mtd: nand: omap2: Start dma request before enabling prefetch
[linux-2.6-block.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
10f22ee3 15#include <linux/gpio/consumer.h>
a0e5cc58 16#include <linux/module.h>
4e070376 17#include <linux/interrupt.h>
c276aca4 18#include <linux/jiffies.h>
19#include <linux/sched.h>
67ce04bf
VS
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/nand.h>
22#include <linux/mtd/partitions.h>
763e7359 23#include <linux/omap-dma.h>
67ce04bf 24#include <linux/io.h>
5a0e3ad6 25#include <linux/slab.h>
62116e51
PA
26#include <linux/of.h>
27#include <linux/of_device.h>
67ce04bf 28
32d42a85 29#include <linux/mtd/nand_bch.h>
62116e51 30#include <linux/platform_data/elm.h>
0e618ef0 31
c509aefd 32#include <linux/omap-gpmc.h>
2203747c 33#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 34
67ce04bf 35#define DRIVER_NAME "omap2-nand"
4e070376 36#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 37
67ce04bf
VS
38#define NAND_Ecc_P1e (1 << 0)
39#define NAND_Ecc_P2e (1 << 1)
40#define NAND_Ecc_P4e (1 << 2)
41#define NAND_Ecc_P8e (1 << 3)
42#define NAND_Ecc_P16e (1 << 4)
43#define NAND_Ecc_P32e (1 << 5)
44#define NAND_Ecc_P64e (1 << 6)
45#define NAND_Ecc_P128e (1 << 7)
46#define NAND_Ecc_P256e (1 << 8)
47#define NAND_Ecc_P512e (1 << 9)
48#define NAND_Ecc_P1024e (1 << 10)
49#define NAND_Ecc_P2048e (1 << 11)
50
51#define NAND_Ecc_P1o (1 << 16)
52#define NAND_Ecc_P2o (1 << 17)
53#define NAND_Ecc_P4o (1 << 18)
54#define NAND_Ecc_P8o (1 << 19)
55#define NAND_Ecc_P16o (1 << 20)
56#define NAND_Ecc_P32o (1 << 21)
57#define NAND_Ecc_P64o (1 << 22)
58#define NAND_Ecc_P128o (1 << 23)
59#define NAND_Ecc_P256o (1 << 24)
60#define NAND_Ecc_P512o (1 << 25)
61#define NAND_Ecc_P1024o (1 << 26)
62#define NAND_Ecc_P2048o (1 << 27)
63
64#define TF(value) (value ? 1 : 0)
65
66#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
65b97cf6
AM
105#define PREFETCH_CONFIG1_CS_SHIFT 24
106#define ECC_CONFIG_CS_SHIFT 1
107#define CS_MASK 0x7
108#define ENABLE_PREFETCH (0x1 << 7)
109#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 110#define ECCSIZE0_SHIFT 12
65b97cf6
AM
111#define ECCSIZE1_SHIFT 22
112#define ECC1RESULTSIZE 0x1
113#define ECCCLEAR 0x100
114#define ECC1 0x1
47f88af4
AM
115#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 120
d5e7c864
LV
121#define OMAP24XX_DMA_GPMC 4
122
62116e51
PA
123#define SECTOR_BYTES 512
124/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
125#define BCH4_BIT_PAD 4
62116e51
PA
126
127/* GPMC ecc engine settings for read */
128#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
129#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
130#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
131#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
132#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
133
134/* GPMC ecc engine settings for write */
135#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
136#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
137#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
138
b491da72 139#define BADBLOCK_MARKER_LENGTH 2
a919e511 140
9748fff9 141static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
142 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
143 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
144 0x07, 0x0e};
62116e51
PA
145static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
62116e51 148
1dc338e8
RL
149/* Shared among all NAND instances to synchronize access to the ECC Engine */
150static struct nand_hw_control omap_gpmc_controller = {
151 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
152 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
153};
59e9c5ae 154
67ce04bf 155struct omap_nand_info {
67ce04bf
VS
156 struct nand_chip nand;
157 struct platform_device *pdev;
158
159 int gpmc_cs;
01b95fc6
RQ
160 bool dev_ready;
161 enum nand_io xfer_type;
162 int devsize;
4e558072 163 enum omap_ecc ecc_opt;
01b95fc6
RQ
164 struct device_node *elm_of_node;
165
166 unsigned long phys_base;
dfe32893 167 struct completion comp;
763e7359 168 struct dma_chan *dma;
5c468455
AM
169 int gpmc_irq_fifo;
170 int gpmc_irq_count;
4e070376
SG
171 enum {
172 OMAP_NAND_IO_READ = 0, /* read */
173 OMAP_NAND_IO_WRITE, /* write */
174 } iomode;
175 u_char *buf;
176 int buf_len;
c509aefd 177 /* Interface to GPMC */
65b97cf6 178 struct gpmc_nand_regs reg;
c509aefd 179 struct gpmc_nand_ops *ops;
c9711ec5 180 bool flash_bbt;
a919e511 181 /* fields specific for BCHx_HW ECC scheme */
62116e51 182 struct device *elm_dev;
10f22ee3
RQ
183 /* NAND ready gpio */
184 struct gpio_desc *ready_gpiod;
67ce04bf
VS
185};
186
4578ea9a
BB
187static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
188{
432420c0 189 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
4578ea9a 190}
432420c0 191
65b97cf6
AM
192/**
193 * omap_prefetch_enable - configures and starts prefetch transfer
194 * @cs: cs (chip select) number
195 * @fifo_th: fifo threshold to be used for read/ write
196 * @dma_mode: dma mode enable (1) or disable (0)
197 * @u32_count: number of bytes to be transferred
198 * @is_write: prefetch read(0) or write post(1) mode
199 */
200static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
201 unsigned int u32_count, int is_write, struct omap_nand_info *info)
202{
203 u32 val;
204
205 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
206 return -1;
207
208 if (readl(info->reg.gpmc_prefetch_control))
209 return -EBUSY;
210
211 /* Set the amount of bytes to be prefetched */
212 writel(u32_count, info->reg.gpmc_prefetch_config2);
213
214 /* Set dma/mpu mode, the prefetch read / post write and
215 * enable the engine. Set which cs is has requested for.
216 */
217 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
218 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
57a605b1 219 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
65b97cf6
AM
220 writel(val, info->reg.gpmc_prefetch_config1);
221
222 /* Start the prefetch engine */
223 writel(0x1, info->reg.gpmc_prefetch_control);
224
225 return 0;
226}
227
228/**
229 * omap_prefetch_reset - disables and stops the prefetch engine
230 */
231static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
232{
233 u32 config1;
234
235 /* check if the same module/cs is trying to reset */
236 config1 = readl(info->reg.gpmc_prefetch_config1);
237 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
238 return -EINVAL;
239
240 /* Stop the PFPW engine */
241 writel(0x0, info->reg.gpmc_prefetch_control);
242
243 /* Reset/disable the PFPW engine */
244 writel(0x0, info->reg.gpmc_prefetch_config1);
245
246 return 0;
247}
248
67ce04bf
VS
249/**
250 * omap_hwcontrol - hardware specific access to control-lines
251 * @mtd: MTD device structure
252 * @cmd: command to device
253 * @ctrl:
254 * NAND_NCE: bit 0 -> don't care
255 * NAND_CLE: bit 1 -> Command Latch
256 * NAND_ALE: bit 2 -> Address Latch
257 *
258 * NOTE: boards may use different bits for these!!
