mtd: nand: mxc: switch to mtd_ooblayout_ops
[linux-2.6-block.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
10f22ee3 15#include <linux/gpio/consumer.h>
a0e5cc58 16#include <linux/module.h>
4e070376 17#include <linux/interrupt.h>
c276aca4 18#include <linux/jiffies.h>
19#include <linux/sched.h>
67ce04bf
VS
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/nand.h>
22#include <linux/mtd/partitions.h>
763e7359 23#include <linux/omap-dma.h>
67ce04bf 24#include <linux/io.h>
5a0e3ad6 25#include <linux/slab.h>
62116e51
PA
26#include <linux/of.h>
27#include <linux/of_device.h>
67ce04bf 28
32d42a85 29#include <linux/mtd/nand_bch.h>
62116e51 30#include <linux/platform_data/elm.h>
0e618ef0 31
c509aefd 32#include <linux/omap-gpmc.h>
2203747c 33#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 34
67ce04bf 35#define DRIVER_NAME "omap2-nand"
4e070376 36#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 37
67ce04bf
VS
38#define NAND_Ecc_P1e (1 << 0)
39#define NAND_Ecc_P2e (1 << 1)
40#define NAND_Ecc_P4e (1 << 2)
41#define NAND_Ecc_P8e (1 << 3)
42#define NAND_Ecc_P16e (1 << 4)
43#define NAND_Ecc_P32e (1 << 5)
44#define NAND_Ecc_P64e (1 << 6)
45#define NAND_Ecc_P128e (1 << 7)
46#define NAND_Ecc_P256e (1 << 8)
47#define NAND_Ecc_P512e (1 << 9)
48#define NAND_Ecc_P1024e (1 << 10)
49#define NAND_Ecc_P2048e (1 << 11)
50
51#define NAND_Ecc_P1o (1 << 16)
52#define NAND_Ecc_P2o (1 << 17)
53#define NAND_Ecc_P4o (1 << 18)
54#define NAND_Ecc_P8o (1 << 19)
55#define NAND_Ecc_P16o (1 << 20)
56#define NAND_Ecc_P32o (1 << 21)
57#define NAND_Ecc_P64o (1 << 22)
58#define NAND_Ecc_P128o (1 << 23)
59#define NAND_Ecc_P256o (1 << 24)
60#define NAND_Ecc_P512o (1 << 25)
61#define NAND_Ecc_P1024o (1 << 26)
62#define NAND_Ecc_P2048o (1 << 27)
63
64#define TF(value) (value ? 1 : 0)
65
66#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
65b97cf6
AM
105#define PREFETCH_CONFIG1_CS_SHIFT 24
106#define ECC_CONFIG_CS_SHIFT 1
107#define CS_MASK 0x7
108#define ENABLE_PREFETCH (0x1 << 7)
109#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 110#define ECCSIZE0_SHIFT 12
65b97cf6
AM
111#define ECCSIZE1_SHIFT 22
112#define ECC1RESULTSIZE 0x1
113#define ECCCLEAR 0x100
114#define ECC1 0x1
47f88af4
AM
115#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 120
d5e7c864
LV
121#define OMAP24XX_DMA_GPMC 4
122
62116e51
PA
123#define SECTOR_BYTES 512
124/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
125#define BCH4_BIT_PAD 4
62116e51
PA
126
127/* GPMC ecc engine settings for read */
128#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
129#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
130#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
131#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
132#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
133
134/* GPMC ecc engine settings for write */
135#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
136#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
137#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
138
b491da72 139#define BADBLOCK_MARKER_LENGTH 2
a919e511 140
9748fff9 141static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
142 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
143 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
144 0x07, 0x0e};
62116e51
PA
145static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
62116e51 148
1dc338e8
RL
149/* Shared among all NAND instances to synchronize access to the ECC Engine */
150static struct nand_hw_control omap_gpmc_controller = {
151 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
152 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
153};
59e9c5ae 154
67ce04bf 155struct omap_nand_info {
67ce04bf
VS
156 struct nand_chip nand;
157 struct platform_device *pdev;
158
159 int gpmc_cs;
01b95fc6
RQ
160 bool dev_ready;
161 enum nand_io xfer_type;
162 int devsize;
4e558072 163 enum omap_ecc ecc_opt;
01b95fc6
RQ
164 struct device_node *elm_of_node;
165
166 unsigned long phys_base;
dfe32893 167 struct completion comp;
763e7359 168 struct dma_chan *dma;
5c468455
AM
169 int gpmc_irq_fifo;
170 int gpmc_irq_count;
4e070376
SG
171 enum {
172 OMAP_NAND_IO_READ = 0, /* read */
173 OMAP_NAND_IO_WRITE, /* write */
174 } iomode;
175 u_char *buf;
176 int buf_len;
c509aefd 177 /* Interface to GPMC */
65b97cf6 178 struct gpmc_nand_regs reg;
c509aefd 179 struct gpmc_nand_ops *ops;
c9711ec5 180 bool flash_bbt;
94cb4ee0
RL
181 /* generated at runtime depending on ECC algorithm and layout selected */
182 struct nand_ecclayout oobinfo;
a919e511 183 /* fields specific for BCHx_HW ECC scheme */
62116e51 184 struct device *elm_dev;
10f22ee3
RQ
185 /* NAND ready gpio */
186 struct gpio_desc *ready_gpiod;
67ce04bf
VS
187};
188
4578ea9a
BB
189static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
190{
432420c0 191 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
4578ea9a 192}
432420c0 193
65b97cf6
AM
194/**
195 * omap_prefetch_enable - configures and starts prefetch transfer
196 * @cs: cs (chip select) number
197 * @fifo_th: fifo threshold to be used for read/ write
198 * @dma_mode: dma mode enable (1) or disable (0)
199 * @u32_count: number of bytes to be transferred
200 * @is_write: prefetch read(0) or write post(1) mode
201 */
202static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
203 unsigned int u32_count, int is_write, struct omap_nand_info *info)
204{
205 u32 val;
206
207 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
208 return -1;
209
210 if (readl(info->reg.gpmc_prefetch_control))
211 return -EBUSY;
212
213 /* Set the amount of bytes to be prefetched */
214 writel(u32_count, info->reg.gpmc_prefetch_config2);
215
216 /* Set dma/mpu mode, the prefetch read / post write and
217 * enable the engine. Set which cs is has requested for.
218 */
219 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
220 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
221 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
222 writel(val, info->reg.gpmc_prefetch_config1);
223
224 /* Start the prefetch engine */
225 writel(0x1, info->reg.gpmc_prefetch_control);
226
227 return 0;
228}
229
230/**
231 * omap_prefetch_reset - disables and stops the prefetch engine
232 */
233static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
234{
235 u32 config1;
236
237 /* check if the same module/cs is trying to reset */
238 config1 = readl(info->reg.gpmc_prefetch_config1);
239 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
240 return -EINVAL;
241
242 /* Stop the PFPW engine */
243 writel(0x0, info->reg.gpmc_prefetch_control);
244
245 /* Reset/disable the PFPW engine */
246 writel(0x0, info->reg.gpmc_prefetch_config1);
247
248 return 0;
249}
250
67ce04bf
VS
251/**
252 * omap_hwcontrol - hardware specific access to control-lines
253 * @mtd: MTD device structure
254 * @cmd: command to device
255 * @ctrl:
256 * NAND_NCE: bit 0 -> don't care
257 * NAND_CLE: bit 1 -> Command Latch
258 * NAND_ALE: bit 2 -> Address Latch
259 *
260 * NOTE: boards may use different bits for these!!
