staging: mt29f_spinand: remove useless mtd->priv = chip assignment
[linux-2.6-block.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
1da177e4
LT
39#include <linux/types.h>
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/nand.h>
42#include <linux/mtd/nand_ecc.h>
193bd400 43#include <linux/mtd/nand_bch.h>
1da177e4
LT
44#include <linux/interrupt.h>
45#include <linux/bitops.h>
8fe833c1 46#include <linux/leds.h>
7351d3a5 47#include <linux/io.h>
1da177e4 48#include <linux/mtd/partitions.h>
5844feea 49#include <linux/of_mtd.h>
1da177e4
LT
50
51/* Define default oob placement schemes for large and small page devices */
5bd34c09 52static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
5bd34c09
TG
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
f8ac0414 59 .length = 2} }
1da177e4
LT
60};
61
5bd34c09 62static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
65 .oobfree = {
66 {.offset = 8,
f8ac0414 67 . length = 8} }
1da177e4
LT
68};
69
5bd34c09 70static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
71 .eccbytes = 24,
72 .eccpos = {
e0c7d767
DW
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
76 .oobfree = {
77 {.offset = 2,
f8ac0414 78 .length = 38} }
1da177e4
LT
79};
80
81ec5364
TG
81static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
f8ac0414 92 .length = 78} }
81ec5364
TG
93};
94
6a8214aa 95static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 96
8593fbc6
TG
97static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
d470a97c 100/*
8e87d782 101 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
102 * compiled away when LED support is disabled.
103 */
104DEFINE_LED_TRIGGER(nand_led_trigger);
105
6fe5a6ac
VS
106static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108{
862eba51 109 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
110 int ret = 0;
111
112 /* Start address must align on block boundary */
daae74ca 113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 114 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
daae74ca 119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 120 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
121 ret = -EINVAL;
122 }
123
6fe5a6ac
VS
124 return ret;
125}
126
1da177e4
LT
127/**
128 * nand_release_device - [GENERIC] release chip
8b6e50c9 129 * @mtd: MTD device structure
61b03bd7 130 *
b0bb6903 131 * Release chip lock and wake up anyone waiting on the device.
1da177e4 132 */
e0c7d767 133static void nand_release_device(struct mtd_info *mtd)
1da177e4 134{
862eba51 135 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 136
a36ed299 137 /* Release the controller and the chip */
ace4dfee
TG
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
1da177e4
LT
143}
144
145/**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 147 * @mtd: MTD device structure
1da177e4 148 *
7854d3f7 149 * Default read function for 8bit buswidth
1da177e4 150 */
58dd8f2b 151static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 152{
862eba51 153 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 154 return readb(chip->IO_ADDR_R);
1da177e4
LT
155}
156
1da177e4 157/**
7854d3f7 158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 159 * @mtd: MTD device structure
1da177e4 160 *
7854d3f7
BN
161 * Default read function for 16bit buswidth with endianness conversion.
162 *
1da177e4 163 */
58dd8f2b 164static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 165{
862eba51 166 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 167 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
168}
169
1da177e4
LT
170/**
171 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 172 * @mtd: MTD device structure
1da177e4 173 *
7854d3f7 174 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
175 */
176static u16 nand_read_word(struct mtd_info *mtd)
177{
862eba51 178 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 179 return readw(chip->IO_ADDR_R);
1da177e4
LT
180}
181
1da177e4
LT
182/**
183 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
184 * @mtd: MTD device structure
185 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
186 *
187 * Default select function for 1 chip devices.
188 */
ace4dfee 189static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 190{
862eba51 191 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
192
193 switch (chipnr) {
1da177e4 194 case -1:
ace4dfee 195 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
196 break;
197 case 0:
1da177e4
LT
198 break;
199
200 default:
201 BUG();
202 }
203}
204
05f78359
UKK
205/**
206 * nand_write_byte - [DEFAULT] write single byte to chip
207 * @mtd: MTD device structure
208 * @byte: value to write
209 *
210 * Default function to write a byte to I/O[7:0]
211 */
212static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213{
862eba51 214 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
215
216 chip->write_buf(mtd, &byte, 1);
217}
218
219/**
220 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221 * @mtd: MTD device structure
222 * @byte: value to write
223 *
224 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225 */
226static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227{
862eba51 228 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
229 uint16_t word = byte;
230
231 /*
232 * It's not entirely clear what should happen to I/O[15:8] when writing
233 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234 *
235 * When the host supports a 16-bit bus width, only data is
236 * transferred at the 16-bit width. All address and command line
237 * transfers shall use only the lower 8-bits of the data bus. During
238 * command transfers, the host may place any value on the upper
239 * 8-bits of the data bus. During address transfers, the host shall
240 * set the upper 8-bits of the data bus to 00h.
241 *
242 * One user of the write_byte callback is nand_onfi_set_features. The
243 * four parameters are specified to be written to I/O[7:0], but this is
244 * neither an address nor a command transfer. Let's assume a 0 on the
245 * upper I/O lines is OK.
246 */
247 chip->write_buf(mtd, (uint8_t *)&word, 2);
248}
249
1da177e4
LT
250/**
251 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
252 * @mtd: MTD device structure
253 * @buf: data buffer
254 * @len: number of bytes to write
1da177e4 255 *
7854d3f7 256 * Default write function for 8bit buswidth.
1da177e4 257 */
58dd8f2b 258static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 259{
862eba51 260 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 261
76413839 262 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
263}
264
265/**
61b03bd7 266 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
1da177e4 270 *
7854d3f7 271 * Default read function for 8bit buswidth.
1da177e4 272 */
58dd8f2b 273static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 274{
862eba51 275 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 276
76413839 277 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
278}
279
1da177e4
LT
280/**
281 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
1da177e4 285 *
7854d3f7 286 * Default write function for 16bit buswidth.
1da177e4 287 */
58dd8f2b 288static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 289{
862eba51 290 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 291 u16 *p = (u16 *) buf;
61b03bd7 292
76413839 293 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
294}
295
296/**
61b03bd7 297 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
298 * @mtd: MTD device structure
299 * @buf: buffer to store date
300 * @len: number of bytes to read
1da177e4 301 *
7854d3f7 302 * Default read function for 16bit buswidth.
1da177e4 303 */
58dd8f2b 304static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 305{
862eba51 306 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 307 u16 *p = (u16 *) buf;
1da177e4 308
76413839 309 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
310}
311
1da177e4
LT
312/**
313 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
314 * @mtd: MTD device structure
315 * @ofs: offset from device start
316 * @getchip: 0, if the chip is already selected
1da177e4 317 *
61b03bd7 318 * Check, if the block is bad.
1da177e4
LT
319 */
320static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
321{
cdbec050 322 int page, chipnr, res = 0, i = 0;
862eba51 323 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
324 u16 bad;
325
5fb1549d 326 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
327 ofs += mtd->erasesize - mtd->writesize;
328
1a12f46a
TK
329 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
330
1da177e4 331 if (getchip) {
ace4dfee 332 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 333
6a8214aa 334 nand_get_device(mtd, FL_READING);
1da177e4
LT
335
336 /* Select the NAND device */
ace4dfee 337 chip->select_chip(mtd, chipnr);
1a12f46a 338 }
1da177e4 339
cdbec050
BN
340 do {
341 if (chip->options & NAND_BUSWIDTH_16) {
342 chip->cmdfunc(mtd, NAND_CMD_READOOB,
343 chip->badblockpos & 0xFE, page);
344 bad = cpu_to_le16(chip->read_word(mtd));
345 if (chip->badblockpos & 0x1)
346 bad >>= 8;
347 else
348 bad &= 0xFF;
349 } else {
350 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
351 page);
352 bad = chip->read_byte(mtd);
353 }
354
355 if (likely(chip->badblockbits == 8))
356 res = bad != 0xFF;
e0b58d0a 357 else
cdbec050
BN
358 res = hweight8(bad) < chip->badblockbits;
359 ofs += mtd->writesize;
360 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
361 i++;
362 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 363
b0bb6903
HS
364 if (getchip) {
365 chip->select_chip(mtd, -1);
1da177e4 366 nand_release_device(mtd);
b0bb6903 367 }
61b03bd7 368
1da177e4
LT
369 return res;
370}
371
372/**
5a0edb25 373 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
374 * @mtd: MTD device structure
375 * @ofs: offset from device start
1da177e4 376 *
8b6e50c9 377 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
378 * specific driver. It provides the details for writing a bad block marker to a
379 * block.
380 */
381static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
382{
862eba51 383 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
384 struct mtd_oob_ops ops;
385 uint8_t buf[2] = { 0, 0 };
386 int ret = 0, res, i = 0;
387
0ec56dc4 388 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
389 ops.oobbuf = buf;
390 ops.ooboffs = chip->badblockpos;
391 if (chip->options & NAND_BUSWIDTH_16) {
392 ops.ooboffs &= ~0x01;
393 ops.len = ops.ooblen = 2;
394 } else {
395 ops.len = ops.ooblen = 1;
396 }
397 ops.mode = MTD_OPS_PLACE_OOB;
398
399 /* Write to first/last page(s) if necessary */
400 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
401 ofs += mtd->erasesize - mtd->writesize;
402 do {
403 res = nand_do_write_oob(mtd, ofs, &ops);
404 if (!ret)
405 ret = res;
406
407 i++;
408 ofs += mtd->writesize;
409 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
410
411 return ret;
412}
413
414/**
415 * nand_block_markbad_lowlevel - mark a block bad
416 * @mtd: MTD device structure
417 * @ofs: offset from device start
418 *
419 * This function performs the generic NAND bad block marking steps (i.e., bad
420 * block table(s) and/or marker(s)). We only allow the hardware driver to
421 * specify how to write bad block markers to OOB (chip->block_markbad).
422 *
b32843b7 423 * We try operations in the following order:
e2414f4c 424 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
425 * (2) write bad block marker to OOB area of affected block (unless flag
426 * NAND_BBT_NO_OOB_BBM is present)
427 * (3) update the BBT
428 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 429 * procedures, and dump the error in the end.
1da177e4 430*/
5a0edb25 431static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 432{
862eba51 433 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 434 int res, ret = 0;
61b03bd7 435
b32843b7 436 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
437 struct erase_info einfo;
438
439 /* Attempt erase before marking OOB */
440 memset(&einfo, 0, sizeof(einfo));
441 einfo.mtd = mtd;
442 einfo.addr = ofs;
daae74ca 443 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 444 nand_erase_nand(mtd, &einfo, 0);
1da177e4 445
b32843b7 446 /* Write bad block marker to OOB */
6a8214aa 447 nand_get_device(mtd, FL_WRITING);
5a0edb25 448 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 449 nand_release_device(mtd);
f1a28c02 450 }
e2414f4c 451
b32843b7
BN
452 /* Mark block bad in BBT */
453 if (chip->bbt) {
454 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
455 if (!ret)
456 ret = res;
457 }
458
f1a28c02
TG
459 if (!ret)
460 mtd->ecc_stats.badblocks++;
c0b8ba7b 461
f1a28c02 462 return ret;
1da177e4
LT
463}
464
61b03bd7 465/**
1da177e4 466 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 467 * @mtd: MTD device structure
1da177e4 468 *
8b6e50c9
BN
469 * Check, if the device is write protected. The function expects, that the
470 * device is already selected.
1da177e4 471 */
e0c7d767 472static int nand_check_wp(struct mtd_info *mtd)
1da177e4 473{
862eba51 474 struct nand_chip *chip = mtd_to_nand(mtd);
93edbad6 475
8b6e50c9 476 /* Broken xD cards report WP despite being writable */
93edbad6
ML
477 if (chip->options & NAND_BROKEN_XD)
478 return 0;
479
1da177e4 480 /* Check the WP bit */
ace4dfee
TG
481 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
482 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
483}
484
8471bb73 485/**
c30e1f79 486 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
487 * @mtd: MTD device structure
488 * @ofs: offset from device start
489 *
c30e1f79 490 * Check if the block is marked as reserved.
8471bb73
EG
491 */
492static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
493{
862eba51 494 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
495
496 if (!chip->bbt)
497 return 0;
498 /* Return info from the table */
499 return nand_isreserved_bbt(mtd, ofs);
500}
501
1da177e4
LT
502/**
503 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
504 * @mtd: MTD device structure
505 * @ofs: offset from device start
506 * @getchip: 0, if the chip is already selected
507 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
508 *
509 * Check, if the block is bad. Either by reading the bad block table or
510 * calling of the scan function.
511 */
2c0a2bed
TG
512static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
513 int allowbbt)
1da177e4 514{
862eba51 515 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 516
ace4dfee
TG
517 if (!chip->bbt)
518 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 519
1da177e4 520 /* Return info from the table */
e0c7d767 521 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
522}
523
2af7c653
SK
524/**
525 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
526 * @mtd: MTD device structure
527 * @timeo: Timeout
2af7c653
SK
528 *
529 * Helper function for nand_wait_ready used when needing to wait in interrupt
530 * context.
531 */
532static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
533{
862eba51 534 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
535 int i;
536
537 /* Wait for the device to get ready */
538 for (i = 0; i < timeo; i++) {
539 if (chip->dev_ready(mtd))
540 break;
541 touch_softlockup_watchdog();
542 mdelay(1);
543 }
544}
545
b70af9be
AS
546/**
547 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
548 * @mtd: MTD device structure
549 *
550 * Wait for the ready pin after a command, and warn if a timeout occurs.
551 */
4b648b02 552void nand_wait_ready(struct mtd_info *mtd)
3b88775c 553{
862eba51 554 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 555 unsigned long timeo = 400;
3b88775c 556
2af7c653 557 if (in_interrupt() || oops_in_progress)
b70af9be 558 return panic_nand_wait_ready(mtd, timeo);
2af7c653 559
8fe833c1 560 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 561 /* Wait until command is processed or timeout occurs */
b70af9be 562 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 563 do {
ace4dfee 564 if (chip->dev_ready(mtd))
b70af9be
AS
565 goto out;
566 cond_resched();
61b03bd7 567 } while (time_before(jiffies, timeo));
b70af9be
AS
568
569 pr_warn_ratelimited(
570 "timeout while waiting for chip to become ready\n");
571out:
8fe833c1 572 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 573}
4b648b02 574EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 575
60c70d66
RQ
576/**
577 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
578 * @mtd: MTD device structure
579 * @timeo: Timeout in ms
580 *
581 * Wait for status ready (i.e. command done) or timeout.
582 */
583static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
584{
862eba51 585 register struct nand_chip *chip = mtd_to_nand(mtd);
60c70d66
RQ
586
587 timeo = jiffies + msecs_to_jiffies(timeo);
588 do {
589 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
590 break;
591 touch_softlockup_watchdog();
592 } while (time_before(jiffies, timeo));
593};
594
1da177e4
LT
595/**
596 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
597 * @mtd: MTD device structure
598 * @command: the command to be sent
599 * @column: the column address for this command, -1 if none
600 * @page_addr: the page address for this command, -1 if none
1da177e4 601 *
8b6e50c9 602 * Send command to NAND device. This function is used for small page devices
51148f1f 603 * (512 Bytes per page).
