mtd: nand: jz4740: Remove unused local variable
[linux-2.6-block.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
10f22ee3 15#include <linux/gpio/consumer.h>
a0e5cc58 16#include <linux/module.h>
4e070376 17#include <linux/interrupt.h>
c276aca4 18#include <linux/jiffies.h>
19#include <linux/sched.h>
67ce04bf
VS
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/nand.h>
22#include <linux/mtd/partitions.h>
763e7359 23#include <linux/omap-dma.h>
67ce04bf 24#include <linux/io.h>
5a0e3ad6 25#include <linux/slab.h>
62116e51
PA
26#include <linux/of.h>
27#include <linux/of_device.h>
67ce04bf 28
32d42a85 29#include <linux/mtd/nand_bch.h>
62116e51 30#include <linux/platform_data/elm.h>
0e618ef0 31
c509aefd 32#include <linux/omap-gpmc.h>
2203747c 33#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 34
67ce04bf 35#define DRIVER_NAME "omap2-nand"
4e070376 36#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 37
67ce04bf
VS
38#define NAND_Ecc_P1e (1 << 0)
39#define NAND_Ecc_P2e (1 << 1)
40#define NAND_Ecc_P4e (1 << 2)
41#define NAND_Ecc_P8e (1 << 3)
42#define NAND_Ecc_P16e (1 << 4)
43#define NAND_Ecc_P32e (1 << 5)
44#define NAND_Ecc_P64e (1 << 6)
45#define NAND_Ecc_P128e (1 << 7)
46#define NAND_Ecc_P256e (1 << 8)
47#define NAND_Ecc_P512e (1 << 9)
48#define NAND_Ecc_P1024e (1 << 10)
49#define NAND_Ecc_P2048e (1 << 11)
50
51#define NAND_Ecc_P1o (1 << 16)
52#define NAND_Ecc_P2o (1 << 17)
53#define NAND_Ecc_P4o (1 << 18)
54#define NAND_Ecc_P8o (1 << 19)
55#define NAND_Ecc_P16o (1 << 20)
56#define NAND_Ecc_P32o (1 << 21)
57#define NAND_Ecc_P64o (1 << 22)
58#define NAND_Ecc_P128o (1 << 23)
59#define NAND_Ecc_P256o (1 << 24)
60#define NAND_Ecc_P512o (1 << 25)
61#define NAND_Ecc_P1024o (1 << 26)
62#define NAND_Ecc_P2048o (1 << 27)
63
64#define TF(value) (value ? 1 : 0)
65
66#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
65b97cf6
AM
105#define PREFETCH_CONFIG1_CS_SHIFT 24
106#define ECC_CONFIG_CS_SHIFT 1
107#define CS_MASK 0x7
108#define ENABLE_PREFETCH (0x1 << 7)
109#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 110#define ECCSIZE0_SHIFT 12
65b97cf6
AM
111#define ECCSIZE1_SHIFT 22
112#define ECC1RESULTSIZE 0x1
113#define ECCCLEAR 0x100
114#define ECC1 0x1
47f88af4
AM
115#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 120
d5e7c864
LV
121#define OMAP24XX_DMA_GPMC 4
122
62116e51
PA
123#define SECTOR_BYTES 512
124/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
125#define BCH4_BIT_PAD 4
62116e51
PA
126
127/* GPMC ecc engine settings for read */
128#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
129#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
130#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
131#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
132#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
133
134/* GPMC ecc engine settings for write */
135#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
136#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
137#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
138
b491da72 139#define BADBLOCK_MARKER_LENGTH 2
a919e511 140
9748fff9 141static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
142 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
143 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
144 0x07, 0x0e};
62116e51
PA
145static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
62116e51 148
1dc338e8
RL
149/* Shared among all NAND instances to synchronize access to the ECC Engine */
150static struct nand_hw_control omap_gpmc_controller = {
151 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
152 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
153};
59e9c5ae 154
67ce04bf 155struct omap_nand_info {
67ce04bf
VS
156 struct nand_chip nand;
157 struct platform_device *pdev;
158
159 int gpmc_cs;
01b95fc6
RQ
160 bool dev_ready;
161 enum nand_io xfer_type;
162 int devsize;
4e558072 163 enum omap_ecc ecc_opt;
01b95fc6
RQ
164 struct device_node *elm_of_node;
165
166 unsigned long phys_base;
dfe32893 167 struct completion comp;
763e7359 168 struct dma_chan *dma;
5c468455
AM
169 int gpmc_irq_fifo;
170 int gpmc_irq_count;
4e070376
SG
171 enum {
172 OMAP_NAND_IO_READ = 0, /* read */
173 OMAP_NAND_IO_WRITE, /* write */
174 } iomode;
175 u_char *buf;
176 int buf_len;
c509aefd 177 /* Interface to GPMC */
65b97cf6 178 struct gpmc_nand_regs reg;
c509aefd 179 struct gpmc_nand_ops *ops;
c9711ec5 180 bool flash_bbt;
a919e511 181 /* fields specific for BCHx_HW ECC scheme */
62116e51 182 struct device *elm_dev;
10f22ee3
RQ
183 /* NAND ready gpio */
184 struct gpio_desc *ready_gpiod;
67ce04bf
VS
185};
186
4578ea9a
BB
187static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
188{
432420c0 189 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
4578ea9a 190}
432420c0 191
65b97cf6
AM
192/**
193 * omap_prefetch_enable - configures and starts prefetch transfer
194 * @cs: cs (chip select) number
195 * @fifo_th: fifo threshold to be used for read/ write
196 * @dma_mode: dma mode enable (1) or disable (0)
197 * @u32_count: number of bytes to be transferred
198 * @is_write: prefetch read(0) or write post(1) mode
199 */
200static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
201 unsigned int u32_count, int is_write, struct omap_nand_info *info)
202{
203 u32 val;
204
205 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
206 return -1;
207
208 if (readl(info->reg.gpmc_prefetch_control))
209 return -EBUSY;
210
211 /* Set the amount of bytes to be prefetched */
212 writel(u32_count, info->reg.gpmc_prefetch_config2);
213
214 /* Set dma/mpu mode, the prefetch read / post write and
215 * enable the engine. Set which cs is has requested for.
216 */
217 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
218 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
219 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
220 writel(val, info->reg.gpmc_prefetch_config1);
221
222 /* Start the prefetch engine */
223 writel(0x1, info->reg.gpmc_prefetch_control);
224
225 return 0;
226}
227
228/**
229 * omap_prefetch_reset - disables and stops the prefetch engine
230 */
231static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
232{
233 u32 config1;
234
235 /* check if the same module/cs is trying to reset */
236 config1 = readl(info->reg.gpmc_prefetch_config1);
237 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
238 return -EINVAL;
239
240 /* Stop the PFPW engine */
241 writel(0x0, info->reg.gpmc_prefetch_control);
242
243 /* Reset/disable the PFPW engine */
244 writel(0x0, info->reg.gpmc_prefetch_config1);
245
246 return 0;
247}
248
67ce04bf
VS
249/**
250 * omap_hwcontrol - hardware specific access to control-lines
251 * @mtd: MTD device structure
252 * @cmd: command to device
253 * @ctrl:
254 * NAND_NCE: bit 0 -> don't care
255 * NAND_CLE: bit 1 -> Command Latch
256 * NAND_ALE: bit 2 -> Address Latch
257 *
258 * NOTE: boards may use different bits for these!!