259 */
260static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
261{
4578ea9a 262 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 263
2c01946c
SG
264 if (cmd != NAND_CMD_NONE) {
265 if (ctrl & NAND_CLE)
65b97cf6 266 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
267
268 else if (ctrl & NAND_ALE)
65b97cf6 269 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
270
271 else /* NAND_NCE */
65b97cf6 272 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 273 }
67ce04bf
VS
274}
275
59e9c5ae 276/**
277 * omap_read_buf8 - read data from NAND controller into buffer
278 * @mtd: MTD device structure
279 * @buf: buffer to store date
280 * @len: number of bytes to read
281 */
282static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
283{
4bd4ebcc 284 struct nand_chip *nand = mtd_to_nand(mtd);
59e9c5ae 285
286 ioread8_rep(nand->IO_ADDR_R, buf, len);
287}
288
289/**
290 * omap_write_buf8 - write buffer to NAND controller
291 * @mtd: MTD device structure
292 * @buf: data buffer
293 * @len: number of bytes to write
294 */
295static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
296{
4578ea9a 297 struct omap_nand_info *info = mtd_to_omap(mtd);
59e9c5ae 298 u_char *p = (u_char *)buf;
d6e55216 299 bool status;
59e9c5ae 300
301 while (len--) {
302 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
303 /* wait until buffer is available for write */
304 do {
d6e55216 305 status = info->ops->nand_writebuffer_empty();
2c01946c 306 } while (!status);
59e9c5ae 307 }
308}
309
67ce04bf
VS
310/**
311 * omap_read_buf16 - read data from NAND controller into buffer
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
315 */
316static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
317{
4bd4ebcc 318 struct nand_chip *nand = mtd_to_nand(mtd);
67ce04bf 319
59e9c5ae 320 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
321}
322
323/**
324 * omap_write_buf16 - write buffer to NAND controller
325 * @mtd: MTD device structure
326 * @buf: data buffer
327 * @len: number of bytes to write
328 */
329static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
330{
4578ea9a 331 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 332 u16 *p = (u16 *) buf;
d6e55216 333 bool status;
67ce04bf
VS
334 /* FIXME try bursts of writesw() or DMA ... */
335 len >>= 1;
336
337 while (len--) {
59e9c5ae 338 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
339 /* wait until buffer is available for write */
340 do {
d6e55216 341 status = info->ops->nand_writebuffer_empty();
2c01946c 342 } while (!status);
67ce04bf
VS
343 }
344}
59e9c5ae 345
346/**
347 * omap_read_buf_pref - read data from NAND controller into buffer
348 * @mtd: MTD device structure
349 * @buf: buffer to store date
350 * @len: number of bytes to read
351 */
352static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
353{
4578ea9a 354 struct omap_nand_info *info = mtd_to_omap(mtd);
2c01946c 355 uint32_t r_count = 0;
59e9c5ae 356 int ret = 0;
357 u32 *p = (u32 *)buf;
358
359 /* take care of subpage reads */
c3341d0c
VS
360 if (len % 4) {
361 if (info->nand.options & NAND_BUSWIDTH_16)
362 omap_read_buf16(mtd, buf, len % 4);
363 else
364 omap_read_buf8(mtd, buf, len % 4);
365 p = (u32 *) (buf + len % 4);
366 len -= len % 4;
59e9c5ae 367 }
59e9c5ae 368
369 /* configure and start prefetch transfer */
65b97cf6
AM
370 ret = omap_prefetch_enable(info->gpmc_cs,
371 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 372 if (ret) {
373 /* PFPW engine is busy, use cpu copy method */
374 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 375 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 376 else
c5d8c0ca 377 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 378 } else {
379 do {
65b97cf6 380 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 381 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
382 r_count = r_count >> 2;
383 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 384 p += r_count;
385 len -= r_count << 2;
386 } while (len);
59e9c5ae 387 /* disable and stop the PFPW engine */
65b97cf6 388 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 389 }
390}
391
392/**
393 * omap_write_buf_pref - write buffer to NAND controller
394 * @mtd: MTD device structure
395 * @buf: data buffer
396 * @len: number of bytes to write
397 */
398static void omap_write_buf_pref(struct mtd_info *mtd,
399 const u_char *buf, int len)
400{
4578ea9a 401 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376 402 uint32_t w_count = 0;
59e9c5ae 403 int i = 0, ret = 0;
c5d8c0ca 404 u16 *p = (u16 *)buf;
4e070376 405 unsigned long tim, limit;
65b97cf6 406 u32 val;
59e9c5ae 407
408 /* take care of subpage writes */
409 if (len % 2 != 0) {
2c01946c 410 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 411 p = (u16 *)(buf + 1);
412 len--;
413 }
414
415 /* configure and start prefetch transfer */
65b97cf6
AM
416 ret = omap_prefetch_enable(info->gpmc_cs,
417 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 418 if (ret) {
419 /* PFPW engine is busy, use cpu copy method */
420 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 421 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 422 else
c5d8c0ca 423 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 424 } else {
2c01946c 425 while (len) {
65b97cf6 426 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 427 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 428 w_count = w_count >> 1;
59e9c5ae 429 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 430 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 431 }
2c01946c 432 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
433 tim = 0;
434 limit = (loops_per_jiffy *
435 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 436 do {
4e070376 437 cpu_relax();
65b97cf6 438 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 439 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 440 } while (val && (tim++ < limit));
4e070376 441
59e9c5ae 442 /* disable and stop the PFPW engine */
65b97cf6 443 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 444 }
445}
446
dfe32893 447/*
2df41d05 448 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 449 * @data: pointer to completion data structure
450 */
763e7359
RK
451static void omap_nand_dma_callback(void *data)
452{
453 complete((struct completion *) data);
454}
dfe32893 455
456/*
4cacbe22 457 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 458 * @mtd: MTD device structure
459 * @addr: virtual address in RAM of source/destination
460 * @len: number of data bytes to be transferred
461 * @is_write: flag for read/write operation
462 */
463static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
464 unsigned int len, int is_write)
465{
4578ea9a 466 struct omap_nand_info *info = mtd_to_omap(mtd);
2df41d05 467 struct dma_async_tx_descriptor *tx;
dfe32893 468 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
469 DMA_FROM_DEVICE;
2df41d05 470 struct scatterlist sg;
4e070376 471 unsigned long tim, limit;
2df41d05
RK
472 unsigned n;
473 int ret;
65b97cf6 474 u32 val;
dfe32893 475
476 if (addr >= high_memory) {
477 struct page *p1;
478
479 if (((size_t)addr & PAGE_MASK) !=
480 ((size_t)(addr + len - 1) & PAGE_MASK))
481 goto out_copy;
482 p1 = vmalloc_to_page(addr);
483 if (!p1)
484 goto out_copy;
485 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
486 }
487
2df41d05
RK
488 sg_init_one(&sg, addr, len);
489 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
490 if (n == 0) {
dfe32893 491 dev_err(&info->pdev->dev,
492 "Couldn't DMA map a %d byte buffer\n", len);
493 goto out_copy;
494 }
495
2df41d05
RK
496 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
497 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
498 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
499 if (!tx)
500 goto out_copy_unmap;
501
502 tx->callback = omap_nand_dma_callback;
503 tx->callback_param = &info->comp;
504 dmaengine_submit(tx);
505
03d3a1df
CJF
506 init_completion(&info->comp);
507
508 /* setup and start DMA using dma_addr */
509 dma_async_issue_pending(info->dma);
510
65b97cf6
AM
511 /* configure and start prefetch transfer */
512 ret = omap_prefetch_enable(info->gpmc_cs,
513 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 514 if (ret)
4e070376 515 /* PFPW engine is busy, use cpu copy method */
d7efe228 516 goto out_copy_unmap;
dfe32893 517
dfe32893 518 wait_for_completion(&info->comp);
4e070376
SG
519 tim = 0;
520 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
521
522 do {
4e070376 523 cpu_relax();
65b97cf6 524 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 525 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 526 } while (val && (tim++ < limit));
dfe32893 527
dfe32893 528 /* disable and stop the PFPW engine */
65b97cf6 529 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 530
2df41d05 531 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 532 return 0;
533
d7efe228 534out_copy_unmap:
2df41d05 535 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 536out_copy:
537 if (info->nand.options & NAND_BUSWIDTH_16)
538 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
539 : omap_write_buf16(mtd, (u_char *) addr, len);
540 else
541 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
542 : omap_write_buf8(mtd, (u_char *) addr, len);
543 return 0;
544}
dfe32893 545
546/**
547 * omap_read_buf_dma_pref - read data from NAND controller into buffer
548 * @mtd: MTD device structure
549 * @buf: buffer to store date
550 * @len: number of bytes to read
551 */
552static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
553{
554 if (len <= mtd->oobsize)
555 omap_read_buf_pref(mtd, buf, len);
556 else
557 /* start transfer in DMA mode */
558 omap_nand_dma_transfer(mtd, buf, len, 0x0);
559}
560
561/**
562 * omap_write_buf_dma_pref - write buffer to NAND controller
563 * @mtd: MTD device structure
564 * @buf: data buffer
565 * @len: number of bytes to write
566 */
567static void omap_write_buf_dma_pref(struct mtd_info *mtd,
568 const u_char *buf, int len)
569{
570 if (len <= mtd->oobsize)
571 omap_write_buf_pref(mtd, buf, len);
572 else
573 /* start transfer in DMA mode */
bdaefc41 574 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 575}
576
4e070376 577/*
4cacbe22 578 * omap_nand_irq - GPMC irq handler
4e070376
SG
579 * @this_irq: gpmc irq number
580 * @dev: omap_nand_info structure pointer is passed here
581 */
582static irqreturn_t omap_nand_irq(int this_irq, void *dev)
583{
584 struct omap_nand_info *info = (struct omap_nand_info *) dev;
585 u32 bytes;
4e070376 586
65b97cf6 587 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 588 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
589 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
590 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 591 if (this_irq == info->gpmc_irq_count)
4e070376
SG
592 goto done;
593
594 if (info->buf_len && (info->buf_len < bytes))
595 bytes = info->buf_len;
596 else if (!info->buf_len)
597 bytes = 0;
598 iowrite32_rep(info->nand.IO_ADDR_W,
599 (u32 *)info->buf, bytes >> 2);
600 info->buf = info->buf + bytes;
601 info->buf_len -= bytes;
602
603 } else {
604 ioread32_rep(info->nand.IO_ADDR_R,
605 (u32 *)info->buf, bytes >> 2);
606 info->buf = info->buf + bytes;
607
5c468455 608 if (this_irq == info->gpmc_irq_count)
4e070376
SG
609 goto done;
610 }
4e070376
SG
611
612 return IRQ_HANDLED;
613
614done:
615 complete(&info->comp);
4e070376 616
5c468455
AM
617 disable_irq_nosync(info->gpmc_irq_fifo);
618 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
619
620 return IRQ_HANDLED;
621}
622
623/*
624 * omap_read_buf_irq_pref - read data from NAND controller into buffer