1da177e4 604 */
7abd3ef9
TG
605static void nand_command(struct mtd_info *mtd, unsigned int command,
606 int column, int page_addr)
1da177e4 607{
862eba51 608 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 609 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 610
8b6e50c9 611 /* Write out the command to the device */
1da177e4
LT
612 if (command == NAND_CMD_SEQIN) {
613 int readcmd;
614
28318776 615 if (column >= mtd->writesize) {
1da177e4 616 /* OOB area */
28318776 617 column -= mtd->writesize;
1da177e4
LT
618 readcmd = NAND_CMD_READOOB;
619 } else if (column < 256) {
620 /* First 256 bytes --> READ0 */
621 readcmd = NAND_CMD_READ0;
622 } else {
623 column -= 256;
624 readcmd = NAND_CMD_READ1;
625 }
ace4dfee 626 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 627 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 628 }
ace4dfee 629 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 630
8b6e50c9 631 /* Address cycle, when necessary */
7abd3ef9
TG
632 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
633 /* Serially input address */
634 if (column != -1) {
635 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
636 if (chip->options & NAND_BUSWIDTH_16 &&
637 !nand_opcode_8bits(command))
7abd3ef9 638 column >>= 1;
ace4dfee 639 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
640 ctrl &= ~NAND_CTRL_CHANGE;
641 }
642 if (page_addr != -1) {
ace4dfee 643 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 644 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 645 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 646 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
647 if (chip->chipsize > (32 << 20))
648 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 649 }
ace4dfee 650 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
651
652 /*
8b6e50c9
BN
653 * Program and erase have their own busy handlers status and sequential
654 * in needs no delay
e0c7d767 655 */
1da177e4 656 switch (command) {
61b03bd7 657
1da177e4
LT
658 case NAND_CMD_PAGEPROG:
659 case NAND_CMD_ERASE1:
660 case NAND_CMD_ERASE2:
661 case NAND_CMD_SEQIN:
662 case NAND_CMD_STATUS:
663 return;
664
665 case NAND_CMD_RESET:
ace4dfee 666 if (chip->dev_ready)
1da177e4 667 break;
ace4dfee
TG
668 udelay(chip->chip_delay);
669 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 670 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
671 chip->cmd_ctrl(mtd,
672 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
673 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
674 nand_wait_status_ready(mtd, 250);
1da177e4
LT
675 return;
676
e0c7d767 677 /* This applies to read commands */
1da177e4 678 default:
61b03bd7 679 /*
1da177e4
LT
680 * If we don't have access to the busy pin, we apply the given
681 * command delay
e0c7d767 682 */
ace4dfee
TG
683 if (!chip->dev_ready) {
684 udelay(chip->chip_delay);
1da177e4 685 return;
61b03bd7 686 }
1da177e4 687 }
8b6e50c9
BN
688 /*
689 * Apply this short delay always to ensure that we do wait tWB in
690 * any case on any machine.
691 */
e0c7d767 692 ndelay(100);
3b88775c
TG
693
694 nand_wait_ready(mtd);
1da177e4
LT
695}
696
697/**
698 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
699 * @mtd: MTD device structure
700 * @command: the command to be sent
701 * @column: the column address for this command, -1 if none
702 * @page_addr: the page address for this command, -1 if none
1da177e4 703 *
7abd3ef9 704 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
705 * devices. We don't have the separate regions as we have in the small page
706 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 707 */
7abd3ef9
TG
708static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
709 int column, int page_addr)
1da177e4 710{
862eba51 711 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
712
713 /* Emulate NAND_CMD_READOOB */
714 if (command == NAND_CMD_READOOB) {
28318776 715 column += mtd->writesize;
1da177e4
LT
716 command = NAND_CMD_READ0;
717 }
61b03bd7 718
7abd3ef9 719 /* Command latch cycle */
fb066ada 720 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
721
722 if (column != -1 || page_addr != -1) {
7abd3ef9 723 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
724
725 /* Serially input address */
726 if (column != -1) {
727 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
728 if (chip->options & NAND_BUSWIDTH_16 &&
729 !nand_opcode_8bits(command))
1da177e4 730 column >>= 1;
ace4dfee 731 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 732 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 733 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 734 }
1da177e4 735 if (page_addr != -1) {
ace4dfee
TG
736 chip->cmd_ctrl(mtd, page_addr, ctrl);
737 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 738 NAND_NCE | NAND_ALE);
1da177e4 739 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
740 if (chip->chipsize > (128 << 20))
741 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 742 NAND_NCE | NAND_ALE);
1da177e4 743 }
1da177e4 744 }
ace4dfee 745 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
746
747 /*
8b6e50c9 748 * Program and erase have their own busy handlers status, sequential
7a442f17 749 * in and status need no delay.
30f464b7 750 */
1da177e4 751 switch (command) {
61b03bd7 752
1da177e4
LT
753 case NAND_CMD_CACHEDPROG:
754 case NAND_CMD_PAGEPROG:
755 case NAND_CMD_ERASE1:
756 case NAND_CMD_ERASE2:
757 case NAND_CMD_SEQIN:
7bc3312b 758 case NAND_CMD_RNDIN:
1da177e4 759 case NAND_CMD_STATUS:
30f464b7 760 return;
1da177e4
LT
761
762 case NAND_CMD_RESET:
ace4dfee 763 if (chip->dev_ready)
1da177e4 764 break;
ace4dfee 765 udelay(chip->chip_delay);
12efdde3
TG
766 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
767 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
768 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
769 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
770 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
771 nand_wait_status_ready(mtd, 250);
1da177e4
LT
772 return;
773
7bc3312b
TG
774 case NAND_CMD_RNDOUT:
775 /* No ready / busy check necessary */
776 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
777 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
778 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
779 NAND_NCE | NAND_CTRL_CHANGE);
780 return;
781
1da177e4 782 case NAND_CMD_READ0:
12efdde3
TG
783 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
784 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
785 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
786 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 787
e0c7d767 788 /* This applies to read commands */
1da177e4 789 default:
61b03bd7 790 /*
1da177e4 791 * If we don't have access to the busy pin, we apply the given
8b6e50c9 792 * command delay.
e0c7d767 793 */
ace4dfee
TG
794 if (!chip->dev_ready) {
795 udelay(chip->chip_delay);
1da177e4 796 return;
61b03bd7 797 }
1da177e4 798 }
3b88775c 799
8b6e50c9
BN
800 /*
801 * Apply this short delay always to ensure that we do wait tWB in
802 * any case on any machine.
803 */
e0c7d767 804 ndelay(100);
3b88775c
TG
805
806 nand_wait_ready(mtd);
1da177e4
LT
807}
808
2af7c653
SK
809/**
810 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
811 * @chip: the nand chip descriptor
812 * @mtd: MTD device structure
813 * @new_state: the state which is requested
2af7c653
SK
814 *
815 * Used when in panic, no locks are taken.
816 */
817static void panic_nand_get_device(struct nand_chip *chip,
818 struct mtd_info *mtd, int new_state)
819{
7854d3f7 820 /* Hardware controller shared among independent devices */
2af7c653
SK
821 chip->controller->active = chip;
822 chip->state = new_state;
823}
824
1da177e4
LT
825/**
826 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
827 * @mtd: MTD device structure
828 * @new_state: the state which is requested
1da177e4
LT
829 *
830 * Get the device and lock it for exclusive access
831 */
2c0a2bed 832static int
6a8214aa 833nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 834{
862eba51 835 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
836 spinlock_t *lock = &chip->controller->lock;
837 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 838 DECLARE_WAITQUEUE(wait, current);
7351d3a5 839retry:
0dfc6246
TG
840 spin_lock(lock);
841
b8b3ee9a 842 /* Hardware controller shared among independent devices */
ace4dfee
TG
843 if (!chip->controller->active)
844 chip->controller->active = chip;
a36ed299 845
ace4dfee
TG
846 if (chip->controller->active == chip && chip->state == FL_READY) {
847 chip->state = new_state;
0dfc6246 848 spin_unlock(lock);
962034f4
VW
849 return 0;
850 }
851 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
852 if (chip->controller->active->state == FL_PM_SUSPENDED) {
853 chip->state = FL_PM_SUSPENDED;
854 spin_unlock(lock);
855 return 0;
6b0d9a84 856 }
0dfc6246
TG
857 }
858 set_current_state(TASK_UNINTERRUPTIBLE);
859 add_wait_queue(wq, &wait);
860 spin_unlock(lock);
861 schedule();
862 remove_wait_queue(wq, &wait);
1da177e4
LT
863 goto retry;
864}
865
2af7c653 866/**
8b6e50c9
BN
867 * panic_nand_wait - [GENERIC] wait until the command is done
868 * @mtd: MTD device structure
869 * @chip: NAND chip structure
870 * @timeo: timeout
2af7c653
SK
871 *
872 * Wait for command done. This is a helper function for nand_wait used when
873 * we are in interrupt context. May happen when in panic and trying to write
b595076a 874 * an oops through mtdoops.
2af7c653
SK
875 */
876static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
877 unsigned long timeo)
878{
879 int i;
880 for (i = 0; i < timeo; i++) {
881 if (chip->dev_ready) {
882 if (chip->dev_ready(mtd))
883 break;
884 } else {
885 if (chip->read_byte(mtd) & NAND_STATUS_READY)
886 break;
887 }
888 mdelay(1);
f8ac0414 889 }
2af7c653
SK
890}
891
1da177e4 892/**
8b6e50c9
BN
893 * nand_wait - [DEFAULT] wait until the command is done
894 * @mtd: MTD device structure
895 * @chip: NAND chip structure
1da177e4 896 *
b70af9be 897 * Wait for command done. This applies to erase and program only.
844d3b42 898 */
7bc3312b 899static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
900{
901
b70af9be
AS
902 int status;
903 unsigned long timeo = 400;
1da177e4 904
8fe833c1
RP
905 led_trigger_event(nand_led_trigger, LED_FULL);
906
8b6e50c9
BN
907 /*
908 * Apply this short delay always to ensure that we do wait tWB in any
909 * case on any machine.
910 */
e0c7d767 911 ndelay(100);
1da177e4 912
14c65786 913 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 914
2af7c653
SK
915 if (in_interrupt() || oops_in_progress)
916 panic_nand_wait(mtd, chip, timeo);
917 else {
6d2559f8 918 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 919 do {
2af7c653
SK
920 if (chip->dev_ready) {
921 if (chip->dev_ready(mtd))
922 break;
923 } else {
924 if (chip->read_byte(mtd) & NAND_STATUS_READY)
925 break;
926 }
927 cond_resched();
b70af9be 928 } while (time_before(jiffies, timeo));
1da177e4 929 }
8fe833c1
RP
930 led_trigger_event(nand_led_trigger, LED_OFF);
931
ace4dfee 932 status = (int)chip->read_byte(mtd);
f251b8df
MC
933 /* This can happen if in case of timeout or buggy dev_ready */
934 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
935 return status;
936}
937
7d70f334 938/**
b6d676db 939 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
940 * @mtd: mtd info
941 * @ofs: offset to start unlock from
942 * @len: length to unlock
8b6e50c9
BN
943 * @invert: when = 0, unlock the range of blocks within the lower and
944 * upper boundary address
945 * when = 1, unlock the range of blocks outside the boundaries
946 * of the lower and upper boundary address
7d70f334 947 *
8b6e50c9 948 * Returs unlock status.
7d70f334
VS
949 */
950static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
951 uint64_t len, int invert)
952{
953 int ret = 0;
954 int status, page;
862eba51 955 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334
VS
956
957 /* Submit address of first page to unlock */
958 page = ofs >> chip->page_shift;
959 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
960
961 /* Submit address of last page to unlock */
962 page = (ofs + len) >> chip->page_shift;
963 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
964 (page | invert) & chip->pagemask);
965
966 /* Call wait ready function */
967 status = chip->waitfunc(mtd, chip);
7d70f334 968 /* See if device thinks it succeeded */
74830966 969 if (status & NAND_STATUS_FAIL) {
289c0522 970 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
971 __func__, status);
972 ret = -EIO;
973 }
974
975 return ret;
976}
977
978/**
b6d676db 979 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
980 * @mtd: mtd info
981 * @ofs: offset to start unlock from
982 * @len: length to unlock
7d70f334 983 *
8b6e50c9 984 * Returns unlock status.
7d70f334
VS
985 */
986int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
987{
988 int ret = 0;
989 int chipnr;
862eba51 990 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 991
289c0522 992 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
993 __func__, (unsigned long long)ofs, len);
994
995 if (check_offs_len(mtd, ofs, len))
b1a2348a 996 return -EINVAL;
7d70f334
VS
997
998 /* Align to last block address if size addresses end of the device */
999 if (ofs + len == mtd->size)
1000 len -= mtd->erasesize;
1001
6a8214aa 1002 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
1003
1004 /* Shift to get chip number */
1005 chipnr = ofs >> chip->chip_shift;
1006
1007 chip->select_chip(mtd, chipnr);
1008
57d3a9a8
WD
1009 /*
1010 * Reset the chip.
1011 * If we want to check the WP through READ STATUS and check the bit 7
1012 * we must reset the chip
1013 * some operation can also clear the bit 7 of status register
1014 * eg. erase/program a locked block
1015 */
1016 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1017
7d70f334
VS
1018 /* Check, if it is write protected */
1019 if (nand_check_wp(mtd)) {
289c0522 1020 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1021 __func__);
1022 ret = -EIO;
1023 goto out;
1024 }
1025
1026 ret = __nand_unlock(mtd, ofs, len, 0);
1027
1028out:
b0bb6903 1029 chip->select_chip(mtd, -1);
7d70f334
VS
1030 nand_release_device(mtd);
1031
1032 return ret;
1033}
7351d3a5 1034EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1035
1036/**
b6d676db 1037 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1038 * @mtd: mtd info
1039 * @ofs: offset to start unlock from
1040 * @len: length to unlock
7d70f334 1041 *
8b6e50c9
BN
1042 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1043 * have this feature, but it allows only to lock all blocks, not for specified
1044 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1045 * now.
7d70f334 1046 *
8b6e50c9 1047 * Returns lock status.
7d70f334
VS
1048 */
1049int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1050{
1051 int ret = 0;
1052 int chipnr, status, page;
862eba51 1053 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1054
289c0522 1055 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1056 __func__, (unsigned long long)ofs, len);
1057
1058 if (check_offs_len(mtd, ofs, len))
b1a2348a 1059 return -EINVAL;
7d70f334 1060
6a8214aa 1061 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1062
1063 /* Shift to get chip number */
1064 chipnr = ofs >> chip->chip_shift;
1065
1066 chip->select_chip(mtd, chipnr);
1067
57d3a9a8
WD
1068 /*
1069 * Reset the chip.
1070 * If we want to check the WP through READ STATUS and check the bit 7
1071 * we must reset the chip
1072 * some operation can also clear the bit 7 of status register
1073 * eg. erase/program a locked block
1074 */
1075 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1076
7d70f334
VS
1077 /* Check, if it is write protected */
1078 if (nand_check_wp(mtd)) {
289c0522 1079 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1080 __func__);
1081 status = MTD_ERASE_FAILED;
1082 ret = -EIO;
1083 goto out;
1084 }
1085
1086 /* Submit address of first page to lock */
1087 page = ofs >> chip->page_shift;
1088 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1089
1090 /* Call wait ready function */
1091 status = chip->waitfunc(mtd, chip);
7d70f334 1092 /* See if device thinks it succeeded */
74830966 1093 if (status & NAND_STATUS_FAIL) {
289c0522 1094 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1095 __func__, status);
1096 ret = -EIO;
1097 goto out;
1098 }
1099
1100 ret = __nand_unlock(mtd, ofs, len, 0x1);
1101
1102out:
b0bb6903 1103 chip->select_chip(mtd, -1);
7d70f334
VS
1104 nand_release_device(mtd);
1105
1106 return ret;
1107}
7351d3a5 1108EXPORT_SYMBOL(nand_lock);
7d70f334 1109
730a43fb
BB
1110/**
1111 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1112 * @buf: buffer to test
1113 * @len: buffer length
1114 * @bitflips_threshold: maximum number of bitflips
1115 *
1116 * Check if a buffer contains only 0xff, which means the underlying region
1117 * has been erased and is ready to be programmed.
1118 * The bitflips_threshold specify the maximum number of bitflips before
1119 * considering the region is not erased.
1120 * Note: The logic of this function has been extracted from the memweight
1121 * implementation, except that nand_check_erased_buf function exit before
1122 * testing the whole buffer if the number of bitflips exceed the
1123 * bitflips_threshold value.
1124 *
1125 * Returns a positive number of bitflips less than or equal to
1126 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1127 * threshold.
1128 */
1129static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1130{
1131 const unsigned char *bitmap = buf;
1132 int bitflips = 0;
1133 int weight;
1134
1135 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1136 len--, bitmap++) {
1137 weight = hweight8(*bitmap);
1138 bitflips += BITS_PER_BYTE - weight;
1139 if (unlikely(bitflips > bitflips_threshold))
1140 return -EBADMSG;
1141 }
1142
1143 for (; len >= sizeof(long);
1144 len -= sizeof(long), bitmap += sizeof(long)) {
1145 weight = hweight_long(*((unsigned long *)bitmap));
1146 bitflips += BITS_PER_LONG - weight;
1147 if (unlikely(bitflips > bitflips_threshold))
1148 return -EBADMSG;
1149 }
1150
1151 for (; len > 0; len--, bitmap++) {
1152 weight = hweight8(*bitmap);
1153 bitflips += BITS_PER_BYTE - weight;
1154 if (unlikely(bitflips > bitflips_threshold))
1155 return -EBADMSG;
1156 }
1157
1158 return bitflips;
1159}
1160
1161/**
1162 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1163 * 0xff data
1164 * @data: data buffer to test
1165 * @datalen: data length
1166 * @ecc: ECC buffer
1167 * @ecclen: ECC length
1168 * @extraoob: extra OOB buffer
1169 * @extraooblen: extra OOB length
1170 * @bitflips_threshold: maximum number of bitflips
1171 *
1172 * Check if a data buffer and its associated ECC and OOB data contains only
1173 * 0xff pattern, which means the underlying region has been erased and is
1174 * ready to be programmed.