261 */
262static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
263{
4578ea9a 264 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 265
2c01946c
SG
266 if (cmd != NAND_CMD_NONE) {
267 if (ctrl & NAND_CLE)
65b97cf6 268 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
269
270 else if (ctrl & NAND_ALE)
65b97cf6 271 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
272
273 else /* NAND_NCE */
65b97cf6 274 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 275 }
67ce04bf
VS
276}
277
59e9c5ae 278/**
279 * omap_read_buf8 - read data from NAND controller into buffer
280 * @mtd: MTD device structure
281 * @buf: buffer to store date
282 * @len: number of bytes to read
283 */
284static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
285{
4bd4ebcc 286 struct nand_chip *nand = mtd_to_nand(mtd);
59e9c5ae 287
288 ioread8_rep(nand->IO_ADDR_R, buf, len);
289}
290
291/**
292 * omap_write_buf8 - write buffer to NAND controller
293 * @mtd: MTD device structure
294 * @buf: data buffer
295 * @len: number of bytes to write
296 */
297static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
298{
4578ea9a 299 struct omap_nand_info *info = mtd_to_omap(mtd);
59e9c5ae 300 u_char *p = (u_char *)buf;
d6e55216 301 bool status;
59e9c5ae 302
303 while (len--) {
304 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
305 /* wait until buffer is available for write */
306 do {
d6e55216 307 status = info->ops->nand_writebuffer_empty();
2c01946c 308 } while (!status);
59e9c5ae 309 }
310}
311
67ce04bf
VS
312/**
313 * omap_read_buf16 - read data from NAND controller into buffer
314 * @mtd: MTD device structure
315 * @buf: buffer to store date
316 * @len: number of bytes to read
317 */
318static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
319{
4bd4ebcc 320 struct nand_chip *nand = mtd_to_nand(mtd);
67ce04bf 321
59e9c5ae 322 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
323}
324
325/**
326 * omap_write_buf16 - write buffer to NAND controller
327 * @mtd: MTD device structure
328 * @buf: data buffer
329 * @len: number of bytes to write
330 */
331static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
332{
4578ea9a 333 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 334 u16 *p = (u16 *) buf;
d6e55216 335 bool status;
67ce04bf
VS
336 /* FIXME try bursts of writesw() or DMA ... */
337 len >>= 1;
338
339 while (len--) {
59e9c5ae 340 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
341 /* wait until buffer is available for write */
342 do {
d6e55216 343 status = info->ops->nand_writebuffer_empty();
2c01946c 344 } while (!status);
67ce04bf
VS
345 }
346}
59e9c5ae 347
348/**
349 * omap_read_buf_pref - read data from NAND controller into buffer
350 * @mtd: MTD device structure
351 * @buf: buffer to store date
352 * @len: number of bytes to read
353 */
354static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
355{
4578ea9a 356 struct omap_nand_info *info = mtd_to_omap(mtd);
2c01946c 357 uint32_t r_count = 0;
59e9c5ae 358 int ret = 0;
359 u32 *p = (u32 *)buf;
360
361 /* take care of subpage reads */
c3341d0c
VS
362 if (len % 4) {
363 if (info->nand.options & NAND_BUSWIDTH_16)
364 omap_read_buf16(mtd, buf, len % 4);
365 else
366 omap_read_buf8(mtd, buf, len % 4);
367 p = (u32 *) (buf + len % 4);
368 len -= len % 4;
59e9c5ae 369 }
59e9c5ae 370
371 /* configure and start prefetch transfer */
65b97cf6
AM
372 ret = omap_prefetch_enable(info->gpmc_cs,
373 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 374 if (ret) {
375 /* PFPW engine is busy, use cpu copy method */
376 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 377 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 378 else
c5d8c0ca 379 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 380 } else {
381 do {
65b97cf6 382 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 383 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
384 r_count = r_count >> 2;
385 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 386 p += r_count;
387 len -= r_count << 2;
388 } while (len);
59e9c5ae 389 /* disable and stop the PFPW engine */
65b97cf6 390 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 391 }
392}
393
394/**
395 * omap_write_buf_pref - write buffer to NAND controller
396 * @mtd: MTD device structure
397 * @buf: data buffer
398 * @len: number of bytes to write
399 */
400static void omap_write_buf_pref(struct mtd_info *mtd,
401 const u_char *buf, int len)
402{
4578ea9a 403 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376 404 uint32_t w_count = 0;
59e9c5ae 405 int i = 0, ret = 0;
c5d8c0ca 406 u16 *p = (u16 *)buf;
4e070376 407 unsigned long tim, limit;
65b97cf6 408 u32 val;
59e9c5ae 409
410 /* take care of subpage writes */
411 if (len % 2 != 0) {
2c01946c 412 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 413 p = (u16 *)(buf + 1);
414 len--;
415 }
416
417 /* configure and start prefetch transfer */
65b97cf6
AM
418 ret = omap_prefetch_enable(info->gpmc_cs,
419 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 420 if (ret) {
421 /* PFPW engine is busy, use cpu copy method */
422 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 423 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 424 else
c5d8c0ca 425 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 426 } else {
2c01946c 427 while (len) {
65b97cf6 428 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 429 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 430 w_count = w_count >> 1;
59e9c5ae 431 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 432 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 433 }
2c01946c 434 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
435 tim = 0;
436 limit = (loops_per_jiffy *
437 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 438 do {
4e070376 439 cpu_relax();
65b97cf6 440 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 441 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 442 } while (val && (tim++ < limit));
4e070376 443
59e9c5ae 444 /* disable and stop the PFPW engine */
65b97cf6 445 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 446 }
447}
448
dfe32893 449/*
2df41d05 450 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 451 * @data: pointer to completion data structure
452 */
763e7359
RK
453static void omap_nand_dma_callback(void *data)
454{
455 complete((struct completion *) data);
456}
dfe32893 457
458/*
4cacbe22 459 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 460 * @mtd: MTD device structure
461 * @addr: virtual address in RAM of source/destination
462 * @len: number of data bytes to be transferred
463 * @is_write: flag for read/write operation
464 */
465static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
466 unsigned int len, int is_write)
467{
4578ea9a 468 struct omap_nand_info *info = mtd_to_omap(mtd);
2df41d05 469 struct dma_async_tx_descriptor *tx;
dfe32893 470 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
471 DMA_FROM_DEVICE;
2df41d05 472 struct scatterlist sg;
4e070376 473 unsigned long tim, limit;
2df41d05
RK
474 unsigned n;
475 int ret;
65b97cf6 476 u32 val;
dfe32893 477
478 if (addr >= high_memory) {
479 struct page *p1;
480
481 if (((size_t)addr & PAGE_MASK) !=
482 ((size_t)(addr + len - 1) & PAGE_MASK))
483 goto out_copy;
484 p1 = vmalloc_to_page(addr);
485 if (!p1)
486 goto out_copy;
487 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
488 }
489
2df41d05
RK
490 sg_init_one(&sg, addr, len);
491 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
492 if (n == 0) {
dfe32893 493 dev_err(&info->pdev->dev,
494 "Couldn't DMA map a %d byte buffer\n", len);
495 goto out_copy;
496 }
497
2df41d05
RK
498 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
499 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
500 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
501 if (!tx)
502 goto out_copy_unmap;
503
504 tx->callback = omap_nand_dma_callback;
505 tx->callback_param = &info->comp;
506 dmaengine_submit(tx);
507
65b97cf6
AM
508 /* configure and start prefetch transfer */
509 ret = omap_prefetch_enable(info->gpmc_cs,
510 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 511 if (ret)
4e070376 512 /* PFPW engine is busy, use cpu copy method */
d7efe228 513 goto out_copy_unmap;
dfe32893 514
515 init_completion(&info->comp);
2df41d05 516 dma_async_issue_pending(info->dma);
dfe32893 517
518 /* setup and start DMA using dma_addr */
519 wait_for_completion(&info->comp);
4e070376
SG
520 tim = 0;
521 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
522
523 do {
4e070376 524 cpu_relax();
65b97cf6 525 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 526 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 527 } while (val && (tim++ < limit));
dfe32893 528
dfe32893 529 /* disable and stop the PFPW engine */
65b97cf6 530 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 531
2df41d05 532 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 533 return 0;
534
d7efe228 535out_copy_unmap:
2df41d05 536 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 537out_copy:
538 if (info->nand.options & NAND_BUSWIDTH_16)
539 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
540 : omap_write_buf16(mtd, (u_char *) addr, len);
541 else
542 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
543 : omap_write_buf8(mtd, (u_char *) addr, len);
544 return 0;
545}
dfe32893 546
547/**
548 * omap_read_buf_dma_pref - read data from NAND controller into buffer
549 * @mtd: MTD device structure
550 * @buf: buffer to store date
551 * @len: number of bytes to read
552 */
553static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
554{
555 if (len <= mtd->oobsize)
556 omap_read_buf_pref(mtd, buf, len);
557 else
558 /* start transfer in DMA mode */
559 omap_nand_dma_transfer(mtd, buf, len, 0x0);
560}
561
562/**
563 * omap_write_buf_dma_pref - write buffer to NAND controller
564 * @mtd: MTD device structure
565 * @buf: data buffer
566 * @len: number of bytes to write
567 */
568static void omap_write_buf_dma_pref(struct mtd_info *mtd,
569 const u_char *buf, int len)
570{
571 if (len <= mtd->oobsize)
572 omap_write_buf_pref(mtd, buf, len);
573 else
574 /* start transfer in DMA mode */
bdaefc41 575 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 576}
577
4e070376 578/*
4cacbe22 579 * omap_nand_irq - GPMC irq handler
4e070376
SG
580 * @this_irq: gpmc irq number
581 * @dev: omap_nand_info structure pointer is passed here
582 */
583static irqreturn_t omap_nand_irq(int this_irq, void *dev)
584{
