096
1097 return ret;
1098}
1099
1100/*
1101 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1102 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1103 * also stands for ->write_oob().
1104 */
1105static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1106 struct nand_chip *chip,
1107 int page)
1108{
1109 /* Invalidate page cache */
1110 chip->pagebuf = -1;
1111
1112 memset(chip->data_buf, 0xFF, mtd->writesize);
1113
1114 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1115 chip->oob_poi, true, page);
1116}
1117
1118/* BCH read helpers */
1119static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1120 struct nand_chip *chip, u8 *buf,
1121 int oob_required, int page)
1122{
1123 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1124 u8 *oob = chip->oob_poi;
1125 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1126 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1127 lt->last_spare_bytes;
1128 int data_len = lt->data_bytes;
1129 int spare_len = lt->spare_bytes;
1130 int ecc_len = lt->ecc_bytes;
1131 int chunk;
1132
1133 if (oob_required)
1134 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1135
1136 nand_read_page_op(chip, page, 0, NULL, 0);
1137
1138 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1139 /* Update last chunk length */
1140 if (chunk >= lt->full_chunk_cnt) {
1141 data_len = lt->last_data_bytes;
1142 spare_len = lt->last_spare_bytes;
1143 ecc_len = lt->last_ecc_bytes;
1144 }
1145
1146 /* Read data bytes*/
1147 nand_change_read_column_op(chip, chunk * chunk_size,
1148 buf + (lt->data_bytes * chunk),
1149 data_len, false);
1150
1151 /* Read spare bytes */
1152 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1153 spare_len, false);
1154
1155 /* Read ECC bytes */
1156 nand_read_data_op(chip, oob + ecc_offset +
1157 (ALIGN(lt->ecc_bytes, 32) * chunk),
1158 ecc_len, false);
1159 }
1160
1161 return 0;
1162}
1163
1164static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1165 u8 *data, unsigned int data_len,
1166 u8 *spare, unsigned int spare_len,
1167 int page)
1168{
1169 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1170 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1171 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1172 int i, ret;
1173 struct marvell_nfc_op nfc_op = {
1174 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1175 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1176 NDCB0_LEN_OVRD,
1177 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1178 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1179 .ndcb[3] = data_len + spare_len,
1180 };
1181
1182 ret = marvell_nfc_prepare_cmd(chip);
1183 if (ret)
1184 return;
1185
1186 if (chunk == 0)
1187 nfc_op.ndcb[0] |= NDCB0_DBC |
1188 NDCB0_CMD1(NAND_CMD_READ0) |
1189 NDCB0_CMD2(NAND_CMD_READSTART);
1190
1191 /*
90d61763
BB
1192 * Trigger the monolithic read on the first chunk, then naked read on
1193 * intermediate chunks and finally a last naked read on the last chunk.
02f26ecf 1194 */
90d61763 1195 if (chunk == 0)
02f26ecf 1196 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
90d61763
BB
1197 else if (chunk < lt->nchunks - 1)
1198 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
02f26ecf
MR
1199 else
1200 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1201
1202 marvell_nfc_send_cmd(chip, &nfc_op);
1203
1204 /*
1205 * According to the datasheet, when reading from NDDB
1206 * with BCH enabled, after each 32 bytes reads, we
1207 * have to make sure that the NDSR.RDDREQ bit is set.
1208 *
1209 * Drain the FIFO, 8 32-bit reads at a time, and skip
1210 * the polling on the last read.
1211 *
1212 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1213 */
1214 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1215 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1216 "RDDREQ while draining FIFO (data)");
1217 marvell_nfc_xfer_data_in_pio(nfc, data,
1218 FIFO_DEPTH * BCH_SEQ_READS);
1219 data += FIFO_DEPTH * BCH_SEQ_READS;
1220 }
1221
1222 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1223 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1224 "RDDREQ while draining FIFO (OOB)");
1225 marvell_nfc_xfer_data_in_pio(nfc, spare,
1226 FIFO_DEPTH * BCH_SEQ_READS);
1227 spare += FIFO_DEPTH * BCH_SEQ_READS;
1228 }
1229}
1230
1231static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1232 struct nand_chip *chip,
1233 u8 *buf, int oob_required,
1234 int page)
1235{
1236 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1237 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1238 u8 *data = buf, *spare = chip->oob_poi, *ecc;
1239 int max_bitflips = 0;
1240 u32 failure_mask = 0;
1241 int chunk, ecc_offset_in_page, ret;
1242
1243 /*
1244 * With BCH, OOB is not fully used (and thus not read entirely), not
1245 * expected bytes could show up at the end of the OOB buffer if not
1246 * explicitly erased.
1247 */
1248 if (oob_required)
1249 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1250
1251 marvell_nfc_enable_hw_ecc(chip);
1252
1253 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1254 /* Update length for the last chunk */
1255 if (chunk >= lt->full_chunk_cnt) {
1256 data_len = lt->last_data_bytes;
1257 spare_len = lt->last_spare_bytes;
1258 }
1259
1260 /* Read the chunk and detect number of bitflips */
1261 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1262 spare, spare_len, page);
1263 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1264 if (ret)
1265 failure_mask |= BIT(chunk);
1266
1267 data += data_len;
1268 spare += spare_len;
1269 }
1270
1271 marvell_nfc_disable_hw_ecc(chip);
1272
1273 if (!failure_mask)
1274 return max_bitflips;
1275
1276 /*
1277 * Please note that dumping the ECC bytes during a normal read with OOB
1278 * area would add a significant overhead as ECC bytes are "consumed" by
1279 * the controller in normal mode and must be re-read in raw mode. To
1280 * avoid dropping the performances, we prefer not to include them. The
1281 * user should re-read the page in raw mode if ECC bytes are required.
1282 *
1283 * However, for any subpage read error reported by ->correct(), the ECC
1284 * bytes must be read in raw mode and the full subpage must be checked
1285 * to see if it is entirely empty of if there was an actual error.
1286 */
1287 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1288 /* No failure reported for this chunk, move to the next one */
1289 if (!(failure_mask & BIT(chunk)))
1290 continue;
1291
1292 /* Derive ECC bytes positions (in page/buffer) and length */
1293 ecc = chip->oob_poi +
1294 (lt->full_chunk_cnt * lt->spare_bytes) +
1295 lt->last_spare_bytes +
1296 (chunk * ALIGN(lt->ecc_bytes, 32));
1297 ecc_offset_in_page =
1298 (chunk * (lt->data_bytes + lt->spare_bytes +
1299 lt->ecc_bytes)) +
1300 (chunk < lt->full_chunk_cnt ?
1301 lt->data_bytes + lt->spare_bytes :
1302 lt->last_data_bytes + lt->last_spare_bytes);
1303 ecc_len = chunk < lt->full_chunk_cnt ?
1304 lt->ecc_bytes : lt->last_ecc_bytes;
1305
1306 /* Do the actual raw read of the ECC bytes */
1307 nand_change_read_column_op(chip, ecc_offset_in_page,
1308 ecc, ecc_len, false);
1309
1310 /* Derive data/spare bytes positions (in buffer) and length */
1311 data = buf + (chunk * lt->data_bytes);
1312 data_len = chunk < lt->full_chunk_cnt ?