1175 * The bitflips_threshold specify the maximum number of bitflips before
1176 * considering the region as not erased.
1177 *
1178 * Note:
1179 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1180 * different from the NAND page size. When fixing bitflips, ECC engines will
1181 * report the number of errors per chunk, and the NAND core infrastructure
1182 * expect you to return the maximum number of bitflips for the whole page.
1183 * This is why you should always use this function on a single chunk and
1184 * not on the whole page. After checking each chunk you should update your
1185 * max_bitflips value accordingly.
1186 * 2/ When checking for bitflips in erased pages you should not only check
1187 * the payload data but also their associated ECC data, because a user might
1188 * have programmed almost all bits to 1 but a few. In this case, we
1189 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1190 * this case.
1191 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1192 * data are protected by the ECC engine.
1193 * It could also be used if you support subpages and want to attach some
1194 * extra OOB data to an ECC chunk.
1195 *
1196 * Returns a positive number of bitflips less than or equal to
1197 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1198 * threshold. In case of success, the passed buffers are filled with 0xff.
1199 */
1200int nand_check_erased_ecc_chunk(void *data, int datalen,
1201 void *ecc, int ecclen,
1202 void *extraoob, int extraooblen,
1203 int bitflips_threshold)
1204{
1205 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1206
1207 data_bitflips = nand_check_erased_buf(data, datalen,
1208 bitflips_threshold);
1209 if (data_bitflips < 0)
1210 return data_bitflips;
1211
1212 bitflips_threshold -= data_bitflips;
1213
1214 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1215 if (ecc_bitflips < 0)
1216 return ecc_bitflips;
1217
1218 bitflips_threshold -= ecc_bitflips;
1219
1220 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1221 bitflips_threshold);
1222 if (extraoob_bitflips < 0)
1223 return extraoob_bitflips;
1224
1225 if (data_bitflips)
1226 memset(data, 0xff, datalen);
1227
1228 if (ecc_bitflips)
1229 memset(ecc, 0xff, ecclen);
1230
1231 if (extraoob_bitflips)
1232 memset(extraoob, 0xff, extraooblen);
1233
1234 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1235}
1236EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1237
8593fbc6 1238/**
7854d3f7 1239 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1240 * @mtd: mtd info structure
1241 * @chip: nand chip info structure
1242 * @buf: buffer to store read data
1fbb938d 1243 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1244 * @page: page number to read
52ff49df 1245 *
7854d3f7 1246 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1247 */
1248static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1249 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1250{
1251 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1252 if (oob_required)
1253 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1254 return 0;
1255}
1256
52ff49df 1257/**
7854d3f7 1258 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1259 * @mtd: mtd info structure
1260 * @chip: nand chip info structure
1261 * @buf: buffer to store read data
1fbb938d 1262 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1263 * @page: page number to read
52ff49df
DB
1264 *
1265 * We need a special oob layout and handling even when OOB isn't used.
1266 */
7351d3a5 1267static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1268 struct nand_chip *chip, uint8_t *buf,
1269 int oob_required, int page)
52ff49df
DB
1270{
1271 int eccsize = chip->ecc.size;
1272 int eccbytes = chip->ecc.bytes;
1273 uint8_t *oob = chip->oob_poi;
1274 int steps, size;
1275
1276 for (steps = chip->ecc.steps; steps > 0; steps--) {
1277 chip->read_buf(mtd, buf, eccsize);
1278 buf += eccsize;
1279
1280 if (chip->ecc.prepad) {
1281 chip->read_buf(mtd, oob, chip->ecc.prepad);
1282 oob += chip->ecc.prepad;
1283 }
1284
1285 chip->read_buf(mtd, oob, eccbytes);
1286 oob += eccbytes;
1287
1288 if (chip->ecc.postpad) {
1289 chip->read_buf(mtd, oob, chip->ecc.postpad);
1290 oob += chip->ecc.postpad;
1291 }
1292 }
1293
1294 size = mtd->oobsize - (oob - chip->oob_poi);
1295 if (size)
1296 chip->read_buf(mtd, oob, size);
1297
1298 return 0;
1299}
1300
1da177e4 1301/**
7854d3f7 1302 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1303 * @mtd: mtd info structure
1304 * @chip: nand chip info structure
1305 * @buf: buffer to store read data
1fbb938d 1306 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1307 * @page: page number to read
068e3c0a 1308 */
f5bbdacc 1309static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1310 uint8_t *buf, int oob_required, int page)
1da177e4 1311{
f5bbdacc
TG
1312 int i, eccsize = chip->ecc.size;
1313 int eccbytes = chip->ecc.bytes;
1314 int eccsteps = chip->ecc.steps;
1315 uint8_t *p = buf;
4bf63fcb
DW
1316 uint8_t *ecc_calc = chip->buffers->ecccalc;
1317 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1318 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1319 unsigned int max_bitflips = 0;
f5bbdacc 1320
1fbb938d 1321 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1322
1323 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1324 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1325
1326 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1327 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1328
1329 eccsteps = chip->ecc.steps;
1330 p = buf;
1331
1332 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1333 int stat;
1334
1335 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1336 if (stat < 0) {
f5bbdacc 1337 mtd->ecc_stats.failed++;
3f91e94f 1338 } else {
f5bbdacc 1339 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1340 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1341 }
f5bbdacc 1342 }
3f91e94f 1343 return max_bitflips;
22c60f5f 1344}
1da177e4 1345
3d459559 1346/**
837a6ba4 1347 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1348 * @mtd: mtd info structure
1349 * @chip: nand chip info structure
1350 * @data_offs: offset of requested data within the page
1351 * @readlen: data length
1352 * @bufpoi: buffer to store read data
e004debd 1353 * @page: page number to read
3d459559 1354 */
7351d3a5 1355static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1356 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1357 int page)
3d459559
AK
1358{
1359 int start_step, end_step, num_steps;
1360 uint32_t *eccpos = chip->ecc.layout->eccpos;
1361 uint8_t *p;
1362 int data_col_addr, i, gaps = 0;
1363 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1364 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
4a4163ca 1365 int index;
3f91e94f 1366 unsigned int max_bitflips = 0;
3d459559 1367
7854d3f7 1368 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1369 start_step = data_offs / chip->ecc.size;
1370 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1371 num_steps = end_step - start_step + 1;
4a4163ca 1372 index = start_step * chip->ecc.bytes;
3d459559 1373
8b6e50c9 1374 /* Data size aligned to ECC ecc.size */
3d459559
AK
1375 datafrag_len = num_steps * chip->ecc.size;
1376 eccfrag_len = num_steps * chip->ecc.bytes;
1377
1378 data_col_addr = start_step * chip->ecc.size;
1379 /* If we read not a page aligned data */
1380 if (data_col_addr != 0)
1381 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1382
1383 p = bufpoi + data_col_addr;
1384 chip->read_buf(mtd, p, datafrag_len);
1385
8b6e50c9 1386 /* Calculate ECC */
3d459559
AK
1387 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1388 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1389
8b6e50c9
BN
1390 /*
1391 * The performance is faster if we position offsets according to
7854d3f7 1392 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1393 */
3d459559 1394 for (i = 0; i < eccfrag_len - 1; i++) {
47570bb1 1395 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
3d459559
AK
1396 gaps = 1;
1397 break;
1398 }
1399 }
1400 if (gaps) {
1401 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1402 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1403 } else {
8b6e50c9 1404 /*
7854d3f7 1405 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1406 * about buswidth alignment in read_buf.
1407 */
7351d3a5 1408 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1409 aligned_len = eccfrag_len;
7351d3a5 1410 if (eccpos[index] & (busw - 1))
3d459559 1411 aligned_len++;
7351d3a5 1412 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1413 aligned_len++;
1414
7351d3a5
FF
1415 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1416 mtd->writesize + aligned_pos, -1);
3d459559
AK
1417 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1418 }
1419
1420 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1421 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1422
1423 p = bufpoi + data_col_addr;
1424 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1425 int stat;
1426
7351d3a5
FF
1427 stat = chip->ecc.correct(mtd, p,
1428 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1429 if (stat < 0) {
3d459559 1430 mtd->ecc_stats.failed++;
3f91e94f 1431 } else {
3d459559 1432 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1433 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1434 }
3d459559 1435 }
3f91e94f 1436 return max_bitflips;
3d459559
AK
1437}
1438
068e3c0a 1439/**
7854d3f7 1440 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1441 * @mtd: mtd info structure
1442 * @chip: nand chip info structure
1443 * @buf: buffer to store read data
1fbb938d 1444 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1445 * @page: page number to read
068e3c0a 1446 *
7854d3f7 1447 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1448 */
f5bbdacc 1449static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1450 uint8_t *buf, int oob_required, int page)
1da177e4 1451{
f5bbdacc
TG
1452 int i, eccsize = chip->ecc.size;
1453 int eccbytes = chip->ecc.bytes;
1454 int eccsteps = chip->ecc.steps;
1455 uint8_t *p = buf;
4bf63fcb
DW
1456 uint8_t *ecc_calc = chip->buffers->ecccalc;
1457 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1458 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1459 unsigned int max_bitflips = 0;
f5bbdacc
TG
1460
1461 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1462 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1463 chip->read_buf(mtd, p, eccsize);
1464 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1465 }
f75e5097 1466 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1467
f5bbdacc 1468 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1469 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1470
f5bbdacc
TG
1471 eccsteps = chip->ecc.steps;
1472 p = buf;
61b03bd7 1473
f5bbdacc
TG
1474 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1475 int stat;
1da177e4 1476
f5bbdacc 1477 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1478 if (stat < 0) {
f5bbdacc 1479 mtd->ecc_stats.failed++;
3f91e94f 1480 } else {
f5bbdacc 1481 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1482 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1483 }
f5bbdacc 1484 }
3f91e94f 1485 return max_bitflips;
f5bbdacc 1486}
1da177e4 1487
6e0cb135 1488/**
7854d3f7 1489 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1490 * @mtd: mtd info structure
1491 * @chip: nand chip info structure
1492 * @buf: buffer to store read data
1fbb938d 1493 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1494 * @page: page number to read
6e0cb135 1495 *
8b6e50c9
BN
1496 * Hardware ECC for large page chips, require OOB to be read first. For this
1497 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1498 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1499 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1500 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1501 */
1502static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1503 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1504{
1505 int i, eccsize = chip->ecc.size;
1506 int eccbytes = chip->ecc.bytes;
1507 int eccsteps = chip->ecc.steps;
1508 uint8_t *p = buf;
1509 uint8_t *ecc_code = chip->buffers->ecccode;
1510 uint32_t *eccpos = chip->ecc.layout->eccpos;
1511 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1512 unsigned int max_bitflips = 0;
6e0cb135
SN
1513
1514 /* Read the OOB area first */
1515 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1516 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1517 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1518
1519 for (i = 0; i < chip->ecc.total; i++)
1520 ecc_code[i] = chip->oob_poi[eccpos[i]];
1521
1522 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1523 int stat;
1524
1525 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1526 chip->read_buf(mtd, p, eccsize);
1527 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1528
1529 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1530 if (stat < 0) {
6e0cb135 1531 mtd->ecc_stats.failed++;
3f91e94f 1532 } else {
6e0cb135 1533 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1534 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1535 }
6e0cb135 1536 }
3f91e94f 1537 return max_bitflips;
6e0cb135
SN
1538}
1539
f5bbdacc 1540/**
7854d3f7 1541 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1542 * @mtd: mtd info structure
1543 * @chip: nand chip info structure
1544 * @buf: buffer to store read data
1fbb938d 1545 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1546 * @page: page number to read
f5bbdacc 1547 *
8b6e50c9
BN
1548 * The hw generator calculates the error syndrome automatically. Therefore we
1549 * need a special oob layout and handling.
f5bbdacc
TG
1550 */
1551static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1552 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1553{
1554 int i, eccsize = chip->ecc.size;
1555 int eccbytes = chip->ecc.bytes;
1556 int eccsteps = chip->ecc.steps;
1557 uint8_t *p = buf;
f75e5097 1558 uint8_t *oob = chip->oob_poi;
3f91e94f 1559 unsigned int max_bitflips = 0;
1da177e4 1560
f5bbdacc
TG
1561 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1562 int stat;
61b03bd7 1563
f5bbdacc
TG
1564 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1565 chip->read_buf(mtd, p, eccsize);
1da177e4 1566
f5bbdacc
TG
1567 if (chip->ecc.prepad) {
1568 chip->read_buf(mtd, oob, chip->ecc.prepad);
1569 oob += chip->ecc.prepad;
1570 }
1da177e4 1571
f5bbdacc
TG
1572 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1573 chip->read_buf(mtd, oob, eccbytes);
1574 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1575
3f91e94f 1576 if (stat < 0) {
f5bbdacc 1577 mtd->ecc_stats.failed++;
3f91e94f 1578 } else {
f5bbdacc 1579 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1580 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1581 }
61b03bd7 1582
f5bbdacc 1583 oob += eccbytes;
1da177e4 1584
f5bbdacc
TG
1585 if (chip->ecc.postpad) {
1586 chip->read_buf(mtd, oob, chip->ecc.postpad);
1587 oob += chip->ecc.postpad;
61b03bd7 1588 }
f5bbdacc 1589 }
1da177e4 1590
f5bbdacc 1591 /* Calculate remaining oob bytes */
7e4178f9 1592 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1593 if (i)
1594 chip->read_buf(mtd, oob, i);
61b03bd7 1595
3f91e94f 1596 return max_bitflips;
f5bbdacc 1597}
1da177e4 1598
f5bbdacc 1599/**
7854d3f7 1600 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1601 * @chip: nand chip structure
1602 * @oob: oob destination address
1603 * @ops: oob ops structure
1604 * @len: size of oob to transfer
8593fbc6
TG
1605 */
1606static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1607 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1608{
f8ac0414 1609 switch (ops->mode) {
8593fbc6 1610
0612b9dd
BN
1611 case MTD_OPS_PLACE_OOB:
1612 case MTD_OPS_RAW:
8593fbc6
TG
1613 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1614 return oob + len;
1615
0612b9dd 1616 case MTD_OPS_AUTO_OOB: {
8593fbc6 1617 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1618 uint32_t boffs = 0, roffs = ops->ooboffs;
1619 size_t bytes = 0;
8593fbc6 1620
f8ac0414 1621 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1622 /* Read request not from offset 0? */
7bc3312b
TG
1623 if (unlikely(roffs)) {
1624 if (roffs >= free->length) {
1625 roffs -= free->length;
1626 continue;
1627 }
1628 boffs = free->offset + roffs;
1629 bytes = min_t(size_t, len,
1630 (free->length - roffs));
1631 roffs = 0;
1632 } else {
1633 bytes = min_t(size_t, len, free->length);
1634 boffs = free->offset;
1635 }
1636 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1637 oob += bytes;
1638 }
1639 return oob;
1640 }
1641 default:
1642 BUG();
1643 }
1644 return NULL;
1645}
1646
ba84fb59
BN
1647/**
1648 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1649 * @mtd: MTD device structure
1650 * @retry_mode: the retry mode to use
1651 *
1652 * Some vendors supply a special command to shift the Vt threshold, to be used
1653 * when there are too many bitflips in a page (i.e., ECC error). After setting
1654 * a new threshold, the host should retry reading the page.
1655 */
1656static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1657{
862eba51 1658 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
1659
1660 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1661
1662 if (retry_mode >= chip->read_retries)
1663 return -EINVAL;
1664
1665 if (!chip->setup_read_retry)
1666 return -EOPNOTSUPP;
1667
1668 return chip->setup_read_retry(mtd, retry_mode);
1669}
1670
8593fbc6 1671/**
7854d3f7 1672 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1673 * @mtd: MTD device structure
1674 * @from: offset to read from
1675 * @ops: oob ops structure
f5bbdacc
TG
1676 *
1677 * Internal function. Called with chip held.