585 struct omap_nand_info *info = (struct omap_nand_info *) dev;
586 u32 bytes;
4e070376 587
65b97cf6 588 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 589 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
590 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
591 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 592 if (this_irq == info->gpmc_irq_count)
4e070376
SG
593 goto done;
594
595 if (info->buf_len && (info->buf_len < bytes))
596 bytes = info->buf_len;
597 else if (!info->buf_len)
598 bytes = 0;
599 iowrite32_rep(info->nand.IO_ADDR_W,
600 (u32 *)info->buf, bytes >> 2);
601 info->buf = info->buf + bytes;
602 info->buf_len -= bytes;
603
604 } else {
605 ioread32_rep(info->nand.IO_ADDR_R,
606 (u32 *)info->buf, bytes >> 2);
607 info->buf = info->buf + bytes;
608
5c468455 609 if (this_irq == info->gpmc_irq_count)
4e070376
SG
610 goto done;
611 }
4e070376
SG
612
613 return IRQ_HANDLED;
614
615done:
616 complete(&info->comp);
4e070376 617
5c468455
AM
618 disable_irq_nosync(info->gpmc_irq_fifo);
619 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
620
621 return IRQ_HANDLED;
622}
623
624/*
625 * omap_read_buf_irq_pref - read data from NAND controller into buffer
626 * @mtd: MTD device structure
627 * @buf: buffer to store date
628 * @len: number of bytes to read
629 */
630static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
631{
4578ea9a 632 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
633 int ret = 0;
634
635 if (len <= mtd->oobsize) {
636 omap_read_buf_pref(mtd, buf, len);
637 return;
638 }
639
640 info->iomode = OMAP_NAND_IO_READ;
641 info->buf = buf;
642 init_completion(&info->comp);
643
644 /* configure and start prefetch transfer */
65b97cf6
AM
645 ret = omap_prefetch_enable(info->gpmc_cs,
646 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
647 if (ret)
648 /* PFPW engine is busy, use cpu copy method */
649 goto out_copy;
650
651 info->buf_len = len;
5c468455
AM
652
653 enable_irq(info->gpmc_irq_count);
654 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
655
656 /* waiting for read to complete */
657 wait_for_completion(&info->comp);
658
659 /* disable and stop the PFPW engine */
65b97cf6 660 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
661 return;
662
663out_copy:
664 if (info->nand.options & NAND_BUSWIDTH_16)
665 omap_read_buf16(mtd, buf, len);
666 else
667 omap_read_buf8(mtd, buf, len);
668}
669
670/*
671 * omap_write_buf_irq_pref - write buffer to NAND controller
672 * @mtd: MTD device structure
673 * @buf: data buffer
674 * @len: number of bytes to write
675 */
676static void omap_write_buf_irq_pref(struct mtd_info *mtd,
677 const u_char *buf, int len)
678{
4578ea9a 679 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
680 int ret = 0;
681 unsigned long tim, limit;
65b97cf6 682 u32 val;
4e070376
SG
683
684 if (len <= mtd->oobsize) {
685 omap_write_buf_pref(mtd, buf, len);
686 return;
687 }
688
689 info->iomode = OMAP_NAND_IO_WRITE;
690 info->buf = (u_char *) buf;
691 init_completion(&info->comp);
692
317379a9 693 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
694 ret = omap_prefetch_enable(info->gpmc_cs,
695 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
696 if (ret)
697 /* PFPW engine is busy, use cpu copy method */
698 goto out_copy;
699
700 info->buf_len = len;
5c468455
AM
701
702 enable_irq(info->gpmc_irq_count);
703 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
704
705 /* waiting for write to complete */
706 wait_for_completion(&info->comp);
5c468455 707
4e070376
SG
708 /* wait for data to flushed-out before reset the prefetch */
709 tim = 0;
710 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
711 do {
712 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 713 val = PREFETCH_STATUS_COUNT(val);
4e070376 714 cpu_relax();
65b97cf6 715 } while (val && (tim++ < limit));
4e070376
SG
716
717 /* disable and stop the PFPW engine */
65b97cf6 718 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
719 return;
720
721out_copy:
722 if (info->nand.options & NAND_BUSWIDTH_16)
723 omap_write_buf16(mtd, buf, len);
724 else
725 omap_write_buf8(mtd, buf, len);
726}
727
67ce04bf
VS
728/**
729 * gen_true_ecc - This function will generate true ECC value
730 * @ecc_buf: buffer to store ecc code
731 *
732 * This generated true ECC value can be used when correcting
733 * data read from NAND flash memory core
734 */
735static void gen_true_ecc(u8 *ecc_buf)
736{
737 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
738 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
739
740 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
741 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
742 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
743 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
744 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
745 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
746}
747
748/**
749 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
750 * @ecc_data1: ecc code from nand spare area
751 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
752 * @page_data: page data
753 *
754 * This function compares two ECC's and indicates if there is an error.
755 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
756 * If there is no error, %0 is returned. If there is an error but it
757 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
758 */
759static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
760 u8 *ecc_data2, /* read from register */
761 u8 *page_data)
762{
763 uint i;
764 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
765 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
766 u8 ecc_bit[24];
767 u8 ecc_sum = 0;
768 u8 find_bit = 0;
769 uint find_byte = 0;
770 int isEccFF;
771
772 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
773
774 gen_true_ecc(ecc_data1);
775 gen_true_ecc(ecc_data2);
776
777 for (i = 0; i <= 2; i++) {
778 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
779 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
780 }
781
782 for (i = 0; i < 8; i++) {
783 tmp0_bit[i] = *ecc_data1 % 2;
784 *ecc_data1 = *ecc_data1 / 2;
785 }
786
787 for (i = 0; i < 8; i++) {
788 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
789 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
790 }
791
792 for (i = 0; i < 8; i++) {
793 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
794 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
795 }
796
797 for (i = 0; i < 8; i++) {
798 comp0_bit[i] = *ecc_data2 % 2;
799 *ecc_data2 = *ecc_data2 / 2;
800 }
801
802 for (i = 0; i < 8; i++) {
803 comp1_bit[i] = *(ecc_data2 + 1) % 2;
804 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
805 }
806
807 for (i = 0; i < 8; i++) {
808 comp2_bit[i] = *(ecc_data2 + 2) % 2;
809 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
810 }
811
812 for (i = 0; i < 6; i++)
813 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
814
815 for (i = 0; i < 8; i++)
816 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
817
818 for (i = 0; i < 8; i++)
819 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
820
821 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
822 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
823
824 for (i = 0; i < 24; i++)
825 ecc_sum += ecc_bit[i];
826
827 switch (ecc_sum) {
828 case 0:
829 /* Not reached because this function is not called if
830 * ECC values are equal
831 */
832 return 0;
833
834 case 1:
835 /* Uncorrectable error */
289c0522 836 pr_debug("ECC UNCORRECTED_ERROR 1\n");
6e941192 837 return -EBADMSG;
67ce04bf
VS
838
839 case 11:
840 /* UN-Correctable error */
289c0522 841 pr_debug("ECC UNCORRECTED_ERROR B\n");
6e941192 842 return -EBADMSG;
67ce04bf
VS
843
844 case 12:
845 /* Correctable error */
846 find_byte = (ecc_bit[23] << 8) +
847 (ecc_bit[21] << 7) +
848 (ecc_bit[19] << 6) +
849 (ecc_bit[17] << 5) +
850 (ecc_bit[15] << 4) +
851 (ecc_bit[13] << 3) +
852 (ecc_bit[11] << 2) +
853 (ecc_bit[9] << 1) +
854 ecc_bit[7];
855
856 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
857
0a32a102
BN
858 pr_debug("Correcting single bit ECC error at offset: "
859 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
860
861 page_data[find_byte] ^= (1 << find_bit);
862
74f1b724 863 return 1;
67ce04bf
VS
864 default:
865 if (isEccFF) {
866 if (ecc_data2[0] == 0 &&
867 ecc_data2[1] == 0 &&
868 ecc_data2[2] == 0)
869 return 0;
870 }
289c0522 871 pr_debug("UNCORRECTED_ERROR default\n");
6e941192 872 return -EBADMSG;
67ce04bf
VS
873 }
874}
875
876/**
877 * omap_correct_data - Compares the ECC read with HW generated ECC
878 * @mtd: MTD device structure
879 * @dat: page data
880 * @read_ecc: ecc read from nand flash
881 * @calc_ecc: ecc read from HW ECC registers
882 *
883 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
884 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
885 * detection and correction. If there are no errors, %0 is returned. If
886 * there were errors and all of the errors were corrected, the number of
887 * corrected errors is returned. If uncorrectable errors exist, %-1 is
888 * returned.
67ce04bf
VS
889 */
890static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
891 u_char *read_ecc, u_char *calc_ecc)
892{
4578ea9a 893 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 894 int blockCnt = 0, i = 0, ret = 0;
74f1b724 895 int stat = 0;
67ce04bf
VS
896
897 /* Ex NAND_ECC_HW12_2048 */
898 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
899 (info->nand.ecc.size == 2048))
900 blockCnt = 4;
901 else
902 blockCnt = 1;
903
904 for (i = 0; i < blockCnt; i++) {
905 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
906 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
907 if (ret < 0)
908 return ret;
74f1b724
JO
909 /* keep track of the number of corrected errors */
910 stat += ret;
67ce04bf
VS
911 }
912 read_ecc += 3;
913 calc_ecc += 3;
914 dat += 512;
915 }
74f1b724 916 return stat;
67ce04bf
VS
917}
918
919/**
920 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
921 * @mtd: MTD device structure
922 * @dat: The pointer to data on which ecc is computed
923 * @ecc_code: The ecc_code buffer
924 *
925 * Using noninverted ECC can be considered ugly since writing a blank
926 * page ie. padding will clear the ECC bytes. This is no problem as long
927 * nobody is trying to write data on the seemingly unused page. Reading
928 * an erased page will produce an ECC mismatch between generated and read
929 * ECC bytes that has to be dealt with separately.