1313 lt->data_bytes : lt->last_data_bytes;
1314 spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1315 lt->ecc_bytes));
1316 spare_len = chunk < lt->full_chunk_cnt ?
1317 lt->spare_bytes : lt->last_spare_bytes;
1318
1319 /* Check the entire chunk (data + spare + ecc) for emptyness */
1320 marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1321 spare_len, ecc, ecc_len,
1322 &max_bitflips);
1323 }
1324
1325 return max_bitflips;
1326}
1327
1328static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1329 struct nand_chip *chip, int page)
1330{
1331 /* Invalidate page cache */
1332 chip->pagebuf = -1;
1333
1334 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1335}
1336
1337static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1338 struct nand_chip *chip, int page)
1339{
1340 /* Invalidate page cache */
1341 chip->pagebuf = -1;
1342
1343 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1344}
1345
1346/* BCH write helpers */
1347static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1348 struct nand_chip *chip,
1349 const u8 *buf,
1350 int oob_required, int page)
1351{
1352 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1353 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1354 int data_len = lt->data_bytes;
1355 int spare_len = lt->spare_bytes;
1356 int ecc_len = lt->ecc_bytes;
02f26ecf
MR
1357 int spare_offset = 0;
1358 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1359 lt->last_spare_bytes;
1360 int chunk;
1361
1362 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1363
1364 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1365 if (chunk >= lt->full_chunk_cnt) {
1366 data_len = lt->last_data_bytes;
1367 spare_len = lt->last_spare_bytes;
1368 ecc_len = lt->last_ecc_bytes;
02f26ecf
MR
1369 }
1370
1371 /* Point to the column of the next chunk */
1372 nand_change_write_column_op(chip, chunk * full_chunk_size,
1373 NULL, 0, false);
1374
1375 /* Write the data */
1376 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1377 data_len, false);
1378
1379 if (!oob_required)
1380 continue;
1381
1382 /* Write the spare bytes */
1383 if (spare_len)
1384 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1385 spare_len, false);
1386
1387 /* Write the ECC bytes */
1388 if (ecc_len)
1389 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1390 ecc_len, false);
1391
1392 spare_offset += spare_len;
1393 ecc_offset += ALIGN(ecc_len, 32);
1394 }
1395
1396 return nand_prog_page_end_op(chip);
1397}
1398
1399static int
1400marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1401 const u8 *data, unsigned int data_len,
1402 const u8 *spare, unsigned int spare_len,
1403 int page)
1404{
1405 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1406 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1407 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
a2ee41fd 1408 u32 xtype;
02f26ecf
MR
1409 int ret;
1410 struct marvell_nfc_op nfc_op = {
1411 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1412 .ndcb[3] = data_len + spare_len,
1413 };
1414
1415 /*
1416 * First operation dispatches the CMD_SEQIN command, issue the address
1417 * cycles and asks for the first chunk of data.
1418 * All operations in the middle (if any) will issue a naked write and
1419 * also ask for data.
1420 * Last operation (if any) asks for the last chunk of data through a
1421 * last naked write.
1422 */
1423 if (chunk == 0) {
a2ee41fd
MR
1424 if (lt->nchunks == 1)
1425 xtype = XTYPE_MONOLITHIC_RW;
1426 else
1427 xtype = XTYPE_WRITE_DISPATCH;
1428
1429 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
02f26ecf
MR
1430 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1431 NDCB0_CMD1(NAND_CMD_SEQIN);
1432 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1433 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1434 } else if (chunk < lt->nchunks - 1) {
1435 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1436 } else {
1437 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1438 }
1439
1440 /* Always dispatch the PAGEPROG command on the last chunk */
1441 if (chunk == lt->nchunks - 1)
1442 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1443
1444 ret = marvell_nfc_prepare_cmd(chip);
1445 if (ret)
1446 return ret;
1447
1448 marvell_nfc_send_cmd(chip, &nfc_op);
1449 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1450 "WRDREQ while loading FIFO (data)");
1451 if (ret)
1452 return ret;
1453
1454 /* Transfer the contents */
1455 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1456 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1457
1458 return 0;
1459}
1460
1461static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1462 struct nand_chip *chip,
1463 const u8 *buf,
1464 int oob_required, int page)
1465{
1466 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1467 const u8 *data = buf;
1468 const u8 *spare = chip->oob_poi;
1469 int data_len = lt->data_bytes;
1470 int spare_len = lt->spare_bytes;
1471 int chunk, ret;
1472
1473 /* Spare data will be written anyway, so clear it to avoid garbage */
1474 if (!oob_required)
1475 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1476
1477 marvell_nfc_enable_hw_ecc(chip);
1478
1479 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1480 if (chunk >= lt->full_chunk_cnt) {
1481 data_len = lt->last_data_bytes;
1482 spare_len = lt->last_spare_bytes;
1483 }
1484
1485 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1486 spare, spare_len, page);
1487 data += data_len;
1488 spare += spare_len;
1489
1490 /*
1491 * Waiting only for CMDD or PAGED is not enough, ECC are
1492 * partially written. No flag is set once the operation is
1493 * really finished but the ND_RUN bit is cleared, so wait for it
1494 * before stepping into the next command.