1678 */
8593fbc6
TG
1679static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1680 struct mtd_oob_ops *ops)
f5bbdacc 1681{
e47f3db4 1682 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 1683 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 1684 int ret = 0;
8593fbc6 1685 uint32_t readlen = ops->len;
7014568b 1686 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1687 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1688 mtd->oobavail : mtd->oobsize;
1689
8593fbc6 1690 uint8_t *bufpoi, *oob, *buf;
66507c7b 1691 int use_bufpoi;
edbc4540 1692 unsigned int max_bitflips = 0;
ba84fb59 1693 int retry_mode = 0;
b72f3dfb 1694 bool ecc_fail = false;
1da177e4 1695
f5bbdacc
TG
1696 chipnr = (int)(from >> chip->chip_shift);
1697 chip->select_chip(mtd, chipnr);
61b03bd7 1698
f5bbdacc
TG
1699 realpage = (int)(from >> chip->page_shift);
1700 page = realpage & chip->pagemask;
1da177e4 1701
f5bbdacc 1702 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1703
8593fbc6
TG
1704 buf = ops->datbuf;
1705 oob = ops->oobbuf;
e47f3db4 1706 oob_required = oob ? 1 : 0;
8593fbc6 1707
f8ac0414 1708 while (1) {
b72f3dfb
BN
1709 unsigned int ecc_failures = mtd->ecc_stats.failed;
1710
f5bbdacc
TG
1711 bytes = min(mtd->writesize - col, readlen);
1712 aligned = (bytes == mtd->writesize);
61b03bd7 1713
66507c7b
KD
1714 if (!aligned)
1715 use_bufpoi = 1;
1716 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1717 use_bufpoi = !virt_addr_valid(buf);
1718 else
1719 use_bufpoi = 0;
1720
8b6e50c9 1721 /* Is the current page in the buffer? */
8593fbc6 1722 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
1723 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1724
1725 if (use_bufpoi && aligned)
1726 pr_debug("%s: using read bounce buffer for buf@%p\n",
1727 __func__, buf);
61b03bd7 1728
ba84fb59 1729read_retry:
c00a0991 1730 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1731
edbc4540
MD
1732 /*
1733 * Now read the page into the buffer. Absent an error,
1734 * the read methods return max bitflips per ecc step.
1735 */
0612b9dd 1736 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1737 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1738 oob_required,
1739 page);
a5ff4f10
JW
1740 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1741 !oob)
7351d3a5 1742 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1743 col, bytes, bufpoi,
1744 page);
956e944c 1745 else
46a8cf2d 1746 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1747 oob_required, page);
6d77b9d0 1748 if (ret < 0) {
66507c7b 1749 if (use_bufpoi)
6d77b9d0
BN
1750 /* Invalidate page cache */
1751 chip->pagebuf = -1;
1da177e4 1752 break;
6d77b9d0 1753 }
f5bbdacc 1754
edbc4540
MD
1755 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1756
f5bbdacc 1757 /* Transfer not aligned data */
66507c7b 1758 if (use_bufpoi) {
a5ff4f10 1759 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1760 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1761 (ops->mode != MTD_OPS_RAW)) {
3d459559 1762 chip->pagebuf = realpage;
edbc4540
MD
1763 chip->pagebuf_bitflips = ret;
1764 } else {
6d77b9d0
BN
1765 /* Invalidate page cache */
1766 chip->pagebuf = -1;
edbc4540 1767 }
4bf63fcb 1768 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1769 }
1770
8593fbc6 1771 if (unlikely(oob)) {
b64d39d8
ML
1772 int toread = min(oobreadlen, max_oobsize);
1773
1774 if (toread) {
1775 oob = nand_transfer_oob(chip,
1776 oob, ops, toread);
1777 oobreadlen -= toread;
1778 }
8593fbc6 1779 }
5bc7c33c
BN
1780
1781 if (chip->options & NAND_NEED_READRDY) {
1782 /* Apply delay or wait for ready/busy pin */
1783 if (!chip->dev_ready)
1784 udelay(chip->chip_delay);
1785 else
1786 nand_wait_ready(mtd);
1787 }
b72f3dfb 1788
ba84fb59 1789 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1790 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1791 retry_mode++;
1792 ret = nand_setup_read_retry(mtd,
1793 retry_mode);
1794 if (ret < 0)
1795 break;
1796
1797 /* Reset failures; retry */
1798 mtd->ecc_stats.failed = ecc_failures;
1799 goto read_retry;
1800 } else {
1801 /* No more retry modes; real failure */
1802 ecc_fail = true;
1803 }
1804 }
1805
1806 buf += bytes;
8593fbc6 1807 } else {
4bf63fcb 1808 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1809 buf += bytes;
edbc4540
MD
1810 max_bitflips = max_t(unsigned int, max_bitflips,
1811 chip->pagebuf_bitflips);
8593fbc6 1812 }
1da177e4 1813
f5bbdacc 1814 readlen -= bytes;
61b03bd7 1815
ba84fb59
BN
1816 /* Reset to retry mode 0 */
1817 if (retry_mode) {
1818 ret = nand_setup_read_retry(mtd, 0);
1819 if (ret < 0)
1820 break;
1821 retry_mode = 0;
1822 }
1823
f5bbdacc 1824 if (!readlen)
61b03bd7 1825 break;
1da177e4 1826
8b6e50c9 1827 /* For subsequent reads align to page boundary */
1da177e4
LT
1828 col = 0;
1829 /* Increment page address */
1830 realpage++;
1831
ace4dfee 1832 page = realpage & chip->pagemask;
1da177e4
LT
1833 /* Check, if we cross a chip boundary */
1834 if (!page) {
1835 chipnr++;
ace4dfee
TG
1836 chip->select_chip(mtd, -1);
1837 chip->select_chip(mtd, chipnr);
1da177e4 1838 }
1da177e4 1839 }
b0bb6903 1840 chip->select_chip(mtd, -1);
1da177e4 1841
8593fbc6 1842 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1843 if (oob)
1844 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1845
3f91e94f 1846 if (ret < 0)
f5bbdacc
TG
1847 return ret;
1848
b72f3dfb 1849 if (ecc_fail)
9a1fcdfd
TG
1850 return -EBADMSG;
1851
edbc4540 1852 return max_bitflips;
f5bbdacc
TG
1853}
1854
1855/**
25985edc 1856 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1857 * @mtd: MTD device structure
1858 * @from: offset to read from
1859 * @len: number of bytes to read
1860 * @retlen: pointer to variable to store the number of read bytes
1861 * @buf: the databuffer to put data
f5bbdacc 1862 *
8b6e50c9 1863 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1864 */
1865static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1866 size_t *retlen, uint8_t *buf)
1867{
4a89ff88 1868 struct mtd_oob_ops ops;
f5bbdacc
TG
1869 int ret;
1870
6a8214aa 1871 nand_get_device(mtd, FL_READING);
0ec56dc4 1872 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
1873 ops.len = len;
1874 ops.datbuf = buf;
11041ae6 1875 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1876 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1877 *retlen = ops.retlen;
f5bbdacc 1878 nand_release_device(mtd);
f5bbdacc 1879 return ret;
1da177e4
LT
1880}
1881
7bc3312b 1882/**
7854d3f7 1883 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1884 * @mtd: mtd info structure
1885 * @chip: nand chip info structure
1886 * @page: page number to read
7bc3312b
TG
1887 */
1888static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1889 int page)
7bc3312b 1890{
5c2ffb11 1891 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1892 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1893 return 0;
7bc3312b
TG
1894}
1895
1896/**
7854d3f7 1897 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1898 * with syndromes
8b6e50c9
BN
1899 * @mtd: mtd info structure
1900 * @chip: nand chip info structure
1901 * @page: page number to read
7bc3312b
TG
1902 */
1903static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1904 int page)
7bc3312b 1905{
7bc3312b
TG
1906 int length = mtd->oobsize;
1907 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1908 int eccsize = chip->ecc.size;
2ea69d21 1909 uint8_t *bufpoi = chip->oob_poi;
7bc3312b
TG
1910 int i, toread, sndrnd = 0, pos;
1911
1912 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1913 for (i = 0; i < chip->ecc.steps; i++) {
1914 if (sndrnd) {
1915 pos = eccsize + i * (eccsize + chunk);
1916 if (mtd->writesize > 512)
1917 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1918 else
1919 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1920 } else
1921 sndrnd = 1;
1922 toread = min_t(int, length, chunk);
1923 chip->read_buf(mtd, bufpoi, toread);
1924 bufpoi += toread;
1925 length -= toread;
1926 }
1927 if (length > 0)
1928 chip->read_buf(mtd, bufpoi, length);
1929
5c2ffb11 1930 return 0;
7bc3312b
TG
1931}
1932
1933/**
7854d3f7 1934 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1935 * @mtd: mtd info structure
1936 * @chip: nand chip info structure
1937 * @page: page number to write
7bc3312b
TG
1938 */
1939static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1940 int page)
1941{
1942 int status = 0;
1943 const uint8_t *buf = chip->oob_poi;
1944 int length = mtd->oobsize;
1945
1946 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1947 chip->write_buf(mtd, buf, length);
1948 /* Send command to program the OOB data */
1949 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1950
1951 status = chip->waitfunc(mtd, chip);
1952
0d420f9d 1953 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1954}
1955
1956/**
7854d3f7 1957 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1958 * with syndrome - only for large page flash
1959 * @mtd: mtd info structure
1960 * @chip: nand chip info structure
1961 * @page: page number to write
7bc3312b
TG
1962 */
1963static int nand_write_oob_syndrome(struct mtd_info *mtd,
1964 struct nand_chip *chip, int page)
1965{
1966 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1967 int eccsize = chip->ecc.size, length = mtd->oobsize;
1968 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1969 const uint8_t *bufpoi = chip->oob_poi;
1970
1971 /*
1972 * data-ecc-data-ecc ... ecc-oob
1973 * or
1974 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1975 */
1976 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1977 pos = steps * (eccsize + chunk);
1978 steps = 0;
1979 } else
8b0036ee 1980 pos = eccsize;
7bc3312b
TG
1981
1982 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1983 for (i = 0; i < steps; i++) {
1984 if (sndcmd) {
1985 if (mtd->writesize <= 512) {
1986 uint32_t fill = 0xFFFFFFFF;
1987
1988 len = eccsize;
1989 while (len > 0) {
1990 int num = min_t(int, len, 4);
1991 chip->write_buf(mtd, (uint8_t *)&fill,
1992 num);
1993 len -= num;
1994 }
1995 } else {
1996 pos = eccsize + i * (eccsize + chunk);
1997 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1998 }
1999 } else
2000 sndcmd = 1;
2001 len = min_t(int, length, chunk);
2002 chip->write_buf(mtd, bufpoi, len);
2003 bufpoi += len;
2004 length -= len;
2005 }
2006 if (length > 0)
2007 chip->write_buf(mtd, bufpoi, length);
2008
2009 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2010 status = chip->waitfunc(mtd, chip);
2011
2012 return status & NAND_STATUS_FAIL ? -EIO : 0;
2013}
2014
1da177e4 2015/**
7854d3f7 2016 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
2017 * @mtd: MTD device structure
2018 * @from: offset to read from
2019 * @ops: oob operations description structure
1da177e4 2020 *
8b6e50c9 2021 * NAND read out-of-band data from the spare area.
1da177e4 2022 */
8593fbc6
TG
2023static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2024 struct mtd_oob_ops *ops)
1da177e4 2025{
c00a0991 2026 int page, realpage, chipnr;
862eba51 2027 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 2028 struct mtd_ecc_stats stats;
7014568b
VW
2029 int readlen = ops->ooblen;
2030 int len;
7bc3312b 2031 uint8_t *buf = ops->oobbuf;
1951f2f7 2032 int ret = 0;
61b03bd7 2033
289c0522 2034 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 2035 __func__, (unsigned long long)from, readlen);
1da177e4 2036
041e4575
BN
2037 stats = mtd->ecc_stats;
2038
0612b9dd 2039 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 2040 len = chip->ecc.layout->oobavail;
03736155
AH
2041 else
2042 len = mtd->oobsize;
2043
2044 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2045 pr_debug("%s: attempt to start read outside oob\n",
2046 __func__);
03736155
AH
2047 return -EINVAL;
2048 }
2049
2050 /* Do not allow reads past end of device */
2051 if (unlikely(from >= mtd->size ||
2052 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2053 (from >> chip->page_shift)) * len)) {
289c0522
BN
2054 pr_debug("%s: attempt to read beyond end of device\n",
2055 __func__);
03736155
AH
2056 return -EINVAL;
2057 }
7014568b 2058
7314e9e7 2059 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 2060 chip->select_chip(mtd, chipnr);
1da177e4 2061
7314e9e7
TG
2062 /* Shift to get page */
2063 realpage = (int)(from >> chip->page_shift);
2064 page = realpage & chip->pagemask;
1da177e4 2065
f8ac0414 2066 while (1) {
0612b9dd 2067 if (ops->mode == MTD_OPS_RAW)
1951f2f7 2068 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 2069 else
1951f2f7
SL
2070 ret = chip->ecc.read_oob(mtd, chip, page);
2071
2072 if (ret < 0)
2073 break;
7014568b
VW
2074
2075 len = min(len, readlen);
2076 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 2077
5bc7c33c
BN
2078 if (chip->options & NAND_NEED_READRDY) {
2079 /* Apply delay or wait for ready/busy pin */
2080 if (!chip->dev_ready)
2081 udelay(chip->chip_delay);
2082 else
2083 nand_wait_ready(mtd);
2084 }
2085
7014568b 2086 readlen -= len;
0d420f9d
SZ
2087 if (!readlen)
2088 break;
2089
7314e9e7
TG
2090 /* Increment page address */
2091 realpage++;
2092
2093 page = realpage & chip->pagemask;
2094 /* Check, if we cross a chip boundary */
2095 if (!page) {
2096 chipnr++;
2097 chip->select_chip(mtd, -1);
2098 chip->select_chip(mtd, chipnr);
1da177e4
LT
2099 }
2100 }
b0bb6903 2101 chip->select_chip(mtd, -1);
1da177e4 2102
1951f2f7
SL
2103 ops->oobretlen = ops->ooblen - readlen;
2104
2105 if (ret < 0)
2106 return ret;
041e4575
BN
2107
2108 if (mtd->ecc_stats.failed - stats.failed)
2109 return -EBADMSG;
2110
2111 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
2112}
2113
2114/**
8593fbc6 2115 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
2116 * @mtd: MTD device structure
2117 * @from: offset to read from
2118 * @ops: oob operation description structure
1da177e4 2119 *
8b6e50c9 2120 * NAND read data and/or out-of-band data.
1da177e4 2121 */
8593fbc6
TG
2122static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2123 struct mtd_oob_ops *ops)
1da177e4 2124{
8593fbc6
TG
2125 int ret = -ENOTSUPP;
2126
2127 ops->retlen = 0;
1da177e4
LT
2128
2129 /* Do not allow reads past end of device */
7014568b 2130 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
2131 pr_debug("%s: attempt to read beyond end of device\n",
2132 __func__);
1da177e4
LT
2133 return -EINVAL;
2134 }
2135
6a8214aa 2136 nand_get_device(mtd, FL_READING);
1da177e4 2137
f8ac0414 2138 switch (ops->mode) {
0612b9dd
BN
2139 case MTD_OPS_PLACE_OOB:
2140 case MTD_OPS_AUTO_OOB:
2141 case MTD_OPS_RAW:
8593fbc6 2142 break;
1da177e4 2143
8593fbc6
TG
2144 default:
2145 goto out;
2146 }
1da177e4 2147
8593fbc6
TG
2148 if (!ops->datbuf)
2149 ret = nand_do_read_oob(mtd, from, ops);
2150 else
2151 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2152
7351d3a5 2153out:
8593fbc6
TG
2154 nand_release_device(mtd);
2155 return ret;
2156}
61b03bd7 2157
1da177e4 2158
8593fbc6 2159/**
7854d3f7 2160 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2161 * @mtd: mtd info structure
2162 * @chip: nand chip info structure
2163 * @buf: data buffer
1fbb938d 2164 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2165 * @page: page number to write
52ff49df 2166 *
7854d3f7 2167 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2168 */
fdbad98d 2169static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 2170 const uint8_t *buf, int oob_required, int page)
8593fbc6
TG
2171{
2172 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2173 if (oob_required)
2174 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2175
2176 return 0;
1da177e4
LT
2177}
2178
52ff49df 2179/**
7854d3f7 2180 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2181 * @mtd: mtd info structure
2182 * @chip: nand chip info structure
2183 * @buf: data buffer
1fbb938d 2184 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2185 * @page: page number to write
52ff49df
DB
2186 *
2187 * We need a special oob layout and handling even when ECC isn't checked.