259 */
260static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
261{
4578ea9a 262 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 263
2c01946c
SG
264 if (cmd != NAND_CMD_NONE) {
265 if (ctrl & NAND_CLE)
65b97cf6 266 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
267
268 else if (ctrl & NAND_ALE)
65b97cf6 269 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
270
271 else /* NAND_NCE */
65b97cf6 272 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 273 }
67ce04bf
VS
274}
275
59e9c5ae 276/**
277 * omap_read_buf8 - read data from NAND controller into buffer
278 * @mtd: MTD device structure
279 * @buf: buffer to store date
280 * @len: number of bytes to read
281 */
282static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
283{
4bd4ebcc 284 struct nand_chip *nand = mtd_to_nand(mtd);
59e9c5ae 285
286 ioread8_rep(nand->IO_ADDR_R, buf, len);
287}
288
289/**
290 * omap_write_buf8 - write buffer to NAND controller
291 * @mtd: MTD device structure
292 * @buf: data buffer
293 * @len: number of bytes to write
294 */
295static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
296{
4578ea9a 297 struct omap_nand_info *info = mtd_to_omap(mtd);
59e9c5ae 298 u_char *p = (u_char *)buf;
d6e55216 299 bool status;
59e9c5ae 300
301 while (len--) {
302 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
303 /* wait until buffer is available for write */
304 do {
d6e55216 305 status = info->ops->nand_writebuffer_empty();
2c01946c 306 } while (!status);
59e9c5ae 307 }
308}
309
67ce04bf
VS
310/**
311 * omap_read_buf16 - read data from NAND controller into buffer
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
315 */
316static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
317{
4bd4ebcc 318 struct nand_chip *nand = mtd_to_nand(mtd);
67ce04bf 319
59e9c5ae 320 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
321}
322
323/**
324 * omap_write_buf16 - write buffer to NAND controller
325 * @mtd: MTD device structure
326 * @buf: data buffer
327 * @len: number of bytes to write
328 */
329static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
330{
4578ea9a 331 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 332 u16 *p = (u16 *) buf;
d6e55216 333 bool status;
67ce04bf
VS
334 /* FIXME try bursts of writesw() or DMA ... */
335 len >>= 1;
336
337 while (len--) {
59e9c5ae 338 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
339 /* wait until buffer is available for write */
340 do {
d6e55216 341 status = info->ops->nand_writebuffer_empty();
2c01946c 342 } while (!status);
67ce04bf
VS
343 }
344}
59e9c5ae 345
346/**
347 * omap_read_buf_pref - read data from NAND controller into buffer
348 * @mtd: MTD device structure
349 * @buf: buffer to store date
350 * @len: number of bytes to read
351 */
352static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
353{
4578ea9a 354 struct omap_nand_info *info = mtd_to_omap(mtd);
2c01946c 355 uint32_t r_count = 0;
59e9c5ae 356 int ret = 0;
357 u32 *p = (u32 *)buf;
358
359 /* take care of subpage reads */
c3341d0c
VS
360 if (len % 4) {
361 if (info->nand.options & NAND_BUSWIDTH_16)
362 omap_read_buf16(mtd, buf, len % 4);
363 else
364 omap_read_buf8(mtd, buf, len % 4);
365 p = (u32 *) (buf + len % 4);
366 len -= len % 4;
59e9c5ae 367 }
59e9c5ae 368
369 /* configure and start prefetch transfer */
65b97cf6
AM
370 ret = omap_prefetch_enable(info->gpmc_cs,
371 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 372 if (ret) {
373 /* PFPW engine is busy, use cpu copy method */
374 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 375 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 376 else
c5d8c0ca 377 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 378 } else {
379 do {
65b97cf6 380 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 381 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
382 r_count = r_count >> 2;
383 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 384 p += r_count;
385 len -= r_count << 2;
386 } while (len);
59e9c5ae 387 /* disable and stop the PFPW engine */
65b97cf6 388 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 389 }
390}
391
392/**
393 * omap_write_buf_pref - write buffer to NAND controller
394 * @mtd: MTD device structure
395 * @buf: data buffer
396 * @len: number of bytes to write
397 */
398static void omap_write_buf_pref(struct mtd_info *mtd,
399 const u_char *buf, int len)
400{
4578ea9a 401 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376 402 uint32_t w_count = 0;
59e9c5ae 403 int i = 0, ret = 0;
c5d8c0ca 404 u16 *p = (u16 *)buf;
4e070376 405 unsigned long tim, limit;
65b97cf6 406 u32 val;
59e9c5ae 407
408 /* take care of subpage writes */
409 if (len % 2 != 0) {
2c01946c 410 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 411 p = (u16 *)(buf + 1);
412 len--;
413 }
414
415 /* configure and start prefetch transfer */
65b97cf6
AM
416 ret = omap_prefetch_enable(info->gpmc_cs,
417 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 418 if (ret) {
419 /* PFPW engine is busy, use cpu copy method */
420 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 421 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 422 else
c5d8c0ca 423 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 424 } else {
2c01946c 425 while (len) {
65b97cf6 426 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 427 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 428 w_count = w_count >> 1;
59e9c5ae 429 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 430 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 431 }
2c01946c 432 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
433 tim = 0;
434 limit = (loops_per_jiffy *
435 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 436 do {
4e070376 437 cpu_relax();
65b97cf6 438 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 439 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 440 } while (val && (tim++ < limit));
4e070376 441
59e9c5ae 442 /* disable and stop the PFPW engine */
65b97cf6 443 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 444 }
445}
446
dfe32893 447/*
2df41d05 448 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 449 * @data: pointer to completion data structure
450 */
763e7359
RK
451static void omap_nand_dma_callback(void *data)
452{
453 complete((struct completion *) data);
454}
dfe32893 455
456/*
4cacbe22 457 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 458 * @mtd: MTD device structure
459 * @addr: virtual address in RAM of source/destination
460 * @len: number of data bytes to be transferred
461 * @is_write: flag for read/write operation
462 */
463static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
464 unsigned int len, int is_write)
465{
4578ea9a 466 struct omap_nand_info *info = mtd_to_omap(mtd);
2df41d05 467 struct dma_async_tx_descriptor *tx;
dfe32893 468 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
469 DMA_FROM_DEVICE;
2df41d05 470 struct scatterlist sg;
4e070376 471 unsigned long tim, limit;
2df41d05
RK
472 unsigned n;
473 int ret;
65b97cf6 474 u32 val;
dfe32893 475
476 if (addr >= high_memory) {
477 struct page *p1;
478
479 if (((size_t)addr & PAGE_MASK) !=
480 ((size_t)(addr + len - 1) & PAGE_MASK))
481 goto out_copy;
482 p1 = vmalloc_to_page(addr);
483 if (!p1)
484 goto out_copy;
485 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
486 }
487
2df41d05
RK
488 sg_init_one(&sg, addr, len);
489 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
490 if (n == 0) {
dfe32893 491 dev_err(&info->pdev->dev,
492 "Couldn't DMA map a %d byte buffer\n", len);
493 goto out_copy;
494 }
495
2df41d05
RK
496 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
497 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
498 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
499 if (!tx)
500 goto out_copy_unmap;
501
502 tx->callback = omap_nand_dma_callback;
503 tx->callback_param = &info->comp;
504 dmaengine_submit(tx);
505
65b97cf6
AM
506 /* configure and start prefetch transfer */
507 ret = omap_prefetch_enable(info->gpmc_cs,
508 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 509 if (ret)
4e070376 510 /* PFPW engine is busy, use cpu copy method */
d7efe228 511 goto out_copy_unmap;
dfe32893 512
513 init_completion(&info->comp);
2df41d05 514 dma_async_issue_pending(info->dma);
dfe32893 515
516 /* setup and start DMA using dma_addr */
517 wait_for_completion(&info->comp);
4e070376
SG
518 tim = 0;
519 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
520
521 do {
4e070376 522 cpu_relax();
65b97cf6 523 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 524 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 525 } while (val && (tim++ < limit));
dfe32893 526
dfe32893 527 /* disable and stop the PFPW engine */
65b97cf6 528 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 529
2df41d05 530 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 531 return 0;
532
d7efe228 533out_copy_unmap:
2df41d05 534 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 535out_copy:
536 if (info->nand.options & NAND_BUSWIDTH_16)
537 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
538 : omap_write_buf16(mtd, (u_char *) addr, len);
539 else
540 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
541 : omap_write_buf8(mtd, (u_char *) addr, len);
542 return 0;
543}
dfe32893 544
545/**
546 * omap_read_buf_dma_pref - read data from NAND controller into buffer
547 * @mtd: MTD device structure
548 * @buf: buffer to store date
549 * @len: number of bytes to read
550 */
551static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
552{
553 if (len <= mtd->oobsize)
554 omap_read_buf_pref(mtd, buf, len);
555 else
556 /* start transfer in DMA mode */
557 omap_nand_dma_transfer(mtd, buf, len, 0x0);
558}
559
560/**
561 * omap_write_buf_dma_pref - write buffer to NAND controller
562 * @mtd: MTD device structure
563 * @buf: data buffer
564 * @len: number of bytes to write
565 */
566static void omap_write_buf_dma_pref(struct mtd_info *mtd,
567 const u_char *buf, int len)
568{
569 if (len <= mtd->oobsize)
570 omap_write_buf_pref(mtd, buf, len);
571 else
572 /* start transfer in DMA mode */
bdaefc41 573 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 574}
575
4e070376 576/*
4cacbe22 577 * omap_nand_irq - GPMC irq handler
4e070376
SG
578 * @this_irq: gpmc irq number
579 * @dev: omap_nand_info structure pointer is passed here
580 */
581static irqreturn_t omap_nand_irq(int this_irq, void *dev)
582{
583 struct omap_nand_info *info = (struct omap_nand_info *) dev;
584 u32 bytes;
4e070376 585
65b97cf6 586 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 587 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
588 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
589 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 590 if (this_irq == info->gpmc_irq_count)
4e070376
SG
591 goto done;
592
593 if (info->buf_len && (info->buf_len < bytes))
594 bytes = info->buf_len;
595 else if (!info->buf_len)
596 bytes = 0;
597 iowrite32_rep(info->nand.IO_ADDR_W,
598 (u32 *)info->buf, bytes >> 2);
599 info->buf = info->buf + bytes;
600 info->buf_len -= bytes;
601
602 } else {
603 ioread32_rep(info->nand.IO_ADDR_R,
604 (u32 *)info->buf, bytes >> 2);
605 info->buf = info->buf + bytes;
606
5c468455 607 if (this_irq == info->gpmc_irq_count)
4e070376
SG
608 goto done;
609 }
4e070376
SG
610
611 return IRQ_HANDLED;
612
613done:
614 complete(&info->comp);
4e070376 615
5c468455
AM
616 disable_irq_nosync(info->gpmc_irq_fifo);
617 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
618
619 return IRQ_HANDLED;
620}
621
622/*
623 * omap_read_buf_irq_pref - read data from NAND controller into buffer