1495 */
1496 marvell_nfc_wait_ndrun(chip);
1497 }
1498
1499 ret = marvell_nfc_wait_op(chip,
b76401fc 1500 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
02f26ecf
MR
1501
1502 marvell_nfc_disable_hw_ecc(chip);
1503
1504 if (ret)
1505 return ret;
1506
1507 return 0;
1508}
1509
1510static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1511 struct nand_chip *chip,
1512 int page)
1513{
1514 /* Invalidate page cache */
1515 chip->pagebuf = -1;
1516
1517 memset(chip->data_buf, 0xFF, mtd->writesize);
1518
1519 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1520}
1521
1522static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1523 struct nand_chip *chip, int page)
1524{
1525 /* Invalidate page cache */
1526 chip->pagebuf = -1;
1527
1528 memset(chip->data_buf, 0xFF, mtd->writesize);
1529
1530 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1531}
1532
1533/* NAND framework ->exec_op() hooks and related helpers */
1534static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1535 const struct nand_subop *subop,
1536 struct marvell_nfc_op *nfc_op)
1537{
1538 const struct nand_op_instr *instr = NULL;
1539 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1540 bool first_cmd = true;
1541 unsigned int op_id;
1542 int i;
1543
1544 /* Reset the input structure as most of its fields will be OR'ed */
1545 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1546
1547 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1548 unsigned int offset, naddrs;
1549 const u8 *addrs;
1550 int len = nand_subop_get_data_len(subop, op_id);
1551
1552 instr = &subop->instrs[op_id];
1553
1554 switch (instr->type) {
1555 case NAND_OP_CMD_INSTR:
1556 if (first_cmd)
1557 nfc_op->ndcb[0] |=
1558 NDCB0_CMD1(instr->ctx.cmd.opcode);
1559 else
1560 nfc_op->ndcb[0] |=
1561 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1562 NDCB0_DBC;
1563
1564 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1565 first_cmd = false;
1566 break;
1567
1568 case NAND_OP_ADDR_INSTR:
1569 offset = nand_subop_get_addr_start_off(subop, op_id);
1570 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1571 addrs = &instr->ctx.addr.addrs[offset];
1572
1573 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1574
1575 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1576 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1577
1578 if (naddrs >= 5)
1579 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1580 if (naddrs >= 6)
1581 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1582 if (naddrs == 7)
1583 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1584
1585 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1586 break;
1587
1588 case NAND_OP_DATA_IN_INSTR:
1589 nfc_op->data_instr = instr;
1590 nfc_op->data_instr_idx = op_id;
1591 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1592 if (nfc->caps->is_nfcv2) {
1593 nfc_op->ndcb[0] |=
1594 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1595 NDCB0_LEN_OVRD;
1596 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1597 }
1598 nfc_op->data_delay_ns = instr->delay_ns;
1599 break;
1600
1601 case NAND_OP_DATA_OUT_INSTR:
1602 nfc_op->data_instr = instr;
1603 nfc_op->data_instr_idx = op_id;
1604 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1605 if (nfc->caps->is_nfcv2) {
1606 nfc_op->ndcb[0] |=
1607 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1608 NDCB0_LEN_OVRD;
1609 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1610 }
1611 nfc_op->data_delay_ns = instr->delay_ns;
1612 break;
1613
1614 case NAND_OP_WAITRDY_INSTR:
1615 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1616 nfc_op->rdy_delay_ns = instr->delay_ns;
1617 break;
1618 }
1619 }
1620}
1621
1622static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1623 const struct nand_subop *subop,
1624 struct marvell_nfc_op *nfc_op)
1625{
1626 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1627 const struct nand_op_instr *instr = nfc_op->data_instr;
1628 unsigned int op_id = nfc_op->data_instr_idx;
1629 unsigned int len = nand_subop_get_data_len(subop, op_id);
1630 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1631 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1632 int ret;
1633
1634 if (instr->ctx.data.force_8bit)
1635 marvell_nfc_force_byte_access(chip, true);
1636
1637 if (reading) {
1638 u8 *in = instr->ctx.data.buf.in + offset;
1639
1640 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1641 } else {
1642 const u8 *out = instr->ctx.data.buf.out + offset;
1643
1644 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1645 }
1646
1647 if (instr->ctx.data.force_8bit)
1648 marvell_nfc_force_byte_access(chip, false);
1649
1650 return ret;
1651}
1652
1653static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1654 const struct nand_subop *subop)
1655{
1656 struct marvell_nfc_op nfc_op;
1657 bool reading;
1658 int ret;
1659
1660 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1661 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1662
1663 ret = marvell_nfc_prepare_cmd(chip);
1664 if (ret)
1665 return ret;
1666
1667 marvell_nfc_send_cmd(chip, &nfc_op);
1668 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1669 "RDDREQ/WRDREQ while draining raw data");
1670 if (ret)
1671 return ret;
1672
1673 cond_delay(nfc_op.cle_ale_delay_ns);
1674
1675 if (reading) {
1676 if (nfc_op.rdy_timeout_ms) {
1677 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1678 if (ret)
1679 return ret;
1680 }
1681
1682 cond_delay(nfc_op.rdy_delay_ns);
1683 }
1684
1685 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1686 ret = marvell_nfc_wait_cmdd(chip);
1687 if (ret)
1688 return ret;
1689
1690 cond_delay(nfc_op.data_delay_ns);
1691
1692 if (!reading) {
1693 if (nfc_op.rdy_timeout_ms) {
1694 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1695 if (ret)
1696 return ret;
1697 }
1698
1699 cond_delay(nfc_op.rdy_delay_ns);
1700 }
1701
1702 /*
1703 * NDCR ND_RUN bit should be cleared automatically at the end of each
1704 * operation but experience shows that the behavior is buggy when it
1705 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1706 */
1707 if (!reading) {
1708 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1709
1710 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1711 nfc->regs + NDCR);
1712 }
1713
1714 return 0;
1715}
1716
1717static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1718 const struct nand_subop *subop)
1719{
1720 struct marvell_nfc_op nfc_op;
1721 int ret;
1722
1723 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1724
1725 /*
1726 * Naked access are different in that they need to be flagged as naked
1727 * by the controller. Reset the controller registers fields that inform
1728 * on the type and refill them according to the ongoing operation.
1729 */
1730 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1731 NDCB0_CMD_XTYPE(XTYPE_MASK));
1732 switch (subop->instrs[0].type) {
1733 case NAND_OP_CMD_INSTR:
1734 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1735 break;
1736 case NAND_OP_ADDR_INSTR:
1737 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1738 break;
1739 case NAND_OP_DATA_IN_INSTR:
1740 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1741 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1742 break;
1743 case NAND_OP_DATA_OUT_INSTR:
1744 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1745 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1746 break;
1747 default:
1748 /* This should never happen */
1749 break;
1750 }
1751
1752 ret = marvell_nfc_prepare_cmd(chip);
1753 if (ret)
1754 return ret;
1755
1756 marvell_nfc_send_cmd(chip, &nfc_op);
1757
1758 if (!nfc_op.data_instr) {
1759 ret = marvell_nfc_wait_cmdd(chip);
1760 cond_delay(nfc_op.cle_ale_delay_ns);
1761 return ret;
1762 }
1763
1764 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1765 "RDDREQ/WRDREQ while draining raw data");
1766 if (ret)
1767 return ret;
1768
1769 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1770 ret = marvell_nfc_wait_cmdd(chip);
1771 if (ret)
1772 return ret;
1773
1774 /*
1775 * NDCR ND_RUN bit should be cleared automatically at the end of each