2188 */
fdbad98d 2189static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2190 struct nand_chip *chip,
45aaeff9
BB
2191 const uint8_t *buf, int oob_required,
2192 int page)
52ff49df
DB
2193{
2194 int eccsize = chip->ecc.size;
2195 int eccbytes = chip->ecc.bytes;
2196 uint8_t *oob = chip->oob_poi;
2197 int steps, size;
2198
2199 for (steps = chip->ecc.steps; steps > 0; steps--) {
2200 chip->write_buf(mtd, buf, eccsize);
2201 buf += eccsize;
2202
2203 if (chip->ecc.prepad) {
2204 chip->write_buf(mtd, oob, chip->ecc.prepad);
2205 oob += chip->ecc.prepad;
2206 }
2207
60c3bc1f 2208 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2209 oob += eccbytes;
2210
2211 if (chip->ecc.postpad) {
2212 chip->write_buf(mtd, oob, chip->ecc.postpad);
2213 oob += chip->ecc.postpad;
2214 }
2215 }
2216
2217 size = mtd->oobsize - (oob - chip->oob_poi);
2218 if (size)
2219 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2220
2221 return 0;
52ff49df 2222}
9223a456 2223/**
7854d3f7 2224 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2225 * @mtd: mtd info structure
2226 * @chip: nand chip info structure
2227 * @buf: data buffer
1fbb938d 2228 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2229 * @page: page number to write
9223a456 2230 */
fdbad98d 2231static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2232 const uint8_t *buf, int oob_required,
2233 int page)
9223a456 2234{
f75e5097
TG
2235 int i, eccsize = chip->ecc.size;
2236 int eccbytes = chip->ecc.bytes;
2237 int eccsteps = chip->ecc.steps;
4bf63fcb 2238 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2239 const uint8_t *p = buf;
8b099a39 2240 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2241
7854d3f7 2242 /* Software ECC calculation */
8593fbc6
TG
2243 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2244 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2245
8593fbc6
TG
2246 for (i = 0; i < chip->ecc.total; i++)
2247 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2248
45aaeff9 2249 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 2250}
9223a456 2251
f75e5097 2252/**
7854d3f7 2253 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2254 * @mtd: mtd info structure
2255 * @chip: nand chip info structure
2256 * @buf: data buffer
1fbb938d 2257 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2258 * @page: page number to write
f75e5097 2259 */
fdbad98d 2260static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2261 const uint8_t *buf, int oob_required,
2262 int page)
f75e5097
TG
2263{
2264 int i, eccsize = chip->ecc.size;
2265 int eccbytes = chip->ecc.bytes;
2266 int eccsteps = chip->ecc.steps;
4bf63fcb 2267 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2268 const uint8_t *p = buf;
8b099a39 2269 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2270
f75e5097
TG
2271 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2272 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2273 chip->write_buf(mtd, p, eccsize);
f75e5097 2274 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2275 }
2276
f75e5097
TG
2277 for (i = 0; i < chip->ecc.total; i++)
2278 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2279
2280 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2281
2282 return 0;
9223a456
TG
2283}
2284
837a6ba4
GP
2285
2286/**
73c8aaf4 2287 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
2288 * @mtd: mtd info structure
2289 * @chip: nand chip info structure
d6a95080 2290 * @offset: column address of subpage within the page
837a6ba4 2291 * @data_len: data length
d6a95080 2292 * @buf: data buffer
837a6ba4 2293 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2294 * @page: page number to write
837a6ba4
GP
2295 */
2296static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2297 struct nand_chip *chip, uint32_t offset,
d6a95080 2298 uint32_t data_len, const uint8_t *buf,
45aaeff9 2299 int oob_required, int page)
837a6ba4
GP
2300{
2301 uint8_t *oob_buf = chip->oob_poi;
2302 uint8_t *ecc_calc = chip->buffers->ecccalc;
2303 int ecc_size = chip->ecc.size;
2304 int ecc_bytes = chip->ecc.bytes;
2305 int ecc_steps = chip->ecc.steps;
2306 uint32_t *eccpos = chip->ecc.layout->eccpos;
2307 uint32_t start_step = offset / ecc_size;
2308 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2309 int oob_bytes = mtd->oobsize / ecc_steps;
2310 int step, i;
2311
2312 for (step = 0; step < ecc_steps; step++) {
2313 /* configure controller for WRITE access */
2314 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2315
2316 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2317 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2318
2319 /* mask ECC of un-touched subpages by padding 0xFF */
2320 if ((step < start_step) || (step > end_step))
2321 memset(ecc_calc, 0xff, ecc_bytes);
2322 else
d6a95080 2323 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2324
2325 /* mask OOB of un-touched subpages by padding 0xFF */
2326 /* if oob_required, preserve OOB metadata of written subpage */
2327 if (!oob_required || (step < start_step) || (step > end_step))
2328 memset(oob_buf, 0xff, oob_bytes);
2329
d6a95080 2330 buf += ecc_size;
837a6ba4
GP
2331 ecc_calc += ecc_bytes;
2332 oob_buf += oob_bytes;
2333 }
2334
2335 /* copy calculated ECC for whole page to chip->buffer->oob */
2336 /* this include masked-value(0xFF) for unwritten subpages */
2337 ecc_calc = chip->buffers->ecccalc;
2338 for (i = 0; i < chip->ecc.total; i++)
2339 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2340
2341 /* write OOB buffer to NAND device */
2342 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2343
2344 return 0;
2345}
2346
2347
61b03bd7 2348/**
7854d3f7 2349 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2350 * @mtd: mtd info structure
2351 * @chip: nand chip info structure
2352 * @buf: data buffer
1fbb938d 2353 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2354 * @page: page number to write
1da177e4 2355 *
8b6e50c9
BN
2356 * The hw generator calculates the error syndrome automatically. Therefore we
2357 * need a special oob layout and handling.
f75e5097 2358 */
fdbad98d 2359static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 2360 struct nand_chip *chip,
45aaeff9
BB
2361 const uint8_t *buf, int oob_required,
2362 int page)
1da177e4 2363{
f75e5097
TG
2364 int i, eccsize = chip->ecc.size;
2365 int eccbytes = chip->ecc.bytes;
2366 int eccsteps = chip->ecc.steps;
2367 const uint8_t *p = buf;
2368 uint8_t *oob = chip->oob_poi;
1da177e4 2369
f75e5097 2370 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2371
f75e5097
TG
2372 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2373 chip->write_buf(mtd, p, eccsize);
61b03bd7 2374
f75e5097
TG
2375 if (chip->ecc.prepad) {
2376 chip->write_buf(mtd, oob, chip->ecc.prepad);
2377 oob += chip->ecc.prepad;
2378 }
2379
2380 chip->ecc.calculate(mtd, p, oob);
2381 chip->write_buf(mtd, oob, eccbytes);
2382 oob += eccbytes;
2383
2384 if (chip->ecc.postpad) {
2385 chip->write_buf(mtd, oob, chip->ecc.postpad);
2386 oob += chip->ecc.postpad;
1da177e4 2387 }
1da177e4 2388 }
f75e5097
TG
2389
2390 /* Calculate remaining oob bytes */
7e4178f9 2391 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2392 if (i)
2393 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2394
2395 return 0;
f75e5097
TG
2396}
2397
2398/**
956e944c 2399 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2400 * @mtd: MTD device structure
2401 * @chip: NAND chip descriptor
837a6ba4
GP
2402 * @offset: address offset within the page
2403 * @data_len: length of actual data to be written
8b6e50c9 2404 * @buf: the data to write
1fbb938d 2405 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2406 * @page: page number to write
2407 * @cached: cached programming
2408 * @raw: use _raw version of write_page
f75e5097
TG
2409 */
2410static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2411 uint32_t offset, int data_len, const uint8_t *buf,
2412 int oob_required, int page, int cached, int raw)
f75e5097 2413{
837a6ba4
GP
2414 int status, subpage;
2415
2416 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2417 chip->ecc.write_subpage)
2418 subpage = offset || (data_len < mtd->writesize);
2419 else
2420 subpage = 0;
f75e5097
TG
2421
2422 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2423
956e944c 2424 if (unlikely(raw))
837a6ba4 2425 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 2426 oob_required, page);
837a6ba4
GP
2427 else if (subpage)
2428 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 2429 buf, oob_required, page);
956e944c 2430 else
45aaeff9
BB
2431 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2432 page);
fdbad98d
JW
2433
2434 if (status < 0)
2435 return status;
f75e5097
TG
2436
2437 /*
7854d3f7 2438 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2439 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2440 */
2441 cached = 0;
2442
3239a6cd 2443 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2444
2445 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2446 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2447 /*
2448 * See if operation failed and additional status checks are
8b6e50c9 2449 * available.
f75e5097
TG
2450 */
2451 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2452 status = chip->errstat(mtd, chip, FL_WRITING, status,
2453 page);
2454
2455 if (status & NAND_STATUS_FAIL)
2456 return -EIO;
2457 } else {
2458 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2459 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2460 }
2461
f75e5097 2462 return 0;
1da177e4
LT
2463}
2464
8593fbc6 2465/**
7854d3f7 2466 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2467 * @mtd: MTD device structure
8b6e50c9
BN
2468 * @oob: oob data buffer
2469 * @len: oob data write length
2470 * @ops: oob ops structure
8593fbc6 2471 */
f722013e
TAA
2472static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2473 struct mtd_oob_ops *ops)
8593fbc6 2474{
862eba51 2475 struct nand_chip *chip = mtd_to_nand(mtd);
f722013e
TAA
2476
2477 /*
2478 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2479 * data from a previous OOB read.
2480 */
2481 memset(chip->oob_poi, 0xff, mtd->oobsize);
2482
f8ac0414 2483 switch (ops->mode) {
8593fbc6 2484
0612b9dd
BN
2485 case MTD_OPS_PLACE_OOB:
2486 case MTD_OPS_RAW:
8593fbc6
TG
2487 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2488 return oob + len;
2489
0612b9dd 2490 case MTD_OPS_AUTO_OOB: {
8593fbc6 2491 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2492 uint32_t boffs = 0, woffs = ops->ooboffs;
2493 size_t bytes = 0;
8593fbc6 2494
f8ac0414 2495 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2496 /* Write request not from offset 0? */
7bc3312b
TG
2497 if (unlikely(woffs)) {
2498 if (woffs >= free->length) {
2499 woffs -= free->length;
2500 continue;
2501 }
2502 boffs = free->offset + woffs;
2503 bytes = min_t(size_t, len,
2504 (free->length - woffs));
2505 woffs = 0;
2506 } else {
2507 bytes = min_t(size_t, len, free->length);
2508 boffs = free->offset;
2509 }
8b0036ee 2510 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2511 oob += bytes;
2512 }
2513 return oob;
2514 }
2515 default:
2516 BUG();
2517 }
2518 return NULL;
2519}
2520
f8ac0414 2521#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2522
2523/**
7854d3f7 2524 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2525 * @mtd: MTD device structure
2526 * @to: offset to write to
2527 * @ops: oob operations description structure
1da177e4 2528 *
8b6e50c9 2529 * NAND write with ECC.
1da177e4 2530 */
8593fbc6
TG
2531static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2532 struct mtd_oob_ops *ops)
1da177e4 2533{
29072b96 2534 int chipnr, realpage, page, blockmask, column;
862eba51 2535 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 2536 uint32_t writelen = ops->len;
782ce79a
ML
2537
2538 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2539 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2540 mtd->oobavail : mtd->oobsize;
2541
8593fbc6
TG
2542 uint8_t *oob = ops->oobbuf;
2543 uint8_t *buf = ops->datbuf;
837a6ba4 2544 int ret;
e47f3db4 2545 int oob_required = oob ? 1 : 0;
1da177e4 2546
8593fbc6 2547 ops->retlen = 0;
29072b96
TG
2548 if (!writelen)
2549 return 0;
1da177e4 2550
8b6e50c9 2551 /* Reject writes, which are not page aligned */
8593fbc6 2552 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2553 pr_notice("%s: attempt to write non page aligned data\n",
2554 __func__);
1da177e4
LT
2555 return -EINVAL;
2556 }
2557
29072b96 2558 column = to & (mtd->writesize - 1);
1da177e4 2559
6a930961
TG
2560 chipnr = (int)(to >> chip->chip_shift);
2561 chip->select_chip(mtd, chipnr);
2562
1da177e4 2563 /* Check, if it is write protected */
b0bb6903
HS
2564 if (nand_check_wp(mtd)) {
2565 ret = -EIO;
2566 goto err_out;
2567 }
1da177e4 2568
f75e5097
TG
2569 realpage = (int)(to >> chip->page_shift);
2570 page = realpage & chip->pagemask;
2571 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2572
2573 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2574 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2575 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2576 chip->pagebuf = -1;
61b03bd7 2577
782ce79a 2578 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2579 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2580 ret = -EINVAL;
2581 goto err_out;
2582 }
782ce79a 2583
f8ac0414 2584 while (1) {
29072b96 2585 int bytes = mtd->writesize;
f75e5097 2586 int cached = writelen > bytes && page != blockmask;
29072b96 2587 uint8_t *wbuf = buf;
66507c7b
KD
2588 int use_bufpoi;
2589 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2590
2591 if (part_pagewr)
2592 use_bufpoi = 1;
2593 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2594 use_bufpoi = !virt_addr_valid(buf);
2595 else
2596 use_bufpoi = 0;
29072b96 2597
66507c7b
KD
2598 /* Partial page write?, or need to use bounce buffer */
2599 if (use_bufpoi) {
2600 pr_debug("%s: using write bounce buffer for buf@%p\n",
2601 __func__, buf);
29072b96 2602 cached = 0;
66507c7b
KD
2603 if (part_pagewr)
2604 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2605 chip->pagebuf = -1;
2606 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2607 memcpy(&chip->buffers->databuf[column], buf, bytes);
2608 wbuf = chip->buffers->databuf;
2609 }
1da177e4 2610
782ce79a
ML
2611 if (unlikely(oob)) {
2612 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2613 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2614 oobwritelen -= len;
f722013e
TAA
2615 } else {
2616 /* We still need to erase leftover OOB data */
2617 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2618 }
837a6ba4
GP
2619 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2620 oob_required, page, cached,
2621 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2622 if (ret)
2623 break;
2624
2625 writelen -= bytes;
2626 if (!writelen)
2627 break;
2628
29072b96 2629 column = 0;
f75e5097
TG
2630 buf += bytes;
2631 realpage++;
2632
2633 page = realpage & chip->pagemask;
2634 /* Check, if we cross a chip boundary */
2635 if (!page) {
2636 chipnr++;
2637 chip->select_chip(mtd, -1);
2638 chip->select_chip(mtd, chipnr);
1da177e4
LT
2639 }
2640 }
8593fbc6 2641
8593fbc6 2642 ops->retlen = ops->len - writelen;
7014568b
VW
2643 if (unlikely(oob))
2644 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2645
2646err_out:
2647 chip->select_chip(mtd, -1);
1da177e4
LT
2648 return ret;
2649}
2650
2af7c653
SK
2651/**
2652 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2653 * @mtd: MTD device structure
2654 * @to: offset to write to
2655 * @len: number of bytes to write
2656 * @retlen: pointer to variable to store the number of written bytes
2657 * @buf: the data to write
2af7c653
SK
2658 *
2659 * NAND write with ECC. Used when performing writes in interrupt context, this
2660 * may for example be called by mtdoops when writing an oops while in panic.
