mtd: rawnand: Create a legacy struct and move ->IO_ADDR_{R, W} there
[linux-2.6-block.git] / drivers / mtd / nand / raw / davinci_nand.c
CommitLineData
ff4569c7
DB
1/*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#include <linux/kernel.h>
ff4569c7
DB
27#include <linux/module.h>
28#include <linux/platform_device.h>
29#include <linux/err.h>
ff4569c7 30#include <linux/io.h>
d4092d76 31#include <linux/mtd/rawnand.h>
ff4569c7 32#include <linux/mtd/partitions.h>
5a0e3ad6 33#include <linux/slab.h>
cdeadd71 34#include <linux/of_device.h>
c4f8cde8 35#include <linux/of.h>
ff4569c7 36
ec2a0833
AB
37#include <linux/platform_data/mtd-davinci.h>
38#include <linux/platform_data/mtd-davinci-aemif.h>
ff4569c7 39
ff4569c7
DB
40/*
41 * This is a device driver for the NAND flash controller found on the
42 * various DaVinci family chips. It handles up to four SoC chipselects,
43 * and some flavors of secondary chipselect (e.g. based on A12) as used
44 * with multichip packages.
45 *
6a4123e5 46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
ff4569c7
DB
47 * available on chips like the DM355 and OMAP-L137 and needed with the
48 * more error-prone MLC NAND chips.
49 *
50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51 * outputs in a "wire-AND" configuration, with no per-chip signals.
52 */
53struct davinci_nand_info {
ff4569c7
DB
54 struct nand_chip chip;
55
b2342c1c 56 struct platform_device *pdev;
ff4569c7 57
6a4123e5
DB
58 bool is_readmode;
59
ff4569c7
DB
60 void __iomem *base;
61 void __iomem *vaddr;
62
c5b76d8d 63 void __iomem *current_cs;
ff4569c7
DB
64
65 uint32_t mask_chipsel;
66 uint32_t mask_ale;
67 uint32_t mask_cle;
68
69 uint32_t core_chipsel;
a88dbc5b
SN
70
71 struct davinci_aemif_timing *timing;
ff4569c7
DB
72};
73
74static DEFINE_SPINLOCK(davinci_nand_lock);
6a4123e5 75static bool ecc4_busy;
ff4569c7 76
a5cfb4db
BB
77static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
78{
79 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
80}
ff4569c7
DB
81
82static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
83 int offset)
84{
85 return __raw_readl(info->base + offset);
86}
87
88static inline void davinci_nand_writel(struct davinci_nand_info *info,
89 int offset, unsigned long value)
90{
91 __raw_writel(value, info->base + offset);
92}
93
94/*----------------------------------------------------------------------*/
95
96/*
97 * Access to hardware control lines: ALE, CLE, secondary chipselect.
98 */
99
0f808c16 100static void nand_davinci_hwcontrol(struct nand_chip *nand, int cmd,
ff4569c7
DB
101 unsigned int ctrl)
102{
0f808c16 103 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
c5b76d8d 104 void __iomem *addr = info->current_cs;
ff4569c7
DB
105
106 /* Did the control lines change? */
107 if (ctrl & NAND_CTRL_CHANGE) {
108 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
c5b76d8d 109 addr += info->mask_cle;
ff4569c7 110 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
c5b76d8d 111 addr += info->mask_ale;
ff4569c7 112
82fc5099 113 nand->legacy.IO_ADDR_W = addr;
ff4569c7
DB
114 }
115
116 if (cmd != NAND_CMD_NONE)
82fc5099 117 iowrite8(cmd, nand->legacy.IO_ADDR_W);
ff4569c7
DB
118}
119
758b56f5 120static void nand_davinci_select_chip(struct nand_chip *nand, int chip)
ff4569c7 121{
758b56f5 122 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
c5b76d8d
BB
123
124 info->current_cs = info->vaddr;
ff4569c7
DB
125
126 /* maybe kick in a second chipselect */
127 if (chip > 0)
c5b76d8d 128 info->current_cs += info->mask_chipsel;
ff4569c7 129
82fc5099
BB
130 info->chip.legacy.IO_ADDR_W = info->current_cs;
131 info->chip.legacy.IO_ADDR_R = info->chip.legacy.IO_ADDR_W;
ff4569c7
DB
132}
133
134/*----------------------------------------------------------------------*/
135
136/*
137 * 1-bit hardware ECC ... context maintained for each core chipselect
138 */
139
140static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
141{
142 struct davinci_nand_info *info = to_davinci_nand(mtd);
143
144 return davinci_nand_readl(info, NANDF1ECC_OFFSET
145 + 4 * info->core_chipsel);
146}
147
ec47636c 148static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
ff4569c7
DB
149{
150 struct davinci_nand_info *info;
151 uint32_t nandcfr;