1776 * operation but experience shows that the behavior is buggy when it
1777 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1778 */
1779 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1780 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1781
1782 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1783 nfc->regs + NDCR);
1784 }
1785
1786 return 0;
1787}
1788
1789static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1790 const struct nand_subop *subop)
1791{
1792 struct marvell_nfc_op nfc_op;
1793 int ret;
1794
1795 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1796
1797 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1798 cond_delay(nfc_op.rdy_delay_ns);
1799
1800 return ret;
1801}
1802
1803static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1804 const struct nand_subop *subop)
1805{
1806 struct marvell_nfc_op nfc_op;
1807 int ret;
1808
1809 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1810 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1811 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1812
1813 ret = marvell_nfc_prepare_cmd(chip);
1814 if (ret)
1815 return ret;
1816
1817 marvell_nfc_send_cmd(chip, &nfc_op);
1818 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1819 "RDDREQ while reading ID");
1820 if (ret)
1821 return ret;
1822
1823 cond_delay(nfc_op.cle_ale_delay_ns);
1824
1825 if (nfc_op.rdy_timeout_ms) {
1826 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1827 if (ret)
1828 return ret;
1829 }
1830
1831 cond_delay(nfc_op.rdy_delay_ns);
1832
1833 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1834 ret = marvell_nfc_wait_cmdd(chip);
1835 if (ret)
1836 return ret;
1837
1838 cond_delay(nfc_op.data_delay_ns);
1839
1840 return 0;
1841}
1842
1843static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1844 const struct nand_subop *subop)
1845{
1846 struct marvell_nfc_op nfc_op;
1847 int ret;
1848
1849 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1850 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1851 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1852
1853 ret = marvell_nfc_prepare_cmd(chip);
1854 if (ret)
1855 return ret;
1856
1857 marvell_nfc_send_cmd(chip, &nfc_op);
1858 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1859 "RDDREQ while reading status");
1860 if (ret)
1861 return ret;
1862
1863 cond_delay(nfc_op.cle_ale_delay_ns);
1864
1865 if (nfc_op.rdy_timeout_ms) {
1866 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1867 if (ret)
1868 return ret;
1869 }
1870
1871 cond_delay(nfc_op.rdy_delay_ns);
1872
1873 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1874 ret = marvell_nfc_wait_cmdd(chip);
1875 if (ret)
1876 return ret;
1877
1878 cond_delay(nfc_op.data_delay_ns);
1879
1880 return 0;
1881}
1882
1883static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1884 const struct nand_subop *subop)
1885{
1886 struct marvell_nfc_op nfc_op;
1887 int ret;
1888
1889 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1890 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1891
1892 ret = marvell_nfc_prepare_cmd(chip);
1893 if (ret)
1894 return ret;
1895
1896 marvell_nfc_send_cmd(chip, &nfc_op);
1897 ret = marvell_nfc_wait_cmdd(chip);
1898 if (ret)
1899 return ret;
1900
1901 cond_delay(nfc_op.cle_ale_delay_ns);
1902
1903 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1904 if (ret)
1905 return ret;
1906
1907 cond_delay(nfc_op.rdy_delay_ns);
1908
1909 return 0;
1910}
1911
1912static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1913 const struct nand_subop *subop)
1914{
1915 struct marvell_nfc_op nfc_op;
1916 int ret;
1917
1918 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1919 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1920
1921 ret = marvell_nfc_prepare_cmd(chip);
1922 if (ret)
1923 return ret;
1924
1925 marvell_nfc_send_cmd(chip, &nfc_op);
1926 ret = marvell_nfc_wait_cmdd(chip);
1927 if (ret)
1928 return ret;
1929
1930 cond_delay(nfc_op.cle_ale_delay_ns);
1931
1932 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1933 if (ret)
1934 return ret;
1935
1936 cond_delay(nfc_op.rdy_delay_ns);
1937
1938 return 0;
1939}
1940
1941static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1942 /* Monolithic reads/writes */
1943 NAND_OP_PARSER_PATTERN(
1944 marvell_nfc_monolithic_access_exec,
1945 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1946 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1947 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1948 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1949 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1950 NAND_OP_PARSER_PATTERN(
1951 marvell_nfc_monolithic_access_exec,
1952 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1953 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1954 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1955 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1956 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1957 /* Naked commands */
1958 NAND_OP_PARSER_PATTERN(
1959 marvell_nfc_naked_access_exec,
1960 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1961 NAND_OP_PARSER_PATTERN(
1962 marvell_nfc_naked_access_exec,
1963 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1964 NAND_OP_PARSER_PATTERN(
1965 marvell_nfc_naked_access_exec,
1966 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1967 NAND_OP_PARSER_PATTERN(
1968 marvell_nfc_naked_access_exec,
1969 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1970 NAND_OP_PARSER_PATTERN(
1971 marvell_nfc_naked_waitrdy_exec,
1972 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1973 );
1974
1975static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1976 /* Naked commands not supported, use a function for each pattern */
1977 NAND_OP_PARSER_PATTERN(
1978 marvell_nfc_read_id_type_exec,
1979 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1980 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1981 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1982 NAND_OP_PARSER_PATTERN(
1983 marvell_nfc_erase_cmd_type_exec,
1984 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1985 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1986 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1987 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1988 NAND_OP_PARSER_PATTERN(
1989 marvell_nfc_read_status_exec,
1990 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1991 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1992 NAND_OP_PARSER_PATTERN(
1993 marvell_nfc_reset_cmd_type_exec,
1994 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1995 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1996 NAND_OP_PARSER_PATTERN(
1997 marvell_nfc_naked_waitrdy_exec,
1998 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1999 );
2000
2001static int marvell_nfc_exec_op(struct nand_chip *chip,
2002 const struct nand_operation *op,
2003 bool check_only)
2004{
2005 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2006
2007 if (nfc->caps->is_nfcv2)
2008 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2009 op, check_only);
2010 else
2011 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2012 op, check_only);
2013}
2014
2015/*
2016 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2017 * usable.
2018 */
2019static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2020 struct mtd_oob_region *oobregion)
2021{
2022 struct nand_chip *chip = mtd_to_nand(mtd);
2023 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2024
2025 if (section)
2026 return -ERANGE;
2027
2028 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2029 lt->last_ecc_bytes;
2030 oobregion->offset = mtd->oobsize - oobregion->length;
2031
2032 return 0;
2033}
2034
2035static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2036 struct mtd_oob_region *oobregion)
2037{
2038 struct nand_chip *chip = mtd_to_nand(mtd);
2039 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2040
2041 if (section)
2042 return -ERANGE;
2043
2044 /*
2045 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2046 * 4KB page / 4bit BCH combination.