930 */
931static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
932 u_char *ecc_code)
933{
4578ea9a 934 struct omap_nand_info *info = mtd_to_omap(mtd);
65b97cf6
AM
935 u32 val;
936
937 val = readl(info->reg.gpmc_ecc_config);
40ddbf50 938 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
65b97cf6
AM
939 return -EINVAL;
940
941 /* read ecc result */
942 val = readl(info->reg.gpmc_ecc1_result);
943 *ecc_code++ = val; /* P128e, ..., P1e */
944 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
945 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
946 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
947
948 return 0;
67ce04bf
VS
949}
950
951/**
952 * omap_enable_hwecc - This function enables the hardware ecc functionality
953 * @mtd: MTD device structure
954 * @mode: Read/Write mode
955 */
956static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
957{
4578ea9a 958 struct omap_nand_info *info = mtd_to_omap(mtd);
4bd4ebcc 959 struct nand_chip *chip = mtd_to_nand(mtd);
67ce04bf 960 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
961 u32 val;
962
963 /* clear ecc and enable bits */
964 val = ECCCLEAR | ECC1;
965 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 966
65b97cf6
AM
967 /* program ecc and result sizes */
968 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
969 ECC1RESULTSIZE);
970 writel(val, info->reg.gpmc_ecc_size_config);
971
972 switch (mode) {
973 case NAND_ECC_READ:
974 case NAND_ECC_WRITE:
975 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
976 break;
977 case NAND_ECC_READSYN:
978 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
979 break;
980 default:
981 dev_info(&info->pdev->dev,
982 "error: unrecognized Mode[%d]!\n", mode);
983 break;
984 }
67ce04bf 985
65b97cf6
AM
986 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
987 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
988 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 989}
2c01946c 990
67ce04bf
VS
991/**
992 * omap_wait - wait until the command is done
993 * @mtd: MTD device structure
994 * @chip: NAND Chip structure
995 *
996 * Wait function is called during Program and erase operations and
997 * the way it is called from MTD layer, we should wait till the NAND
998 * chip is ready after the programming/erase operation has completed.
999 *
1000 * Erase can take up to 400ms and program up to 20ms according to
1001 * general NAND and SmartMedia specs
1002 */
1003static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1004{
4bd4ebcc 1005 struct nand_chip *this = mtd_to_nand(mtd);
4578ea9a 1006 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1007 unsigned long timeo = jiffies;
a9c465f0 1008 int status, state = this->state;
67ce04bf
VS
1009
1010 if (state == FL_ERASING)
4ff6772b 1011 timeo += msecs_to_jiffies(400);
67ce04bf 1012 else
4ff6772b 1013 timeo += msecs_to_jiffies(20);
67ce04bf 1014
65b97cf6 1015 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1016 while (time_before(jiffies, timeo)) {
65b97cf6 1017 status = readb(info->reg.gpmc_nand_data);
c276aca4 1018 if (status & NAND_STATUS_READY)
67ce04bf 1019 break;
c276aca4 1020 cond_resched();
67ce04bf 1021 }
a9c465f0 1022
4ea1e4ba 1023 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1024 return status;
1025}
1026
1027/**
10f22ee3 1028 * omap_dev_ready - checks the NAND Ready GPIO line
67ce04bf 1029 * @mtd: MTD device structure
10f22ee3
RQ
1030 *
1031 * Returns true if ready and false if busy.
67ce04bf
VS
1032 */
1033static int omap_dev_ready(struct mtd_info *mtd)
1034{
4578ea9a 1035 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1036
10f22ee3 1037 return gpiod_get_value(info->ready_gpiod);
67ce04bf
VS
1038}
1039
0e618ef0 1040/**
7c977c3e 1041 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
0e618ef0
ID
1042 * @mtd: MTD device structure
1043 * @mode: Read/Write mode
62116e51 1044 *
0760e818
NMG
1045 * When using BCH with SW correction (i.e. no ELM), sector size is set
1046 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1047 * for both reading and writing with:
62116e51
PA
1048 * eccsize0 = 0 (no additional protected byte in spare area)
1049 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0 1050 */
7c977c3e 1051static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
0e618ef0 1052{
16e69322 1053 unsigned int bch_type;
2ef9f3dd 1054 unsigned int dev_width, nsectors;
4578ea9a 1055 struct omap_nand_info *info = mtd_to_omap(mtd);
c5957a32 1056 enum omap_ecc ecc_opt = info->ecc_opt;
4bd4ebcc 1057 struct nand_chip *chip = mtd_to_nand(mtd);
62116e51
PA
1058 u32 val, wr_mode;
1059 unsigned int ecc_size1, ecc_size0;
1060
c5957a32
PG
1061 /* GPMC configurations for calculating ECC */
1062 switch (ecc_opt) {
1063 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
16e69322
PG
1064 bch_type = 0;
1065 nsectors = 1;
0760e818
NMG
1066 wr_mode = BCH_WRAPMODE_6;
1067 ecc_size0 = BCH_ECC_SIZE0;
1068 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1069 break;
1070 case OMAP_ECC_BCH4_CODE_HW:
16e69322
PG
1071 bch_type = 0;
1072 nsectors = chip->ecc.steps;
c5957a32
PG
1073 if (mode == NAND_ECC_READ) {
1074 wr_mode = BCH_WRAPMODE_1;
1075 ecc_size0 = BCH4R_ECC_SIZE0;
1076 ecc_size1 = BCH4R_ECC_SIZE1;
1077 } else {
1078 wr_mode = BCH_WRAPMODE_6;
1079 ecc_size0 = BCH_ECC_SIZE0;
1080 ecc_size1 = BCH_ECC_SIZE1;
1081 }
1082 break;
1083 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
16e69322
PG
1084 bch_type = 1;
1085 nsectors = 1;
0760e818
NMG
1086 wr_mode = BCH_WRAPMODE_6;
1087 ecc_size0 = BCH_ECC_SIZE0;
1088 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1089 break;
1090 case OMAP_ECC_BCH8_CODE_HW:
16e69322
PG
1091 bch_type = 1;
1092 nsectors = chip->ecc.steps;
c5957a32
PG
1093 if (mode == NAND_ECC_READ) {
1094 wr_mode = BCH_WRAPMODE_1;
1095 ecc_size0 = BCH8R_ECC_SIZE0;
1096 ecc_size1 = BCH8R_ECC_SIZE1;
1097 } else {
1098 wr_mode = BCH_WRAPMODE_6;
1099 ecc_size0 = BCH_ECC_SIZE0;
1100 ecc_size1 = BCH_ECC_SIZE1;
1101 }
1102 break;
9748fff9 1103 case OMAP_ECC_BCH16_CODE_HW:
1104 bch_type = 0x2;
1105 nsectors = chip->ecc.steps;
1106 if (mode == NAND_ECC_READ) {
1107 wr_mode = 0x01;
1108 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1109 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1110 } else {
1111 wr_mode = 0x01;
1112 ecc_size0 = 0; /* extra bits in nibbles per sector */
1113 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1114 }
1115 break;
c5957a32
PG
1116 default:
1117 return;
1118 }
2ef9f3dd
AM
1119
1120 writel(ECC1, info->reg.gpmc_ecc_control);
1121
62116e51
PA
1122 /* Configure ecc size for BCH */
1123 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1124 writel(val, info->reg.gpmc_ecc_size_config);
1125
62116e51
PA
1126 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1127
2ef9f3dd
AM
1128 /* BCH configuration */
1129 val = ((1 << 16) | /* enable BCH */
16e69322 1130 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
62116e51 1131 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1132 (dev_width << 7) | /* bus width */
1133 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1134 (info->gpmc_cs << 1) | /* ECC CS */
1135 (0x1)); /* enable ECC */
1136
1137 writel(val, info->reg.gpmc_ecc_config);
1138
62116e51 1139 /* Clear ecc and enable bits */
2ef9f3dd 1140 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1141}
7c977c3e 1142
2c9f2365 1143static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
7bcd1dca
PG
1144static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1145 0x97, 0x79, 0xe5, 0x24, 0xb5};
0e618ef0 1146
62116e51 1147/**
a4c7ca00 1148 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
62116e51
PA
1149 * @mtd: MTD device structure
1150 * @dat: The pointer to data on which ecc is computed
1151 * @ecc_code: The ecc_code buffer
1152 *
1153 * Support calculating of BCH4/8 ecc vectors for the page
1154 */
a4c7ca00 1155static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
f5dc06fb 1156 const u_char *dat, u_char *ecc_calc)
62116e51 1157{
4578ea9a 1158 struct omap_nand_info *info = mtd_to_omap(mtd);
f5dc06fb
PG
1159 int eccbytes = info->nand.ecc.bytes;
1160 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1161 u8 *ecc_code;
62116e51 1162 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
9748fff9 1163 u32 val;
2913aae5 1164 int i, j;
62116e51
PA
1165
1166 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
62116e51 1167 for (i = 0; i < nsectors; i++) {