152 unsigned long flags;
153
ec47636c 154 info = to_davinci_nand(nand_to_mtd(chip));
ff4569c7
DB
155
156 /* Reset ECC hardware */
ec47636c 157 nand_davinci_readecc_1bit(nand_to_mtd(chip));
ff4569c7
DB
158
159 spin_lock_irqsave(&davinci_nand_lock, flags);
160
161 /* Restart ECC hardware */
162 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
163 nandcfr |= BIT(8 + info->core_chipsel);
164 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
165
166 spin_unlock_irqrestore(&davinci_nand_lock, flags);
167}
168
169/*
170 * Read hardware ECC value and pack into three bytes
171 */
af37d2c3
BB
172static int nand_davinci_calculate_1bit(struct nand_chip *chip,
173 const u_char *dat, u_char *ecc_code)
ff4569c7 174{
af37d2c3 175 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
ff4569c7
DB
176 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
177
178 /* invert so that erased block ecc is correct */
179 ecc24 = ~ecc24;
180 ecc_code[0] = (u_char)(ecc24);
181 ecc_code[1] = (u_char)(ecc24 >> 8);
182 ecc_code[2] = (u_char)(ecc24 >> 16);
183
184 return 0;
185}
186
00da2ea9 187static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
ff4569c7
DB
188 u_char *read_ecc, u_char *calc_ecc)
189{
ff4569c7
DB
190 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
191 (read_ecc[2] << 16);
192 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
193 (calc_ecc[2] << 16);
194 uint32_t diff = eccCalc ^ eccNand;
195
196 if (diff) {
197 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
198 /* Correctable error */
199 if ((diff >> (12 + 3)) < chip->ecc.size) {
200 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
201 return 1;
202 } else {
6e941192 203 return -EBADMSG;
ff4569c7
DB
204 }
205 } else if (!(diff & (diff - 1))) {
206 /* Single bit ECC error in the ECC itself,
207 * nothing to fix */
208 return 1;
209 } else {
210 /* Uncorrectable error */
6e941192 211 return -EBADMSG;
ff4569c7
DB
212 }
213
214 }
215 return 0;
216}
217
218/*----------------------------------------------------------------------*/
219
6a4123e5
DB
220/*
221 * 4-bit hardware ECC ... context maintained over entire AEMIF
222 *
223 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
224 * since that forces use of a problematic "infix OOB" layout.
225 * Among other things, it trashes manufacturer bad block markers.
226 * Also, and specific to this hardware, it ECC-protects the "prepad"
227 * in the OOB ... while having ECC protection for parts of OOB would
228 * seem useful, the current MTD stack sometimes wants to update the
229 * OOB without recomputing ECC.
230 */
231
ec47636c 232static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
6a4123e5 233{
ec47636c 234 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
6a4123e5
DB
235 unsigned long flags;
236 u32 val;
237
f6d7c1b5
KB
238 /* Reset ECC hardware */
239 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
240
6a4123e5
DB
241 spin_lock_irqsave(&davinci_nand_lock, flags);
242
243 /* Start 4-bit ECC calculation for read/write */
244 val = davinci_nand_readl(info, NANDFCR_OFFSET);
245 val &= ~(0x03 << 4);
246 val |= (info->core_chipsel << 4) | BIT(12);
247 davinci_nand_writel(info, NANDFCR_OFFSET, val);
248
249 info->is_readmode = (mode == NAND_ECC_READ);
250
251 spin_unlock_irqrestore(&davinci_nand_lock, flags);
252}
253
254/* Read raw ECC code after writing to NAND. */
255static void
256nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
257{
258 const u32 mask = 0x03ff03ff;
259
260 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
261 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
262 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
263 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
264}
265
266/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
af37d2c3
BB
267static int nand_davinci_calculate_4bit(struct nand_chip *chip,
268 const u_char *dat, u_char *ecc_code)
6a4123e5 269{
af37d2c3 270 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
6a4123e5
DB
271 u32 raw_ecc[4], *p;
272 unsigned i;
273
274 /* After a read, terminate ECC calculation by a dummy read
275 * of some 4-bit ECC register. ECC covers everything that
276 * was read; correct() just uses the hardware state, so
277 * ecc_code is not needed.