624 * @mtd: MTD device structure
625 * @buf: buffer to store date
626 * @len: number of bytes to read
627 */
628static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
629{
4578ea9a 630 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
631 int ret = 0;
632
633 if (len <= mtd->oobsize) {
634 omap_read_buf_pref(mtd, buf, len);
635 return;
636 }
637
638 info->iomode = OMAP_NAND_IO_READ;
639 info->buf = buf;
640 init_completion(&info->comp);
641
642 /* configure and start prefetch transfer */
65b97cf6
AM
643 ret = omap_prefetch_enable(info->gpmc_cs,
644 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
645 if (ret)
646 /* PFPW engine is busy, use cpu copy method */
647 goto out_copy;
648
649 info->buf_len = len;
5c468455
AM
650
651 enable_irq(info->gpmc_irq_count);
652 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
653
654 /* waiting for read to complete */
655 wait_for_completion(&info->comp);
656
657 /* disable and stop the PFPW engine */
65b97cf6 658 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
659 return;
660
661out_copy:
662 if (info->nand.options & NAND_BUSWIDTH_16)
663 omap_read_buf16(mtd, buf, len);
664 else
665 omap_read_buf8(mtd, buf, len);
666}
667
668/*
669 * omap_write_buf_irq_pref - write buffer to NAND controller
670 * @mtd: MTD device structure
671 * @buf: data buffer
672 * @len: number of bytes to write
673 */
674static void omap_write_buf_irq_pref(struct mtd_info *mtd,
675 const u_char *buf, int len)
676{
4578ea9a 677 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
678 int ret = 0;
679 unsigned long tim, limit;
65b97cf6 680 u32 val;
4e070376
SG
681
682 if (len <= mtd->oobsize) {
683 omap_write_buf_pref(mtd, buf, len);
684 return;
685 }
686
687 info->iomode = OMAP_NAND_IO_WRITE;
688 info->buf = (u_char *) buf;
689 init_completion(&info->comp);
690
317379a9 691 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
692 ret = omap_prefetch_enable(info->gpmc_cs,
693 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
694 if (ret)
695 /* PFPW engine is busy, use cpu copy method */
696 goto out_copy;
697
698 info->buf_len = len;
5c468455
AM
699
700 enable_irq(info->gpmc_irq_count);
701 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
702
703 /* waiting for write to complete */
704 wait_for_completion(&info->comp);
5c468455 705
4e070376
SG
706 /* wait for data to flushed-out before reset the prefetch */
707 tim = 0;
708 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
709 do {
710 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 711 val = PREFETCH_STATUS_COUNT(val);
4e070376 712 cpu_relax();
65b97cf6 713 } while (val && (tim++ < limit));
4e070376
SG
714
715 /* disable and stop the PFPW engine */
65b97cf6 716 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
717 return;
718
719out_copy:
720 if (info->nand.options & NAND_BUSWIDTH_16)
721 omap_write_buf16(mtd, buf, len);
722 else
723 omap_write_buf8(mtd, buf, len);
724}
725
67ce04bf
VS
726/**
727 * gen_true_ecc - This function will generate true ECC value
728 * @ecc_buf: buffer to store ecc code
729 *
730 * This generated true ECC value can be used when correcting
731 * data read from NAND flash memory core
732 */
733static void gen_true_ecc(u8 *ecc_buf)
734{
735 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
736 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
737
738 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
739 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
740 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
741 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
742 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
743 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
744}
745
746/**
747 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
748 * @ecc_data1: ecc code from nand spare area
749 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
750 * @page_data: page data
751 *
752 * This function compares two ECC's and indicates if there is an error.
753 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
754 * If there is no error, %0 is returned. If there is an error but it
755 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
756 */
757static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
758 u8 *ecc_data2, /* read from register */
759 u8 *page_data)
760{
761 uint i;
762 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
763 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
764 u8 ecc_bit[24];
765 u8 ecc_sum = 0;
766 u8 find_bit = 0;
767 uint find_byte = 0;
768 int isEccFF;
769
770 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
771
772 gen_true_ecc(ecc_data1);
773 gen_true_ecc(ecc_data2);
774
775 for (i = 0; i <= 2; i++) {
776 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
777 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
778 }
779
780 for (i = 0; i < 8; i++) {
781 tmp0_bit[i] = *ecc_data1 % 2;
782 *ecc_data1 = *ecc_data1 / 2;
783 }
784
785 for (i = 0; i < 8; i++) {
786 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
787 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
788 }
789
790 for (i = 0; i < 8; i++) {
791 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
792 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
793 }
794
795 for (i = 0; i < 8; i++) {
796 comp0_bit[i] = *ecc_data2 % 2;
797 *ecc_data2 = *ecc_data2 / 2;
798 }
799
800 for (i = 0; i < 8; i++) {
801 comp1_bit[i] = *(ecc_data2 + 1) % 2;
802 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
803 }
804
805 for (i = 0; i < 8; i++) {
806 comp2_bit[i] = *(ecc_data2 + 2) % 2;
807 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
808 }
809
810 for (i = 0; i < 6; i++)
811 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
812
813 for (i = 0; i < 8; i++)
814 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
815
816 for (i = 0; i < 8; i++)
817 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
818
819 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
820 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
821
822 for (i = 0; i < 24; i++)
823 ecc_sum += ecc_bit[i];
824
825 switch (ecc_sum) {
826 case 0:
827 /* Not reached because this function is not called if
828 * ECC values are equal
829 */
830 return 0;
831
832 case 1:
833 /* Uncorrectable error */
289c0522 834 pr_debug("ECC UNCORRECTED_ERROR 1\n");
6e941192 835 return -EBADMSG;
67ce04bf
VS
836
837 case 11:
838 /* UN-Correctable error */
289c0522 839 pr_debug("ECC UNCORRECTED_ERROR B\n");
6e941192 840 return -EBADMSG;
67ce04bf
VS
841
842 case 12:
843 /* Correctable error */
844 find_byte = (ecc_bit[23] << 8) +
845 (ecc_bit[21] << 7) +
846 (ecc_bit[19] << 6) +
847 (ecc_bit[17] << 5) +
848 (ecc_bit[15] << 4) +
849 (ecc_bit[13] << 3) +
850 (ecc_bit[11] << 2) +
851 (ecc_bit[9] << 1) +
852 ecc_bit[7];
853
854 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
855
0a32a102
BN
856 pr_debug("Correcting single bit ECC error at offset: "
857 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
858
859 page_data[find_byte] ^= (1 << find_bit);
860
74f1b724 861 return 1;
67ce04bf
VS
862 default:
863 if (isEccFF) {
864 if (ecc_data2[0] == 0 &&
865 ecc_data2[1] == 0 &&
866 ecc_data2[2] == 0)
867 return 0;
868 }
289c0522 869 pr_debug("UNCORRECTED_ERROR default\n");
6e941192 870 return -EBADMSG;
67ce04bf
VS
871 }
872}
873
874/**
875 * omap_correct_data - Compares the ECC read with HW generated ECC
876 * @mtd: MTD device structure
877 * @dat: page data
878 * @read_ecc: ecc read from nand flash
879 * @calc_ecc: ecc read from HW ECC registers
880 *
881 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
882 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
883 * detection and correction. If there are no errors, %0 is returned. If
884 * there were errors and all of the errors were corrected, the number of
885 * corrected errors is returned. If uncorrectable errors exist, %-1 is
886 * returned.
67ce04bf
VS
887 */
888static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
889 u_char *read_ecc, u_char *calc_ecc)
890{
4578ea9a 891 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 892 int blockCnt = 0, i = 0, ret = 0;
74f1b724 893 int stat = 0;
67ce04bf
VS
894
895 /* Ex NAND_ECC_HW12_2048 */
896 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
897 (info->nand.ecc.size == 2048))
898 blockCnt = 4;
899 else
900 blockCnt = 1;
901
902 for (i = 0; i < blockCnt; i++) {
903 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
904 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
905 if (ret < 0)
906 return ret;
74f1b724
JO
907 /* keep track of the number of corrected errors */
908 stat += ret;
67ce04bf
VS
909 }
910 read_ecc += 3;
911 calc_ecc += 3;
912 dat += 512;
913 }
74f1b724 914 return stat;
67ce04bf
VS
915}
916
917/**
918 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
919 * @mtd: MTD device structure
920 * @dat: The pointer to data on which ecc is computed
921 * @ecc_code: The ecc_code buffer
922 *
923 * Using noninverted ECC can be considered ugly since writing a blank
924 * page ie. padding will clear the ECC bytes. This is no problem as long
925 * nobody is trying to write data on the seemingly unused page. Reading
926 * an erased page will produce an ECC mismatch between generated and read
927 * ECC bytes that has to be dealt with separately.
928 */
929static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
930 u_char *ecc_code)
931{
4578ea9a 932 struct omap_nand_info *info = mtd_to_omap(mtd);
65b97cf6
AM
933 u32 val;
934
935 val = readl(info->reg.gpmc_ecc_config);
40ddbf50 936 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
65b97cf6
AM
937 return -EINVAL;
938
939 /* read ecc result */
940 val = readl(info->reg.gpmc_ecc1_result);
941 *ecc_code++ = val; /* P128e, ..., P1e */
942 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
943 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
944 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
945
946 return 0;
67ce04bf
VS
947}
948
949/**
950 * omap_enable_hwecc - This function enables the hardware ecc functionality
951 * @mtd: MTD device structure
952 * @mode: Read/Write mode
953 */
954static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
955{
4578ea9a 956 struct omap_nand_info *info = mtd_to_omap(mtd);
4bd4ebcc 957 struct nand_chip *chip = mtd_to_nand(mtd);
67ce04bf 958 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
959 u32 val;
960
961 /* clear ecc and enable bits */
962 val = ECCCLEAR | ECC1;
963 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 964
65b97cf6
AM
965 /* program ecc and result sizes */
966 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
967 ECC1RESULTSIZE);
968 writel(val, info->reg.gpmc_ecc_size_config);
969
970 switch (mode) {
971 case NAND_ECC_READ:
972 case NAND_ECC_WRITE:
973 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
974 break;
975 case NAND_ECC_READSYN:
976 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
977 break;
978 default:
979 dev_info(&info->pdev->dev,
980 "error: unrecognized Mode[%d]!\n", mode);
981 break;
982 }
67ce04bf 983
65b97cf6
AM
984 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
985 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
986 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 987}
2c01946c 988
67ce04bf
VS
989/**
990 * omap_wait - wait until the command is done
991 * @mtd: MTD device structure
992 * @chip: NAND Chip structure
993 *
994 * Wait function is called during Program and erase operations and
995 * the way it is called from MTD layer, we should wait till the NAND
996 * chip is ready after the programming/erase operation has completed.