f5dc06fb
PG
1168 ecc_code = ecc_calc;
1169 switch (info->ecc_opt) {
7bcd1dca 1170 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1171 case OMAP_ECC_BCH8_CODE_HW:
1172 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1173 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1174 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1175 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
62116e51
PA
1176 *ecc_code++ = (bch_val4 & 0xFF);
1177 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1178 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1179 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1180 *ecc_code++ = (bch_val3 & 0xFF);
1181 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1182 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1183 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1184 *ecc_code++ = (bch_val2 & 0xFF);
1185 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1186 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1187 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1188 *ecc_code++ = (bch_val1 & 0xFF);
f5dc06fb 1189 break;
2c9f2365 1190 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1191 case OMAP_ECC_BCH4_CODE_HW:
1192 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1193 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
62116e51
PA
1194 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1195 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1196 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1197 ((bch_val1 >> 28) & 0xF);
1198 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1199 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1200 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1201 *ecc_code++ = ((bch_val1 & 0xF) << 4);
f5dc06fb 1202 break;
9748fff9 1203 case OMAP_ECC_BCH16_CODE_HW:
1204 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1205 ecc_code[0] = ((val >> 8) & 0xFF);
1206 ecc_code[1] = ((val >> 0) & 0xFF);
1207 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1208 ecc_code[2] = ((val >> 24) & 0xFF);
1209 ecc_code[3] = ((val >> 16) & 0xFF);
1210 ecc_code[4] = ((val >> 8) & 0xFF);
1211 ecc_code[5] = ((val >> 0) & 0xFF);
1212 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1213 ecc_code[6] = ((val >> 24) & 0xFF);
1214 ecc_code[7] = ((val >> 16) & 0xFF);
1215 ecc_code[8] = ((val >> 8) & 0xFF);
1216 ecc_code[9] = ((val >> 0) & 0xFF);
1217 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1218 ecc_code[10] = ((val >> 24) & 0xFF);
1219 ecc_code[11] = ((val >> 16) & 0xFF);
1220 ecc_code[12] = ((val >> 8) & 0xFF);
1221 ecc_code[13] = ((val >> 0) & 0xFF);
1222 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1223 ecc_code[14] = ((val >> 24) & 0xFF);
1224 ecc_code[15] = ((val >> 16) & 0xFF);
1225 ecc_code[16] = ((val >> 8) & 0xFF);
1226 ecc_code[17] = ((val >> 0) & 0xFF);
1227 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1228 ecc_code[18] = ((val >> 24) & 0xFF);
1229 ecc_code[19] = ((val >> 16) & 0xFF);
1230 ecc_code[20] = ((val >> 8) & 0xFF);
1231 ecc_code[21] = ((val >> 0) & 0xFF);
1232 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1233 ecc_code[22] = ((val >> 24) & 0xFF);
1234 ecc_code[23] = ((val >> 16) & 0xFF);
1235 ecc_code[24] = ((val >> 8) & 0xFF);
1236 ecc_code[25] = ((val >> 0) & 0xFF);
1237 break;
f5dc06fb
PG
1238 default:
1239 return -EINVAL;
62116e51 1240 }
f5dc06fb
PG
1241
1242 /* ECC scheme specific syndrome customizations */
1243 switch (info->ecc_opt) {
2c9f2365
PG
1244 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1245 /* Add constant polynomial to remainder, so that
1246 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1247 for (j = 0; j < eccbytes; j++)
1248 ecc_calc[j] ^= bch4_polynomial[j];
2c9f2365 1249 break;
f5dc06fb
PG
1250 case OMAP_ECC_BCH4_CODE_HW:
1251 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1252 ecc_calc[eccbytes - 1] = 0x0;
1253 break;
7bcd1dca
PG
1254 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1255 /* Add constant polynomial to remainder, so that
1256 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1257 for (j = 0; j < eccbytes; j++)
1258 ecc_calc[j] ^= bch8_polynomial[j];
7bcd1dca 1259 break;
f5dc06fb
PG
1260 case OMAP_ECC_BCH8_CODE_HW:
1261 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1262 ecc_calc[eccbytes - 1] = 0x0;
1263 break;
9748fff9 1264 case OMAP_ECC_BCH16_CODE_HW:
1265 break;
f5dc06fb
PG
1266 default:
1267 return -EINVAL;
1268 }
1269
1270 ecc_calc += eccbytes;
62116e51
PA
1271 }
1272
1273 return 0;
1274}
1275
1276/**
1277 * erased_sector_bitflips - count bit flips
1278 * @data: data sector buffer
1279 * @oob: oob buffer
1280 * @info: omap_nand_info
1281 *
1282 * Check the bit flips in erased page falls below correctable level.
1283 * If falls below, report the page as erased with correctable bit
1284 * flip, else report as uncorrectable page.
1285 */
1286static int erased_sector_bitflips(u_char *data, u_char *oob,
1287 struct omap_nand_info *info)
1288{
1289 int flip_bits = 0, i;
1290
1291 for (i = 0; i < info->nand.ecc.size; i++) {
1292 flip_bits += hweight8(~data[i]);
1293 if (flip_bits > info->nand.ecc.strength)
1294 return 0;
1295 }
1296
1297 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1298 flip_bits += hweight8(~oob[i]);
1299 if (flip_bits > info->nand.ecc.strength)
1300 return 0;
1301 }
1302
1303 /*
1304 * Bit flips falls in correctable level.
1305 * Fill data area with 0xFF
1306 */
1307 if (flip_bits) {
1308 memset(data, 0xFF, info->nand.ecc.size);
1309 memset(oob, 0xFF, info->nand.ecc.bytes);
1310 }
1311
1312 return flip_bits;
1313}
1314
1315/**
1316 * omap_elm_correct_data - corrects page data area in case error reported
1317 * @mtd: MTD device structure
1318 * @data: page data
1319 * @read_ecc: ecc read from nand flash
1320 * @calc_ecc: ecc read from HW ECC registers
1321 *
1322 * Calculated ecc vector reported as zero in case of non-error pages.
78f43c53
PG
1323 * In case of non-zero ecc vector, first filter out erased-pages, and
1324 * then process data via ELM to detect bit-flips.
62116e51
PA
1325 */
1326static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1327 u_char *read_ecc, u_char *calc_ecc)
1328{
4578ea9a 1329 struct omap_nand_info *info = mtd_to_omap(mtd);
de0a4d69 1330 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
62116e51
PA
1331 int eccsteps = info->nand.ecc.steps;
1332 int i , j, stat = 0;
de0a4d69 1333 int eccflag, actual_eccbytes;
62116e51
PA
1334 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1335 u_char *ecc_vec = calc_ecc;
1336 u_char *spare_ecc = read_ecc;
1337 u_char *erased_ecc_vec;
78f43c53
PG
1338 u_char *buf;
1339 int bitflip_count;
62116e51 1340 bool is_error_reported = false;
b08e1f63 1341 u32 bit_pos, byte_pos, error_max, pos;
13fbe064 1342 int err;
62116e51 1343
de0a4d69
PG
1344 switch (info->ecc_opt) {
1345 case OMAP_ECC_BCH4_CODE_HW:
1346 /* omit 7th ECC byte reserved for ROM code compatibility */
1347 actual_eccbytes = ecc->bytes - 1;
78f43c53 1348 erased_ecc_vec = bch4_vector;
de0a4d69
PG
1349 break;
1350 case OMAP_ECC_BCH8_CODE_HW:
1351 /* omit 14th ECC byte reserved for ROM code compatibility */
1352 actual_eccbytes = ecc->bytes - 1;
78f43c53 1353 erased_ecc_vec = bch8_vector;
de0a4d69 1354 break;
9748fff9 1355 case OMAP_ECC_BCH16_CODE_HW:
1356 actual_eccbytes = ecc->bytes;
1357 erased_ecc_vec = bch16_vector;
1358 break;
de0a4d69 1359 default:
d2f08c75 1360 dev_err(&info->pdev->dev, "invalid driver configuration\n");
de0a4d69
PG
1361 return -EINVAL;
1362 }
1363
62116e51
PA
1364 /* Initialize elm error vector to zero */
1365 memset(err_vec, 0, sizeof(err_vec));
1366
62116e51
PA
1367 for (i = 0; i < eccsteps ; i++) {
1368 eccflag = 0; /* initialize eccflag */
1369
1370 /*
1371 * Check any error reported,
1372 * In case of error, non zero ecc reported.
1373 */
de0a4d69 1374 for (j = 0; j < actual_eccbytes; j++) {
62116e51
PA
1375 if (calc_ecc[j] != 0) {
1376 eccflag = 1; /* non zero ecc, error present */
1377 break;
1378 }
1379 }
1380
1381 if (eccflag == 1) {
78f43c53
PG
1382 if (memcmp(calc_ecc, erased_ecc_vec,
1383 actual_eccbytes) == 0) {
62116e51 1384 /*
78f43c53
PG
1385 * calc_ecc[] matches pattern for ECC(all 0xff)
1386 * so this is definitely an erased-page
62116e51 1387 */
62116e51 1388 } else {
78f43c53
PG
1389 buf = &data[info->nand.ecc.size * i];
1390 /*
1391 * count number of 0-bits in read_buf.