278 */
279 if (info->is_readmode) {
280 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
281 return 0;
282 }
283
284 /* Pack eight raw 10-bit ecc values into ten bytes, making
285 * two passes which each convert four values (in upper and
286 * lower halves of two 32-bit words) into five bytes. The
287 * ROM boot loader uses this same packing scheme.
288 */
289 nand_davinci_readecc_4bit(info, raw_ecc);
290 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
291 *ecc_code++ = p[0] & 0xff;
292 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
293 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
294 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
295 *ecc_code++ = (p[1] >> 18) & 0xff;
296 }
297
298 return 0;
299}
300
301/* Correct up to 4 bits in data we just read, using state left in the
302 * hardware plus the ecc_code computed when it was first written.
303 */
00da2ea9
BB
304static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
305 u_char *ecc_code, u_char *null)
6a4123e5
DB
306{
307 int i;
00da2ea9 308 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
6a4123e5
DB
309 unsigned short ecc10[8];
310 unsigned short *ecc16;
311 u32 syndrome[4];
1c3275b6 312 u32 ecc_state;
6a4123e5 313 unsigned num_errors, corrected;
2bdb053a 314 unsigned long timeo;
6a4123e5 315
6a4123e5
DB
316 /* Unpack ten bytes into eight 10 bit values. We know we're
317 * little-endian, and use type punning for less shifting/masking.
318 */
cc53d5ca 319 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
6a4123e5
DB
320 return -EINVAL;
321 ecc16 = (unsigned short *)ecc_code;
322
323 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
324 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
325 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
326 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
327 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
328 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
329 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
330 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
331
332 /* Tell ECC controller about the expected ECC codes. */
333 for (i = 7; i >= 0; i--)
334 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
335
336 /* Allow time for syndrome calculation ... then read it.
337 * A syndrome of all zeroes 0 means no detected errors.
338 */
339 davinci_nand_readl(info, NANDFSR_OFFSET);
340 nand_davinci_readecc_4bit(info, syndrome);
341 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
342 return 0;
343
f12a9473
SN
344 /*
345 * Clear any previous address calculation by doing a dummy read of an
346 * error address register.
347 */
348 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
349
6a4123e5
DB
350 /* Start address calculation, and wait for it to complete.
351 * We _could_ start reading more data while this is working,
352 * to speed up the overall page read.
353 */
354 davinci_nand_writel(info, NANDFCR_OFFSET,
355 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
1c3275b6
SR
356
357 /*
358 * ECC_STATE field reads 0x3 (Error correction complete) immediately
359 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
360 * begin trying to poll for the state, you may fall right out of your
361 * loop without any of the correction calculations having taken place.
eea116ed
WS
362 * The recommendation from the hardware team is to initially delay as
363 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
364 * correction state.
1c3275b6 365 */
2bdb053a 366 timeo = jiffies + usecs_to_jiffies(100);
1c3275b6
SR
367 do {
368 ecc_state = (davinci_nand_readl(info,
369 NANDFSR_OFFSET) >> 8) & 0x0f;
370 cpu_relax();
371 } while ((ecc_state < 4) && time_before(jiffies, timeo));
372
6a4123e5
DB
373 for (;;) {
374 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
375
376 switch ((fsr >> 8) & 0x0f) {
377 case 0: /* no error, should not happen */
f12a9473 378 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
379 return 0;
380 case 1: /* five or more errors detected */
f12a9473 381 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6e941192 382 return -EBADMSG;
6a4123e5
DB
383 case 2: /* error addresses computed */
384 case 3:
385 num_errors = 1 + ((fsr >> 16) & 0x03);
386 goto correct;
387 default: /* still working on it */
388 cpu_relax();
389 continue;
390 }
391 }
392
393correct:
394 /* correct each error */
395 for (i = 0, corrected = 0; i < num_errors; i++) {
396 int error_address, error_value;
397
398 if (i > 1) {
399 error_address = davinci_nand_readl(info,
400 NAND_ERR_ADD2_OFFSET);
401 error_value = davinci_nand_readl(info,
402 NAND_ERR_ERRVAL2_OFFSET);
403 } else {
404 error_address = davinci_nand_readl(info,
405 NAND_ERR_ADD1_OFFSET);
406 error_value = davinci_nand_readl(info,
407 NAND_ERR_ERRVAL1_OFFSET);
408 }
409
410 if (i & 1) {
411 error_address >>= 16;
412 error_value >>= 16;
413 }
414 error_address &= 0x3ff;
415 error_address = (512 + 7) - error_address;
416
417 if (error_address < 512) {
418 data[error_address] ^= error_value;
419 corrected++;
420 }
421 }
422
423 return corrected;
424}
425
426/*----------------------------------------------------------------------*/
427
ff4569c7
DB
428/*
429 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
430 * how these chips are normally wired. This translates to both 8 and 16
431 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
432 *
433 * For now we assume that configuration, or any other one which ignores
434 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
435 * and have that transparently morphed into multiple NAND operations.