997 *
998 * Erase can take up to 400ms and program up to 20ms according to
999 * general NAND and SmartMedia specs
1000 */
1001static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1002{
4bd4ebcc 1003 struct nand_chip *this = mtd_to_nand(mtd);
4578ea9a 1004 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1005 unsigned long timeo = jiffies;
a9c465f0 1006 int status, state = this->state;
67ce04bf
VS
1007
1008 if (state == FL_ERASING)
4ff6772b 1009 timeo += msecs_to_jiffies(400);
67ce04bf 1010 else
4ff6772b 1011 timeo += msecs_to_jiffies(20);
67ce04bf 1012
65b97cf6 1013 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1014 while (time_before(jiffies, timeo)) {
65b97cf6 1015 status = readb(info->reg.gpmc_nand_data);
c276aca4 1016 if (status & NAND_STATUS_READY)
67ce04bf 1017 break;
c276aca4 1018 cond_resched();
67ce04bf 1019 }
a9c465f0 1020
4ea1e4ba 1021 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1022 return status;
1023}
1024
1025/**
10f22ee3 1026 * omap_dev_ready - checks the NAND Ready GPIO line
67ce04bf 1027 * @mtd: MTD device structure
10f22ee3
RQ
1028 *
1029 * Returns true if ready and false if busy.
67ce04bf
VS
1030 */
1031static int omap_dev_ready(struct mtd_info *mtd)
1032{
4578ea9a 1033 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1034
10f22ee3 1035 return gpiod_get_value(info->ready_gpiod);
67ce04bf
VS
1036}
1037
0e618ef0 1038/**
7c977c3e 1039 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
0e618ef0
ID
1040 * @mtd: MTD device structure
1041 * @mode: Read/Write mode
62116e51 1042 *
0760e818
NMG
1043 * When using BCH with SW correction (i.e. no ELM), sector size is set
1044 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1045 * for both reading and writing with:
62116e51
PA
1046 * eccsize0 = 0 (no additional protected byte in spare area)
1047 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0 1048 */
7c977c3e 1049static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
0e618ef0 1050{
16e69322 1051 unsigned int bch_type;
2ef9f3dd 1052 unsigned int dev_width, nsectors;
4578ea9a 1053 struct omap_nand_info *info = mtd_to_omap(mtd);
c5957a32 1054 enum omap_ecc ecc_opt = info->ecc_opt;
4bd4ebcc 1055 struct nand_chip *chip = mtd_to_nand(mtd);
62116e51
PA
1056 u32 val, wr_mode;
1057 unsigned int ecc_size1, ecc_size0;
1058
c5957a32
PG
1059 /* GPMC configurations for calculating ECC */
1060 switch (ecc_opt) {
1061 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
16e69322
PG
1062 bch_type = 0;
1063 nsectors = 1;
0760e818
NMG
1064 wr_mode = BCH_WRAPMODE_6;
1065 ecc_size0 = BCH_ECC_SIZE0;
1066 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1067 break;
1068 case OMAP_ECC_BCH4_CODE_HW:
16e69322
PG
1069 bch_type = 0;
1070 nsectors = chip->ecc.steps;
c5957a32
PG
1071 if (mode == NAND_ECC_READ) {
1072 wr_mode = BCH_WRAPMODE_1;
1073 ecc_size0 = BCH4R_ECC_SIZE0;
1074 ecc_size1 = BCH4R_ECC_SIZE1;
1075 } else {
1076 wr_mode = BCH_WRAPMODE_6;
1077 ecc_size0 = BCH_ECC_SIZE0;
1078 ecc_size1 = BCH_ECC_SIZE1;
1079 }
1080 break;
1081 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
16e69322
PG
1082 bch_type = 1;
1083 nsectors = 1;
0760e818
NMG
1084 wr_mode = BCH_WRAPMODE_6;
1085 ecc_size0 = BCH_ECC_SIZE0;
1086 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1087 break;
1088 case OMAP_ECC_BCH8_CODE_HW:
16e69322
PG
1089 bch_type = 1;
1090 nsectors = chip->ecc.steps;
c5957a32
PG
1091 if (mode == NAND_ECC_READ) {
1092 wr_mode = BCH_WRAPMODE_1;
1093 ecc_size0 = BCH8R_ECC_SIZE0;
1094 ecc_size1 = BCH8R_ECC_SIZE1;
1095 } else {
1096 wr_mode = BCH_WRAPMODE_6;
1097 ecc_size0 = BCH_ECC_SIZE0;
1098 ecc_size1 = BCH_ECC_SIZE1;
1099 }
1100 break;
9748fff9 1101 case OMAP_ECC_BCH16_CODE_HW:
1102 bch_type = 0x2;
1103 nsectors = chip->ecc.steps;
1104 if (mode == NAND_ECC_READ) {
1105 wr_mode = 0x01;
1106 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1107 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1108 } else {
1109 wr_mode = 0x01;
1110 ecc_size0 = 0; /* extra bits in nibbles per sector */
1111 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1112 }
1113 break;
c5957a32
PG
1114 default:
1115 return;
1116 }
2ef9f3dd
AM
1117
1118 writel(ECC1, info->reg.gpmc_ecc_control);
1119
62116e51
PA
1120 /* Configure ecc size for BCH */
1121 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1122 writel(val, info->reg.gpmc_ecc_size_config);
1123
62116e51
PA
1124 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1125
2ef9f3dd
AM
1126 /* BCH configuration */
1127 val = ((1 << 16) | /* enable BCH */
16e69322 1128 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
62116e51 1129 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1130 (dev_width << 7) | /* bus width */
1131 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1132 (info->gpmc_cs << 1) | /* ECC CS */
1133 (0x1)); /* enable ECC */
1134
1135 writel(val, info->reg.gpmc_ecc_config);
1136
62116e51 1137 /* Clear ecc and enable bits */
2ef9f3dd 1138 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1139}
7c977c3e 1140
2c9f2365 1141static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
7bcd1dca
PG
1142static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1143 0x97, 0x79, 0xe5, 0x24, 0xb5};
0e618ef0 1144
62116e51 1145/**
a4c7ca00 1146 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
62116e51
PA
1147 * @mtd: MTD device structure
1148 * @dat: The pointer to data on which ecc is computed
1149 * @ecc_code: The ecc_code buffer
1150 *
1151 * Support calculating of BCH4/8 ecc vectors for the page
1152 */
a4c7ca00 1153static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
f5dc06fb 1154 const u_char *dat, u_char *ecc_calc)
62116e51 1155{
4578ea9a 1156 struct omap_nand_info *info = mtd_to_omap(mtd);
f5dc06fb
PG
1157 int eccbytes = info->nand.ecc.bytes;
1158 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1159 u8 *ecc_code;
62116e51 1160 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
9748fff9 1161 u32 val;
2913aae5 1162 int i, j;
62116e51
PA
1163
1164 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
62116e51 1165 for (i = 0; i < nsectors; i++) {
f5dc06fb
PG
1166 ecc_code = ecc_calc;
1167 switch (info->ecc_opt) {
7bcd1dca 1168 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1169 case OMAP_ECC_BCH8_CODE_HW:
1170 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1171 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1172 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1173 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
62116e51
PA
1174 *ecc_code++ = (bch_val4 & 0xFF);
1175 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1176 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1177 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1178 *ecc_code++ = (bch_val3 & 0xFF);
1179 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1180 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1181 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1182 *ecc_code++ = (bch_val2 & 0xFF);
1183 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1184 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1185 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1186 *ecc_code++ = (bch_val1 & 0xFF);
f5dc06fb 1187 break;