2047 */
2048 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2049 oobregion->offset = 6;
2050 else
2051 oobregion->offset = 2;
2052
2053 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2054 lt->last_spare_bytes - oobregion->offset;
2055
2056 return 0;
2057}
2058
2059static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2060 .ecc = marvell_nand_ooblayout_ecc,
2061 .free = marvell_nand_ooblayout_free,
2062};
2063
2064static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2065 struct nand_ecc_ctrl *ecc)
2066{
2067 struct nand_chip *chip = mtd_to_nand(mtd);
2068 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2069 const struct marvell_hw_ecc_layout *l;
2070 int i;
2071
2072 if (!nfc->caps->is_nfcv2 &&
2073 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2074 dev_err(nfc->dev,
2075 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2076 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2077 return -ENOTSUPP;
2078 }
2079
2080 to_marvell_nand(chip)->layout = NULL;
2081 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2082 l = &marvell_nfc_layouts[i];
2083 if (mtd->writesize == l->writesize &&
2084 ecc->size == l->chunk && ecc->strength == l->strength) {
2085 to_marvell_nand(chip)->layout = l;
2086 break;
2087 }
2088 }
2089
2090 if (!to_marvell_nand(chip)->layout ||
2091 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2092 dev_err(nfc->dev,
2093 "ECC strength %d at page size %d is not supported\n",
2094 ecc->strength, mtd->writesize);
2095 return -ENOTSUPP;
2096 }
2097
2098 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2099 ecc->steps = l->nchunks;
2100 ecc->size = l->data_bytes;
2101
2102 if (ecc->strength == 1) {
2103 chip->ecc.algo = NAND_ECC_HAMMING;
2104 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2105 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2106 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2107 ecc->read_oob = ecc->read_oob_raw;
2108 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2109 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2110 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2111 ecc->write_oob = ecc->write_oob_raw;
2112 } else {
2113 chip->ecc.algo = NAND_ECC_BCH;
2114 ecc->strength = 16;
2115 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2116 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2117 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2118 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2119 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2120 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2121 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2122 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2123 }
2124
2125 return 0;
2126}
2127
2128static int marvell_nand_ecc_init(struct mtd_info *mtd,
2129 struct nand_ecc_ctrl *ecc)
2130{
2131 struct nand_chip *chip = mtd_to_nand(mtd);
2132 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2133 int ret;
2134
2135 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2136 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2137 ecc->size = chip->ecc_step_ds;
2138 ecc->strength = chip->ecc_strength_ds;
2139 } else {
2140 dev_info(nfc->dev,
2141 "No minimum ECC strength, using 1b/512B\n");
2142 ecc->size = 512;
2143 ecc->strength = 1;
2144 }
2145 }
2146
2147 switch (ecc->mode) {
2148 case NAND_ECC_HW:
2149 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2150 if (ret)
2151 return ret;
2152 break;
2153 case NAND_ECC_NONE:
2154 case NAND_ECC_SOFT:
ed6d0285 2155 case NAND_ECC_ON_DIE:
02f26ecf
MR
2156 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2157 mtd->writesize != SZ_2K) {
2158 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2159 mtd->writesize);
2160 return -EINVAL;
2161 }
2162 break;
2163 default:
2164 return -EINVAL;
2165 }
2166
2167 return 0;
2168}
2169
2170static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2171static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2172
2173static struct nand_bbt_descr bbt_main_descr = {
2174 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2175 NAND_BBT_2BIT | NAND_BBT_VERSION,
2176 .offs = 8,
2177 .len = 6,
2178 .veroffs = 14,
2179 .maxblocks = 8, /* Last 8 blocks in each chip */
2180 .pattern = bbt_pattern
2181};
2182
2183static struct nand_bbt_descr bbt_mirror_descr = {
2184 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2185 NAND_BBT_2BIT | NAND_BBT_VERSION,
2186 .offs = 8,
2187 .len = 6,
2188 .veroffs = 14,
2189 .maxblocks = 8, /* Last 8 blocks in each chip */
2190 .pattern = bbt_mirror_pattern
2191};
2192
2193static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2194 const struct nand_data_interface
2195 *conf)
2196{
2197 struct nand_chip *chip = mtd_to_nand(mtd);
2198 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2199 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
6b6de654 2200 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
02f26ecf
MR
2201 const struct nand_sdr_timings *sdr;
2202 struct marvell_nfc_timings nfc_tmg;
2203 int read_delay;
2204
2205 sdr = nand_get_sdr_timings(conf);
2206 if (IS_ERR(sdr))
2207 return PTR_ERR(sdr);
2208
2209 /*
2210 * SDR timings are given in pico-seconds while NFC timings must be
2211 * expressed in NAND controller clock cycles, which is half of the
2212 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2213 * This is not written anywhere in the datasheet but was observed
2214 * with an oscilloscope.
2215 *
2216 * NFC datasheet gives equations from which thoses calculations
2217 * are derived, they tend to be slightly more restrictives than the
2218 * given core timings and may improve the overall speed.
2219 */
2220 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2221 nfc_tmg.tRH = nfc_tmg.tRP;
2222 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2223 nfc_tmg.tWH = nfc_tmg.tWP;
2224 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2225 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2226 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2227 /*
2228 * Read delay is the time of propagation from SoC pins to NFC internal
2229 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2230 * EDO mode, an additional delay of tRH must be taken into account so
2231 * the data is sampled on the falling edge instead of the rising edge.
2232 */
2233 read_delay = sdr->tRC_min >= 30000 ?
2234 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2235
2236 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2237 /*
2238 * tWHR and tRHW are supposed to be read to write delays (and vice
2239 * versa) but in some cases, ie. when doing a change column, they must
2240 * be greater than that to be sure tCCS delay is respected.
2241 */
2242 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2243 period_ns) - 2,
2244 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2245 period_ns);
2246
07ad5a72
MR
2247 /*
2248 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2249 * NFCv1: No WAIT_MODE, tR must be maximal.
2250 */
2251 if (nfc->caps->is_nfcv2) {
2252 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2253 } else {
2254 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2255 period_ns);
2256 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2257 nfc_tmg.tR = nfc_tmg.tCH - 3;
2258 else
2259 nfc_tmg.tR = 0;
2260 }
02f26ecf
MR
2261
2262 if (chipnr < 0)
2263 return 0;
2264
2265 marvell_nand->ndtr0 =
2266 NDTR0_TRP(nfc_tmg.tRP) |
2267 NDTR0_TRH(nfc_tmg.tRH) |
2268 NDTR0_ETRP(nfc_tmg.tRP) |
2269 NDTR0_TWP(nfc_tmg.tWP) |
2270 NDTR0_TWH(nfc_tmg.tWH) |
2271 NDTR0_TCS(nfc_tmg.tCS) |
07ad5a72 2272 NDTR0_TCH(nfc_tmg.tCH);
02f26ecf
MR
2273
2274 marvell_nand->ndtr1 =
2275 NDTR1_TAR(nfc_tmg.tAR) |
2276 NDTR1_TWHR(nfc_tmg.tWHR) |
02f26ecf
MR
2277 NDTR1_TR(nfc_tmg.tR);
2278
07ad5a72
MR
2279 if (nfc->caps->is_nfcv2) {
2280 marvell_nand->ndtr0 |=
2281 NDTR0_RD_CNT_DEL(read_delay) |
2282 NDTR0_SELCNTR |
2283 NDTR0_TADL(nfc_tmg.tADL);
2284
2285 marvell_nand->ndtr1 |=
2286 NDTR1_TRHW(nfc_tmg.tRHW) |
2287 NDTR1_WAIT_MODE;
2288 }
2289
02f26ecf
MR
2290 return 0;
2291}
2292
8831e48b
MR
2293static int marvell_nand_attach_chip(struct nand_chip *chip)
2294{
2295 struct mtd_info *mtd = nand_to_mtd(chip);
2296 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2297 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2298 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2299 int ret;
2300
2301 if (pdata && pdata->flash_bbt)
2302 chip->bbt_options |= NAND_BBT_USE_FLASH;
2303
2304 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2305 /*
2306 * We'll use a bad block table stored in-flash and don't
2307 * allow writing the bad block marker to the flash.
2308 */
2309 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2310 chip->bbt_td = &bbt_main_descr;
2311 chip->bbt_md = &bbt_mirror_descr;
2312 }
2313
2314 /* Save the chip-specific fields of NDCR */
2315 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2316 if (chip->options & NAND_BUSWIDTH_16)
2317 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2318
2319 /*
2320 * On small page NANDs, only one cycle is needed to pass the
2321 * column address.