2661 */
2662static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2663 size_t *retlen, const uint8_t *buf)
2664{
862eba51 2665 struct nand_chip *chip = mtd_to_nand(mtd);
4a89ff88 2666 struct mtd_oob_ops ops;
2af7c653
SK
2667 int ret;
2668
8b6e50c9 2669 /* Wait for the device to get ready */
2af7c653
SK
2670 panic_nand_wait(mtd, chip, 400);
2671
8b6e50c9 2672 /* Grab the device */
2af7c653
SK
2673 panic_nand_get_device(chip, mtd, FL_WRITING);
2674
0ec56dc4 2675 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2676 ops.len = len;
2677 ops.datbuf = (uint8_t *)buf;
11041ae6 2678 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2679
4a89ff88 2680 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2681
4a89ff88 2682 *retlen = ops.retlen;
2af7c653
SK
2683 return ret;
2684}
2685
f75e5097 2686/**
8593fbc6 2687 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2688 * @mtd: MTD device structure
2689 * @to: offset to write to
2690 * @len: number of bytes to write
2691 * @retlen: pointer to variable to store the number of written bytes
2692 * @buf: the data to write
f75e5097 2693 *
8b6e50c9 2694 * NAND write with ECC.
f75e5097 2695 */
8593fbc6
TG
2696static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2697 size_t *retlen, const uint8_t *buf)
f75e5097 2698{
4a89ff88 2699 struct mtd_oob_ops ops;
f75e5097
TG
2700 int ret;
2701
6a8214aa 2702 nand_get_device(mtd, FL_WRITING);
0ec56dc4 2703 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2704 ops.len = len;
2705 ops.datbuf = (uint8_t *)buf;
11041ae6 2706 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2707 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2708 *retlen = ops.retlen;
f75e5097 2709 nand_release_device(mtd);
8593fbc6 2710 return ret;
f75e5097 2711}
7314e9e7 2712
1da177e4 2713/**
8593fbc6 2714 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2715 * @mtd: MTD device structure
2716 * @to: offset to write to
2717 * @ops: oob operation description structure
1da177e4 2718 *
8b6e50c9 2719 * NAND write out-of-band.
1da177e4 2720 */
8593fbc6
TG
2721static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2722 struct mtd_oob_ops *ops)
1da177e4 2723{
03736155 2724 int chipnr, page, status, len;
862eba51 2725 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2726
289c0522 2727 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2728 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2729
0612b9dd 2730 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2731 len = chip->ecc.layout->oobavail;
2732 else
2733 len = mtd->oobsize;
2734
1da177e4 2735 /* Do not allow write past end of page */
03736155 2736 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2737 pr_debug("%s: attempt to write past end of page\n",
2738 __func__);
1da177e4
LT
2739 return -EINVAL;
2740 }
2741
03736155 2742 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2743 pr_debug("%s: attempt to start write outside oob\n",
2744 __func__);
03736155
AH
2745 return -EINVAL;
2746 }
2747
775adc3d 2748 /* Do not allow write past end of device */
03736155
AH
2749 if (unlikely(to >= mtd->size ||
2750 ops->ooboffs + ops->ooblen >
2751 ((mtd->size >> chip->page_shift) -
2752 (to >> chip->page_shift)) * len)) {
289c0522
BN
2753 pr_debug("%s: attempt to write beyond end of device\n",
2754 __func__);
03736155
AH
2755 return -EINVAL;
2756 }
2757
7314e9e7 2758 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2759 chip->select_chip(mtd, chipnr);
1da177e4 2760
7314e9e7
TG
2761 /* Shift to get page */
2762 page = (int)(to >> chip->page_shift);
2763
2764 /*
2765 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2766 * of my DiskOnChip 2000 test units) will clear the whole data page too
2767 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2768 * it in the doc2000 driver in August 1999. dwmw2.
2769 */
ace4dfee 2770 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2771
2772 /* Check, if it is write protected */
b0bb6903
HS
2773 if (nand_check_wp(mtd)) {
2774 chip->select_chip(mtd, -1);
8593fbc6 2775 return -EROFS;
b0bb6903 2776 }
61b03bd7 2777
1da177e4 2778 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2779 if (page == chip->pagebuf)
2780 chip->pagebuf = -1;
1da177e4 2781
f722013e 2782 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2783
0612b9dd 2784 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2785 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2786 else
2787 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2788
b0bb6903
HS
2789 chip->select_chip(mtd, -1);
2790
7bc3312b
TG
2791 if (status)
2792 return status;
1da177e4 2793
7014568b 2794 ops->oobretlen = ops->ooblen;
1da177e4 2795
7bc3312b 2796 return 0;
8593fbc6
TG
2797}
2798
2799/**
2800 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2801 * @mtd: MTD device structure
2802 * @to: offset to write to
2803 * @ops: oob operation description structure
8593fbc6
TG
2804 */
2805static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2806 struct mtd_oob_ops *ops)
2807{
8593fbc6
TG
2808 int ret = -ENOTSUPP;
2809
2810 ops->retlen = 0;
2811
2812 /* Do not allow writes past end of device */
7014568b 2813 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2814 pr_debug("%s: attempt to write beyond end of device\n",
2815 __func__);
8593fbc6
TG
2816 return -EINVAL;
2817 }
2818
6a8214aa 2819 nand_get_device(mtd, FL_WRITING);
8593fbc6 2820
f8ac0414 2821 switch (ops->mode) {
0612b9dd
BN
2822 case MTD_OPS_PLACE_OOB:
2823 case MTD_OPS_AUTO_OOB:
2824 case MTD_OPS_RAW:
8593fbc6
TG
2825 break;
2826
2827 default:
2828 goto out;
2829 }
2830
2831 if (!ops->datbuf)
2832 ret = nand_do_write_oob(mtd, to, ops);
2833 else
2834 ret = nand_do_write_ops(mtd, to, ops);
2835
7351d3a5 2836out:
1da177e4 2837 nand_release_device(mtd);
1da177e4
LT
2838 return ret;
2839}
2840
1da177e4 2841/**
49c50b97 2842 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2843 * @mtd: MTD device structure
2844 * @page: the page address of the block which will be erased
1da177e4 2845 *
49c50b97 2846 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 2847 */
49c50b97 2848static int single_erase(struct mtd_info *mtd, int page)
1da177e4 2849{
862eba51 2850 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2851 /* Send commands to erase a block */
ace4dfee
TG
2852 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2853 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
2854
2855 return chip->waitfunc(mtd, chip);
1da177e4
LT
2856}
2857
1da177e4
LT
2858/**
2859 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2860 * @mtd: MTD device structure
2861 * @instr: erase instruction
1da177e4 2862 *
8b6e50c9 2863 * Erase one ore more blocks.
1da177e4 2864 */
e0c7d767 2865static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2866{
e0c7d767 2867 return nand_erase_nand(mtd, instr, 0);
1da177e4 2868}
61b03bd7 2869
1da177e4 2870/**
7854d3f7 2871 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2872 * @mtd: MTD device structure
2873 * @instr: erase instruction
2874 * @allowbbt: allow erasing the bbt area
1da177e4 2875 *
8b6e50c9 2876 * Erase one ore more blocks.
1da177e4 2877 */
ace4dfee
TG
2878int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2879 int allowbbt)
1da177e4 2880{
69423d99 2881 int page, status, pages_per_block, ret, chipnr;
862eba51 2882 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 2883 loff_t len;
1da177e4 2884
289c0522
BN
2885 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2886 __func__, (unsigned long long)instr->addr,
2887 (unsigned long long)instr->len);
1da177e4 2888
6fe5a6ac 2889 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2890 return -EINVAL;
1da177e4 2891
1da177e4 2892 /* Grab the lock and see if the device is available */
6a8214aa 2893 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2894
2895 /* Shift to get first page */
ace4dfee
TG
2896 page = (int)(instr->addr >> chip->page_shift);
2897 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2898
2899 /* Calculate pages in each block */
ace4dfee 2900 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2901
2902 /* Select the NAND device */
ace4dfee 2903 chip->select_chip(mtd, chipnr);
1da177e4 2904
1da177e4
LT
2905 /* Check, if it is write protected */
2906 if (nand_check_wp(mtd)) {
289c0522
BN
2907 pr_debug("%s: device is write protected!\n",
2908 __func__);
1da177e4
LT
2909 instr->state = MTD_ERASE_FAILED;
2910 goto erase_exit;
2911 }
2912
2913 /* Loop through the pages */
2914 len = instr->len;
2915
2916 instr->state = MTD_ERASING;
2917
2918 while (len) {
12183a20 2919 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2920 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2921 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2922 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2923 __func__, page);
1da177e4
LT
2924 instr->state = MTD_ERASE_FAILED;
2925 goto erase_exit;
2926 }
61b03bd7 2927
ace4dfee
TG
2928 /*
2929 * Invalidate the page cache, if we erase the block which
8b6e50c9 2930 * contains the current cached page.
ace4dfee
TG
2931 */
2932 if (page <= chip->pagebuf && chip->pagebuf <
2933 (page + pages_per_block))
2934 chip->pagebuf = -1;
1da177e4 2935
49c50b97 2936 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 2937
ace4dfee
TG
2938 /*
2939 * See if operation failed and additional status checks are
2940 * available
2941 */
2942 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2943 status = chip->errstat(mtd, chip, FL_ERASING,
2944 status, page);
068e3c0a 2945
1da177e4 2946 /* See if block erase succeeded */
a4ab4c5d 2947 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2948 pr_debug("%s: failed erase, page 0x%08x\n",
2949 __func__, page);
1da177e4 2950 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2951 instr->fail_addr =
2952 ((loff_t)page << chip->page_shift);
1da177e4
LT
2953 goto erase_exit;
2954 }
30f464b7 2955
1da177e4 2956 /* Increment page address and decrement length */
daae74ca 2957 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2958 page += pages_per_block;
2959
2960 /* Check, if we cross a chip boundary */
ace4dfee 2961 if (len && !(page & chip->pagemask)) {
1da177e4 2962 chipnr++;
ace4dfee
TG
2963 chip->select_chip(mtd, -1);
2964 chip->select_chip(mtd, chipnr);
1da177e4
LT
2965 }
2966 }
2967 instr->state = MTD_ERASE_DONE;
2968
7351d3a5 2969erase_exit:
1da177e4
LT
2970
2971 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2972
2973 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2974 chip->select_chip(mtd, -1);
1da177e4
LT
2975 nand_release_device(mtd);
2976
49defc01
DW
2977 /* Do call back function */
2978 if (!ret)
2979 mtd_erase_callback(instr);
2980
1da177e4
LT
2981 /* Return more or less happy */
2982 return ret;
2983}
2984
2985/**
2986 * nand_sync - [MTD Interface] sync
8b6e50c9 2987 * @mtd: MTD device structure
1da177e4 2988 *
8b6e50c9 2989 * Sync is actually a wait for chip ready function.
1da177e4 2990 */
e0c7d767 2991static void nand_sync(struct mtd_info *mtd)
1da177e4 2992{
289c0522 2993 pr_debug("%s: called\n", __func__);
1da177e4
LT
2994
2995 /* Grab the lock and see if the device is available */
6a8214aa 2996 nand_get_device(mtd, FL_SYNCING);
1da177e4 2997 /* Release it and go back */
e0c7d767 2998 nand_release_device(mtd);
1da177e4
LT
2999}
3000
1da177e4 3001/**
ace4dfee 3002 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
3003 * @mtd: MTD device structure
3004 * @offs: offset relative to mtd start
1da177e4 3005 */
ace4dfee 3006static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 3007{
ace4dfee 3008 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
3009}
3010
3011/**
ace4dfee 3012 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
3013 * @mtd: MTD device structure
3014 * @ofs: offset relative to mtd start
1da177e4 3015 */
e0c7d767 3016static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 3017{
1da177e4
LT
3018 int ret;
3019
f8ac0414
FF
3020 ret = nand_block_isbad(mtd, ofs);
3021 if (ret) {
8b6e50c9 3022 /* If it was bad already, return success and do nothing */
1da177e4
LT
3023 if (ret > 0)
3024 return 0;
e0c7d767
DW
3025 return ret;
3026 }
1da177e4 3027
5a0edb25 3028 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
3029}
3030
7db03ecc
HS
3031/**
3032 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3033 * @mtd: MTD device structure
3034 * @chip: nand chip info structure
3035 * @addr: feature address.
3036 * @subfeature_param: the subfeature parameters, a four bytes array.
3037 */
3038static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3039 int addr, uint8_t *subfeature_param)
3040{
3041 int status;
05f78359 3042 int i;
7db03ecc 3043
d914c932
DM
3044 if (!chip->onfi_version ||
3045 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3046 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3047 return -EINVAL;
3048
3049 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
3050 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3051 chip->write_byte(mtd, subfeature_param[i]);
3052
7db03ecc
HS
3053 status = chip->waitfunc(mtd, chip);
3054 if (status & NAND_STATUS_FAIL)
3055 return -EIO;
3056 return 0;
3057}
3058
3059/**
3060 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3061 * @mtd: MTD device structure
3062 * @chip: nand chip info structure
3063 * @addr: feature address.
3064 * @subfeature_param: the subfeature parameters, a four bytes array.
3065 */
3066static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3067 int addr, uint8_t *subfeature_param)
3068{
05f78359
UKK
3069 int i;
3070
d914c932
DM
3071 if (!chip->onfi_version ||
3072 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3073 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3074 return -EINVAL;
3075
7db03ecc 3076 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
3077 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3078 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
3079 return 0;
3080}
3081
962034f4
VW
3082/**
3083 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 3084 * @mtd: MTD device structure
962034f4
VW
3085 */
3086static int nand_suspend(struct mtd_info *mtd)
3087{
6a8214aa 3088 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
3089}
3090
3091/**
3092 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 3093 * @mtd: MTD device structure
962034f4
VW
3094 */
3095static void nand_resume(struct mtd_info *mtd)
3096{
862eba51 3097 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 3098
ace4dfee 3099 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
3100 nand_release_device(mtd);
3101 else
d0370219
BN
3102 pr_err("%s called for a chip which is not in suspended state\n",
3103 __func__);
962034f4
VW
3104}
3105
72ea4036
SB
3106/**
3107 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3108 * prevent further operations
3109 * @mtd: MTD device structure
3110 */
3111static void nand_shutdown(struct mtd_info *mtd)
3112{
9ca641b0 3113 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
3114}
3115
8b6e50c9 3116/* Set default functions */
ace4dfee 3117static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 3118{
1da177e4 3119 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
3120 if (!chip->chip_delay)
3121 chip->chip_delay = 20;
1da177e4
LT
3122
3123 /* check, if a user supplied command function given */
ace4dfee
TG
3124 if (chip->cmdfunc == NULL)
3125 chip->cmdfunc = nand_command;
1da177e4
LT
3126
3127 /* check, if a user supplied wait function given */
ace4dfee
TG
3128 if (chip->waitfunc == NULL)
3129 chip->waitfunc = nand_wait;
3130
3131 if (!chip->select_chip)
3132 chip->select_chip = nand_select_chip;
68e80780 3133
4204cccd
HS
3134 /* set for ONFI nand */
3135 if (!chip->onfi_set_features)
3136 chip->onfi_set_features = nand_onfi_set_features;
3137 if (!chip->onfi_get_features)
3138 chip->onfi_get_features = nand_onfi_get_features;
3139
68e80780
BN
3140 /* If called twice, pointers that depend on busw may need to be reset */
3141 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
3142 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3143 if (!chip->read_word)
3144 chip->read_word = nand_read_word;
3145 if (!chip->block_bad)
3146 chip->block_bad = nand_block_bad;
3147 if (!chip->block_markbad)
3148 chip->block_markbad = nand_default_block_markbad;
68e80780 3149 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 3150 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
3151 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3152 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 3153 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 3154 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
3155 if (!chip->scan_bbt)
3156 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
3157
3158 if (!chip->controller) {
3159 chip->controller = &chip->hwcontrol;
3160 spin_lock_init(&chip->controller->lock);
3161 init_waitqueue_head(&chip->controller->wq);
3162 }
3163
7aa65bfd
TG
3164}
3165
8b6e50c9 3166/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3167static void sanitize_string(uint8_t *s, size_t len)
3168{
3169 ssize_t i;
3170
8b6e50c9 3171 /* Null terminate */
d1e1f4e4
FF
3172 s[len - 1] = 0;
3173
8b6e50c9 3174 /* Remove non printable chars */
d1e1f4e4
FF
3175 for (i = 0; i < len - 1; i++) {
3176 if (s[i] < ' ' || s[i] > 127)
3177 s[i] = '?';
3178 }
3179
8b6e50c9 3180 /* Remove trailing spaces */
d1e1f4e4
FF
3181 strim(s);
3182}
3183
3184static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3185{
3186 int i;
3187 while (len--) {
3188 crc ^= *p++ << 8;
3189 for (i = 0; i < 8; i++)
3190 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3191 }
3192
3193 return crc;
3194}
3195
6dcbe0cd
HS
3196/* Parse the Extended Parameter Page. */
3197static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3198 struct nand_chip *chip, struct nand_onfi_params *p)
3199{
3200 struct onfi_ext_param_page *ep;
3201 struct onfi_ext_section *s;
3202 struct onfi_ext_ecc_info *ecc;
3203 uint8_t *cursor;
3204 int ret = -EINVAL;
3205 int len;
3206 int i;
3207
3208 len = le16_to_cpu(p->ext_param_page_length) * 16;
3209 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3210 if (!ep)
3211 return -ENOMEM;
6dcbe0cd
HS
3212
3213 /* Send our own NAND_CMD_PARAM. */
3214 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3215
3216 /* Use the Change Read Column command to skip the ONFI param pages. */
3217 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3218 sizeof(*p) * p->num_of_param_pages , -1);
3219
3220 /* Read out the Extended Parameter Page. */
3221 chip->read_buf(mtd, (uint8_t *)ep, len);
3222 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3223 != le16_to_cpu(ep->crc))) {
3224 pr_debug("fail in the CRC.\n");
3225 goto ext_out;
3226 }
3227
3228 /*
3229 * Check the signature.