2c9f2365 1188 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1189 case OMAP_ECC_BCH4_CODE_HW:
1190 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1191 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
62116e51
PA
1192 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1193 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1194 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1195 ((bch_val1 >> 28) & 0xF);
1196 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1197 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1198 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1199 *ecc_code++ = ((bch_val1 & 0xF) << 4);
f5dc06fb 1200 break;
9748fff9 1201 case OMAP_ECC_BCH16_CODE_HW:
1202 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1203 ecc_code[0] = ((val >> 8) & 0xFF);
1204 ecc_code[1] = ((val >> 0) & 0xFF);
1205 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1206 ecc_code[2] = ((val >> 24) & 0xFF);
1207 ecc_code[3] = ((val >> 16) & 0xFF);
1208 ecc_code[4] = ((val >> 8) & 0xFF);
1209 ecc_code[5] = ((val >> 0) & 0xFF);
1210 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1211 ecc_code[6] = ((val >> 24) & 0xFF);
1212 ecc_code[7] = ((val >> 16) & 0xFF);
1213 ecc_code[8] = ((val >> 8) & 0xFF);
1214 ecc_code[9] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1216 ecc_code[10] = ((val >> 24) & 0xFF);
1217 ecc_code[11] = ((val >> 16) & 0xFF);
1218 ecc_code[12] = ((val >> 8) & 0xFF);
1219 ecc_code[13] = ((val >> 0) & 0xFF);
1220 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1221 ecc_code[14] = ((val >> 24) & 0xFF);
1222 ecc_code[15] = ((val >> 16) & 0xFF);
1223 ecc_code[16] = ((val >> 8) & 0xFF);
1224 ecc_code[17] = ((val >> 0) & 0xFF);
1225 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1226 ecc_code[18] = ((val >> 24) & 0xFF);
1227 ecc_code[19] = ((val >> 16) & 0xFF);
1228 ecc_code[20] = ((val >> 8) & 0xFF);
1229 ecc_code[21] = ((val >> 0) & 0xFF);
1230 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1231 ecc_code[22] = ((val >> 24) & 0xFF);
1232 ecc_code[23] = ((val >> 16) & 0xFF);
1233 ecc_code[24] = ((val >> 8) & 0xFF);
1234 ecc_code[25] = ((val >> 0) & 0xFF);
1235 break;
f5dc06fb
PG
1236 default:
1237 return -EINVAL;
62116e51 1238 }
f5dc06fb
PG
1239
1240 /* ECC scheme specific syndrome customizations */
1241 switch (info->ecc_opt) {
2c9f2365
PG
1242 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1243 /* Add constant polynomial to remainder, so that
1244 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1245 for (j = 0; j < eccbytes; j++)
1246 ecc_calc[j] ^= bch4_polynomial[j];
2c9f2365 1247 break;
f5dc06fb
PG
1248 case OMAP_ECC_BCH4_CODE_HW:
1249 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1250 ecc_calc[eccbytes - 1] = 0x0;
1251 break;
7bcd1dca
PG
1252 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1253 /* Add constant polynomial to remainder, so that
1254 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1255 for (j = 0; j < eccbytes; j++)
1256 ecc_calc[j] ^= bch8_polynomial[j];
7bcd1dca 1257 break;
f5dc06fb
PG
1258 case OMAP_ECC_BCH8_CODE_HW:
1259 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1260 ecc_calc[eccbytes - 1] = 0x0;
1261 break;
9748fff9 1262 case OMAP_ECC_BCH16_CODE_HW:
1263 break;
f5dc06fb
PG
1264 default:
1265 return -EINVAL;
1266 }
1267
1268 ecc_calc += eccbytes;
62116e51
PA
1269 }
1270
1271 return 0;
1272}
1273
1274/**
1275 * erased_sector_bitflips - count bit flips
1276 * @data: data sector buffer
1277 * @oob: oob buffer
1278 * @info: omap_nand_info
1279 *
1280 * Check the bit flips in erased page falls below correctable level.
1281 * If falls below, report the page as erased with correctable bit
1282 * flip, else report as uncorrectable page.
1283 */
1284static int erased_sector_bitflips(u_char *data, u_char *oob,
1285 struct omap_nand_info *info)
1286{
1287 int flip_bits = 0, i;
1288
1289 for (i = 0; i < info->nand.ecc.size; i++) {
1290 flip_bits += hweight8(~data[i]);
1291 if (flip_bits > info->nand.ecc.strength)
1292 return 0;
1293 }
1294
1295 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1296 flip_bits += hweight8(~oob[i]);
1297 if (flip_bits > info->nand.ecc.strength)
1298 return 0;
1299 }
1300
1301 /*
1302 * Bit flips falls in correctable level.
1303 * Fill data area with 0xFF
1304 */
1305 if (flip_bits) {
1306 memset(data, 0xFF, info->nand.ecc.size);
1307 memset(oob, 0xFF, info->nand.ecc.bytes);
1308 }
1309
1310 return flip_bits;
1311}
1312
1313/**
1314 * omap_elm_correct_data - corrects page data area in case error reported
1315 * @mtd: MTD device structure
1316 * @data: page data
1317 * @read_ecc: ecc read from nand flash
1318 * @calc_ecc: ecc read from HW ECC registers
1319 *
1320 * Calculated ecc vector reported as zero in case of non-error pages.
78f43c53
PG
1321 * In case of non-zero ecc vector, first filter out erased-pages, and
1322 * then process data via ELM to detect bit-flips.
62116e51
PA
1323 */
1324static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1325 u_char *read_ecc, u_char *calc_ecc)
1326{
4578ea9a 1327 struct omap_nand_info *info = mtd_to_omap(mtd);
de0a4d69 1328 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
62116e51
PA
1329 int eccsteps = info->nand.ecc.steps;
1330 int i , j, stat = 0;
de0a4d69 1331 int eccflag, actual_eccbytes;
62116e51
PA
1332 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1333 u_char *ecc_vec = calc_ecc;
1334 u_char *spare_ecc = read_ecc;
1335 u_char *erased_ecc_vec;
78f43c53
PG
1336 u_char *buf;
1337 int bitflip_count;
62116e51 1338 bool is_error_reported = false;
b08e1f63 1339 u32 bit_pos, byte_pos, error_max, pos;
13fbe064 1340 int err;
62116e51 1341
de0a4d69
PG
1342 switch (info->ecc_opt) {
1343 case OMAP_ECC_BCH4_CODE_HW:
1344 /* omit 7th ECC byte reserved for ROM code compatibility */
1345 actual_eccbytes = ecc->bytes - 1;
78f43c53 1346 erased_ecc_vec = bch4_vector;
de0a4d69
PG
1347 break;
1348 case OMAP_ECC_BCH8_CODE_HW:
1349 /* omit 14th ECC byte reserved for ROM code compatibility */
1350 actual_eccbytes = ecc->bytes - 1;
78f43c53 1351 erased_ecc_vec = bch8_vector;
de0a4d69 1352 break;
9748fff9 1353 case OMAP_ECC_BCH16_CODE_HW:
1354 actual_eccbytes = ecc->bytes;
1355 erased_ecc_vec = bch16_vector;
1356 break;
de0a4d69 1357 default:
d2f08c75 1358 dev_err(&info->pdev->dev, "invalid driver configuration\n");
de0a4d69
PG
1359 return -EINVAL;
1360 }
1361
62116e51
PA
1362 /* Initialize elm error vector to zero */
1363 memset(err_vec, 0, sizeof(err_vec));
1364
62116e51
PA
1365 for (i = 0; i < eccsteps ; i++) {
1366 eccflag = 0; /* initialize eccflag */
1367
1368 /*
1369 * Check any error reported,
1370 * In case of error, non zero ecc reported.
1371 */
de0a4d69 1372 for (j = 0; j < actual_eccbytes; j++) {
62116e51
PA
1373 if (calc_ecc[j] != 0) {
1374 eccflag = 1; /* non zero ecc, error present */
1375 break;
1376 }
1377 }
1378
1379 if (eccflag == 1) {
78f43c53
PG
1380 if (memcmp(calc_ecc, erased_ecc_vec,
1381 actual_eccbytes) == 0) {
62116e51 1382 /*
78f43c53
PG
1383 * calc_ecc[] matches pattern for ECC(all 0xff)
1384 * so this is definitely an erased-page
62116e51 1385 */
62116e51 1386 } else {
78f43c53
PG
1387 buf = &data[info->nand.ecc.size * i];
1388 /*
1389 * count number of 0-bits in read_buf.