625 * @mtd: MTD device structure
626 * @buf: buffer to store date
627 * @len: number of bytes to read
628 */
629static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
630{
4578ea9a 631 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
632 int ret = 0;
633
634 if (len <= mtd->oobsize) {
635 omap_read_buf_pref(mtd, buf, len);
636 return;
637 }
638
639 info->iomode = OMAP_NAND_IO_READ;
640 info->buf = buf;
641 init_completion(&info->comp);
642
643 /* configure and start prefetch transfer */
65b97cf6
AM
644 ret = omap_prefetch_enable(info->gpmc_cs,
645 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
646 if (ret)
647 /* PFPW engine is busy, use cpu copy method */
648 goto out_copy;
649
650 info->buf_len = len;
5c468455
AM
651
652 enable_irq(info->gpmc_irq_count);
653 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
654
655 /* waiting for read to complete */
656 wait_for_completion(&info->comp);
657
658 /* disable and stop the PFPW engine */
65b97cf6 659 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
660 return;
661
662out_copy:
663 if (info->nand.options & NAND_BUSWIDTH_16)
664 omap_read_buf16(mtd, buf, len);
665 else
666 omap_read_buf8(mtd, buf, len);
667}
668
669/*
670 * omap_write_buf_irq_pref - write buffer to NAND controller
671 * @mtd: MTD device structure
672 * @buf: data buffer
673 * @len: number of bytes to write
674 */
675static void omap_write_buf_irq_pref(struct mtd_info *mtd,
676 const u_char *buf, int len)
677{
4578ea9a 678 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
679 int ret = 0;
680 unsigned long tim, limit;
65b97cf6 681 u32 val;
4e070376
SG
682
683 if (len <= mtd->oobsize) {
684 omap_write_buf_pref(mtd, buf, len);
685 return;
686 }
687
688 info->iomode = OMAP_NAND_IO_WRITE;
689 info->buf = (u_char *) buf;
690 init_completion(&info->comp);
691
317379a9 692 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
693 ret = omap_prefetch_enable(info->gpmc_cs,
694 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
695 if (ret)
696 /* PFPW engine is busy, use cpu copy method */
697 goto out_copy;
698
699 info->buf_len = len;
5c468455
AM
700
701 enable_irq(info->gpmc_irq_count);
702 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
703
704 /* waiting for write to complete */
705 wait_for_completion(&info->comp);
5c468455 706
4e070376
SG
707 /* wait for data to flushed-out before reset the prefetch */
708 tim = 0;
709 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
710 do {
711 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 712 val = PREFETCH_STATUS_COUNT(val);
4e070376 713 cpu_relax();
65b97cf6 714 } while (val && (tim++ < limit));
4e070376
SG
715
716 /* disable and stop the PFPW engine */
65b97cf6 717 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
718 return;
719
720out_copy:
721 if (info->nand.options & NAND_BUSWIDTH_16)
722 omap_write_buf16(mtd, buf, len);
723 else
724 omap_write_buf8(mtd, buf, len);
725}
726
67ce04bf
VS
727/**
728 * gen_true_ecc - This function will generate true ECC value
729 * @ecc_buf: buffer to store ecc code
730 *
731 * This generated true ECC value can be used when correcting
732 * data read from NAND flash memory core
733 */
734static void gen_true_ecc(u8 *ecc_buf)
735{
736 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
737 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
738
739 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
740 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
741 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
742 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
743 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
744 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
745}
746
747/**
748 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
749 * @ecc_data1: ecc code from nand spare area
750 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
751 * @page_data: page data
752 *
753 * This function compares two ECC's and indicates if there is an error.
754 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
755 * If there is no error, %0 is returned. If there is an error but it
756 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
757 */
758static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
759 u8 *ecc_data2, /* read from register */
760 u8 *page_data)
761{
762 uint i;
763 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
764 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
765 u8 ecc_bit[24];
766 u8 ecc_sum = 0;
767 u8 find_bit = 0;
768 uint find_byte = 0;
769 int isEccFF;
770
771 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
772
773 gen_true_ecc(ecc_data1);
774 gen_true_ecc(ecc_data2);
775
776 for (i = 0; i <= 2; i++) {
777 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
778 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
779 }
780
781 for (i = 0; i < 8; i++) {
782 tmp0_bit[i] = *ecc_data1 % 2;
783 *ecc_data1 = *ecc_data1 / 2;
784 }
785
786 for (i = 0; i < 8; i++) {
787 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
788 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
789 }
790
791 for (i = 0; i < 8; i++) {
792 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
793 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
794 }
795
796 for (i = 0; i < 8; i++) {
797 comp0_bit[i] = *ecc_data2 % 2;
798 *ecc_data2 = *ecc_data2 / 2;
799 }
800
801 for (i = 0; i < 8; i++) {
802 comp1_bit[i] = *(ecc_data2 + 1) % 2;
803 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
804 }
805
806 for (i = 0; i < 8; i++) {
807 comp2_bit[i] = *(ecc_data2 + 2) % 2;
808 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
809 }
810
811 for (i = 0; i < 6; i++)
812 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
813
814 for (i = 0; i < 8; i++)
815 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
816
817 for (i = 0; i < 8; i++)
818 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
819
820 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
821 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
822
823 for (i = 0; i < 24; i++)
824 ecc_sum += ecc_bit[i];
825
826 switch (ecc_sum) {
827 case 0:
828 /* Not reached because this function is not called if
829 * ECC values are equal
830 */
831 return 0;
832
833 case 1:
834 /* Uncorrectable error */
289c0522 835 pr_debug("ECC UNCORRECTED_ERROR 1\n");
6e941192 836 return -EBADMSG;
67ce04bf
VS
837
838 case 11:
839 /* UN-Correctable error */
289c0522 840 pr_debug("ECC UNCORRECTED_ERROR B\n");
6e941192 841 return -EBADMSG;
67ce04bf
VS
842
843 case 12:
844 /* Correctable error */
845 find_byte = (ecc_bit[23] << 8) +
846 (ecc_bit[21] << 7) +
847 (ecc_bit[19] << 6) +
848 (ecc_bit[17] << 5) +
849 (ecc_bit[15] << 4) +
850 (ecc_bit[13] << 3) +
851 (ecc_bit[11] << 2) +
852 (ecc_bit[9] << 1) +
853 ecc_bit[7];
854
855 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
856
0a32a102
BN
857 pr_debug("Correcting single bit ECC error at offset: "
858 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
859
860 page_data[find_byte] ^= (1 << find_bit);
861
74f1b724 862 return 1;
67ce04bf
VS
863 default:
864 if (isEccFF) {
865 if (ecc_data2[0] == 0 &&
866 ecc_data2[1] == 0 &&
867 ecc_data2[2] == 0)
868 return 0;
869 }
289c0522 870 pr_debug("UNCORRECTED_ERROR default\n");
6e941192 871 return -EBADMSG;
67ce04bf
VS
872 }
873}
874
875/**
876 * omap_correct_data - Compares the ECC read with HW generated ECC
877 * @mtd: MTD device structure
878 * @dat: page data
879 * @read_ecc: ecc read from nand flash
880 * @calc_ecc: ecc read from HW ECC registers
881 *
882 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
883 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
884 * detection and correction. If there are no errors, %0 is returned. If
885 * there were errors and all of the errors were corrected, the number of
886 * corrected errors is returned. If uncorrectable errors exist, %-1 is
887 * returned.
67ce04bf
VS
888 */
889static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
890 u_char *read_ecc, u_char *calc_ecc)
891{
4578ea9a 892 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 893 int blockCnt = 0, i = 0, ret = 0;
74f1b724 894 int stat = 0;
67ce04bf
VS
895
896 /* Ex NAND_ECC_HW12_2048 */
897 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
898 (info->nand.ecc.size == 2048))
899 blockCnt = 4;
900 else
901 blockCnt = 1;
902
903 for (i = 0; i < blockCnt; i++) {
904 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
905 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
906 if (ret < 0)
907 return ret;
74f1b724
JO
908 /* keep track of the number of corrected errors */
909 stat += ret;
67ce04bf
VS
910 }
911 read_ecc += 3;
912 calc_ecc += 3;
913 dat += 512;
914 }
74f1b724 915 return stat;
67ce04bf
VS
916}
917
918/**
919 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
920 * @mtd: MTD device structure
921 * @dat: The pointer to data on which ecc is computed
922 * @ecc_code: The ecc_code buffer
923 *
924 * Using noninverted ECC can be considered ugly since writing a blank
925 * page ie. padding will clear the ECC bytes. This is no problem as long
926 * nobody is trying to write data on the seemingly unused page. Reading
927 * an erased page will produce an ECC mismatch between generated and read
928 * ECC bytes that has to be dealt with separately.
929 */
930static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
931 u_char *ecc_code)
932{
4578ea9a 933 struct omap_nand_info *info = mtd_to_omap(mtd);
65b97cf6
AM
934 u32 val;
935
936 val = readl(info->reg.gpmc_ecc_config);
40ddbf50 937 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
65b97cf6
AM
938 return -EINVAL;
939
940 /* read ecc result */
941 val = readl(info->reg.gpmc_ecc1_result);
942 *ecc_code++ = val; /* P128e, ..., P1e */
943 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
944 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
945 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
946
947 return 0;
67ce04bf
VS
948}
949
950/**
951 * omap_enable_hwecc - This function enables the hardware ecc functionality
952 * @mtd: MTD device structure
953 * @mode: Read/Write mode
954 */
955static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
956{
4578ea9a 957 struct omap_nand_info *info = mtd_to_omap(mtd);
4bd4ebcc 958 struct nand_chip *chip = mtd_to_nand(mtd);
67ce04bf 959 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
960 u32 val;
961
962 /* clear ecc and enable bits */
963 val = ECCCLEAR | ECC1;
964 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 965
65b97cf6
AM
966 /* program ecc and result sizes */
967 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
968 ECC1RESULTSIZE);
969 writel(val, info->reg.gpmc_ecc_size_config);
970
971 switch (mode) {
972 case NAND_ECC_READ:
973 case NAND_ECC_WRITE:
974 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
975 break;
976 case NAND_ECC_READSYN:
977 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
978 break;
979 default:
980 dev_info(&info->pdev->dev,
981 "error: unrecognized Mode[%d]!\n", mode);
982 break;
983 }
67ce04bf 984
65b97cf6
AM
985 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
986 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
987 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 988}
2c01946c 989
67ce04bf
VS
990/**
991 * omap_wait - wait until the command is done
992 * @mtd: MTD device structure
993 * @chip: NAND Chip structure
994 *
995 * Wait function is called during Program and erase operations and
996 * the way it is called from MTD layer, we should wait till the NAND
997 * chip is ready after the programming/erase operation has completed.