3230 * Do not strictly follow the ONFI spec, maybe changed in future.
3231 */
3232 if (strncmp(ep->sig, "EPPS", 4)) {
3233 pr_debug("The signature is invalid.\n");
3234 goto ext_out;
3235 }
3236
3237 /* find the ECC section. */
3238 cursor = (uint8_t *)(ep + 1);
3239 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3240 s = ep->sections + i;
3241 if (s->type == ONFI_SECTION_TYPE_2)
3242 break;
3243 cursor += s->length * 16;
3244 }
3245 if (i == ONFI_EXT_SECTION_MAX) {
3246 pr_debug("We can not find the ECC section.\n");
3247 goto ext_out;
3248 }
3249
3250 /* get the info we want. */
3251 ecc = (struct onfi_ext_ecc_info *)cursor;
3252
4ae7d228
BN
3253 if (!ecc->codeword_size) {
3254 pr_debug("Invalid codeword size\n");
3255 goto ext_out;
6dcbe0cd
HS
3256 }
3257
4ae7d228
BN
3258 chip->ecc_strength_ds = ecc->ecc_bits;
3259 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3260 ret = 0;
6dcbe0cd
HS
3261
3262ext_out:
3263 kfree(ep);
3264 return ret;
3265}
3266
8429bb39
BN
3267static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3268{
862eba51 3269 struct nand_chip *chip = mtd_to_nand(mtd);
8429bb39
BN
3270 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3271
3272 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3273 feature);
3274}
3275
3276/*
3277 * Configure chip properties from Micron vendor-specific ONFI table
3278 */
3279static void nand_onfi_detect_micron(struct nand_chip *chip,
3280 struct nand_onfi_params *p)
3281{
3282 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3283
3284 if (le16_to_cpu(p->vendor_revision) < 1)
3285 return;
3286
3287 chip->read_retries = micron->read_retry_options;
3288 chip->setup_read_retry = nand_setup_read_retry_micron;
3289}
3290
6fb277ba 3291/*
8b6e50c9 3292 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3293 */
3294static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3295 int *busw)
6fb277ba
FF
3296{
3297 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3298 int i, j;
6fb277ba
FF
3299 int val;
3300
7854d3f7 3301 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3302 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3303 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3304 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3305 return 0;
3306
6fb277ba
FF
3307 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3308 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3309 for (j = 0; j < sizeof(*p); j++)
3310 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3311 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3312 le16_to_cpu(p->crc)) {
6fb277ba
FF
3313 break;
3314 }
3315 }
3316
c7f23a70
BN
3317 if (i == 3) {
3318 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3319 return 0;
c7f23a70 3320 }
6fb277ba 3321
8b6e50c9 3322 /* Check version */
6fb277ba 3323 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3324 if (val & (1 << 5))
3325 chip->onfi_version = 23;
3326 else if (val & (1 << 4))
6fb277ba
FF
3327 chip->onfi_version = 22;
3328 else if (val & (1 << 3))
3329 chip->onfi_version = 21;
3330 else if (val & (1 << 2))
3331 chip->onfi_version = 20;
b7b1a29d 3332 else if (val & (1 << 1))
6fb277ba 3333 chip->onfi_version = 10;
b7b1a29d
BN
3334
3335 if (!chip->onfi_version) {
20171642 3336 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3337 return 0;
3338 }
6fb277ba
FF
3339
3340 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3341 sanitize_string(p->model, sizeof(p->model));
3342 if (!mtd->name)
3343 mtd->name = p->model;
4355b70c 3344
6fb277ba 3345 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3346
3347 /*
3348 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3349 * (don't ask me who thought of this...). MTD assumes that these
3350 * dimensions will be power-of-2, so just truncate the remaining area.
3351 */
3352 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3353 mtd->erasesize *= mtd->writesize;
3354
6fb277ba 3355 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3356
3357 /* See erasesize comment */
3358 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3359 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3360 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3361
3362 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3363 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3364 else
3365 *busw = 0;
6fb277ba 3366
10c86bab
HS
3367 if (p->ecc_bits != 0xff) {
3368 chip->ecc_strength_ds = p->ecc_bits;
3369 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3370 } else if (chip->onfi_version >= 21 &&
3371 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3372
3373 /*
3374 * The nand_flash_detect_ext_param_page() uses the
3375 * Change Read Column command which maybe not supported
3376 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3377 * now. We do not replace user supplied command function.
3378 */
3379 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3380 chip->cmdfunc = nand_command_lp;
3381
3382 /* The Extended Parameter Page is supported since ONFI 2.1. */
3383 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3384 pr_warn("Failed to detect ONFI extended param page\n");
3385 } else {
3386 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3387 }
3388
8429bb39
BN
3389 if (p->jedec_id == NAND_MFR_MICRON)
3390 nand_onfi_detect_micron(chip, p);
3391
6fb277ba
FF
3392 return 1;
3393}
3394
91361818
HS
3395/*
3396 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3397 */
3398static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3399 int *busw)
3400{
3401 struct nand_jedec_params *p = &chip->jedec_params;
3402 struct jedec_ecc_info *ecc;
3403 int val;
3404 int i, j;
3405
3406 /* Try JEDEC for unknown chip or LP */
3407 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3408 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3409 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3410 chip->read_byte(mtd) != 'C')
3411 return 0;
3412
3413 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3414 for (i = 0; i < 3; i++) {
3415 for (j = 0; j < sizeof(*p); j++)
3416 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3417
3418 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3419 le16_to_cpu(p->crc))
3420 break;
3421 }
3422
3423 if (i == 3) {
3424 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3425 return 0;
3426 }
3427
3428 /* Check version */
3429 val = le16_to_cpu(p->revision);
3430 if (val & (1 << 2))
3431 chip->jedec_version = 10;
3432 else if (val & (1 << 1))
3433 chip->jedec_version = 1; /* vendor specific version */
3434
3435 if (!chip->jedec_version) {
3436 pr_info("unsupported JEDEC version: %d\n", val);
3437 return 0;
3438 }
3439
3440 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3441 sanitize_string(p->model, sizeof(p->model));
3442 if (!mtd->name)
3443 mtd->name = p->model;
3444
3445 mtd->writesize = le32_to_cpu(p->byte_per_page);
3446
3447 /* Please reference to the comment for nand_flash_detect_onfi. */
3448 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3449 mtd->erasesize *= mtd->writesize;
3450
3451 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3452
3453 /* Please reference to the comment for nand_flash_detect_onfi. */
3454 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3455 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3456 chip->bits_per_cell = p->bits_per_cell;
3457
3458 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3459 *busw = NAND_BUSWIDTH_16;
3460 else
3461 *busw = 0;
3462
3463 /* ECC info */
3464 ecc = &p->ecc_info[0];
3465
3466 if (ecc->codeword_size >= 9) {
3467 chip->ecc_strength_ds = ecc->ecc_bits;
3468 chip->ecc_step_ds = 1 << ecc->codeword_size;
3469 } else {
3470 pr_warn("Invalid codeword size\n");
3471 }
3472
3473 return 1;
3474}
3475
e3b88bd6
BN
3476/*
3477 * nand_id_has_period - Check if an ID string has a given wraparound period
3478 * @id_data: the ID string
3479 * @arrlen: the length of the @id_data array
3480 * @period: the period of repitition
3481 *
3482 * Check if an ID string is repeated within a given sequence of bytes at
3483 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3484 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3485 * if the repetition has a period of @period; otherwise, returns zero.
3486 */
3487static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3488{
3489 int i, j;
3490 for (i = 0; i < period; i++)
3491 for (j = i + period; j < arrlen; j += period)
3492 if (id_data[i] != id_data[j])
3493 return 0;
3494 return 1;
3495}
3496
3497/*
3498 * nand_id_len - Get the length of an ID string returned by CMD_READID
3499 * @id_data: the ID string
3500 * @arrlen: the length of the @id_data array
3501
3502 * Returns the length of the ID string, according to known wraparound/trailing
3503 * zero patterns. If no pattern exists, returns the length of the array.
3504 */
3505static int nand_id_len(u8 *id_data, int arrlen)
3506{
3507 int last_nonzero, period;
3508
3509 /* Find last non-zero byte */
3510 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3511 if (id_data[last_nonzero])
3512 break;
3513
3514 /* All zeros */
3515 if (last_nonzero < 0)
3516 return 0;
3517
3518 /* Calculate wraparound period */
3519 for (period = 1; period < arrlen; period++)
3520 if (nand_id_has_period(id_data, arrlen, period))
3521 break;
3522
3523 /* There's a repeated pattern */
3524 if (period < arrlen)
3525 return period;
3526
3527 /* There are trailing zeros */
3528 if (last_nonzero < arrlen - 1)
3529 return last_nonzero + 1;
3530
3531 /* No pattern detected */
3532 return arrlen;
3533}
3534
7db906b7
HS
3535/* Extract the bits of per cell from the 3rd byte of the extended ID */
3536static int nand_get_bits_per_cell(u8 cellinfo)
3537{
3538 int bits;
3539
3540 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3541 bits >>= NAND_CI_CELLTYPE_SHIFT;
3542 return bits + 1;
3543}
3544
fc09bbc0
BN
3545/*
3546 * Many new NAND share similar device ID codes, which represent the size of the
3547 * chip. The rest of the parameters must be decoded according to generic or
3548 * manufacturer-specific "extended ID" decoding patterns.
3549 */
3550static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3551 u8 id_data[8], int *busw)
3552{
e3b88bd6 3553 int extid, id_len;
fc09bbc0 3554 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3555 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3556 /* The 4th id byte is the important one */
3557 extid = id_data[3];
3558
e3b88bd6
BN
3559 id_len = nand_id_len(id_data, 8);
3560
fc09bbc0
BN
3561 /*
3562 * Field definitions are in the following datasheets:
3563 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3564 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3565 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3566 *
af451af4
BN
3567 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3568 * ID to decide what to do.
fc09bbc0 3569 */
af451af4 3570 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3571 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3572 /* Calc pagesize */
3573 mtd->writesize = 2048 << (extid & 0x03);
3574 extid >>= 2;
3575 /* Calc oobsize */
e2d3a35e 3576 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3577 case 1:
3578 mtd->oobsize = 128;
3579 break;
3580 case 2:
3581 mtd->oobsize = 218;
3582 break;
3583 case 3:
3584 mtd->oobsize = 400;
3585 break;
e2d3a35e 3586 case 4:
fc09bbc0
BN
3587 mtd->oobsize = 436;
3588 break;
e2d3a35e
BN
3589 case 5:
3590 mtd->oobsize = 512;
3591 break;
3592 case 6:
e2d3a35e
BN
3593 mtd->oobsize = 640;
3594 break;
94d04e82
HS
3595 case 7:
3596 default: /* Other cases are "reserved" (unknown) */
3597 mtd->oobsize = 1024;
3598 break;
fc09bbc0
BN
3599 }
3600 extid >>= 2;
3601 /* Calc blocksize */
3602 mtd->erasesize = (128 * 1024) <<
3603 (((extid >> 1) & 0x04) | (extid & 0x03));
3604 *busw = 0;
73ca392f 3605 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3606 !nand_is_slc(chip)) {
73ca392f
BN
3607 unsigned int tmp;
3608
3609 /* Calc pagesize */
3610 mtd->writesize = 2048 << (extid & 0x03);
3611 extid >>= 2;
3612 /* Calc oobsize */
3613 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3614 case 0:
3615 mtd->oobsize = 128;
3616 break;
3617 case 1:
3618 mtd->oobsize = 224;
3619 break;
3620 case 2:
3621 mtd->oobsize = 448;
3622 break;
3623 case 3:
3624 mtd->oobsize = 64;
3625 break;
3626 case 4:
3627 mtd->oobsize = 32;
3628 break;
3629 case 5:
3630 mtd->oobsize = 16;
3631 break;
3632 default:
3633 mtd->oobsize = 640;
3634 break;
3635 }
3636 extid >>= 2;
3637 /* Calc blocksize */
3638 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3639 if (tmp < 0x03)
3640 mtd->erasesize = (128 * 1024) << tmp;
3641 else if (tmp == 0x03)
3642 mtd->erasesize = 768 * 1024;
3643 else
3644 mtd->erasesize = (64 * 1024) << tmp;
3645 *busw = 0;
fc09bbc0
BN
3646 } else {
3647 /* Calc pagesize */
3648 mtd->writesize = 1024 << (extid & 0x03);
3649 extid >>= 2;
3650 /* Calc oobsize */
3651 mtd->oobsize = (8 << (extid & 0x01)) *
3652 (mtd->writesize >> 9);
3653 extid >>= 2;
3654 /* Calc blocksize. Blocksize is multiples of 64KiB */
3655 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3656 extid >>= 2;
3657 /* Get buswidth information */
3658 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3659
3660 /*
3661 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3662 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3663 * follows:
3664 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3665 * 110b -> 24nm
3666 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3667 */
3668 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3669 nand_is_slc(chip) &&
60c67382
BN
3670 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3671 !(id_data[4] & 0x80) /* !BENAND */) {
3672 mtd->oobsize = 32 * mtd->writesize >> 9;
3673 }
3674
fc09bbc0
BN
3675 }
3676}
3677
f23a481c
BN
3678/*
3679 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3680 * decodes a matching ID table entry and assigns the MTD size parameters for
3681 * the chip.
3682 */
3683static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3684 struct nand_flash_dev *type, u8 id_data[8],
3685 int *busw)
3686{
3687 int maf_id = id_data[0];
3688
3689 mtd->erasesize = type->erasesize;
3690 mtd->writesize = type->pagesize;
3691 mtd->oobsize = mtd->writesize / 32;
3692 *busw = type->options & NAND_BUSWIDTH_16;
3693
1c195e90
HS
3694 /* All legacy ID NAND are small-page, SLC */
3695 chip->bits_per_cell = 1;
3696
f23a481c
BN
3697 /*
3698 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3699 * some Spansion chips have erasesize that conflicts with size
3700 * listed in nand_ids table.
3701 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3702 */
3703 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3704 && id_data[6] == 0x00 && id_data[7] == 0x00
3705 && mtd->writesize == 512) {
3706 mtd->erasesize = 128 * 1024;
3707 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3708 }
3709}
3710
7e74c2d7
BN
3711/*
3712 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3713 * heuristic patterns using various detected parameters (e.g., manufacturer,
3714 * page size, cell-type information).
3715 */
3716static void nand_decode_bbm_options(struct mtd_info *mtd,
3717 struct nand_chip *chip, u8 id_data[8])
3718{
3719 int maf_id = id_data[0];
3720
3721 /* Set the bad block position */
3722 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3723 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3724 else
3725 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3726
3727 /*
3728 * Bad block marker is stored in the last page of each block on Samsung
3729 * and Hynix MLC devices; stored in first two pages of each block on
3730 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3731 * AMD/Spansion, and Macronix. All others scan only the first page.