1390 * This check can be removed once a similar
1391 * check is introduced in generic NAND driver
1392 */
1393 bitflip_count = erased_sector_bitflips(
1394 buf, read_ecc, info);
1395 if (bitflip_count) {
1396 /*
1397 * number of 0-bits within ECC limits
1398 * So this may be an erased-page
1399 */
1400 stat += bitflip_count;
1401 } else {
1402 /*
1403 * Too many 0-bits. It may be a
1404 * - programmed-page, OR
1405 * - erased-page with many bit-flips
1406 * So this page requires check by ELM
1407 */
1408 err_vec[i].error_reported = true;
1409 is_error_reported = true;
62116e51
PA
1410 }
1411 }
1412 }
1413
1414 /* Update the ecc vector */
de0a4d69
PG
1415 calc_ecc += ecc->bytes;
1416 read_ecc += ecc->bytes;
62116e51
PA
1417 }
1418
1419 /* Check if any error reported */
1420 if (!is_error_reported)
f306e8c3 1421 return stat;
62116e51
PA
1422
1423 /* Decode BCH error using ELM module */
1424 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1425
13fbe064 1426 err = 0;
62116e51 1427 for (i = 0; i < eccsteps; i++) {
13fbe064 1428 if (err_vec[i].error_uncorrectable) {
d2f08c75
EG
1429 dev_err(&info->pdev->dev,
1430 "uncorrectable bit-flips found\n");
13fbe064
PG
1431 err = -EBADMSG;
1432 } else if (err_vec[i].error_reported) {
62116e51 1433 for (j = 0; j < err_vec[i].error_count; j++) {
b08e1f63
PG
1434 switch (info->ecc_opt) {
1435 case OMAP_ECC_BCH4_CODE_HW:
1436 /* Add 4 bits to take care of padding */
62116e51
PA
1437 pos = err_vec[i].error_loc[j] +
1438 BCH4_BIT_PAD;
b08e1f63
PG
1439 break;
1440 case OMAP_ECC_BCH8_CODE_HW:
9748fff9 1441 case OMAP_ECC_BCH16_CODE_HW:
b08e1f63
PG
1442 pos = err_vec[i].error_loc[j];
1443 break;
1444 default:
1445 return -EINVAL;
1446 }
1447 error_max = (ecc->size + actual_eccbytes) * 8;
62116e51
PA
1448 /* Calculate bit position of error */
1449 bit_pos = pos % 8;
1450
1451 /* Calculate byte position of error */
1452 byte_pos = (error_max - pos - 1) / 8;
1453
1454 if (pos < error_max) {
13fbe064
PG
1455 if (byte_pos < 512) {
1456 pr_debug("bitflip@dat[%d]=%x\n",
1457 byte_pos, data[byte_pos]);
62116e51 1458 data[byte_pos] ^= 1 << bit_pos;
13fbe064
PG
1459 } else {
1460 pr_debug("bitflip@oob[%d]=%x\n",
1461 (byte_pos - 512),
1462 spare_ecc[byte_pos - 512]);
62116e51
PA
1463 spare_ecc[byte_pos - 512] ^=
1464 1 << bit_pos;
13fbe064
PG
1465 }
1466 } else {
d2f08c75
EG
1467 dev_err(&info->pdev->dev,
1468 "invalid bit-flip @ %d:%d\n",
1469 byte_pos, bit_pos);
13fbe064 1470 err = -EBADMSG;
62116e51 1471 }
62116e51
PA
1472 }
1473 }
1474
1475 /* Update number of correctable errors */
1476 stat += err_vec[i].error_count;
1477
1478 /* Update page data with sector size */
b08e1f63 1479 data += ecc->size;
de0a4d69 1480 spare_ecc += ecc->bytes;
62116e51
PA
1481 }
1482
13fbe064 1483 return (err) ? err : stat;
62116e51
PA
1484}
1485
62116e51
PA
1486/**
1487 * omap_write_page_bch - BCH ecc based write page function for entire page
1488 * @mtd: mtd info structure
1489 * @chip: nand chip info structure
1490 * @buf: data buffer
1491 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 1492 * @page: page
62116e51
PA
1493 *
1494 * Custom write page method evolved to support multi sector writing in one shot
1495 */
1496static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 1497 const uint8_t *buf, int oob_required, int page)
62116e51 1498{
8cfc1e8b 1499 int ret;
62116e51 1500 uint8_t *ecc_calc = chip->buffers->ecccalc;
62116e51
PA
1501
1502 /* Enable GPMC ecc engine */
1503 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1504
1505 /* Write data */
1506 chip->write_buf(mtd, buf, mtd->writesize);
1507
1508 /* Update ecc vector from GPMC result registers */
1509 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1510
8cfc1e8b
BB
1511 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1512 chip->ecc.total);
1513 if (ret)
1514 return ret;
62116e51
PA
1515
1516 /* Write ecc vector to OOB area */
1517 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1518 return 0;
1519}
1520
1521/**
1522 * omap_read_page_bch - BCH ecc based page read function for entire page
1523 * @mtd: mtd info structure
1524 * @chip: nand chip info structure
1525 * @buf: buffer to store read data
1526 * @oob_required: caller requires OOB data read to chip->oob_poi
1527 * @page: page number to read
1528 *
1529 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1530 * used for error correction.
1531 * Custom method evolved to support ELM error correction & multi sector
1532 * reading. On reading page data area is read along with OOB data with
1533 * ecc engine enabled. ecc vector updated after read of OOB data.
1534 * For non error pages ecc vector reported as zero.
1535 */
1536static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1537 uint8_t *buf, int oob_required, int page)
1538{
1539 uint8_t *ecc_calc = chip->buffers->ecccalc;
1540 uint8_t *ecc_code = chip->buffers->ecccode;
8cfc1e8b 1541 int stat, ret;
62116e51
PA
1542 unsigned int max_bitflips = 0;
1543
1544 /* Enable GPMC ecc engine */
1545 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1546
1547 /* Read data */
1548 chip->read_buf(mtd, buf, mtd->writesize);
1549
1550 /* Read oob bytes */
8cfc1e8b
BB
1551 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1552 mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
1553 chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1554 chip->ecc.total);
62116e51
PA
1555
1556 /* Calculate ecc bytes */
1557 chip->ecc.calculate(mtd, buf, ecc_calc);
1558
8cfc1e8b
BB
1559 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1560 chip->ecc.total);
1561 if (ret)
1562 return ret;
62116e51
PA
1563
1564 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1565
1566 if (stat < 0) {
1567 mtd->ecc_stats.failed++;
1568 } else {
1569 mtd->ecc_stats.corrected += stat;
1570 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1571 }
1572
1573 return max_bitflips;
1574}
1575
0e618ef0 1576/**
a919e511
PG
1577 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1578 * @omap_nand_info: NAND device structure containing platform data
0e618ef0 1579 */
93af53b8
EG
1580static bool is_elm_present(struct omap_nand_info *info,
1581 struct device_node *elm_node)
0e618ef0 1582{
a919e511 1583 struct platform_device *pdev;
93af53b8 1584
a919e511
PG
1585 /* check whether elm-id is passed via DT */
1586 if (!elm_node) {
d2f08c75 1587 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
93af53b8 1588 return false;
a919e511
PG
1589 }
1590 pdev = of_find_device_by_node(elm_node);
1591 /* check whether ELM device is registered */
1592 if (!pdev) {
d2f08c75 1593 dev_err(&info->pdev->dev, "ELM device not found\n");
93af53b8 1594 return false;
0e618ef0 1595 }
a919e511
PG
1596 /* ELM module available, now configure it */
1597 info->elm_dev = &pdev->dev;
93af53b8
EG
1598 return true;
1599}
3f4eb14b 1600
93af53b8
EG
1601static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1602 struct omap_nand_platform_data *pdata)
1603{
1604 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1605
1606 switch (info->ecc_opt) {
1607 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1608 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1609 ecc_needs_omap_bch = false;
1610 ecc_needs_bch = true;
1611 ecc_needs_elm = false;
1612 break;
1613 case OMAP_ECC_BCH4_CODE_HW:
1614 case OMAP_ECC_BCH8_CODE_HW:
1615 case OMAP_ECC_BCH16_CODE_HW:
1616 ecc_needs_omap_bch = true;
1617 ecc_needs_bch = false;
1618 ecc_needs_elm = true;
1619 break;
1620 default:
1621 ecc_needs_omap_bch = false;
1622 ecc_needs_bch = false;
1623 ecc_needs_elm = false;
1624 break;
1625 }
1626
1627 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1628 dev_err(&info->pdev->dev,
1629 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1630 return false;
1631 }
1632 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1633 dev_err(&info->pdev->dev,
1634 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1635 return false;
1636 }
01b95fc6 1637 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
93af53b8
EG
1638 dev_err(&info->pdev->dev, "ELM not available\n");
1639 return false;
1640 }
1641
1642 return true;
0e618ef0
ID
1643}
1644
c9711ec5
RQ
1645static const char * const nand_xfer_types[] = {
1646 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1647 [NAND_OMAP_POLLED] = "polled",
1648 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1649 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1650};
1651
1652static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1653{
1654 struct device_node *child = dev->of_node;
1655 int i;
1656 const char *s;
1657 u32 cs;
1658
1659 if (of_property_read_u32(child, "reg", &cs) < 0) {
1660 dev_err(dev, "reg not found in DT\n");
1661 return -EINVAL;
1662 }
1663
1664 info->gpmc_cs = cs;
1665
1666 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1667 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1668 if (!info->elm_of_node)
1669 dev_dbg(dev, "ti,elm-id not in DT\n");
1670
1671 /* select ecc-scheme for NAND */
1672 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1673 dev_err(dev, "ti,nand-ecc-opt not found\n");
1674 return -EINVAL;
1675 }
1676
1677 if (!strcmp(s, "sw")) {
1678 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1679 } else if (!strcmp(s, "ham1") ||
1680 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1681 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1682 } else if (!strcmp(s, "bch4")) {
1683 if (info->elm_of_node)
1684 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1685 else
1686 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1687 } else if (!strcmp(s, "bch8")) {
1688 if (info->elm_of_node)
1689 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1690 else
1691 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1692 } else if (!strcmp(s, "bch16")) {
1693 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1694 } else {
1695 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1696 return -EINVAL;
1697 }
1698
1699 /* select data transfer mode */
1700 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1701 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1702 if (!strcasecmp(s, nand_xfer_types[i])) {
1703 info->xfer_type = i;
f679888f 1704 return 0;
c9711ec5
RQ
1705 }
1706 }
1707
1708 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1709 return -EINVAL;
1710 }
1711
c9711ec5
RQ
1712 return 0;
1713}
1714
e04dbf35
BB
1715static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1716 struct mtd_oob_region *oobregion)
1717{
1718 struct omap_nand_info *info = mtd_to_omap(mtd);
1719 struct nand_chip *chip = &info->nand;
1720 int off = BADBLOCK_MARKER_LENGTH;
1721
1722 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1723 !(chip->options & NAND_BUSWIDTH_16))
1724 off = 1;
1725
1726 if (section)
1727 return -ERANGE;
1728
1729 oobregion->offset = off;
1730 oobregion->length = chip->ecc.total;
1731
1732 return 0;
1733}
1734
1735static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1736 struct mtd_oob_region *oobregion)
1737{
1738 struct omap_nand_info *info = mtd_to_omap(mtd);
1739 struct nand_chip *chip = &info->nand;
1740 int off = BADBLOCK_MARKER_LENGTH;
1741
1742 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1743 !(chip->options & NAND_BUSWIDTH_16))
1744 off = 1;
1745
1746 if (section)
1747 return -ERANGE;
1748
1749 off += chip->ecc.total;
1750 if (off >= mtd->oobsize)
1751 return -ERANGE;
1752
1753 oobregion->offset = off;
1754 oobregion->length = mtd->oobsize - off;
1755
1756 return 0;
1757}
1758
1759static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1760 .ecc = omap_ooblayout_ecc,
1761 .free = omap_ooblayout_free,
1762};
1763
1764static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1765 struct mtd_oob_region *oobregion)
1766{
1767 struct nand_chip *chip = mtd_to_nand(mtd);
1768 int off = BADBLOCK_MARKER_LENGTH;
1769
1770 if (section >= chip->ecc.steps)
1771 return -ERANGE;
1772
1773 /*
1774 * When SW correction is employed, one OMAP specific marker byte is
1775 * reserved after each ECC step.