1392 * This check can be removed once a similar
1393 * check is introduced in generic NAND driver
1394 */
1395 bitflip_count = erased_sector_bitflips(
1396 buf, read_ecc, info);
1397 if (bitflip_count) {
1398 /*
1399 * number of 0-bits within ECC limits
1400 * So this may be an erased-page
1401 */
1402 stat += bitflip_count;
1403 } else {
1404 /*
1405 * Too many 0-bits. It may be a
1406 * - programmed-page, OR
1407 * - erased-page with many bit-flips
1408 * So this page requires check by ELM
1409 */
1410 err_vec[i].error_reported = true;
1411 is_error_reported = true;
62116e51
PA
1412 }
1413 }
1414 }
1415
1416 /* Update the ecc vector */
de0a4d69
PG
1417 calc_ecc += ecc->bytes;
1418 read_ecc += ecc->bytes;
62116e51
PA
1419 }
1420
1421 /* Check if any error reported */
1422 if (!is_error_reported)
f306e8c3 1423 return stat;
62116e51
PA
1424
1425 /* Decode BCH error using ELM module */
1426 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1427
13fbe064 1428 err = 0;
62116e51 1429 for (i = 0; i < eccsteps; i++) {
13fbe064 1430 if (err_vec[i].error_uncorrectable) {
d2f08c75
EG
1431 dev_err(&info->pdev->dev,
1432 "uncorrectable bit-flips found\n");
13fbe064
PG
1433 err = -EBADMSG;
1434 } else if (err_vec[i].error_reported) {
62116e51 1435 for (j = 0; j < err_vec[i].error_count; j++) {
b08e1f63
PG
1436 switch (info->ecc_opt) {
1437 case OMAP_ECC_BCH4_CODE_HW:
1438 /* Add 4 bits to take care of padding */
62116e51
PA
1439 pos = err_vec[i].error_loc[j] +
1440 BCH4_BIT_PAD;
b08e1f63
PG
1441 break;
1442 case OMAP_ECC_BCH8_CODE_HW:
9748fff9 1443 case OMAP_ECC_BCH16_CODE_HW:
b08e1f63
PG
1444 pos = err_vec[i].error_loc[j];
1445 break;
1446 default:
1447 return -EINVAL;
1448 }
1449 error_max = (ecc->size + actual_eccbytes) * 8;
62116e51
PA
1450 /* Calculate bit position of error */
1451 bit_pos = pos % 8;
1452
1453 /* Calculate byte position of error */
1454 byte_pos = (error_max - pos - 1) / 8;
1455
1456 if (pos < error_max) {
13fbe064
PG
1457 if (byte_pos < 512) {
1458 pr_debug("bitflip@dat[%d]=%x\n",
1459 byte_pos, data[byte_pos]);
62116e51 1460 data[byte_pos] ^= 1 << bit_pos;
13fbe064
PG
1461 } else {
1462 pr_debug("bitflip@oob[%d]=%x\n",
1463 (byte_pos - 512),
1464 spare_ecc[byte_pos - 512]);
62116e51
PA
1465 spare_ecc[byte_pos - 512] ^=
1466 1 << bit_pos;
13fbe064
PG
1467 }
1468 } else {
d2f08c75
EG
1469 dev_err(&info->pdev->dev,
1470 "invalid bit-flip @ %d:%d\n",
1471 byte_pos, bit_pos);
13fbe064 1472 err = -EBADMSG;
62116e51 1473 }
62116e51
PA
1474 }
1475 }
1476
1477 /* Update number of correctable errors */
1478 stat += err_vec[i].error_count;
1479
1480 /* Update page data with sector size */
b08e1f63 1481 data += ecc->size;
de0a4d69 1482 spare_ecc += ecc->bytes;
62116e51
PA
1483 }
1484
13fbe064 1485 return (err) ? err : stat;
62116e51
PA
1486}
1487
62116e51
PA
1488/**
1489 * omap_write_page_bch - BCH ecc based write page function for entire page
1490 * @mtd: mtd info structure
1491 * @chip: nand chip info structure
1492 * @buf: data buffer
1493 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 1494 * @page: page
62116e51
PA
1495 *
1496 * Custom write page method evolved to support multi sector writing in one shot
1497 */
1498static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 1499 const uint8_t *buf, int oob_required, int page)
62116e51 1500{
8cfc1e8b 1501 int ret;
62116e51 1502 uint8_t *ecc_calc = chip->buffers->ecccalc;
62116e51
PA
1503
1504 /* Enable GPMC ecc engine */
1505 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1506
1507 /* Write data */
1508 chip->write_buf(mtd, buf, mtd->writesize);
1509
1510 /* Update ecc vector from GPMC result registers */
1511 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1512
8cfc1e8b
BB
1513 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1514 chip->ecc.total);
1515 if (ret)
1516 return ret;
62116e51
PA
1517
1518 /* Write ecc vector to OOB area */
1519 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1520 return 0;
1521}
1522
1523/**
1524 * omap_read_page_bch - BCH ecc based page read function for entire page
1525 * @mtd: mtd info structure
1526 * @chip: nand chip info structure
1527 * @buf: buffer to store read data
1528 * @oob_required: caller requires OOB data read to chip->oob_poi
1529 * @page: page number to read
1530 *
1531 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1532 * used for error correction.
1533 * Custom method evolved to support ELM error correction & multi sector
1534 * reading. On reading page data area is read along with OOB data with
1535 * ecc engine enabled. ecc vector updated after read of OOB data.
1536 * For non error pages ecc vector reported as zero.
1537 */
1538static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1539 uint8_t *buf, int oob_required, int page)
1540{
1541 uint8_t *ecc_calc = chip->buffers->ecccalc;
1542 uint8_t *ecc_code = chip->buffers->ecccode;
8cfc1e8b 1543 int stat, ret;
62116e51
PA
1544 unsigned int max_bitflips = 0;
1545
1546 /* Enable GPMC ecc engine */
1547 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1548
1549 /* Read data */
1550 chip->read_buf(mtd, buf, mtd->writesize);
1551
1552 /* Read oob bytes */
8cfc1e8b
BB
1553 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1554 mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
1555 chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1556 chip->ecc.total);
62116e51
PA
1557
1558 /* Calculate ecc bytes */
1559 chip->ecc.calculate(mtd, buf, ecc_calc);
1560
8cfc1e8b
BB
1561 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1562 chip->ecc.total);
1563 if (ret)
1564 return ret;
62116e51
PA
1565
1566 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1567
1568 if (stat < 0) {
1569 mtd->ecc_stats.failed++;
1570 } else {
1571 mtd->ecc_stats.corrected += stat;
1572 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1573 }
1574
1575 return max_bitflips;
1576}
1577
0e618ef0 1578/**
a919e511
PG
1579 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1580 * @omap_nand_info: NAND device structure containing platform data
0e618ef0 1581 */
93af53b8
EG
1582static bool is_elm_present(struct omap_nand_info *info,
1583 struct device_node *elm_node)
0e618ef0 1584{
a919e511 1585 struct platform_device *pdev;
93af53b8 1586
a919e511
PG
1587 /* check whether elm-id is passed via DT */
1588 if (!elm_node) {
d2f08c75 1589 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
93af53b8 1590 return false;
a919e511
PG
1591 }
1592 pdev = of_find_device_by_node(elm_node);
1593 /* check whether ELM device is registered */
1594 if (!pdev) {
d2f08c75 1595 dev_err(&info->pdev->dev, "ELM device not found\n");
93af53b8 1596 return false;
0e618ef0 1597 }
a919e511
PG
1598 /* ELM module available, now configure it */
1599 info->elm_dev = &pdev->dev;
93af53b8
EG
1600 return true;
1601}
3f4eb14b 1602
93af53b8
EG
1603static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1604 struct omap_nand_platform_data *pdata)
1605{
1606 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1607
1608 switch (info->ecc_opt) {
1609 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1610 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1611 ecc_needs_omap_bch = false;
1612 ecc_needs_bch = true;
1613 ecc_needs_elm = false;
1614 break;
1615 case OMAP_ECC_BCH4_CODE_HW:
1616 case OMAP_ECC_BCH8_CODE_HW:
1617 case OMAP_ECC_BCH16_CODE_HW:
1618 ecc_needs_omap_bch = true;
1619 ecc_needs_bch = false;
1620 ecc_needs_elm = true;
1621 break;
1622 default:
1623 ecc_needs_omap_bch = false;
1624 ecc_needs_bch = false;
1625 ecc_needs_elm = false;
1626 break;
1627 }
1628
1629 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1630 dev_err(&info->pdev->dev,
1631 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1632 return false;
1633 }
1634 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1635 dev_err(&info->pdev->dev,
1636 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1637 return false;
1638 }
01b95fc6 1639 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
93af53b8
EG
1640 dev_err(&info->pdev->dev, "ELM not available\n");
1641 return false;
1642 }
1643
1644 return true;
0e618ef0
ID
1645}
1646
c9711ec5
RQ
1647static const char * const nand_xfer_types[] = {
1648 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1649 [NAND_OMAP_POLLED] = "polled",
1650 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1651 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1652};
1653
1654static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1655{
1656 struct device_node *child = dev->of_node;
1657 int i;
1658 const char *s;
1659 u32 cs;
1660
1661 if (of_property_read_u32(child, "reg", &cs) < 0) {
1662 dev_err(dev, "reg not found in DT\n");
1663 return -EINVAL;
1664 }
1665
1666 info->gpmc_cs = cs;
1667