436 */
7e534323
BB
437static void nand_davinci_read_buf(struct nand_chip *chip, uint8_t *buf,
438 int len)
ff4569c7 439{
cc53d5ca 440 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
82fc5099 441 ioread32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
cc53d5ca 442 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
82fc5099 443 ioread16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
ff4569c7 444 else
82fc5099 445 ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
ff4569c7
DB
446}
447
c0739d85
BB
448static void nand_davinci_write_buf(struct nand_chip *chip, const uint8_t *buf,
449 int len)
ff4569c7 450{
cc53d5ca 451 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
82fc5099 452 iowrite32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
cc53d5ca 453 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
82fc5099 454 iowrite16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
ff4569c7 455 else
82fc5099 456 iowrite8_rep(chip->legacy.IO_ADDR_R, buf, len);
ff4569c7
DB
457}
458
459/*
460 * Check hardware register for wait status. Returns 1 if device is ready,
461 * 0 if it is still busy.
462 */
50a487e7 463static int nand_davinci_dev_ready(struct nand_chip *chip)
ff4569c7 464{
50a487e7 465 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
ff4569c7
DB
466
467 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
468}
469
ff4569c7
DB
470/*----------------------------------------------------------------------*/
471
6a4123e5
DB
472/* An ECC layout for using 4-bit ECC with small-page flash, storing
473 * ten ECC bytes plus the manufacturer's bad block marker byte, and
474 * and not overlapping the default BBT markers.
475 */
e4aacaa1
BB
476static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
477 struct mtd_oob_region *oobregion)
478{
479 if (section > 2)
480 return -ERANGE;
481
482 if (!section) {
483 oobregion->offset = 0;
484 oobregion->length = 5;
485 } else if (section == 1) {
486 oobregion->offset = 6;
487 oobregion->length = 2;
488 } else {
489 oobregion->offset = 13;
490 oobregion->length = 3;
491 }
6a4123e5 492
e4aacaa1
BB
493 return 0;
494}
6a4123e5 495
e4aacaa1
BB
496static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
497 struct mtd_oob_region *oobregion)
498{
499 if (section > 1)
500 return -ERANGE;
501
502 if (!section) {
503 oobregion->offset = 8;
504 oobregion->length = 5;
505 } else {
506 oobregion->offset = 16;
507 oobregion->length = mtd->oobsize - 16;
508 }
509
510 return 0;
511}
512
513static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
514 .ecc = hwecc4_ooblayout_small_ecc,
515 .free = hwecc4_ooblayout_small_free,
a11244c0
SP
516};
517
cdeadd71
HS
518#if defined(CONFIG_OF)
519static const struct of_device_id davinci_nand_of_match[] = {
520 {.compatible = "ti,davinci-nand", },
28c015a9 521 {.compatible = "ti,keystone-nand", },
cdeadd71 522 {},
13daa22f 523};
cdeadd71
HS
524MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
525
526static struct davinci_nand_pdata
527 *nand_davinci_get_pdata(struct platform_device *pdev)
528{
453810b7 529 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
cdeadd71
HS
530 struct davinci_nand_pdata *pdata;
531 const char *mode;
532 u32 prop;
cdeadd71
HS
533
534 pdata = devm_kzalloc(&pdev->dev,
535 sizeof(struct davinci_nand_pdata),