998 *
999 * Erase can take up to 400ms and program up to 20ms according to
1000 * general NAND and SmartMedia specs
1001 */
1002static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1003{
4bd4ebcc 1004 struct nand_chip *this = mtd_to_nand(mtd);
4578ea9a 1005 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1006 unsigned long timeo = jiffies;
a9c465f0 1007 int status, state = this->state;
67ce04bf
VS
1008
1009 if (state == FL_ERASING)
4ff6772b 1010 timeo += msecs_to_jiffies(400);
67ce04bf 1011 else
4ff6772b 1012 timeo += msecs_to_jiffies(20);
67ce04bf 1013
65b97cf6 1014 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1015 while (time_before(jiffies, timeo)) {
65b97cf6 1016 status = readb(info->reg.gpmc_nand_data);
c276aca4 1017 if (status & NAND_STATUS_READY)
67ce04bf 1018 break;
c276aca4 1019 cond_resched();
67ce04bf 1020 }
a9c465f0 1021
4ea1e4ba 1022 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1023 return status;
1024}
1025
1026/**
10f22ee3 1027 * omap_dev_ready - checks the NAND Ready GPIO line
67ce04bf 1028 * @mtd: MTD device structure
10f22ee3
RQ
1029 *
1030 * Returns true if ready and false if busy.
67ce04bf
VS
1031 */
1032static int omap_dev_ready(struct mtd_info *mtd)
1033{
4578ea9a 1034 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1035
10f22ee3 1036 return gpiod_get_value(info->ready_gpiod);
67ce04bf
VS
1037}
1038
0e618ef0 1039/**
7c977c3e 1040 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
0e618ef0
ID
1041 * @mtd: MTD device structure
1042 * @mode: Read/Write mode
62116e51 1043 *
0760e818
NMG
1044 * When using BCH with SW correction (i.e. no ELM), sector size is set
1045 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1046 * for both reading and writing with:
62116e51
PA
1047 * eccsize0 = 0 (no additional protected byte in spare area)
1048 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0 1049 */
7c977c3e 1050static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
0e618ef0 1051{
16e69322 1052 unsigned int bch_type;
2ef9f3dd 1053 unsigned int dev_width, nsectors;
4578ea9a 1054 struct omap_nand_info *info = mtd_to_omap(mtd);
c5957a32 1055 enum omap_ecc ecc_opt = info->ecc_opt;
4bd4ebcc 1056 struct nand_chip *chip = mtd_to_nand(mtd);
62116e51
PA
1057 u32 val, wr_mode;
1058 unsigned int ecc_size1, ecc_size0;
1059
c5957a32
PG
1060 /* GPMC configurations for calculating ECC */
1061 switch (ecc_opt) {
1062 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
16e69322
PG
1063 bch_type = 0;
1064 nsectors = 1;
0760e818
NMG
1065 wr_mode = BCH_WRAPMODE_6;
1066 ecc_size0 = BCH_ECC_SIZE0;
1067 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1068 break;
1069 case OMAP_ECC_BCH4_CODE_HW:
16e69322
PG
1070 bch_type = 0;
1071 nsectors = chip->ecc.steps;
c5957a32
PG
1072 if (mode == NAND_ECC_READ) {
1073 wr_mode = BCH_WRAPMODE_1;
1074 ecc_size0 = BCH4R_ECC_SIZE0;
1075 ecc_size1 = BCH4R_ECC_SIZE1;
1076 } else {
1077 wr_mode = BCH_WRAPMODE_6;
1078 ecc_size0 = BCH_ECC_SIZE0;
1079 ecc_size1 = BCH_ECC_SIZE1;
1080 }
1081 break;
1082 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
16e69322
PG
1083 bch_type = 1;
1084 nsectors = 1;
0760e818
NMG
1085 wr_mode = BCH_WRAPMODE_6;
1086 ecc_size0 = BCH_ECC_SIZE0;
1087 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1088 break;
1089 case OMAP_ECC_BCH8_CODE_HW:
16e69322
PG
1090 bch_type = 1;
1091 nsectors = chip->ecc.steps;
c5957a32
PG
1092 if (mode == NAND_ECC_READ) {
1093 wr_mode = BCH_WRAPMODE_1;
1094 ecc_size0 = BCH8R_ECC_SIZE0;
1095 ecc_size1 = BCH8R_ECC_SIZE1;
1096 } else {
1097 wr_mode = BCH_WRAPMODE_6;
1098 ecc_size0 = BCH_ECC_SIZE0;
1099 ecc_size1 = BCH_ECC_SIZE1;
1100 }
1101 break;
9748fff9 1102 case OMAP_ECC_BCH16_CODE_HW:
1103 bch_type = 0x2;
1104 nsectors = chip->ecc.steps;
1105 if (mode == NAND_ECC_READ) {
1106 wr_mode = 0x01;
1107 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1108 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1109 } else {
1110 wr_mode = 0x01;
1111 ecc_size0 = 0; /* extra bits in nibbles per sector */
1112 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1113 }
1114 break;
c5957a32
PG
1115 default:
1116 return;
1117 }
2ef9f3dd
AM
1118
1119 writel(ECC1, info->reg.gpmc_ecc_control);
1120
62116e51
PA
1121 /* Configure ecc size for BCH */
1122 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1123 writel(val, info->reg.gpmc_ecc_size_config);
1124
62116e51
PA
1125 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1126
2ef9f3dd
AM
1127 /* BCH configuration */
1128 val = ((1 << 16) | /* enable BCH */
16e69322 1129 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
62116e51 1130 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1131 (dev_width << 7) | /* bus width */
1132 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1133 (info->gpmc_cs << 1) | /* ECC CS */
1134 (0x1)); /* enable ECC */
1135
1136 writel(val, info->reg.gpmc_ecc_config);
1137
62116e51 1138 /* Clear ecc and enable bits */
2ef9f3dd 1139 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1140}
7c977c3e 1141
2c9f2365 1142static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
7bcd1dca
PG
1143static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1144 0x97, 0x79, 0xe5, 0x24, 0xb5};
0e618ef0 1145
62116e51 1146/**
a4c7ca00 1147 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
62116e51
PA
1148 * @mtd: MTD device structure
1149 * @dat: The pointer to data on which ecc is computed
1150 * @ecc_code: The ecc_code buffer
1151 *
1152 * Support calculating of BCH4/8 ecc vectors for the page
1153 */
a4c7ca00 1154static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
f5dc06fb 1155 const u_char *dat, u_char *ecc_calc)
62116e51 1156{
4578ea9a 1157 struct omap_nand_info *info = mtd_to_omap(mtd);
f5dc06fb
PG
1158 int eccbytes = info->nand.ecc.bytes;
1159 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1160 u8 *ecc_code;
62116e51 1161 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
9748fff9 1162 u32 val;
2913aae5 1163 int i, j;
62116e51
PA
1164
1165 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
62116e51 1166 for (i = 0; i < nsectors; i++) {
f5dc06fb
PG
1167 ecc_code = ecc_calc;
1168 switch (info->ecc_opt) {
7bcd1dca 1169 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1170 case OMAP_ECC_BCH8_CODE_HW:
1171 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1172 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1173 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1174 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
62116e51
PA
1175 *ecc_code++ = (bch_val4 & 0xFF);
1176 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1177 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1178 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1179 *ecc_code++ = (bch_val3 & 0xFF);
1180 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1181 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1182 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1183 *ecc_code++ = (bch_val2 & 0xFF);
1184 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1185 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1186 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1187 *ecc_code++ = (bch_val1 & 0xFF);
f5dc06fb 1188 break;