1668 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1669 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1670 if (!info->elm_of_node)
1671 dev_dbg(dev, "ti,elm-id not in DT\n");
1672
1673 /* select ecc-scheme for NAND */
1674 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1675 dev_err(dev, "ti,nand-ecc-opt not found\n");
1676 return -EINVAL;
1677 }
1678
1679 if (!strcmp(s, "sw")) {
1680 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1681 } else if (!strcmp(s, "ham1") ||
1682 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1683 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1684 } else if (!strcmp(s, "bch4")) {
1685 if (info->elm_of_node)
1686 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1687 else
1688 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1689 } else if (!strcmp(s, "bch8")) {
1690 if (info->elm_of_node)
1691 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1692 else
1693 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1694 } else if (!strcmp(s, "bch16")) {
1695 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1696 } else {
1697 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1698 return -EINVAL;
1699 }
1700
1701 /* select data transfer mode */
1702 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1703 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1704 if (!strcasecmp(s, nand_xfer_types[i])) {
1705 info->xfer_type = i;
f679888f 1706 return 0;
c9711ec5
RQ
1707 }
1708 }
1709
1710 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1711 return -EINVAL;
1712 }
1713
c9711ec5
RQ
1714 return 0;
1715}
1716
06f25510 1717static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1718{
1719 struct omap_nand_info *info;
c9711ec5 1720 struct omap_nand_platform_data *pdata = NULL;
633deb58
PG
1721 struct mtd_info *mtd;
1722 struct nand_chip *nand_chip;
b491da72 1723 struct nand_ecclayout *ecclayout;
67ce04bf 1724 int err;
b491da72 1725 int i;
633deb58
PG
1726 dma_cap_mask_t mask;
1727 unsigned sig;
eae39cb4 1728 unsigned oob_index;
9c4c2f8b 1729 struct resource *res;
c9711ec5 1730 struct device *dev = &pdev->dev;
67ce04bf 1731
70ba6d71
PG
1732 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1733 GFP_KERNEL);
67ce04bf
VS
1734 if (!info)
1735 return -ENOMEM;
1736
c9711ec5 1737 info->pdev = pdev;
67ce04bf 1738
c9711ec5
RQ
1739 if (dev->of_node) {
1740 if (omap_get_dt_info(dev, info))
1741 return -EINVAL;
1742 } else {
1743 pdata = dev_get_platdata(&pdev->dev);
1744 if (!pdata) {
1745 dev_err(&pdev->dev, "platform data missing\n");
1746 return -EINVAL;
1747 }
1748
1749 info->gpmc_cs = pdata->cs;
1750 info->reg = pdata->reg;
1751 info->ecc_opt = pdata->ecc_opt;
10f22ee3
RQ
1752 if (pdata->dev_ready)
1753 dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
1754
c9711ec5
RQ
1755 info->xfer_type = pdata->xfer_type;
1756 info->devsize = pdata->devsize;
1757 info->elm_of_node = pdata->elm_of_node;
1758 info->flash_bbt = pdata->flash_bbt;
1759 }
1760
1761 platform_set_drvdata(pdev, info);
c509aefd
RQ
1762 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1763 if (!info->ops) {
1764 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1765 return -ENODEV;
1766 }
01b95fc6 1767
432420c0
BB
1768 nand_chip = &info->nand;
1769 mtd = nand_to_mtd(nand_chip);
853f1c58 1770 mtd->dev.parent = &pdev->dev;
32d42a85 1771 nand_chip->ecc.priv = NULL;
c9711ec5 1772 nand_set_flash_node(nand_chip, dev->of_node);
67ce04bf 1773
9c4c2f8b 1774 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
00d09891
JH
1775 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1776 if (IS_ERR(nand_chip->IO_ADDR_R))
1777 return PTR_ERR(nand_chip->IO_ADDR_R);
67ce04bf 1778
9c4c2f8b 1779 info->phys_base = res->start;
59e9c5ae 1780
1dc338e8 1781 nand_chip->controller = &omap_gpmc_controller;
67ce04bf 1782
633deb58
PG
1783 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1784 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1785
10f22ee3
RQ
1786 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1787 GPIOD_IN);
1788 if (IS_ERR(info->ready_gpiod)) {
1789 dev_err(dev, "failed to get ready gpio\n");
1790 return PTR_ERR(info->ready_gpiod);
1791 }
1792
67ce04bf
VS
1793 /*
1794 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1795 * function and the generic nand_wait function which reads the status
1796 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1797 * chip delay which is slightly more than tR (AC Timing) of the NAND
1798 * device and read status register until you get a failure or success
1799 */
10f22ee3 1800 if (info->ready_gpiod) {
633deb58
PG
1801 nand_chip->dev_ready = omap_dev_ready;
1802 nand_chip->chip_delay = 0;
67ce04bf 1803 } else {
633deb58
PG
1804 nand_chip->waitfunc = omap_wait;
1805 nand_chip->chip_delay = 50;
67ce04bf
VS
1806 }
1807
c9711ec5 1808 if (info->flash_bbt)
f679888f 1809 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
fef775ca 1810
f18befb5 1811 /* scan NAND device connected to chip controller */
01b95fc6 1812 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
f18befb5 1813 if (nand_scan_ident(mtd, 1, NULL)) {
01b95fc6
RQ
1814 dev_err(&info->pdev->dev,
1815 "scan failed, may be bus-width mismatch\n");
f18befb5 1816 err = -ENXIO;
70ba6d71 1817 goto return_error;
f18befb5
PG
1818 }
1819
f679888f
BB
1820 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
1821 nand_chip->bbt_options |= NAND_BBT_NO_OOB;
1822 else
1823 nand_chip->options |= NAND_SKIP_BBTSCAN;
1824
f18befb5 1825 /* re-populate low-level callbacks based on xfer modes */
01b95fc6 1826 switch (info->xfer_type) {
1b0b323c 1827 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1828 nand_chip->read_buf = omap_read_buf_pref;
1829 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1830 break;
1831
1832 case NAND_OMAP_POLLED:
cf0e4d2b 1833 /* Use nand_base defaults for {read,write}_buf */
1b0b323c
SG
1834 break;
1835
1836 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1837 dma_cap_zero(mask);
1838 dma_cap_set(DMA_SLAVE, mask);
1839 sig = OMAP24XX_DMA_GPMC;
1840 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1841 if (!info->dma) {
2df41d05
RK
1842 dev_err(&pdev->dev, "DMA engine request failed\n");
1843 err = -ENXIO;
70ba6d71 1844 goto return_error;
763e7359
RK
1845 } else {
1846 struct dma_slave_config cfg;
763e7359
RK
1847
1848 memset(&cfg, 0, sizeof(cfg));
1849 cfg.src_addr = info->phys_base;
1850 cfg.dst_addr = info->phys_base;
1851 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1852 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1853 cfg.src_maxburst = 16;
1854 cfg.dst_maxburst = 16;
d680e2c1
AB
1855 err = dmaengine_slave_config(info->dma, &cfg);
1856 if (err) {
763e7359 1857 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1858 err);
70ba6d71 1859 goto return_error;
763e7359 1860 }
633deb58
PG
1861 nand_chip->read_buf = omap_read_buf_dma_pref;
1862 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1863 }
1864 break;
1865
4e070376 1866 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1867 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1868 if (info->gpmc_irq_fifo <= 0) {
1869 dev_err(&pdev->dev, "error getting fifo irq\n");
1870 err = -ENODEV;
70ba6d71 1871 goto return_error;
5c468455 1872 }
70ba6d71
PG
1873 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1874 omap_nand_irq, IRQF_SHARED,
1875 "gpmc-nand-fifo", info);
4e070376
SG
1876 if (err) {
1877 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1878 info->gpmc_irq_fifo, err);
1879 info->gpmc_irq_fifo = 0;
70ba6d71 1880 goto return_error;
5c468455
AM
1881 }
1882
1883 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1884 if (info->gpmc_irq_count <= 0) {
1885 dev_err(&pdev->dev, "error getting count irq\n");
1886 err = -ENODEV;
70ba6d71 1887 goto return_error;
5c468455 1888 }
70ba6d71
PG
1889 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1890 omap_nand_irq, IRQF_SHARED,
1891 "gpmc-nand-count", info);
5c468455
AM
1892 if (err) {
1893 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1894 info->gpmc_irq_count, err);
1895 info->gpmc_irq_count = 0;
70ba6d71 1896 goto return_error;
4e070376 1897 }
5c468455 1898
633deb58
PG
1899 nand_chip->read_buf = omap_read_buf_irq_pref;
1900 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1901
4e070376
SG
1902 break;
1903
1b0b323c
SG
1904 default:
1905 dev_err(&pdev->dev,
01b95fc6 1906 "xfer_type(%d) not supported!\n", info->xfer_type);
1b0b323c 1907 err = -EINVAL;
70ba6d71 1908 goto return_error;
59e9c5ae 1909 }
59e9c5ae 1910
93af53b8
EG
1911 if (!omap2_nand_ecc_check(info, pdata)) {
1912 err = -EINVAL;
1913 goto return_error;
1914 }
1915
a8c65d50
BB
1916 /*
1917 * Bail out earlier to let NAND_ECC_SOFT code create its own
1918 * ecclayout instead of using ours.