536 GFP_KERNEL);
537 pdev->dev.platform_data = pdata;
538 if (!pdata)
f735a4d0 539 return ERR_PTR(-ENOMEM);
cdeadd71
HS
540 if (!of_property_read_u32(pdev->dev.of_node,
541 "ti,davinci-chipselect", &prop))
fd065806 542 pdata->core_chipsel = prop;
05103825
IK
543 else
544 return ERR_PTR(-EINVAL);
545
cdeadd71
HS
546 if (!of_property_read_u32(pdev->dev.of_node,
547 "ti,davinci-mask-ale", &prop))
548 pdata->mask_ale = prop;
549 if (!of_property_read_u32(pdev->dev.of_node,
550 "ti,davinci-mask-cle", &prop))
551 pdata->mask_cle = prop;
552 if (!of_property_read_u32(pdev->dev.of_node,
553 "ti,davinci-mask-chipsel", &prop))
554 pdata->mask_chipsel = prop;
555 if (!of_property_read_string(pdev->dev.of_node,
556 "ti,davinci-ecc-mode", &mode)) {
557 if (!strncmp("none", mode, 4))
558 pdata->ecc_mode = NAND_ECC_NONE;
559 if (!strncmp("soft", mode, 4))
560 pdata->ecc_mode = NAND_ECC_SOFT;
561 if (!strncmp("hw", mode, 2))
562 pdata->ecc_mode = NAND_ECC_HW;
563 }
564 if (!of_property_read_u32(pdev->dev.of_node,
565 "ti,davinci-ecc-bits", &prop))
566 pdata->ecc_bits = prop;
75be1ea2 567
363b5db2
BB
568 if (!of_property_read_u32(pdev->dev.of_node,
569 "ti,davinci-nand-buswidth", &prop) && prop == 16)
570 pdata->options |= NAND_BUSWIDTH_16;
571
75be1ea2 572 if (of_property_read_bool(pdev->dev.of_node,
75be1ea2 573 "ti,davinci-nand-use-bbt"))
cdeadd71 574 pdata->bbt_options = NAND_BBT_USE_FLASH;
28c015a9 575
65a2c1ca
SN
576 /*
577 * Since kernel v4.8, this driver has been fixed to enable
578 * use of 4-bit hardware ECC with subpages and verified on
579 * TI's keystone EVMs (K2L, K2HK and K2E).
580 * However, in the interest of not breaking systems using
581 * existing UBI partitions, sub-page writes are not being
582 * (re)enabled. If you want to use subpage writes on Keystone
583 * platforms (i.e. do not have any existing UBI partitions),
584 * then use "ti,davinci-nand" as the compatible in your
585 * device-tree file.
586 */
28c015a9
MK
587 if (of_device_is_compatible(pdev->dev.of_node,
588 "ti,keystone-nand")) {
589 pdata->options |= NAND_NO_SUBPAGE_WRITE;
590 }
cdeadd71
HS
591 }
592
453810b7 593 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
594}
595#else
cdeadd71
HS
596static struct davinci_nand_pdata
597 *nand_davinci_get_pdata(struct platform_device *pdev)
598{
453810b7 599 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
600}
601#endif
602
b2342c1c
MR
603static int davinci_nand_attach_chip(struct nand_chip *chip)
604{
605 struct mtd_info *mtd = nand_to_mtd(chip);
606 struct davinci_nand_info *info = to_davinci_nand(mtd);
607 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
608 int ret = 0;
609
610 if (IS_ERR(pdata))
611 return PTR_ERR(pdata);
612
613 switch (info->chip.ecc.mode) {
614 case NAND_ECC_NONE:
615 pdata->ecc_bits = 0;
616 break;
617 case NAND_ECC_SOFT:
618 pdata->ecc_bits = 0;
619 /*
620 * This driver expects Hamming based ECC when ecc_mode is set
621 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
622 * avoid adding an extra ->ecc_algo field to
623 * davinci_nand_pdata.
624 */
625 info->chip.ecc.algo = NAND_ECC_HAMMING;
626 break;
627 case NAND_ECC_HW:
628 if (pdata->ecc_bits == 4) {
629 /*
630 * No sanity checks: CPUs must support this,
631 * and the chips may not use NAND_BUSWIDTH_16.