2322 */
2323 if (mtd->writesize <= 512) {
2324 marvell_nand->addr_cyc = 1;
2325 } else {
2326 marvell_nand->addr_cyc = 2;
2327 marvell_nand->ndcr |= NDCR_RA_START;
2328 }
2329
2330 /*
2331 * Now add the number of cycles needed to pass the row
2332 * address.
2333 *
2334 * Addressing a chip using CS 2 or 3 should also need the third row
2335 * cycle but due to inconsistance in the documentation and lack of
2336 * hardware to test this situation, this case is not supported.
2337 */
2338 if (chip->options & NAND_ROW_ADDR_3)
2339 marvell_nand->addr_cyc += 3;
2340 else
2341 marvell_nand->addr_cyc += 2;
2342
2343 if (pdata) {
2344 chip->ecc.size = pdata->ecc_step_size;
2345 chip->ecc.strength = pdata->ecc_strength;
2346 }
2347
2348 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2349 if (ret) {
2350 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2351 return ret;
2352 }
2353
2354 if (chip->ecc.mode == NAND_ECC_HW) {
2355 /*
2356 * Subpage write not available with hardware ECC, prohibit also
2357 * subpage read as in userspace subpage access would still be
2358 * allowed and subpage write, if used, would lead to numerous
2359 * uncorrectable ECC errors.
2360 */
2361 chip->options |= NAND_NO_SUBPAGE_WRITE;
2362 }
2363
2364 if (pdata || nfc->caps->legacy_of_bindings) {
2365 /*
2366 * We keep the MTD name unchanged to avoid breaking platforms
2367 * where the MTD cmdline parser is used and the bootloader
2368 * has not been updated to use the new naming scheme.
2369 */
2370 mtd->name = "pxa3xx_nand-0";
2371 } else if (!mtd->name) {
2372 /*
2373 * If the new bindings are used and the bootloader has not been
2374 * updated to pass a new mtdparts parameter on the cmdline, you
2375 * should define the following property in your NAND node, ie:
2376 *
2377 * label = "main-storage";
2378 *
2379 * This way, mtd->name will be set by the core when
2380 * nand_set_flash_node() is called.
2381 */
2382 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2383 "%s:nand.%d", dev_name(nfc->dev),
2384 marvell_nand->sels[0].cs);
2385 if (!mtd->name) {
2386 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2387 return -ENOMEM;
2388 }
2389 }
2390
2391 return 0;
2392}
2393
2394static const struct nand_controller_ops marvell_nand_controller_ops = {
2395 .attach_chip = marvell_nand_attach_chip,
2396};
2397
02f26ecf
MR
2398static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2399 struct device_node *np)
2400{
2401 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2402 struct marvell_nand_chip *marvell_nand;
2403 struct mtd_info *mtd;
2404 struct nand_chip *chip;
2405 int nsels, ret, i;
2406 u32 cs, rb;
2407
2408 /*
2409 * The legacy "num-cs" property indicates the number of CS on the only
2410 * chip connected to the controller (legacy bindings does not support
f6997bec 2411 * more than one chip). The CS and RB pins are always the #0.
02f26ecf
MR
2412 *
2413 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2414 * properties must be filled. For each chip, expressed as a subnode,
2415 * "reg" points to the CS lines and "nand-rb" to the RB line.
2416 */
f6997bec 2417 if (pdata || nfc->caps->legacy_of_bindings) {
02f26ecf 2418 nsels = 1;
f6997bec
MR
2419 } else {
2420 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2421 if (nsels <= 0) {
2422 dev_err(dev, "missing/invalid reg property\n");
2423 return -EINVAL;
2424 }
02f26ecf
MR
2425 }
2426
2427 /* Alloc the nand chip structure */
2428 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2429 (nsels *
2430 sizeof(struct marvell_nand_chip_sel)),
2431 GFP_KERNEL);
2432 if (!marvell_nand) {
2433 dev_err(dev, "could not allocate chip structure\n");
2434 return -ENOMEM;
2435 }
2436
2437 marvell_nand->nsels = nsels;
2438 marvell_nand->selected_die = -1;
2439
2440 for (i = 0; i < nsels; i++) {
2441 if (pdata || nfc->caps->legacy_of_bindings) {
2442 /*
2443 * Legacy bindings use the CS lines in natural
2444 * order (0, 1, ...)
2445 */
2446 cs = i;
2447 } else {
2448 /* Retrieve CS id */
2449 ret = of_property_read_u32_index(np, "reg", i, &cs);
2450 if (ret) {
2451 dev_err(dev, "could not retrieve reg property: %d\n",
2452 ret);
2453 return ret;
2454 }
2455 }
2456
2457 if (cs >= nfc->caps->max_cs_nb) {
2458 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2459 cs, nfc->caps->max_cs_nb);
2460 return -EINVAL;
2461 }
2462
2463 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2464 dev_err(dev, "CS %d already assigned\n", cs);
2465 return -EINVAL;
2466 }
2467
2468 /*
2469 * The cs variable represents the chip select id, which must be
2470 * converted in bit fields for NDCB0 and NDCB2 to select the
2471 * right chip. Unfortunately, due to a lack of information on
2472 * the subject and incoherent documentation, the user should not
2473 * use CS1 and CS3 at all as asserting them is not supported in
2474 * a reliable way (due to multiplexing inside ADDR5 field).
2475 */
2476 marvell_nand->sels[i].cs = cs;
2477 switch (cs) {
2478 case 0:
2479 case 2:
2480 marvell_nand->sels[i].ndcb0_csel = 0;
2481 break;
2482 case 1:
2483 case 3:
2484 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2485 break;
2486 default:
2487 return -EINVAL;
2488 }
2489
2490 /* Retrieve RB id */
2491 if (pdata || nfc->caps->legacy_of_bindings) {
2492 /* Legacy bindings always use RB #0 */
2493 rb = 0;
2494 } else {
2495 ret = of_property_read_u32_index(np, "nand-rb", i,
2496 &rb);
2497 if (ret) {
2498 dev_err(dev,
2499 "could not retrieve RB property: %d\n",
2500 ret);
2501 return ret;
2502 }
2503 }
2504
2505 if (rb >= nfc->caps->max_rb_nb) {
2506 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2507 rb, nfc->caps->max_rb_nb);
2508 return -EINVAL;
2509 }
2510
2511 marvell_nand->sels[i].rb = rb;
2512 }
2513
2514 chip = &marvell_nand->chip;
2515 chip->controller = &nfc->controller;
2516 nand_set_flash_node(chip, np);
2517
2518 chip->exec_op = marvell_nfc_exec_op;
2519 chip->select_chip = marvell_nfc_select_chip;
07ad5a72 2520 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
02f26ecf
MR
2521 chip->setup_data_interface = marvell_nfc_setup_data_interface;
2522
2523 mtd = nand_to_mtd(chip);
2524 mtd->dev.parent = dev;
2525
2526 /*
2527 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2528 * in the DT node, this entry will be overwritten in nand_scan_ident().
2529 */
2530 chip->ecc.mode = NAND_ECC_HW;
2531
2532 /*
2533 * Save a reference value for timing registers before
2534 * ->setup_data_interface() is called.