2c9f2365 1189 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1190 case OMAP_ECC_BCH4_CODE_HW:
1191 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1192 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
62116e51
PA
1193 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1194 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1195 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1196 ((bch_val1 >> 28) & 0xF);
1197 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1198 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1199 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1200 *ecc_code++ = ((bch_val1 & 0xF) << 4);
f5dc06fb 1201 break;
9748fff9 1202 case OMAP_ECC_BCH16_CODE_HW:
1203 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1204 ecc_code[0] = ((val >> 8) & 0xFF);
1205 ecc_code[1] = ((val >> 0) & 0xFF);
1206 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1207 ecc_code[2] = ((val >> 24) & 0xFF);
1208 ecc_code[3] = ((val >> 16) & 0xFF);
1209 ecc_code[4] = ((val >> 8) & 0xFF);
1210 ecc_code[5] = ((val >> 0) & 0xFF);
1211 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1212 ecc_code[6] = ((val >> 24) & 0xFF);
1213 ecc_code[7] = ((val >> 16) & 0xFF);
1214 ecc_code[8] = ((val >> 8) & 0xFF);
1215 ecc_code[9] = ((val >> 0) & 0xFF);
1216 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1217 ecc_code[10] = ((val >> 24) & 0xFF);
1218 ecc_code[11] = ((val >> 16) & 0xFF);
1219 ecc_code[12] = ((val >> 8) & 0xFF);
1220 ecc_code[13] = ((val >> 0) & 0xFF);
1221 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1222 ecc_code[14] = ((val >> 24) & 0xFF);
1223 ecc_code[15] = ((val >> 16) & 0xFF);
1224 ecc_code[16] = ((val >> 8) & 0xFF);
1225 ecc_code[17] = ((val >> 0) & 0xFF);
1226 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1227 ecc_code[18] = ((val >> 24) & 0xFF);
1228 ecc_code[19] = ((val >> 16) & 0xFF);
1229 ecc_code[20] = ((val >> 8) & 0xFF);
1230 ecc_code[21] = ((val >> 0) & 0xFF);
1231 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1232 ecc_code[22] = ((val >> 24) & 0xFF);
1233 ecc_code[23] = ((val >> 16) & 0xFF);
1234 ecc_code[24] = ((val >> 8) & 0xFF);
1235 ecc_code[25] = ((val >> 0) & 0xFF);
1236 break;
f5dc06fb
PG
1237 default:
1238 return -EINVAL;
62116e51 1239 }
f5dc06fb
PG
1240
1241 /* ECC scheme specific syndrome customizations */
1242 switch (info->ecc_opt) {
2c9f2365
PG
1243 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1244 /* Add constant polynomial to remainder, so that
1245 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1246 for (j = 0; j < eccbytes; j++)
1247 ecc_calc[j] ^= bch4_polynomial[j];
2c9f2365 1248 break;
f5dc06fb
PG
1249 case OMAP_ECC_BCH4_CODE_HW:
1250 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1251 ecc_calc[eccbytes - 1] = 0x0;
1252 break;
7bcd1dca
PG
1253 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1254 /* Add constant polynomial to remainder, so that
1255 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1256 for (j = 0; j < eccbytes; j++)
1257 ecc_calc[j] ^= bch8_polynomial[j];
7bcd1dca 1258 break;
f5dc06fb
PG
1259 case OMAP_ECC_BCH8_CODE_HW:
1260 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1261 ecc_calc[eccbytes - 1] = 0x0;
1262 break;
9748fff9 1263 case OMAP_ECC_BCH16_CODE_HW:
1264 break;
f5dc06fb
PG
1265 default:
1266 return -EINVAL;
1267 }
1268
1269 ecc_calc += eccbytes;
62116e51
PA
1270 }
1271
1272 return 0;
1273}
1274
1275/**
1276 * erased_sector_bitflips - count bit flips
1277 * @data: data sector buffer
1278 * @oob: oob buffer
1279 * @info: omap_nand_info
1280 *
1281 * Check the bit flips in erased page falls below correctable level.
1282 * If falls below, report the page as erased with correctable bit
1283 * flip, else report as uncorrectable page.
1284 */
1285static int erased_sector_bitflips(u_char *data, u_char *oob,
1286 struct omap_nand_info *info)
1287{
1288 int flip_bits = 0, i;
1289
1290 for (i = 0; i < info->nand.ecc.size; i++) {
1291 flip_bits += hweight8(~data[i]);
1292 if (flip_bits > info->nand.ecc.strength)
1293 return 0;
1294 }
1295
1296 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1297 flip_bits += hweight8(~oob[i]);
1298 if (flip_bits > info->nand.ecc.strength)
1299 return 0;
1300 }
1301
1302 /*
1303 * Bit flips falls in correctable level.
1304 * Fill data area with 0xFF
1305 */
1306 if (flip_bits) {
1307 memset(data, 0xFF, info->nand.ecc.size);
1308 memset(oob, 0xFF, info->nand.ecc.bytes);
1309 }
1310
1311 return flip_bits;
1312}
1313
1314/**
1315 * omap_elm_correct_data - corrects page data area in case error reported
1316 * @mtd: MTD device structure
1317 * @data: page data
1318 * @read_ecc: ecc read from nand flash
1319 * @calc_ecc: ecc read from HW ECC registers
1320 *
1321 * Calculated ecc vector reported as zero in case of non-error pages.
78f43c53
PG
1322 * In case of non-zero ecc vector, first filter out erased-pages, and
1323 * then process data via ELM to detect bit-flips.
62116e51
PA
1324 */
1325static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1326 u_char *read_ecc, u_char *calc_ecc)
1327{
4578ea9a 1328 struct omap_nand_info *info = mtd_to_omap(mtd);
de0a4d69 1329 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
62116e51
PA
1330 int eccsteps = info->nand.ecc.steps;
1331 int i , j, stat = 0;
de0a4d69 1332 int eccflag, actual_eccbytes;
62116e51
PA
1333 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1334 u_char *ecc_vec = calc_ecc;
1335 u_char *spare_ecc = read_ecc;
1336 u_char *erased_ecc_vec;
78f43c53
PG
1337 u_char *buf;
1338 int bitflip_count;
62116e51 1339 bool is_error_reported = false;
b08e1f63 1340 u32 bit_pos, byte_pos, error_max, pos;
13fbe064 1341 int err;
62116e51 1342
de0a4d69
PG
1343 switch (info->ecc_opt) {
1344 case OMAP_ECC_BCH4_CODE_HW:
1345 /* omit 7th ECC byte reserved for ROM code compatibility */
1346 actual_eccbytes = ecc->bytes - 1;
78f43c53 1347 erased_ecc_vec = bch4_vector;
de0a4d69
PG
1348 break;
1349 case OMAP_ECC_BCH8_CODE_HW:
1350 /* omit 14th ECC byte reserved for ROM code compatibility */
1351 actual_eccbytes = ecc->bytes - 1;
78f43c53 1352 erased_ecc_vec = bch8_vector;
de0a4d69 1353 break;
9748fff9 1354 case OMAP_ECC_BCH16_CODE_HW:
1355 actual_eccbytes = ecc->bytes;
1356 erased_ecc_vec = bch16_vector;
1357 break;
de0a4d69 1358 default:
d2f08c75 1359 dev_err(&info->pdev->dev, "invalid driver configuration\n");
de0a4d69
PG
1360 return -EINVAL;
1361 }
1362
62116e51
PA
1363 /* Initialize elm error vector to zero */
1364 memset(err_vec, 0, sizeof(err_vec));
1365
62116e51
PA
1366 for (i = 0; i < eccsteps ; i++) {
1367 eccflag = 0; /* initialize eccflag */
1368
1369 /*
1370 * Check any error reported,
1371 * In case of error, non zero ecc reported.
1372 */
de0a4d69 1373 for (j = 0; j < actual_eccbytes; j++) {
62116e51
PA
1374 if (calc_ecc[j] != 0) {
1375 eccflag = 1; /* non zero ecc, error present */
1376 break;
1377 }
1378 }
1379
1380 if (eccflag == 1) {
78f43c53
PG
1381 if (memcmp(calc_ecc, erased_ecc_vec,
1382 actual_eccbytes) == 0) {
62116e51 1383 /*
78f43c53
PG
1384 * calc_ecc[] matches pattern for ECC(all 0xff)
1385 * so this is definitely an erased-page
62116e51 1386 */
62116e51 1387 } else {
78f43c53
PG
1388 buf = &data[info->nand.ecc.size * i];
1389 /*
1390 * count number of 0-bits in read_buf.