632 */
633
634 /* No sharing 4-bit hardware between chipselects yet */
635 spin_lock_irq(&davinci_nand_lock);
636 if (ecc4_busy)
637 ret = -EBUSY;
638 else
639 ecc4_busy = true;
640 spin_unlock_irq(&davinci_nand_lock);
641
642 if (ret == -EBUSY)
643 return ret;
644
645 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
646 info->chip.ecc.correct = nand_davinci_correct_4bit;
647 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
648 info->chip.ecc.bytes = 10;
649 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
650 info->chip.ecc.algo = NAND_ECC_BCH;
651 } else {
652 /* 1bit ecc hamming */
653 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
654 info->chip.ecc.correct = nand_davinci_correct_1bit;
655 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
656 info->chip.ecc.bytes = 3;
657 info->chip.ecc.algo = NAND_ECC_HAMMING;
658 }
659 info->chip.ecc.size = 512;
660 info->chip.ecc.strength = pdata->ecc_bits;
661 break;
662 default:
663 return -EINVAL;
664 }
665
666 /*
667 * Update ECC layout if needed ... for 1-bit HW ECC, the default
668 * is OK, but it allocates 6 bytes when only 3 are needed (for
669 * each 512 bytes). For the 4-bit HW ECC, that default is not
670 * usable: 10 bytes are needed, not 6.
671 */
672 if (pdata->ecc_bits == 4) {
673 int chunks = mtd->writesize / 512;
674
675 if (!chunks || mtd->oobsize < 16) {
676 dev_dbg(&info->pdev->dev, "too small\n");
677 return -EINVAL;
678 }
679
680 /* For small page chips, preserve the manufacturer's
681 * badblock marking data ... and make sure a flash BBT
682 * table marker fits in the free bytes.
683 */
684 if (chunks == 1) {
685 mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
686 } else if (chunks == 4 || chunks == 8) {
687 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
688 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
689 } else {
690 return -EIO;
691 }
692 }
693
694 return ret;
695}
696
697static const struct nand_controller_ops davinci_nand_controller_ops = {
698 .attach_chip = davinci_nand_attach_chip,
699};
700
eaaa4a9a 701static int nand_davinci_probe(struct platform_device *pdev)
ff4569c7 702{
cdeadd71 703 struct davinci_nand_pdata *pdata;
ff4569c7
DB
704 struct davinci_nand_info *info;
705 struct resource *res1;
706 struct resource *res2;
707 void __iomem *vaddr;
708 void __iomem *base;
709 int ret;
710 uint32_t val;
a5cfb4db 711 struct mtd_info *mtd;
ff4569c7 712
cdeadd71 713 pdata = nand_davinci_get_pdata(pdev);
f735a4d0
IK
714 if (IS_ERR(pdata))
715 return PTR_ERR(pdata);
716
533a0149
DB
717 /* insist on board-specific configuration */
718 if (!pdata)
719 return -ENODEV;
720
ff4569c7 721 /* which external chipselect will we be managing? */
fd065806 722 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
ff4569c7
DB
723 return -ENODEV;
724
ef4e0c21 725 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
00669231 726 if (!info)
30a3970c 727 return -ENOMEM;
ff4569c7
DB
728
729 platform_set_drvdata(pdev, info);
730
731 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
732 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
733 if (!res1 || !res2) {
734 dev_err(&pdev->dev, "resource missing\n");
30a3970c 735 return -EINVAL;
ff4569c7
DB
736 }
737
59bff7fb 738 vaddr = devm_ioremap_resource(&pdev->dev, res1);
30a3970c
IK
739 if (IS_ERR(vaddr))
740 return PTR_ERR(vaddr);
741
0966a416
IK
742 /*
743 * This registers range is used to setup NAND settings. In case with
744 * TI AEMIF driver, the same memory address range is requested already
745 * by AEMIF, so we cannot request it twice, just ioremap.
746 * The AEMIF and NAND drivers not use the same registers in this range.