2535 */
2536 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2537 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2538
2539 chip->options |= NAND_BUSWIDTH_AUTO;
02f26ecf 2540
8831e48b 2541 ret = nand_scan(mtd, marvell_nand->nsels);
02f26ecf 2542 if (ret) {
8831e48b 2543 dev_err(dev, "could not scan the nand chip\n");
02f26ecf
MR
2544 return ret;
2545 }
2546
2547 if (pdata)
2548 /* Legacy bindings support only one chip */
7576594c 2549 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
02f26ecf
MR
2550 else
2551 ret = mtd_device_register(mtd, NULL, 0);
2552 if (ret) {
2553 dev_err(dev, "failed to register mtd device: %d\n", ret);
2554 nand_release(mtd);
2555 return ret;
2556 }
2557
2558 list_add_tail(&marvell_nand->node, &nfc->chips);
2559
2560 return 0;
2561}
2562
2563static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2564{
2565 struct device_node *np = dev->of_node;
2566 struct device_node *nand_np;
2567 int max_cs = nfc->caps->max_cs_nb;
2568 int nchips;
2569 int ret;
2570
2571 if (!np)
2572 nchips = 1;
2573 else
2574 nchips = of_get_child_count(np);
2575
2576 if (nchips > max_cs) {
2577 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2578 max_cs);
2579 return -EINVAL;
2580 }
2581
2582 /*
2583 * Legacy bindings do not use child nodes to exhibit NAND chip
2584 * properties and layout. Instead, NAND properties are mixed with the
2585 * controller ones, and partitions are defined as direct subnodes of the
2586 * NAND controller node.
2587 */
2588 if (nfc->caps->legacy_of_bindings) {
2589 ret = marvell_nand_chip_init(dev, nfc, np);
2590 return ret;
2591 }
2592
2593 for_each_child_of_node(np, nand_np) {
2594 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2595 if (ret) {
2596 of_node_put(nand_np);
2597 return ret;
2598 }
2599 }
2600
2601 return 0;
2602}
2603
2604static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2605{
2606 struct marvell_nand_chip *entry, *temp;
2607
2608 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2609 nand_release(nand_to_mtd(&entry->chip));
2610 list_del(&entry->node);
2611 }
2612}
2613
2614static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2615{
2616 struct platform_device *pdev = container_of(nfc->dev,
2617 struct platform_device,
2618 dev);
2619 struct dma_slave_config config = {};
2620 struct resource *r;
02f26ecf
MR
2621 int ret;
2622
2623 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2624 dev_warn(nfc->dev,
2625 "DMA not enabled in configuration\n");
2626 return -ENOTSUPP;
2627 }
2628
2629 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2630 if (ret)
2631 return ret;
2632
ac75a50b 2633 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data");
02f26ecf
MR
2634 if (!nfc->dma_chan) {
2635 dev_err(nfc->dev,
2636 "Unable to request data DMA channel\n");
2637 return -ENODEV;
2638 }
2639
2640 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2641 if (!r)
2642 return -ENXIO;
2643
2644 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2645 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2646 config.src_addr = r->start + NDDB;
2647 config.dst_addr = r->start + NDDB;
2648 config.src_maxburst = 32;
2649 config.dst_maxburst = 32;
2650 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2651 if (ret < 0) {
2652 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2653 return ret;
2654 }
2655
2656 /*
2657 * DMA must act on length multiple of 32 and this length may be
2658 * bigger than the destination buffer. Use this buffer instead
2659 * for DMA transfers and then copy the desired amount of data to
2660 * the provided buffer.
2661 */
c495a927 2662 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
02f26ecf
MR
2663 if (!nfc->dma_buf)
2664 return -ENOMEM;
2665
2666 nfc->use_dma = true;
2667
2668 return 0;
2669}
2670
bd9c3f9b
DM
2671static void marvell_nfc_reset(struct marvell_nfc *nfc)
2672{
2673 /*
2674 * ECC operations and interruptions are only enabled when specifically
2675 * needed. ECC shall not be activated in the early stages (fails probe).
2676 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2677 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2678 * offset in the read page and this will fail the protection.
2679 */
2680 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2681 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2682 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2683 writel_relaxed(0, nfc->regs + NDECCCTRL);
2684}
2685
02f26ecf
MR
2686static int marvell_nfc_init(struct marvell_nfc *nfc)
2687{
2688 struct device_node *np = nfc->dev->of_node;
2689
2690 /*
2691 * Some SoCs like A7k/A8k need to enable manually the NAND
2692 * controller, gated clocks and reset bits to avoid being bootloader
2693 * dependent. This is done through the use of the System Functions
2694 * registers.
2695 */
2696 if (nfc->caps->need_system_controller) {
2697 struct regmap *sysctrl_base =
2698 syscon_regmap_lookup_by_phandle(np,
2699 "marvell,system-controller");
2700 u32 reg;
2701
2702 if (IS_ERR(sysctrl_base))
2703 return PTR_ERR(sysctrl_base);
2704
2705 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2706 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2707 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2708 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2709 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2710
2711 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2712 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2713 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2714
2715 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2716 reg |= GENCONF_ND_CLK_CTRL_EN;
2717 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2718 }
2719
2720 /* Configure the DMA if appropriate */
2721 if (!nfc->caps->is_nfcv2)
2722 marvell_nfc_init_dma(nfc);
2723
bd9c3f9b 2724 marvell_nfc_reset(nfc);
02f26ecf
MR
2725
2726 return 0;
2727}
2728
2729static int marvell_nfc_probe(struct platform_device *pdev)
2730{
2731 struct device *dev = &pdev->dev;
2732 struct resource *r;
2733 struct marvell_nfc *nfc;
2734 int ret;
2735 int irq;
2736
2737 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2738 GFP_KERNEL);
2739 if (!nfc)
2740 return -ENOMEM;
2741
2742 nfc->dev = dev;
7da45139 2743 nand_controller_init(&nfc->controller);
8831e48b 2744 nfc->controller.ops = &marvell_nand_controller_ops;
02f26ecf
MR
2745 INIT_LIST_HEAD(&nfc->chips);
2746
2747 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2748 nfc->regs = devm_ioremap_resource(dev, r);
2749 if (IS_ERR(nfc->regs))