1391 * This check can be removed once a similar
1392 * check is introduced in generic NAND driver
1393 */
1394 bitflip_count = erased_sector_bitflips(
1395 buf, read_ecc, info);
1396 if (bitflip_count) {
1397 /*
1398 * number of 0-bits within ECC limits
1399 * So this may be an erased-page
1400 */
1401 stat += bitflip_count;
1402 } else {
1403 /*
1404 * Too many 0-bits. It may be a
1405 * - programmed-page, OR
1406 * - erased-page with many bit-flips
1407 * So this page requires check by ELM
1408 */
1409 err_vec[i].error_reported = true;
1410 is_error_reported = true;
62116e51
PA
1411 }
1412 }
1413 }
1414
1415 /* Update the ecc vector */
de0a4d69
PG
1416 calc_ecc += ecc->bytes;
1417 read_ecc += ecc->bytes;
62116e51
PA
1418 }
1419
1420 /* Check if any error reported */
1421 if (!is_error_reported)
f306e8c3 1422 return stat;
62116e51
PA
1423
1424 /* Decode BCH error using ELM module */
1425 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1426
13fbe064 1427 err = 0;
62116e51 1428 for (i = 0; i < eccsteps; i++) {
13fbe064 1429 if (err_vec[i].error_uncorrectable) {
d2f08c75
EG
1430 dev_err(&info->pdev->dev,
1431 "uncorrectable bit-flips found\n");
13fbe064
PG
1432 err = -EBADMSG;
1433 } else if (err_vec[i].error_reported) {
62116e51 1434 for (j = 0; j < err_vec[i].error_count; j++) {
b08e1f63
PG
1435 switch (info->ecc_opt) {
1436 case OMAP_ECC_BCH4_CODE_HW:
1437 /* Add 4 bits to take care of padding */
62116e51
PA
1438 pos = err_vec[i].error_loc[j] +
1439 BCH4_BIT_PAD;
b08e1f63
PG
1440 break;
1441 case OMAP_ECC_BCH8_CODE_HW:
9748fff9 1442 case OMAP_ECC_BCH16_CODE_HW:
b08e1f63
PG
1443 pos = err_vec[i].error_loc[j];
1444 break;
1445 default:
1446 return -EINVAL;
1447 }
1448 error_max = (ecc->size + actual_eccbytes) * 8;
62116e51
PA
1449 /* Calculate bit position of error */
1450 bit_pos = pos % 8;
1451
1452 /* Calculate byte position of error */
1453 byte_pos = (error_max - pos - 1) / 8;
1454
1455 if (pos < error_max) {
13fbe064
PG
1456 if (byte_pos < 512) {
1457 pr_debug("bitflip@dat[%d]=%x\n",
1458 byte_pos, data[byte_pos]);
62116e51 1459 data[byte_pos] ^= 1 << bit_pos;
13fbe064
PG
1460 } else {
1461 pr_debug("bitflip@oob[%d]=%x\n",
1462 (byte_pos - 512),
1463 spare_ecc[byte_pos - 512]);
62116e51
PA
1464 spare_ecc[byte_pos - 512] ^=
1465 1 << bit_pos;
13fbe064
PG
1466 }
1467 } else {
d2f08c75
EG
1468 dev_err(&info->pdev->dev,
1469 "invalid bit-flip @ %d:%d\n",
1470 byte_pos, bit_pos);
13fbe064 1471 err = -EBADMSG;
62116e51 1472 }
62116e51
PA
1473 }
1474 }
1475
1476 /* Update number of correctable errors */
1477 stat += err_vec[i].error_count;
1478
1479 /* Update page data with sector size */
b08e1f63 1480 data += ecc->size;
de0a4d69 1481 spare_ecc += ecc->bytes;
62116e51
PA
1482 }
1483
13fbe064 1484 return (err) ? err : stat;
62116e51
PA
1485}
1486
62116e51
PA
1487/**
1488 * omap_write_page_bch - BCH ecc based write page function for entire page
1489 * @mtd: mtd info structure
1490 * @chip: nand chip info structure
1491 * @buf: data buffer
1492 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 1493 * @page: page
62116e51
PA
1494 *
1495 * Custom write page method evolved to support multi sector writing in one shot
1496 */
1497static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 1498 const uint8_t *buf, int oob_required, int page)
62116e51 1499{
8cfc1e8b 1500 int ret;
62116e51 1501 uint8_t *ecc_calc = chip->buffers->ecccalc;
62116e51
PA
1502
1503 /* Enable GPMC ecc engine */
1504 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1505
1506 /* Write data */
1507 chip->write_buf(mtd, buf, mtd->writesize);
1508
1509 /* Update ecc vector from GPMC result registers */
1510 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1511
8cfc1e8b
BB
1512 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1513 chip->ecc.total);
1514 if (ret)
1515 return ret;
62116e51
PA
1516
1517 /* Write ecc vector to OOB area */
1518 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1519 return 0;
1520}
1521
1522/**
1523 * omap_read_page_bch - BCH ecc based page read function for entire page
1524 * @mtd: mtd info structure
1525 * @chip: nand chip info structure
1526 * @buf: buffer to store read data
1527 * @oob_required: caller requires OOB data read to chip->oob_poi
1528 * @page: page number to read
1529 *
1530 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1531 * used for error correction.
1532 * Custom method evolved to support ELM error correction & multi sector
1533 * reading. On reading page data area is read along with OOB data with
1534 * ecc engine enabled. ecc vector updated after read of OOB data.
1535 * For non error pages ecc vector reported as zero.
1536 */
1537static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1538 uint8_t *buf, int oob_required, int page)
1539{
1540 uint8_t *ecc_calc = chip->buffers->ecccalc;
1541 uint8_t *ecc_code = chip->buffers->ecccode;
8cfc1e8b 1542 int stat, ret;
62116e51
PA
1543 unsigned int max_bitflips = 0;
1544
1545 /* Enable GPMC ecc engine */
1546 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1547
1548 /* Read data */
1549 chip->read_buf(mtd, buf, mtd->writesize);
1550
1551 /* Read oob bytes */
8cfc1e8b
BB
1552 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1553 mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
1554 chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1555 chip->ecc.total);
62116e51
PA
1556
1557 /* Calculate ecc bytes */
1558 chip->ecc.calculate(mtd, buf, ecc_calc);
1559
8cfc1e8b
BB
1560 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1561 chip->ecc.total);
1562 if (ret)
1563 return ret;
62116e51
PA
1564
1565 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1566
1567 if (stat < 0) {
1568 mtd->ecc_stats.failed++;
1569 } else {
1570 mtd->ecc_stats.corrected += stat;
1571 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1572 }
1573
1574 return max_bitflips;
1575}
1576
0e618ef0 1577/**
a919e511
PG
1578 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1579 * @omap_nand_info: NAND device structure containing platform data
0e618ef0 1580 */
93af53b8
EG
1581static bool is_elm_present(struct omap_nand_info *info,
1582 struct device_node *elm_node)
0e618ef0 1583{
a919e511 1584 struct platform_device *pdev;
93af53b8 1585
a919e511
PG
1586 /* check whether elm-id is passed via DT */
1587 if (!elm_node) {
d2f08c75 1588 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
93af53b8 1589 return false;
a919e511
PG
1590 }
1591 pdev = of_find_device_by_node(elm_node);
1592 /* check whether ELM device is registered */
1593 if (!pdev) {
d2f08c75 1594 dev_err(&info->pdev->dev, "ELM device not found\n");
93af53b8 1595 return false;
0e618ef0 1596 }
a919e511
PG
1597 /* ELM module available, now configure it */
1598 info->elm_dev = &pdev->dev;
93af53b8
EG
1599 return true;
1600}
3f4eb14b 1601
93af53b8
EG
1602static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1603 struct omap_nand_platform_data *pdata)
1604{
1605 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1606
1607 switch (info->ecc_opt) {
1608 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1609 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1610 ecc_needs_omap_bch = false;
1611 ecc_needs_bch = true;
1612 ecc_needs_elm = false;
1613 break;
1614 case OMAP_ECC_BCH4_CODE_HW:
1615 case OMAP_ECC_BCH8_CODE_HW:
1616 case OMAP_ECC_BCH16_CODE_HW:
1617 ecc_needs_omap_bch = true;
1618 ecc_needs_bch = false;
1619 ecc_needs_elm = true;
1620 break;
1621 default:
1622 ecc_needs_omap_bch = false;
1623 ecc_needs_bch = false;
1624 ecc_needs_elm = false;
1625 break;
1626 }
1627
1628 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1629 dev_err(&info->pdev->dev,
1630 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1631 return false;
1632 }
1633 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1634 dev_err(&info->pdev->dev,
1635 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1636 return false;
1637 }
01b95fc6 1638 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
93af53b8
EG
1639 dev_err(&info->pdev->dev, "ELM not available\n");
1640 return false;
1641 }
1642
1643 return true;
0e618ef0
ID
1644}
1645
c9711ec5
RQ
1646static const char * const nand_xfer_types[] = {
1647 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1648 [NAND_OMAP_POLLED] = "polled",
1649 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1650 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1651};
1652
1653static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1654{
1655 struct device_node *child = dev->of_node;
1656 int i;
1657 const char *s;
1658 u32 cs;
1659
1660 if (of_property_read_u32(child, "reg", &cs) < 0) {
1661 dev_err(dev, "reg not found in DT\n");
1662 return -EINVAL;
1663 }
1664
1665 info->gpmc_cs = cs;
1666
1667 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1668 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1669 if (!info->elm_of_node)
1670 dev_dbg(dev, "ti,elm-id not in DT\n");
1671
1672 /* select ecc-scheme for NAND */
1673 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1674 dev_err(dev, "ti,nand-ecc-opt not found\n");
1675 return -EINVAL;
1676 }
1677
1678 if (!strcmp(s, "sw")) {
1679 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1680 } else if (!strcmp(s, "ham1") ||
1681 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1682 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1683 } else if (!strcmp(s, "bch4")) {
1684 if (info->elm_of_node)
1685 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1686 else
1687 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1688 } else if (!strcmp(s, "bch8")) {
1689 if (info->elm_of_node)
1690 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1691 else
1692 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1693 } else if (!strcmp(s, "bch16")) {
1694 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1695 } else {
1696 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1697 return -EINVAL;
1698 }
1699
1700 /* select data transfer mode */
1701 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1702 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1703 if (!strcasecmp(s, nand_xfer_types[i])) {
1704 info->xfer_type = i;
f679888f 1705 return 0;
c9711ec5
RQ
1706 }
1707 }
1708
1709 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1710 return -EINVAL;
1711 }
1712
c9711ec5
RQ
1713 return 0;
1714}
1715
e04dbf35
BB
1716static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1717 struct mtd_oob_region *oobregion)
1718{
1719 struct omap_nand_info *info = mtd_to_omap(mtd);
1720 struct nand_chip *chip = &info->nand;
1721 int off = BADBLOCK_MARKER_LENGTH;
1722
1723 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1724 !(chip->options & NAND_BUSWIDTH_16))
1725 off = 1;
1726
1727 if (section)
1728 return -ERANGE;
1729
1730 oobregion->offset = off;
1731 oobregion->length = chip->ecc.total;
1732
1733 return 0;
1734}
1735
1736static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1737 struct mtd_oob_region *oobregion)
1738{
1739 struct omap_nand_info *info = mtd_to_omap(mtd);
1740 struct nand_chip *chip = &info->nand;
1741 int off = BADBLOCK_MARKER_LENGTH;
1742
1743 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1744 !(chip->options & NAND_BUSWIDTH_16))
1745 off = 1;
1746
1747 if (section)
1748 return -ERANGE;
1749
1750 off += chip->ecc.total;
1751 if (off >= mtd->oobsize)
1752 return -ERANGE;
1753
1754 oobregion->offset = off;
1755 oobregion->length = mtd->oobsize - off;
1756
1757 return 0;
1758}
1759
1760static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1761 .ecc = omap_ooblayout_ecc,
1762 .free = omap_ooblayout_free,
1763};
1764
1765static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1766 struct mtd_oob_region *oobregion)
1767{
1768 struct nand_chip *chip = mtd_to_nand(mtd);
1769 int off = BADBLOCK_MARKER_LENGTH;
1770
1771 if (section >= chip->ecc.steps)
1772 return -ERANGE;
1773
1774 /*
1775 * When SW correction is employed, one OMAP specific marker byte is
1776 * reserved after each ECC step.