747 */
748 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
749 if (!base) {
750 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
751 return -EADDRNOTAVAIL;
752 }
ff4569c7 753
b2342c1c 754 info->pdev = pdev;
ff4569c7
DB
755 info->base = base;
756 info->vaddr = vaddr;
757
a5cfb4db 758 mtd = nand_to_mtd(&info->chip);
a5cfb4db 759 mtd->dev.parent = &pdev->dev;
a61ae81a 760 nand_set_flash_node(&info->chip, pdev->dev.of_node);
87f39f04 761
82fc5099
BB
762 info->chip.legacy.IO_ADDR_R = vaddr;
763 info->chip.legacy.IO_ADDR_W = vaddr;
ff4569c7
DB
764 info->chip.chip_delay = 0;
765 info->chip.select_chip = nand_davinci_select_chip;
766
bb9ebd4e 767 /* options such as NAND_BBT_USE_FLASH */
a40f7341
BN
768 info->chip.bbt_options = pdata->bbt_options;
769 /* options such as 16-bit widths */
533a0149 770 info->chip.options = pdata->options;
f611a79f
MG
771 info->chip.bbt_td = pdata->bbt_td;
772 info->chip.bbt_md = pdata->bbt_md;
a88dbc5b 773 info->timing = pdata->timing;
ff4569c7 774
c5b76d8d 775 info->current_cs = info->vaddr;
fd065806 776 info->core_chipsel = pdata->core_chipsel;
ff4569c7
DB
777 info->mask_chipsel = pdata->mask_chipsel;
778
779 /* use nandboot-capable ALE/CLE masks by default */
5cd0be8e 780 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
533a0149 781 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
ff4569c7
DB
782
783 /* Set address of hardware control function */
784 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
785 info->chip.dev_ready = nand_davinci_dev_ready;
786
787 /* Speed up buffer I/O */
788 info->chip.read_buf = nand_davinci_read_buf;
789 info->chip.write_buf = nand_davinci_write_buf;
790
533a0149 791 /* Use board-specific ECC config */
363b5db2 792 info->chip.ecc.mode = pdata->ecc_mode;
ff4569c7 793
363b5db2
BB
794 spin_lock_irq(&davinci_nand_lock);
795
796 /* put CSxNAND into NAND mode */
797 val = davinci_nand_readl(info, NANDFCR_OFFSET);
798 val |= BIT(info->core_chipsel);
799 davinci_nand_writel(info, NANDFCR_OFFSET, val);
800
801 spin_unlock_irq(&davinci_nand_lock);
802
803 /* Scan to find existence of the device(s) */
b2342c1c 804 info->chip.dummy_controller.ops = &davinci_nand_controller_ops;
00ad378f 805 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
363b5db2
BB
806 if (ret < 0) {
807 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
a8e3923a 808 return ret;
363b5db2
BB
809 }
810
192afdbf 811 if (pdata->parts)
29597ca1 812 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
a61ae81a 813 else
a5cfb4db 814 ret = mtd_device_register(mtd, NULL, 0);
ff4569c7 815 if (ret < 0)
4acc3046 816 goto err_cleanup_nand;
ff4569c7
DB
817
818 val = davinci_nand_readl(info, NRCSR_OFFSET);
819 dev_info(&pdev->dev, "controller rev. %d.%d\n",
820 (val >> 8) & 0xff, val & 0xff);
821
822 return 0;
823
4acc3046
MR
824err_cleanup_nand:
825 nand_cleanup(&info->chip);
826
ff4569c7
DB
827 return ret;
828}
829
eaaa4a9a 830static int nand_davinci_remove(struct platform_device *pdev)
ff4569c7
DB
831{
832 struct davinci_nand_info *info = platform_get_drvdata(pdev);
ff4569c7 833
6a4123e5
DB
834 spin_lock_irq(&davinci_nand_lock);
835 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
836 ecc4_busy = false;
837 spin_unlock_irq(&davinci_nand_lock);
838
59ac276f 839 nand_release(&info->chip);
ff4569c7 840
ff4569c7
DB
841 return 0;
842}
843
844static struct platform_driver nand_davinci_driver = {
eaaa4a9a
IK
845 .probe = nand_davinci_probe,
846 .remove = nand_davinci_remove,
ff4569c7
DB
847 .driver = {
848 .name = "davinci_nand",
c4f8cde8 849 .of_match_table = of_match_ptr(davinci_nand_of_match),
ff4569c7
DB
850 },
851};
852MODULE_ALIAS("platform:davinci_nand");
853
eaaa4a9a 854module_platform_driver(nand_davinci_driver);
ff4569c7
DB
855
856MODULE_LICENSE("GPL");
857MODULE_AUTHOR("Texas Instruments");
858MODULE_DESCRIPTION("Davinci NAND flash driver");
859