2750 return PTR_ERR(nfc->regs);
2751
2752 irq = platform_get_irq(pdev, 0);
2753 if (irq < 0) {
2754 dev_err(dev, "failed to retrieve irq\n");
2755 return irq;
2756 }
2757
6b6de654 2758 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
961ba15c
GC
2759
2760 /* Managed the legacy case (when the first clock was not named) */
6b6de654
BB
2761 if (nfc->core_clk == ERR_PTR(-ENOENT))
2762 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
961ba15c 2763
6b6de654
BB
2764 if (IS_ERR(nfc->core_clk))
2765 return PTR_ERR(nfc->core_clk);
02f26ecf 2766
6b6de654 2767 ret = clk_prepare_enable(nfc->core_clk);
02f26ecf
MR
2768 if (ret)
2769 return ret;
2770
961ba15c 2771 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
f9e64d61
DM
2772 if (IS_ERR(nfc->reg_clk)) {
2773 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
961ba15c 2774 ret = PTR_ERR(nfc->reg_clk);
6b6de654 2775 goto unprepare_core_clk;
961ba15c 2776 }
f9e64d61
DM
2777
2778 nfc->reg_clk = NULL;
961ba15c
GC
2779 }
2780
f9e64d61
DM
2781 ret = clk_prepare_enable(nfc->reg_clk);
2782 if (ret)
2783 goto unprepare_core_clk;
2784
02f26ecf
MR
2785 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2786 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2787 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2788 0, "marvell-nfc", nfc);
2789 if (ret)
961ba15c 2790 goto unprepare_reg_clk;
02f26ecf
MR
2791
2792 /* Get NAND controller capabilities */
2793 if (pdev->id_entry)
2794 nfc->caps = (void *)pdev->id_entry->driver_data;
2795 else
2796 nfc->caps = of_device_get_match_data(&pdev->dev);
2797
2798 if (!nfc->caps) {
2799 dev_err(dev, "Could not retrieve NFC caps\n");
2800 ret = -EINVAL;
961ba15c 2801 goto unprepare_reg_clk;
02f26ecf
MR
2802 }
2803
2804 /* Init the controller and then probe the chips */
2805 ret = marvell_nfc_init(nfc);
2806 if (ret)
961ba15c 2807 goto unprepare_reg_clk;
02f26ecf
MR
2808
2809 platform_set_drvdata(pdev, nfc);
2810
2811 ret = marvell_nand_chips_init(dev, nfc);
2812 if (ret)
961ba15c 2813 goto unprepare_reg_clk;
02f26ecf
MR
2814
2815 return 0;
2816
961ba15c
GC
2817unprepare_reg_clk:
2818 clk_disable_unprepare(nfc->reg_clk);
6b6de654
BB
2819unprepare_core_clk:
2820 clk_disable_unprepare(nfc->core_clk);
02f26ecf
MR
2821
2822 return ret;
2823}
2824
2825static int marvell_nfc_remove(struct platform_device *pdev)
2826{
2827 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2828
2829 marvell_nand_chips_cleanup(nfc);
2830
2831 if (nfc->use_dma) {
2832 dmaengine_terminate_all(nfc->dma_chan);
2833 dma_release_channel(nfc->dma_chan);
2834 }
2835
961ba15c 2836 clk_disable_unprepare(nfc->reg_clk);
6b6de654 2837 clk_disable_unprepare(nfc->core_clk);
02f26ecf
MR
2838
2839 return 0;
2840}
2841
bd9c3f9b
DM
2842static int __maybe_unused marvell_nfc_suspend(struct device *dev)
2843{
2844 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2845 struct marvell_nand_chip *chip;
2846
2847 list_for_each_entry(chip, &nfc->chips, node)
2848 marvell_nfc_wait_ndrun(&chip->chip);
2849
2850 clk_disable_unprepare(nfc->reg_clk);
2851 clk_disable_unprepare(nfc->core_clk);
2852
2853 return 0;
2854}
2855
2856static int __maybe_unused marvell_nfc_resume(struct device *dev)
2857{
2858 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2859 int ret;
2860
2861 ret = clk_prepare_enable(nfc->core_clk);
2862 if (ret < 0)
2863 return ret;
2864
f9e64d61
DM
2865 ret = clk_prepare_enable(nfc->reg_clk);
2866 if (ret < 0)
2867 return ret;
bd9c3f9b
DM
2868
2869 /*
2870 * Reset nfc->selected_chip so the next command will cause the timing
2871 * registers to be restored in marvell_nfc_select_chip().
2872 */
2873 nfc->selected_chip = NULL;
2874
2875 /* Reset registers that have lost their contents */
2876 marvell_nfc_reset(nfc);
2877
2878 return 0;
2879}
2880
2881static const struct dev_pm_ops marvell_nfc_pm_ops = {
2882 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
2883};
2884
02f26ecf
MR
2885static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2886 .max_cs_nb = 4,
2887 .max_rb_nb = 2,
2888 .need_system_controller = true,
2889 .is_nfcv2 = true,
2890};
2891
2892static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2893 .max_cs_nb = 4,
2894 .max_rb_nb = 2,
2895 .is_nfcv2 = true,
2896};
2897
2898static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2899 .max_cs_nb = 2,
2900 .max_rb_nb = 1,
2901 .use_dma = true,
2902};
2903
2904static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2905 .max_cs_nb = 4,
2906 .max_rb_nb = 2,
2907 .need_system_controller = true,
2908 .legacy_of_bindings = true,
2909 .is_nfcv2 = true,
2910};
2911
2912static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2913 .max_cs_nb = 4,
2914 .max_rb_nb = 2,
2915 .legacy_of_bindings = true,
2916 .is_nfcv2 = true,
2917};
2918
2919static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2920 .max_cs_nb = 2,
2921 .max_rb_nb = 1,
2922 .legacy_of_bindings = true,
2923 .use_dma = true,
2924};
2925
2926static const struct platform_device_id marvell_nfc_platform_ids[] = {
2927 {
2928 .name = "pxa3xx-nand",
2929 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2930 },
2931 { /* sentinel */ },
2932};
2933MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2934
2935static const struct of_device_id marvell_nfc_of_ids[] = {
2936 {
2937 .compatible = "marvell,armada-8k-nand-controller",
2938 .data = &marvell_armada_8k_nfc_caps,
2939 },
2940 {
2941 .compatible = "marvell,armada370-nand-controller",
2942 .data = &marvell_armada370_nfc_caps,
2943 },
2944 {
2945 .compatible = "marvell,pxa3xx-nand-controller",
2946 .data = &marvell_pxa3xx_nfc_caps,
2947 },
2948 /* Support for old/deprecated bindings: */
2949 {
2950 .compatible = "marvell,armada-8k-nand",
2951 .data = &marvell_armada_8k_nfc_legacy_caps,
2952 },
2953 {
2954 .compatible = "marvell,armada370-nand",
2955 .data = &marvell_armada370_nfc_legacy_caps,
2956 },
2957 {
2958 .compatible = "marvell,pxa3xx-nand",
2959 .data = &marvell_pxa3xx_nfc_legacy_caps,
2960 },
2961 { /* sentinel */ },
2962};
2963MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2964
2965static struct platform_driver marvell_nfc_driver = {
2966 .driver = {
2967 .name = "marvell-nfc",
2968 .of_match_table = marvell_nfc_of_ids,
bd9c3f9b 2969 .pm = &marvell_nfc_pm_ops,
02f26ecf
MR
2970 },
2971 .id_table = marvell_nfc_platform_ids,
2972 .probe = marvell_nfc_probe,
2973 .remove = marvell_nfc_remove,
2974};
2975module_platform_driver(marvell_nfc_driver);
2976
2977MODULE_LICENSE("GPL");
2978MODULE_DESCRIPTION("Marvell NAND controller driver");