1777 */
1778 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1779 oobregion->length = chip->ecc.bytes;
1780
1781 return 0;
1782}
1783
1784static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1785 struct mtd_oob_region *oobregion)
1786{
1787 struct nand_chip *chip = mtd_to_nand(mtd);
1788 int off = BADBLOCK_MARKER_LENGTH;
1789
1790 if (section)
1791 return -ERANGE;
1792
1793 /*
1794 * When SW correction is employed, one OMAP specific marker byte is
1795 * reserved after each ECC step.
1796 */
1797 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1798 if (off >= mtd->oobsize)
1799 return -ERANGE;
1800
1801 oobregion->offset = off;
1802 oobregion->length = mtd->oobsize - off;
1803
1804 return 0;
1805}
1806
1807static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1808 .ecc = omap_sw_ooblayout_ecc,
1809 .free = omap_sw_ooblayout_free,
1810};
1811
06f25510 1812static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1813{
1814 struct omap_nand_info *info;
c9711ec5 1815 struct omap_nand_platform_data *pdata = NULL;
633deb58
PG
1816 struct mtd_info *mtd;
1817 struct nand_chip *nand_chip;
67ce04bf 1818 int err;
633deb58
PG
1819 dma_cap_mask_t mask;
1820 unsigned sig;
9c4c2f8b 1821 struct resource *res;
c9711ec5 1822 struct device *dev = &pdev->dev;
e04dbf35
BB
1823 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1824 int oobbytes_per_step;
67ce04bf 1825
70ba6d71
PG
1826 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1827 GFP_KERNEL);
67ce04bf
VS
1828 if (!info)
1829 return -ENOMEM;
1830
c9711ec5 1831 info->pdev = pdev;
67ce04bf 1832
c9711ec5
RQ
1833 if (dev->of_node) {
1834 if (omap_get_dt_info(dev, info))
1835 return -EINVAL;
1836 } else {
1837 pdata = dev_get_platdata(&pdev->dev);
1838 if (!pdata) {
1839 dev_err(&pdev->dev, "platform data missing\n");
1840 return -EINVAL;
1841 }
1842
1843 info->gpmc_cs = pdata->cs;
1844 info->reg = pdata->reg;
1845 info->ecc_opt = pdata->ecc_opt;
10f22ee3
RQ
1846 if (pdata->dev_ready)
1847 dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
1848
c9711ec5
RQ
1849 info->xfer_type = pdata->xfer_type;
1850 info->devsize = pdata->devsize;
1851 info->elm_of_node = pdata->elm_of_node;
1852 info->flash_bbt = pdata->flash_bbt;
1853 }
1854
1855 platform_set_drvdata(pdev, info);
c509aefd
RQ
1856 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1857 if (!info->ops) {
1858 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1859 return -ENODEV;
1860 }
01b95fc6 1861
432420c0
BB
1862 nand_chip = &info->nand;
1863 mtd = nand_to_mtd(nand_chip);
853f1c58 1864 mtd->dev.parent = &pdev->dev;
32d42a85 1865 nand_chip->ecc.priv = NULL;
c9711ec5 1866 nand_set_flash_node(nand_chip, dev->of_node);
67ce04bf 1867
9c4c2f8b 1868 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
00d09891
JH
1869 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1870 if (IS_ERR(nand_chip->IO_ADDR_R))
1871 return PTR_ERR(nand_chip->IO_ADDR_R);
67ce04bf 1872
9c4c2f8b 1873 info->phys_base = res->start;
59e9c5ae 1874
1dc338e8 1875 nand_chip->controller = &omap_gpmc_controller;
67ce04bf 1876
633deb58
PG
1877 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1878 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1879
10f22ee3
RQ
1880 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1881 GPIOD_IN);
1882 if (IS_ERR(info->ready_gpiod)) {
1883 dev_err(dev, "failed to get ready gpio\n");
1884 return PTR_ERR(info->ready_gpiod);
1885 }
1886
67ce04bf
VS
1887 /*
1888 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1889 * function and the generic nand_wait function which reads the status
1890 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1891 * chip delay which is slightly more than tR (AC Timing) of the NAND
1892 * device and read status register until you get a failure or success
1893 */
10f22ee3 1894 if (info->ready_gpiod) {
633deb58
PG
1895 nand_chip->dev_ready = omap_dev_ready;
1896 nand_chip->chip_delay = 0;
67ce04bf 1897 } else {
633deb58
PG
1898 nand_chip->waitfunc = omap_wait;
1899 nand_chip->chip_delay = 50;
67ce04bf
VS
1900 }
1901
c9711ec5 1902 if (info->flash_bbt)
f679888f 1903 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
fef775ca 1904
f18befb5 1905 /* scan NAND device connected to chip controller */
01b95fc6 1906 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
f18befb5 1907 if (nand_scan_ident(mtd, 1, NULL)) {
01b95fc6
RQ
1908 dev_err(&info->pdev->dev,
1909 "scan failed, may be bus-width mismatch\n");
f18befb5 1910 err = -ENXIO;
70ba6d71 1911 goto return_error;
f18befb5
PG
1912 }
1913
f679888f
BB
1914 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
1915 nand_chip->bbt_options |= NAND_BBT_NO_OOB;
1916 else
1917 nand_chip->options |= NAND_SKIP_BBTSCAN;
1918
f18befb5 1919 /* re-populate low-level callbacks based on xfer modes */
01b95fc6 1920 switch (info->xfer_type) {
1b0b323c 1921 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1922 nand_chip->read_buf = omap_read_buf_pref;
1923 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1924 break;
1925
1926 case NAND_OMAP_POLLED:
cf0e4d2b 1927 /* Use nand_base defaults for {read,write}_buf */
1b0b323c
SG
1928 break;
1929
1930 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1931 dma_cap_zero(mask);
1932 dma_cap_set(DMA_SLAVE, mask);
1933 sig = OMAP24XX_DMA_GPMC;
1934 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1935 if (!info->dma) {
2df41d05
RK
1936 dev_err(&pdev->dev, "DMA engine request failed\n");
1937 err = -ENXIO;
70ba6d71 1938 goto return_error;
763e7359
RK
1939 } else {
1940 struct dma_slave_config cfg;
763e7359
RK
1941
1942 memset(&cfg, 0, sizeof(cfg));
1943 cfg.src_addr = info->phys_base;
1944 cfg.dst_addr = info->phys_base;
1945 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1946 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1947 cfg.src_maxburst = 16;
1948 cfg.dst_maxburst = 16;
d680e2c1
AB
1949 err = dmaengine_slave_config(info->dma, &cfg);
1950 if (err) {
763e7359 1951 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1952 err);
70ba6d71 1953 goto return_error;
763e7359 1954 }
633deb58
PG
1955 nand_chip->read_buf = omap_read_buf_dma_pref;
1956 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1957 }
1958 break;
1959
4e070376 1960 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1961 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1962 if (info->gpmc_irq_fifo <= 0) {
1963 dev_err(&pdev->dev, "error getting fifo irq\n");
1964 err = -ENODEV;
70ba6d71 1965 goto return_error;
5c468455 1966 }
70ba6d71
PG
1967 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1968 omap_nand_irq, IRQF_SHARED,
1969 "gpmc-nand-fifo", info);
4e070376
SG
1970 if (err) {
1971 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1972 info->gpmc_irq_fifo, err);
1973 info->gpmc_irq_fifo = 0;
70ba6d71 1974 goto return_error;
5c468455
AM
1975 }
1976
1977 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1978 if (info->gpmc_irq_count <= 0) {
1979 dev_err(&pdev->dev, "error getting count irq\n");
1980 err = -ENODEV;
70ba6d71 1981 goto return_error;
5c468455 1982 }
70ba6d71
PG
1983 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1984 omap_nand_irq, IRQF_SHARED,
1985 "gpmc-nand-count", info);
5c468455
AM
1986 if (err) {
1987 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1988 info->gpmc_irq_count, err);
1989 info->gpmc_irq_count = 0;
70ba6d71 1990 goto return_error;
4e070376 1991 }
5c468455 1992
633deb58
PG
1993 nand_chip->read_buf = omap_read_buf_irq_pref;
1994 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1995
4e070376
SG
1996 break;
1997
1b0b323c
SG
1998 default:
1999 dev_err(&pdev->dev,
01b95fc6 2000 "xfer_type(%d) not supported!\n", info->xfer_type);
1b0b323c 2001 err = -EINVAL;
70ba6d71 2002 goto return_error;
59e9c5ae 2003 }
59e9c5ae 2004
93af53b8
EG
2005 if (!omap2_nand_ecc_check(info, pdata)) {
2006 err = -EINVAL;
2007 goto return_error;
2008 }
2009
a8c65d50
BB
2010 /*
2011 * Bail out earlier to let NAND_ECC_SOFT code create its own
e04dbf35 2012 * ooblayout instead of using ours.