1776 */
1777 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1778 oobregion->length = chip->ecc.bytes;
1779
1780 return 0;
1781}
1782
1783static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1784 struct mtd_oob_region *oobregion)
1785{
1786 struct nand_chip *chip = mtd_to_nand(mtd);
1787 int off = BADBLOCK_MARKER_LENGTH;
1788
1789 if (section)
1790 return -ERANGE;
1791
1792 /*
1793 * When SW correction is employed, one OMAP specific marker byte is
1794 * reserved after each ECC step.
1795 */
1796 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1797 if (off >= mtd->oobsize)
1798 return -ERANGE;
1799
1800 oobregion->offset = off;
1801 oobregion->length = mtd->oobsize - off;
1802
1803 return 0;
1804}
1805
1806static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1807 .ecc = omap_sw_ooblayout_ecc,
1808 .free = omap_sw_ooblayout_free,
1809};
1810
06f25510 1811static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1812{
1813 struct omap_nand_info *info;
c9711ec5 1814 struct omap_nand_platform_data *pdata = NULL;
633deb58
PG
1815 struct mtd_info *mtd;
1816 struct nand_chip *nand_chip;
67ce04bf 1817 int err;
633deb58
PG
1818 dma_cap_mask_t mask;
1819 unsigned sig;
9c4c2f8b 1820 struct resource *res;
c9711ec5 1821 struct device *dev = &pdev->dev;
e04dbf35
BB
1822 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1823 int oobbytes_per_step;
67ce04bf 1824
70ba6d71
PG
1825 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1826 GFP_KERNEL);
67ce04bf
VS
1827 if (!info)
1828 return -ENOMEM;
1829
c9711ec5 1830 info->pdev = pdev;
67ce04bf 1831
c9711ec5
RQ
1832 if (dev->of_node) {
1833 if (omap_get_dt_info(dev, info))
1834 return -EINVAL;
1835 } else {
1836 pdata = dev_get_platdata(&pdev->dev);
1837 if (!pdata) {
1838 dev_err(&pdev->dev, "platform data missing\n");
1839 return -EINVAL;
1840 }
1841
1842 info->gpmc_cs = pdata->cs;
1843 info->reg = pdata->reg;
1844 info->ecc_opt = pdata->ecc_opt;
10f22ee3
RQ
1845 if (pdata->dev_ready)
1846 dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
1847
c9711ec5
RQ
1848 info->xfer_type = pdata->xfer_type;
1849 info->devsize = pdata->devsize;
1850 info->elm_of_node = pdata->elm_of_node;
1851 info->flash_bbt = pdata->flash_bbt;
1852 }
1853
1854 platform_set_drvdata(pdev, info);
c509aefd
RQ
1855 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1856 if (!info->ops) {
1857 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1858 return -ENODEV;
1859 }
01b95fc6 1860
432420c0
BB
1861 nand_chip = &info->nand;
1862 mtd = nand_to_mtd(nand_chip);
853f1c58 1863 mtd->dev.parent = &pdev->dev;
32d42a85 1864 nand_chip->ecc.priv = NULL;
c9711ec5 1865 nand_set_flash_node(nand_chip, dev->of_node);
67ce04bf 1866
9c4c2f8b 1867 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
00d09891
JH
1868 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1869 if (IS_ERR(nand_chip->IO_ADDR_R))
1870 return PTR_ERR(nand_chip->IO_ADDR_R);
67ce04bf 1871
9c4c2f8b 1872 info->phys_base = res->start;
59e9c5ae 1873
1dc338e8 1874 nand_chip->controller = &omap_gpmc_controller;
67ce04bf 1875
633deb58
PG
1876 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1877 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1878
10f22ee3
RQ
1879 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1880 GPIOD_IN);
1881 if (IS_ERR(info->ready_gpiod)) {
1882 dev_err(dev, "failed to get ready gpio\n");
1883 return PTR_ERR(info->ready_gpiod);
1884 }
1885
67ce04bf
VS
1886 /*
1887 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1888 * function and the generic nand_wait function which reads the status
1889 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1890 * chip delay which is slightly more than tR (AC Timing) of the NAND
1891 * device and read status register until you get a failure or success
1892 */
10f22ee3 1893 if (info->ready_gpiod) {
633deb58
PG
1894 nand_chip->dev_ready = omap_dev_ready;
1895 nand_chip->chip_delay = 0;
67ce04bf 1896 } else {
633deb58
PG
1897 nand_chip->waitfunc = omap_wait;
1898 nand_chip->chip_delay = 50;
67ce04bf
VS
1899 }
1900
c9711ec5 1901 if (info->flash_bbt)
f679888f 1902 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
fef775ca 1903
f18befb5 1904 /* scan NAND device connected to chip controller */
01b95fc6 1905 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
f18befb5 1906 if (nand_scan_ident(mtd, 1, NULL)) {
01b95fc6
RQ
1907 dev_err(&info->pdev->dev,
1908 "scan failed, may be bus-width mismatch\n");
f18befb5 1909 err = -ENXIO;
70ba6d71 1910 goto return_error;
f18befb5
PG
1911 }
1912
f679888f
BB
1913 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
1914 nand_chip->bbt_options |= NAND_BBT_NO_OOB;
1915 else
1916 nand_chip->options |= NAND_SKIP_BBTSCAN;
1917
f18befb5 1918 /* re-populate low-level callbacks based on xfer modes */
01b95fc6 1919 switch (info->xfer_type) {
1b0b323c 1920 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1921 nand_chip->read_buf = omap_read_buf_pref;
1922 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1923 break;
1924
1925 case NAND_OMAP_POLLED:
cf0e4d2b 1926 /* Use nand_base defaults for {read,write}_buf */
1b0b323c
SG
1927 break;
1928
1929 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1930 dma_cap_zero(mask);
1931 dma_cap_set(DMA_SLAVE, mask);
1932 sig = OMAP24XX_DMA_GPMC;
1933 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1934 if (!info->dma) {
2df41d05
RK
1935 dev_err(&pdev->dev, "DMA engine request failed\n");
1936 err = -ENXIO;
70ba6d71 1937 goto return_error;
763e7359
RK
1938 } else {
1939 struct dma_slave_config cfg;
763e7359
RK
1940
1941 memset(&cfg, 0, sizeof(cfg));
1942 cfg.src_addr = info->phys_base;
1943 cfg.dst_addr = info->phys_base;
1944 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1945 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1946 cfg.src_maxburst = 16;
1947 cfg.dst_maxburst = 16;
d680e2c1
AB
1948 err = dmaengine_slave_config(info->dma, &cfg);
1949 if (err) {
763e7359 1950 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1951 err);
70ba6d71 1952 goto return_error;
763e7359 1953 }
633deb58
PG
1954 nand_chip->read_buf = omap_read_buf_dma_pref;
1955 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1956 }
1957 break;
1958
4e070376 1959 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1960 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1961 if (info->gpmc_irq_fifo <= 0) {
1962 dev_err(&pdev->dev, "error getting fifo irq\n");
1963 err = -ENODEV;
70ba6d71 1964 goto return_error;
5c468455 1965 }
70ba6d71
PG
1966 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1967 omap_nand_irq, IRQF_SHARED,
1968 "gpmc-nand-fifo", info);
4e070376
SG
1969 if (err) {
1970 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1971 info->gpmc_irq_fifo, err);
1972 info->gpmc_irq_fifo = 0;
70ba6d71 1973 goto return_error;
5c468455
AM
1974 }
1975
1976 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1977 if (info->gpmc_irq_count <= 0) {
1978 dev_err(&pdev->dev, "error getting count irq\n");
1979 err = -ENODEV;
70ba6d71 1980 goto return_error;
5c468455 1981 }
70ba6d71
PG
1982 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1983 omap_nand_irq, IRQF_SHARED,
1984 "gpmc-nand-count", info);
5c468455
AM
1985 if (err) {
1986 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1987 info->gpmc_irq_count, err);
1988 info->gpmc_irq_count = 0;
70ba6d71 1989 goto return_error;
4e070376 1990 }
5c468455 1991
633deb58
PG
1992 nand_chip->read_buf = omap_read_buf_irq_pref;
1993 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1994
4e070376
SG
1995 break;
1996
1b0b323c
SG
1997 default:
1998 dev_err(&pdev->dev,
01b95fc6 1999 "xfer_type(%d) not supported!\n", info->xfer_type);
1b0b323c 2000 err = -EINVAL;
70ba6d71 2001 goto return_error;
59e9c5ae 2002 }
59e9c5ae 2003
93af53b8
EG
2004 if (!omap2_nand_ecc_check(info, pdata)) {
2005 err = -EINVAL;
2006 goto return_error;
2007 }
2008
a8c65d50
BB
2009 /*
2010 * Bail out earlier to let NAND_ECC_SOFT code create its own
e04dbf35 2011 * ooblayout instead of using ours.