1919 */
1920 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1921 nand_chip->ecc.mode = NAND_ECC_SOFT;
1922 goto scan_tail;
1923 }
1924
a919e511 1925 /* populate MTD interface based on ECC scheme */
94cb4ee0 1926 ecclayout = &info->oobinfo;
a8c65d50 1927 nand_chip->ecc.layout = ecclayout;
4e558072 1928 switch (info->ecc_opt) {
a919e511
PG
1929 case OMAP_ECC_HAM1_CODE_HW:
1930 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1931 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
1932 nand_chip->ecc.bytes = 3;
1933 nand_chip->ecc.size = 512;
1934 nand_chip->ecc.strength = 1;
1935 nand_chip->ecc.calculate = omap_calculate_ecc;
1936 nand_chip->ecc.hwctl = omap_enable_hwecc;
1937 nand_chip->ecc.correct = omap_correct_data;
b491da72
PG
1938 /* define ECC layout */
1939 ecclayout->eccbytes = nand_chip->ecc.bytes *
1940 (mtd->writesize /
1941 nand_chip->ecc.size);
1942 if (nand_chip->options & NAND_BUSWIDTH_16)
eae39cb4 1943 oob_index = BADBLOCK_MARKER_LENGTH;
b491da72 1944 else
eae39cb4
PG
1945 oob_index = 1;
1946 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1947 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1948 /* no reserved-marker in ecclayout for this ecc-scheme */
1949 ecclayout->oobfree->offset =
1950 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1951 break;
1952
1953 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
a919e511
PG
1954 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1955 nand_chip->ecc.mode = NAND_ECC_HW;
1956 nand_chip->ecc.size = 512;
1957 nand_chip->ecc.bytes = 7;
1958 nand_chip->ecc.strength = 4;
7c977c3e 1959 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 1960 nand_chip->ecc.correct = nand_bch_correct_data;
2c9f2365 1961 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
b491da72
PG
1962 /* define ECC layout */
1963 ecclayout->eccbytes = nand_chip->ecc.bytes *
1964 (mtd->writesize /
1965 nand_chip->ecc.size);
eae39cb4
PG
1966 oob_index = BADBLOCK_MARKER_LENGTH;
1967 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1968 ecclayout->eccpos[i] = oob_index;
1969 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1970 oob_index++;
1971 }
aa6092f9
PG
1972 /* include reserved-marker in ecclayout->oobfree calculation */
1973 ecclayout->oobfree->offset = 1 +
1974 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 1975 /* software bch library is used for locating errors */
a8c65d50 1976 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 1977 if (!nand_chip->ecc.priv) {
d2f08c75 1978 dev_err(&info->pdev->dev, "unable to use BCH library\n");
0e618ef0 1979 err = -EINVAL;
d2f08c75 1980 goto return_error;
a919e511
PG
1981 }
1982 break;
a919e511
PG
1983
1984 case OMAP_ECC_BCH4_CODE_HW:
a919e511
PG
1985 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1986 nand_chip->ecc.mode = NAND_ECC_HW;
1987 nand_chip->ecc.size = 512;
1988 /* 14th bit is kept reserved for ROM-code compatibility */
1989 nand_chip->ecc.bytes = 7 + 1;
1990 nand_chip->ecc.strength = 4;
7c977c3e 1991 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 1992 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 1993 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
1994 nand_chip->ecc.read_page = omap_read_page_bch;
1995 nand_chip->ecc.write_page = omap_write_page_bch;
b491da72
PG
1996 /* define ECC layout */
1997 ecclayout->eccbytes = nand_chip->ecc.bytes *
1998 (mtd->writesize /
1999 nand_chip->ecc.size);
eae39cb4
PG
2000 oob_index = BADBLOCK_MARKER_LENGTH;
2001 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2002 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
2003 /* reserved marker already included in ecclayout->eccbytes */
2004 ecclayout->oobfree->offset =
2005 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
93af53b8
EG
2006
2007 err = elm_config(info->elm_dev, BCH4_ECC,
432420c0 2008 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2009 nand_chip->ecc.size, nand_chip->ecc.bytes);
2010 if (err < 0)
70ba6d71 2011 goto return_error;
a919e511 2012 break;
a919e511
PG
2013
2014 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
a919e511
PG
2015 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2016 nand_chip->ecc.mode = NAND_ECC_HW;
2017 nand_chip->ecc.size = 512;
2018 nand_chip->ecc.bytes = 13;
2019 nand_chip->ecc.strength = 8;
7c977c3e 2020 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2021 nand_chip->ecc.correct = nand_bch_correct_data;
7bcd1dca 2022 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
b491da72
PG
2023 /* define ECC layout */
2024 ecclayout->eccbytes = nand_chip->ecc.bytes *
2025 (mtd->writesize /
2026 nand_chip->ecc.size);
eae39cb4
PG
2027 oob_index = BADBLOCK_MARKER_LENGTH;
2028 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
2029 ecclayout->eccpos[i] = oob_index;
2030 if (((i + 1) % nand_chip->ecc.bytes) == 0)
2031 oob_index++;
2032 }
aa6092f9
PG
2033 /* include reserved-marker in ecclayout->oobfree calculation */
2034 ecclayout->oobfree->offset = 1 +
2035 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 2036 /* software bch library is used for locating errors */
a8c65d50 2037 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2038 if (!nand_chip->ecc.priv) {
d2f08c75 2039 dev_err(&info->pdev->dev, "unable to use BCH library\n");
a919e511 2040 err = -EINVAL;
70ba6d71 2041 goto return_error;
a919e511
PG
2042 }
2043 break;
a919e511
PG
2044
2045 case OMAP_ECC_BCH8_CODE_HW:
a919e511
PG
2046 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2047 nand_chip->ecc.mode = NAND_ECC_HW;
2048 nand_chip->ecc.size = 512;
2049 /* 14th bit is kept reserved for ROM-code compatibility */
2050 nand_chip->ecc.bytes = 13 + 1;
2051 nand_chip->ecc.strength = 8;
7c977c3e 2052 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2053 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2054 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2055 nand_chip->ecc.read_page = omap_read_page_bch;
2056 nand_chip->ecc.write_page = omap_write_page_bch;
93af53b8
EG
2057
2058 err = elm_config(info->elm_dev, BCH8_ECC,
432420c0 2059 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2060 nand_chip->ecc.size, nand_chip->ecc.bytes);
2061 if (err < 0)
70ba6d71 2062 goto return_error;
93af53b8 2063
b491da72
PG
2064 /* define ECC layout */
2065 ecclayout->eccbytes = nand_chip->ecc.bytes *
2066 (mtd->writesize /
2067 nand_chip->ecc.size);
eae39cb4
PG
2068 oob_index = BADBLOCK_MARKER_LENGTH;
2069 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2070 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
2071 /* reserved marker already included in ecclayout->eccbytes */
2072 ecclayout->oobfree->offset =
2073 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 2074 break;
a919e511 2075
9748fff9 2076 case OMAP_ECC_BCH16_CODE_HW:
9748fff9 2077 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2078 nand_chip->ecc.mode = NAND_ECC_HW;
2079 nand_chip->ecc.size = 512;
2080 nand_chip->ecc.bytes = 26;
2081 nand_chip->ecc.strength = 16;
2082 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2083 nand_chip->ecc.correct = omap_elm_correct_data;
2084 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2085 nand_chip->ecc.read_page = omap_read_page_bch;
2086 nand_chip->ecc.write_page = omap_write_page_bch;
93af53b8
EG
2087
2088 err = elm_config(info->elm_dev, BCH16_ECC,
432420c0 2089 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2090 nand_chip->ecc.size, nand_chip->ecc.bytes);
2091 if (err < 0)
9748fff9 2092 goto return_error;
93af53b8 2093
9748fff9 2094 /* define ECC layout */
2095 ecclayout->eccbytes = nand_chip->ecc.bytes *
2096 (mtd->writesize /
2097 nand_chip->ecc.size);
2098 oob_index = BADBLOCK_MARKER_LENGTH;
2099 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2100 ecclayout->eccpos[i] = oob_index;
2101 /* reserved marker already included in ecclayout->eccbytes */
2102 ecclayout->oobfree->offset =
2103 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
2104 break;
a919e511 2105 default:
d2f08c75 2106 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
a919e511 2107 err = -EINVAL;
70ba6d71 2108 goto return_error;
f3d73f36 2109 }
67ce04bf 2110
bb38eefb
PG
2111 /* all OOB bytes from oobfree->offset till end off OOB are free */
2112 ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
b491da72
PG
2113 /* check if NAND device's OOB is enough to store ECC signatures */
2114 if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
d2f08c75
EG
2115 dev_err(&info->pdev->dev,
2116 "not enough OOB bytes required = %d, available=%d\n",
2117 ecclayout->eccbytes, mtd->oobsize);
b491da72 2118 err = -EINVAL;
70ba6d71 2119 goto return_error;
f040d332 2120 }
1b0b323c 2121
7d5929c1 2122scan_tail:
a80f1c1f 2123 /* second phase scan */
633deb58 2124 if (nand_scan_tail(mtd)) {
a80f1c1f 2125 err = -ENXIO;
70ba6d71 2126 goto return_error;
a80f1c1f
JW
2127 }
2128
c9711ec5
RQ
2129 if (dev->of_node)
2130 mtd_device_register(mtd, NULL, 0);
2131 else
2132 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
67ce04bf 2133
633deb58 2134 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
2135
2136 return 0;
2137
70ba6d71 2138return_error:
763e7359
RK
2139 if (info->dma)
2140 dma_release_channel(info->dma);
32d42a85
PG
2141 if (nand_chip->ecc.priv) {
2142 nand_bch_free(nand_chip->ecc.priv);
2143 nand_chip->ecc.priv = NULL;
2144 }
67ce04bf
VS
2145 return err;
2146}
2147
2148static int omap_nand_remove(struct platform_device *pdev)
2149{
2150 struct mtd_info *mtd = platform_get_drvdata(pdev);
4bd4ebcc 2151 struct nand_chip *nand_chip = mtd_to_nand(mtd);
4578ea9a 2152 struct omap_nand_info *info = mtd_to_omap(mtd);
32d42a85
PG
2153 if (nand_chip->ecc.priv) {
2154 nand_bch_free(nand_chip->ecc.priv);
2155 nand_chip->ecc.priv = NULL;
2156 }
763e7359
RK
2157 if (info->dma)
2158 dma_release_channel(info->dma);
633deb58 2159 nand_release(mtd);
67ce04bf
VS
2160 return 0;
2161}
2162
c9711ec5
RQ
2163static const struct of_device_id omap_nand_ids[] = {
2164 { .compatible = "ti,omap2-nand", },
2165 {},
2166};
2167
67ce04bf
VS
2168static struct platform_driver omap_nand_driver = {
2169 .probe = omap_nand_probe,
2170 .remove = omap_nand_remove,
2171 .driver = {
2172 .name = DRIVER_NAME,
c9711ec5 2173 .of_match_table = of_match_ptr(omap_nand_ids),
67ce04bf
VS
2174 },
2175};
2176
f99640de 2177module_platform_driver(omap_nand_driver);
67ce04bf 2178
c804c733 2179MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2180MODULE_LICENSE("GPL");
2181MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");