a8c65d50
BB
2013 */
2014 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2015 nand_chip->ecc.mode = NAND_ECC_SOFT;
d7b83b8a 2016 nand_chip->ecc.algo = NAND_ECC_HAMMING;
a8c65d50
BB
2017 goto scan_tail;
2018 }
2019
a919e511 2020 /* populate MTD interface based on ECC scheme */
4e558072 2021 switch (info->ecc_opt) {
a919e511
PG
2022 case OMAP_ECC_HAM1_CODE_HW:
2023 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2024 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
2025 nand_chip->ecc.bytes = 3;
2026 nand_chip->ecc.size = 512;
2027 nand_chip->ecc.strength = 1;
2028 nand_chip->ecc.calculate = omap_calculate_ecc;
2029 nand_chip->ecc.hwctl = omap_enable_hwecc;
2030 nand_chip->ecc.correct = omap_correct_data;
e04dbf35
BB
2031 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2032 oobbytes_per_step = nand_chip->ecc.bytes;
2033
2034 if (!(nand_chip->options & NAND_BUSWIDTH_16))
2035 min_oobbytes = 1;
2036
a919e511
PG
2037 break;
2038
2039 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
a919e511
PG
2040 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2041 nand_chip->ecc.mode = NAND_ECC_HW;
2042 nand_chip->ecc.size = 512;
2043 nand_chip->ecc.bytes = 7;
2044 nand_chip->ecc.strength = 4;
7c977c3e 2045 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2046 nand_chip->ecc.correct = nand_bch_correct_data;
2c9f2365 2047 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
e04dbf35
BB
2048 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2049 /* Reserve one byte for the OMAP marker */
2050 oobbytes_per_step = nand_chip->ecc.bytes + 1;
a919e511 2051 /* software bch library is used for locating errors */
a8c65d50 2052 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2053 if (!nand_chip->ecc.priv) {
d2f08c75 2054 dev_err(&info->pdev->dev, "unable to use BCH library\n");
0e618ef0 2055 err = -EINVAL;
d2f08c75 2056 goto return_error;
a919e511
PG
2057 }
2058 break;
a919e511
PG
2059
2060 case OMAP_ECC_BCH4_CODE_HW:
a919e511
PG
2061 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2062 nand_chip->ecc.mode = NAND_ECC_HW;
2063 nand_chip->ecc.size = 512;
2064 /* 14th bit is kept reserved for ROM-code compatibility */
2065 nand_chip->ecc.bytes = 7 + 1;
2066 nand_chip->ecc.strength = 4;
7c977c3e 2067 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2068 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2069 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2070 nand_chip->ecc.read_page = omap_read_page_bch;
2071 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2072 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2073 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2074
2075 err = elm_config(info->elm_dev, BCH4_ECC,
432420c0 2076 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2077 nand_chip->ecc.size, nand_chip->ecc.bytes);
2078 if (err < 0)
70ba6d71 2079 goto return_error;
a919e511 2080 break;
a919e511
PG
2081
2082 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
a919e511
PG
2083 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2084 nand_chip->ecc.mode = NAND_ECC_HW;
2085 nand_chip->ecc.size = 512;
2086 nand_chip->ecc.bytes = 13;
2087 nand_chip->ecc.strength = 8;
7c977c3e 2088 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2089 nand_chip->ecc.correct = nand_bch_correct_data;
7bcd1dca 2090 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
e04dbf35
BB
2091 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2092 /* Reserve one byte for the OMAP marker */
2093 oobbytes_per_step = nand_chip->ecc.bytes + 1;
a919e511 2094 /* software bch library is used for locating errors */
a8c65d50 2095 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2096 if (!nand_chip->ecc.priv) {
d2f08c75 2097 dev_err(&info->pdev->dev, "unable to use BCH library\n");
a919e511 2098 err = -EINVAL;
70ba6d71 2099 goto return_error;
a919e511
PG
2100 }
2101 break;
a919e511
PG
2102
2103 case OMAP_ECC_BCH8_CODE_HW:
a919e511
PG
2104 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2105 nand_chip->ecc.mode = NAND_ECC_HW;
2106 nand_chip->ecc.size = 512;
2107 /* 14th bit is kept reserved for ROM-code compatibility */
2108 nand_chip->ecc.bytes = 13 + 1;
2109 nand_chip->ecc.strength = 8;
7c977c3e 2110 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2111 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2112 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2113 nand_chip->ecc.read_page = omap_read_page_bch;
2114 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2115 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2116 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2117
2118 err = elm_config(info->elm_dev, BCH8_ECC,
432420c0 2119 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2120 nand_chip->ecc.size, nand_chip->ecc.bytes);
2121 if (err < 0)
70ba6d71 2122 goto return_error;
93af53b8 2123
a919e511 2124 break;
a919e511 2125
9748fff9 2126 case OMAP_ECC_BCH16_CODE_HW:
9748fff9 2127 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2128 nand_chip->ecc.mode = NAND_ECC_HW;
2129 nand_chip->ecc.size = 512;
2130 nand_chip->ecc.bytes = 26;
2131 nand_chip->ecc.strength = 16;
2132 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2133 nand_chip->ecc.correct = omap_elm_correct_data;
2134 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2135 nand_chip->ecc.read_page = omap_read_page_bch;
2136 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2137 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2138 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2139
2140 err = elm_config(info->elm_dev, BCH16_ECC,
432420c0 2141 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2142 nand_chip->ecc.size, nand_chip->ecc.bytes);
2143 if (err < 0)
9748fff9 2144 goto return_error;
93af53b8 2145
9748fff9 2146 break;
a919e511 2147 default:
d2f08c75 2148 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
a919e511 2149 err = -EINVAL;
70ba6d71 2150 goto return_error;
f3d73f36 2151 }
67ce04bf 2152
b491da72 2153 /* check if NAND device's OOB is enough to store ECC signatures */
e04dbf35
BB
2154 min_oobbytes += (oobbytes_per_step *
2155 (mtd->writesize / nand_chip->ecc.size));
2156 if (mtd->oobsize < min_oobbytes) {
d2f08c75
EG
2157 dev_err(&info->pdev->dev,
2158 "not enough OOB bytes required = %d, available=%d\n",
e04dbf35 2159 min_oobbytes, mtd->oobsize);
b491da72 2160 err = -EINVAL;
70ba6d71 2161 goto return_error;
f040d332 2162 }
1b0b323c 2163
7d5929c1 2164scan_tail:
a80f1c1f 2165 /* second phase scan */
633deb58 2166 if (nand_scan_tail(mtd)) {
a80f1c1f 2167 err = -ENXIO;
70ba6d71 2168 goto return_error;
a80f1c1f
JW
2169 }
2170
c9711ec5
RQ
2171 if (dev->of_node)
2172 mtd_device_register(mtd, NULL, 0);
2173 else
2174 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
67ce04bf 2175
633deb58 2176 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
2177
2178 return 0;
2179
70ba6d71 2180return_error:
763e7359
RK
2181 if (info->dma)
2182 dma_release_channel(info->dma);
32d42a85
PG
2183 if (nand_chip->ecc.priv) {
2184 nand_bch_free(nand_chip->ecc.priv);
2185 nand_chip->ecc.priv = NULL;
2186 }
67ce04bf
VS
2187 return err;
2188}
2189
2190static int omap_nand_remove(struct platform_device *pdev)
2191{
2192 struct mtd_info *mtd = platform_get_drvdata(pdev);
4bd4ebcc 2193 struct nand_chip *nand_chip = mtd_to_nand(mtd);
4578ea9a 2194 struct omap_nand_info *info = mtd_to_omap(mtd);
32d42a85
PG
2195 if (nand_chip->ecc.priv) {
2196 nand_bch_free(nand_chip->ecc.priv);
2197 nand_chip->ecc.priv = NULL;
2198 }
763e7359
RK
2199 if (info->dma)
2200 dma_release_channel(info->dma);
633deb58 2201 nand_release(mtd);
67ce04bf
VS
2202 return 0;
2203}
2204
c9711ec5
RQ
2205static const struct of_device_id omap_nand_ids[] = {
2206 { .compatible = "ti,omap2-nand", },
2207 {},
2208};
2209
67ce04bf
VS
2210static struct platform_driver omap_nand_driver = {
2211 .probe = omap_nand_probe,
2212 .remove = omap_nand_remove,
2213 .driver = {
2214 .name = DRIVER_NAME,
c9711ec5 2215 .of_match_table = of_match_ptr(omap_nand_ids),
67ce04bf
VS
2216 },
2217};
2218
f99640de 2219module_platform_driver(omap_nand_driver);
67ce04bf 2220
c804c733 2221MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2222MODULE_LICENSE("GPL");
2223MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");