a8c65d50
BB
2012 */
2013 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2014 nand_chip->ecc.mode = NAND_ECC_SOFT;
d7b83b8a 2015 nand_chip->ecc.algo = NAND_ECC_HAMMING;
a8c65d50
BB
2016 goto scan_tail;
2017 }
2018
a919e511 2019 /* populate MTD interface based on ECC scheme */
4e558072 2020 switch (info->ecc_opt) {
a919e511
PG
2021 case OMAP_ECC_HAM1_CODE_HW:
2022 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2023 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
2024 nand_chip->ecc.bytes = 3;
2025 nand_chip->ecc.size = 512;
2026 nand_chip->ecc.strength = 1;
2027 nand_chip->ecc.calculate = omap_calculate_ecc;
2028 nand_chip->ecc.hwctl = omap_enable_hwecc;
2029 nand_chip->ecc.correct = omap_correct_data;
e04dbf35
BB
2030 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2031 oobbytes_per_step = nand_chip->ecc.bytes;
2032
2033 if (!(nand_chip->options & NAND_BUSWIDTH_16))
2034 min_oobbytes = 1;
2035
a919e511
PG
2036 break;
2037
2038 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
a919e511
PG
2039 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2040 nand_chip->ecc.mode = NAND_ECC_HW;
2041 nand_chip->ecc.size = 512;
2042 nand_chip->ecc.bytes = 7;
2043 nand_chip->ecc.strength = 4;
7c977c3e 2044 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2045 nand_chip->ecc.correct = nand_bch_correct_data;
2c9f2365 2046 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
e04dbf35
BB
2047 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2048 /* Reserve one byte for the OMAP marker */
2049 oobbytes_per_step = nand_chip->ecc.bytes + 1;
a919e511 2050 /* software bch library is used for locating errors */
a8c65d50 2051 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2052 if (!nand_chip->ecc.priv) {
d2f08c75 2053 dev_err(&info->pdev->dev, "unable to use BCH library\n");
0e618ef0 2054 err = -EINVAL;
d2f08c75 2055 goto return_error;
a919e511
PG
2056 }
2057 break;
a919e511
PG
2058
2059 case OMAP_ECC_BCH4_CODE_HW:
a919e511
PG
2060 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2061 nand_chip->ecc.mode = NAND_ECC_HW;
2062 nand_chip->ecc.size = 512;
2063 /* 14th bit is kept reserved for ROM-code compatibility */
2064 nand_chip->ecc.bytes = 7 + 1;
2065 nand_chip->ecc.strength = 4;
7c977c3e 2066 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2067 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2068 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2069 nand_chip->ecc.read_page = omap_read_page_bch;
2070 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2071 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2072 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2073
2074 err = elm_config(info->elm_dev, BCH4_ECC,
432420c0 2075 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2076 nand_chip->ecc.size, nand_chip->ecc.bytes);
2077 if (err < 0)
70ba6d71 2078 goto return_error;
a919e511 2079 break;
a919e511
PG
2080
2081 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
a919e511
PG
2082 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2083 nand_chip->ecc.mode = NAND_ECC_HW;
2084 nand_chip->ecc.size = 512;
2085 nand_chip->ecc.bytes = 13;
2086 nand_chip->ecc.strength = 8;
7c977c3e 2087 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2088 nand_chip->ecc.correct = nand_bch_correct_data;
7bcd1dca 2089 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
e04dbf35
BB
2090 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2091 /* Reserve one byte for the OMAP marker */
2092 oobbytes_per_step = nand_chip->ecc.bytes + 1;
a919e511 2093 /* software bch library is used for locating errors */
a8c65d50 2094 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2095 if (!nand_chip->ecc.priv) {
d2f08c75 2096 dev_err(&info->pdev->dev, "unable to use BCH library\n");
a919e511 2097 err = -EINVAL;
70ba6d71 2098 goto return_error;
a919e511
PG
2099 }
2100 break;
a919e511
PG
2101
2102 case OMAP_ECC_BCH8_CODE_HW:
a919e511
PG
2103 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2104 nand_chip->ecc.mode = NAND_ECC_HW;
2105 nand_chip->ecc.size = 512;
2106 /* 14th bit is kept reserved for ROM-code compatibility */
2107 nand_chip->ecc.bytes = 13 + 1;
2108 nand_chip->ecc.strength = 8;
7c977c3e 2109 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2110 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2111 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2112 nand_chip->ecc.read_page = omap_read_page_bch;
2113 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2114 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2115 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2116
2117 err = elm_config(info->elm_dev, BCH8_ECC,
432420c0 2118 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2119 nand_chip->ecc.size, nand_chip->ecc.bytes);
2120 if (err < 0)
70ba6d71 2121 goto return_error;
93af53b8 2122
a919e511 2123 break;
a919e511 2124
9748fff9 2125 case OMAP_ECC_BCH16_CODE_HW:
9748fff9 2126 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2127 nand_chip->ecc.mode = NAND_ECC_HW;
2128 nand_chip->ecc.size = 512;
2129 nand_chip->ecc.bytes = 26;
2130 nand_chip->ecc.strength = 16;
2131 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2132 nand_chip->ecc.correct = omap_elm_correct_data;
2133 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2134 nand_chip->ecc.read_page = omap_read_page_bch;
2135 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2136 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2137 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2138
2139 err = elm_config(info->elm_dev, BCH16_ECC,
432420c0 2140 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2141 nand_chip->ecc.size, nand_chip->ecc.bytes);
2142 if (err < 0)
9748fff9 2143 goto return_error;
93af53b8 2144
9748fff9 2145 break;
a919e511 2146 default:
d2f08c75 2147 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
a919e511 2148 err = -EINVAL;
70ba6d71 2149 goto return_error;
f3d73f36 2150 }
67ce04bf 2151
b491da72 2152 /* check if NAND device's OOB is enough to store ECC signatures */
e04dbf35
BB
2153 min_oobbytes += (oobbytes_per_step *
2154 (mtd->writesize / nand_chip->ecc.size));
2155 if (mtd->oobsize < min_oobbytes) {
d2f08c75
EG
2156 dev_err(&info->pdev->dev,
2157 "not enough OOB bytes required = %d, available=%d\n",
e04dbf35 2158 min_oobbytes, mtd->oobsize);
b491da72 2159 err = -EINVAL;
70ba6d71 2160 goto return_error;
f040d332 2161 }
1b0b323c 2162
7d5929c1 2163scan_tail:
a80f1c1f 2164 /* second phase scan */
633deb58 2165 if (nand_scan_tail(mtd)) {
a80f1c1f 2166 err = -ENXIO;
70ba6d71 2167 goto return_error;
a80f1c1f
JW
2168 }
2169
c9711ec5
RQ
2170 if (dev->of_node)
2171 mtd_device_register(mtd, NULL, 0);
2172 else
2173 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
67ce04bf 2174
633deb58 2175 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
2176
2177 return 0;
2178
70ba6d71 2179return_error:
763e7359
RK
2180 if (info->dma)
2181 dma_release_channel(info->dma);
32d42a85
PG
2182 if (nand_chip->ecc.priv) {
2183 nand_bch_free(nand_chip->ecc.priv);
2184 nand_chip->ecc.priv = NULL;
2185 }
67ce04bf
VS
2186 return err;
2187}
2188
2189static int omap_nand_remove(struct platform_device *pdev)
2190{
2191 struct mtd_info *mtd = platform_get_drvdata(pdev);
4bd4ebcc 2192 struct nand_chip *nand_chip = mtd_to_nand(mtd);
4578ea9a 2193 struct omap_nand_info *info = mtd_to_omap(mtd);
32d42a85
PG
2194 if (nand_chip->ecc.priv) {
2195 nand_bch_free(nand_chip->ecc.priv);
2196 nand_chip->ecc.priv = NULL;
2197 }
763e7359
RK
2198 if (info->dma)
2199 dma_release_channel(info->dma);
633deb58 2200 nand_release(mtd);
67ce04bf
VS
2201 return 0;
2202}
2203
c9711ec5
RQ
2204static const struct of_device_id omap_nand_ids[] = {
2205 { .compatible = "ti,omap2-nand", },
2206 {},
2207};
2208
67ce04bf
VS
2209static struct platform_driver omap_nand_driver = {
2210 .probe = omap_nand_probe,
2211 .remove = omap_nand_remove,
2212 .driver = {
2213 .name = DRIVER_NAME,
c9711ec5 2214 .of_match_table = of_match_ptr(omap_nand_ids),
67ce04bf
VS
2215 },
2216};
2217
f99640de 2218module_platform_driver(omap_nand_driver);
67ce04bf 2219
c804c733 2220MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2221MODULE_LICENSE("GPL");
2222MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");