3732 */
1d0ed69d 3733 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3734 (maf_id == NAND_MFR_SAMSUNG ||
3735 maf_id == NAND_MFR_HYNIX))
3736 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3737 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3738 (maf_id == NAND_MFR_SAMSUNG ||
3739 maf_id == NAND_MFR_HYNIX ||
3740 maf_id == NAND_MFR_TOSHIBA ||
3741 maf_id == NAND_MFR_AMD ||
3742 maf_id == NAND_MFR_MACRONIX)) ||
3743 (mtd->writesize == 2048 &&
3744 maf_id == NAND_MFR_MICRON))
3745 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3746}
3747
ec6e87e3
HS
3748static inline bool is_full_id_nand(struct nand_flash_dev *type)
3749{
3750 return type->id_len;
3751}
3752
3753static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3754 struct nand_flash_dev *type, u8 *id_data, int *busw)
3755{
3756 if (!strncmp(type->id, id_data, type->id_len)) {
3757 mtd->writesize = type->pagesize;
3758 mtd->erasesize = type->erasesize;
3759 mtd->oobsize = type->oobsize;
3760
7db906b7 3761 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3762 chip->chipsize = (uint64_t)type->chipsize << 20;
3763 chip->options |= type->options;
57219342
HS
3764 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3765 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3766 chip->onfi_timing_mode_default =
3767 type->onfi_timing_mode_default;
ec6e87e3
HS
3768
3769 *busw = type->options & NAND_BUSWIDTH_16;
3770
092b6a1d
CZ
3771 if (!mtd->name)
3772 mtd->name = type->name;
3773
ec6e87e3
HS
3774 return true;
3775 }
3776 return false;
3777}
3778
7aa65bfd 3779/*
8b6e50c9 3780 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3781 */
3782static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3783 struct nand_chip *chip,
7351d3a5 3784 int *maf_id, int *dev_id,
5e81e88a 3785 struct nand_flash_dev *type)
7aa65bfd 3786{
bb77082f 3787 int busw;
d1e1f4e4 3788 int i, maf_idx;
426c457a 3789 u8 id_data[8];
1da177e4
LT
3790
3791 /* Select the device */
ace4dfee 3792 chip->select_chip(mtd, 0);
1da177e4 3793
ef89a880
KB
3794 /*
3795 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3796 * after power-up.
ef89a880
KB
3797 */
3798 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3799
1da177e4 3800 /* Send the command for reading device ID */
ace4dfee 3801 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3802
3803 /* Read manufacturer and device IDs */
ace4dfee 3804 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3805 *dev_id = chip->read_byte(mtd);
1da177e4 3806
8b6e50c9
BN
3807 /*
3808 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3809 * interface concerns can cause random data which looks like a
3810 * possibly credible NAND flash to appear. If the two results do
3811 * not match, ignore the device completely.
3812 */
3813
3814 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3815
4aef9b78
BN
3816 /* Read entire ID string */
3817 for (i = 0; i < 8; i++)
426c457a 3818 id_data[i] = chip->read_byte(mtd);
ed8165c7 3819
d1e1f4e4 3820 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3821 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3822 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3823 return ERR_PTR(-ENODEV);
3824 }
3825
7aa65bfd 3826 if (!type)
5e81e88a
DW
3827 type = nand_flash_ids;
3828
ec6e87e3
HS
3829 for (; type->name != NULL; type++) {
3830 if (is_full_id_nand(type)) {
3831 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3832 goto ident_done;
3833 } else if (*dev_id == type->dev_id) {
db5b09f6 3834 break;
ec6e87e3
HS
3835 }
3836 }
5e81e88a 3837
d1e1f4e4
FF
3838 chip->onfi_version = 0;
3839 if (!type->name || !type->pagesize) {
35fc5195 3840 /* Check if the chip is ONFI compliant */
47450b35 3841 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3842 goto ident_done;
91361818
HS
3843
3844 /* Check if the chip is JEDEC compliant */
3845 if (nand_flash_detect_jedec(mtd, chip, &busw))
3846 goto ident_done;
d1e1f4e4
FF
3847 }
3848
5e81e88a 3849 if (!type->name)
7aa65bfd
TG
3850 return ERR_PTR(-ENODEV);
3851
ba0251fe
TG
3852 if (!mtd->name)
3853 mtd->name = type->name;
3854
69423d99 3855 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3856
a7f5ba40 3857 if (!type->pagesize) {
fc09bbc0
BN
3858 /* Decode parameters from extended ID */
3859 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3860 } else {
f23a481c 3861 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3862 }
bf7a01bf
BN
3863 /* Get chip options */
3864 chip->options |= type->options;
d1e1f4e4 3865
8b6e50c9
BN
3866 /*
3867 * Check if chip is not a Samsung device. Do not clear the
3868 * options for chips which do not have an extended id.
d1e1f4e4
FF
3869 */
3870 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3871 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3872ident_done:
3873
7aa65bfd 3874 /* Try to identify manufacturer */
9a909867 3875 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3876 if (nand_manuf_ids[maf_idx].id == *maf_id)
3877 break;
3878 }
0ea4a755 3879
64b37b2a
MC
3880 if (chip->options & NAND_BUSWIDTH_AUTO) {
3881 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3882 chip->options |= busw;
3883 nand_set_defaults(chip, busw);
3884 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3885 /*
3886 * Check, if buswidth is correct. Hardware drivers should set
3887 * chip correct!
3888 */
20171642
EG
3889 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3890 *maf_id, *dev_id);
3891 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3892 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3893 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3894 busw ? 16 : 8);
7aa65bfd
TG
3895 return ERR_PTR(-EINVAL);
3896 }
61b03bd7 3897
7e74c2d7
BN
3898 nand_decode_bbm_options(mtd, chip, id_data);
3899
7aa65bfd 3900 /* Calculate the address shift from the page size */
ace4dfee 3901 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3902 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3903 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3904
ace4dfee 3905 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3906 ffs(mtd->erasesize) - 1;
69423d99
AH
3907 if (chip->chipsize & 0xffffffff)
3908 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3909 else {
3910 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3911 chip->chip_shift += 32 - 1;
3912 }
1da177e4 3913
26d9be11 3914 chip->badblockbits = 8;
49c50b97 3915 chip->erase = single_erase;
7aa65bfd 3916
8b6e50c9 3917 /* Do not replace user supplied command function! */
ace4dfee
TG
3918 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3919 chip->cmdfunc = nand_command_lp;
7aa65bfd 3920
20171642
EG
3921 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3922 *maf_id, *dev_id);
ffdac6cd
HS
3923
3924 if (chip->onfi_version)
3925 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3926 chip->onfi_params.model);
3927 else if (chip->jedec_version)
3928 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3929 chip->jedec_params.model);
3930 else
3931 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3932 type->name);
3933
3755a991 3934 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 3935 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 3936 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3937 return type;
3938}
3939
5844feea
BN
3940static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip,
3941 struct device_node *dn)
3942{
3943 int ecc_mode, ecc_strength, ecc_step;
3944
3945 if (of_get_nand_bus_width(dn) == 16)
3946 chip->options |= NAND_BUSWIDTH_16;
3947
3948 if (of_get_nand_on_flash_bbt(dn))
3949 chip->bbt_options |= NAND_BBT_USE_FLASH;
3950
3951 ecc_mode = of_get_nand_ecc_mode(dn);
3952 ecc_strength = of_get_nand_ecc_strength(dn);
3953 ecc_step = of_get_nand_ecc_step_size(dn);
3954
3955 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3956 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3957 pr_err("must set both strength and step size in DT\n");
3958 return -EINVAL;
3959 }
3960
3961 if (ecc_mode >= 0)
3962 chip->ecc.mode = ecc_mode;
3963
3964 if (ecc_strength >= 0)
3965 chip->ecc.strength = ecc_strength;
3966
3967 if (ecc_step > 0)
3968 chip->ecc.size = ecc_step;
3969
3970 return 0;
3971}
3972
7aa65bfd 3973/**
3b85c321 3974 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3975 * @mtd: MTD device structure
3976 * @maxchips: number of chips to scan for
3977 * @table: alternative NAND ID table
7aa65bfd 3978 *
8b6e50c9
BN
3979 * This is the first phase of the normal nand_scan() function. It reads the
3980 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3981 *
3b85c321 3982 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3983 */
5e81e88a
DW
3984int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3985 struct nand_flash_dev *table)
7aa65bfd 3986{
bb77082f 3987 int i, nand_maf_id, nand_dev_id;
862eba51 3988 struct nand_chip *chip = mtd_to_nand(mtd);
7aa65bfd 3989 struct nand_flash_dev *type;
5844feea
BN
3990 int ret;
3991
44ec23c9 3992 if (nand_get_flash_node(chip)) {
3e63b26b 3993 /* MTD can automatically handle DT partitions, etc. */
44ec23c9 3994 mtd_set_of_node(mtd, nand_get_flash_node(chip));
3e63b26b 3995
44ec23c9 3996 ret = nand_dt_init(mtd, chip, nand_get_flash_node(chip));
5844feea
BN
3997 if (ret)
3998 return ret;
3999 }
7aa65bfd 4000
7aa65bfd 4001 /* Set the default functions */
bb77082f 4002 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
4003
4004 /* Read the flash type */
bb77082f
CZ
4005 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4006 &nand_dev_id, table);
7aa65bfd
TG
4007
4008 if (IS_ERR(type)) {
b1c6e6db 4009 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 4010 pr_warn("No NAND device found\n");
ace4dfee 4011 chip->select_chip(mtd, -1);
7aa65bfd 4012 return PTR_ERR(type);
1da177e4
LT
4013 }
4014
07300164
HS
4015 chip->select_chip(mtd, -1);
4016
7aa65bfd 4017 /* Check for a chip array */
e0c7d767 4018 for (i = 1; i < maxchips; i++) {
ace4dfee 4019 chip->select_chip(mtd, i);
ef89a880
KB
4020 /* See comment in nand_get_flash_type for reset */
4021 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 4022 /* Send the command for reading device ID */
ace4dfee 4023 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 4024 /* Read manufacturer and device IDs */
ace4dfee 4025 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
4026 nand_dev_id != chip->read_byte(mtd)) {
4027 chip->select_chip(mtd, -1);
1da177e4 4028 break;
07300164
HS
4029 }
4030 chip->select_chip(mtd, -1);
1da177e4
LT
4031 }
4032 if (i > 1)
20171642 4033 pr_info("%d chips detected\n", i);
61b03bd7 4034
1da177e4 4035 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
4036 chip->numchips = i;
4037 mtd->size = i * chip->chipsize;
7aa65bfd 4038
3b85c321
DW
4039 return 0;
4040}
7351d3a5 4041EXPORT_SYMBOL(nand_scan_ident);
3b85c321 4042
67a9ad9b
EG
4043/*
4044 * Check if the chip configuration meet the datasheet requirements.
4045
4046 * If our configuration corrects A bits per B bytes and the minimum
4047 * required correction level is X bits per Y bytes, then we must ensure
4048 * both of the following are true:
4049 *
4050 * (1) A / B >= X / Y
4051 * (2) A >= X
4052 *
4053 * Requirement (1) ensures we can correct for the required bitflip density.
4054 * Requirement (2) ensures we can correct even when all bitflips are clumped
4055 * in the same sector.
4056 */
4057static bool nand_ecc_strength_good(struct mtd_info *mtd)
4058{
862eba51 4059 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
4060 struct nand_ecc_ctrl *ecc = &chip->ecc;
4061 int corr, ds_corr;
4062
4063 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4064 /* Not enough information */
4065 return true;
4066
4067 /*
4068 * We get the number of corrected bits per page to compare
4069 * the correction density.
4070 */
4071 corr = (mtd->writesize * ecc->strength) / ecc->size;
4072 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4073
4074 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4075}
3b85c321
DW
4076
4077/**
4078 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 4079 * @mtd: MTD device structure
3b85c321 4080 *
8b6e50c9
BN
4081 * This is the second phase of the normal nand_scan() function. It fills out
4082 * all the uninitialized function pointers with the defaults and scans for a
4083 * bad block table if appropriate.
3b85c321
DW
4084 */
4085int nand_scan_tail(struct mtd_info *mtd)
4086{
4087 int i;
862eba51 4088 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 4089 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 4090 struct nand_buffers *nbuf;
3b85c321 4091
e2414f4c
BN
4092 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4093 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4094 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4095
f02ea4e6
HS
4096 if (!(chip->options & NAND_OWN_BUFFERS)) {
4097 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4098 + mtd->oobsize * 3, GFP_KERNEL);
4099 if (!nbuf)
4100 return -ENOMEM;
4101 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4102 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4103 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4104
4105 chip->buffers = nbuf;
4106 } else {
4107 if (!chip->buffers)
4108 return -ENOMEM;
4109 }
4bf63fcb 4110
7dcdcbef 4111 /* Set the internal oob buffer location, just after the page data */
784f4d5e 4112 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 4113
7aa65bfd 4114 /*
8b6e50c9 4115 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 4116 */
97de79e0 4117 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 4118 switch (mtd->oobsize) {
1da177e4 4119 case 8:
97de79e0 4120 ecc->layout = &nand_oob_8;
1da177e4
LT
4121 break;
4122 case 16:
97de79e0 4123 ecc->layout = &nand_oob_16;
1da177e4
LT
4124 break;
4125 case 64:
97de79e0 4126 ecc->layout = &nand_oob_64;
1da177e4 4127 break;
81ec5364 4128 case 128:
97de79e0 4129 ecc->layout = &nand_oob_128;
81ec5364 4130 break;
1da177e4 4131 default:
d0370219
BN
4132 pr_warn("No oob scheme defined for oobsize %d\n",
4133 mtd->oobsize);
1da177e4
LT
4134 BUG();
4135 }
4136 }
61b03bd7 4137
956e944c
DW
4138 if (!chip->write_page)
4139 chip->write_page = nand_write_page;
4140
61b03bd7 4141 /*
8b6e50c9 4142 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 4143 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 4144 */
956e944c 4145
97de79e0 4146 switch (ecc->mode) {
6e0cb135
SN
4147 case NAND_ECC_HW_OOB_FIRST:
4148 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 4149 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
2ac63d90 4150 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6e0cb135
SN
4151 BUG();
4152 }
97de79e0
HS
4153 if (!ecc->read_page)
4154 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 4155
6dfc6d25 4156 case NAND_ECC_HW:
8b6e50c9 4157 /* Use standard hwecc read page function? */
97de79e0
HS
4158 if (!ecc->read_page)
4159 ecc->read_page = nand_read_page_hwecc;
4160 if (!ecc->write_page)
4161 ecc->write_page = nand_write_page_hwecc;
4162 if (!ecc->read_page_raw)
4163 ecc->read_page_raw = nand_read_page_raw;
4164 if (!ecc->write_page_raw)
4165 ecc->write_page_raw = nand_write_page_raw;
4166 if (!ecc->read_oob)
4167 ecc->read_oob = nand_read_oob_std;
4168 if (!ecc->write_oob)
4169 ecc->write_oob = nand_write_oob_std;
4170 if (!ecc->read_subpage)
4171 ecc->read_subpage = nand_read_subpage;
4172 if (!ecc->write_subpage)
4173 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 4174
6dfc6d25 4175 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
4176 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4177 (!ecc->read_page ||
4178 ecc->read_page == nand_read_page_hwecc ||
4179 !ecc->write_page ||
4180 ecc->write_page == nand_write_page_hwecc)) {
2ac63d90 4181 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6dfc6d25
TG
4182 BUG();
4183 }
8b6e50c9 4184 /* Use standard syndrome read/write page function? */
97de79e0
HS
4185 if (!ecc->read_page)
4186 ecc->read_page = nand_read_page_syndrome;
4187 if (!ecc->write_page)
4188 ecc->write_page = nand_write_page_syndrome;
4189 if (!ecc->read_page_raw)
4190 ecc->read_page_raw = nand_read_page_raw_syndrome;
4191 if (!ecc->write_page_raw)
4192 ecc->write_page_raw = nand_write_page_raw_syndrome;
4193 if (!ecc->read_oob)
4194 ecc->read_oob = nand_read_oob_syndrome;
4195 if (!ecc->write_oob)
4196 ecc->write_oob = nand_write_oob_syndrome;
4197
4198 if (mtd->writesize >= ecc->size) {
4199 if (!ecc->strength) {
e2788c98
MD
4200 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4201 BUG();
4202 }
6dfc6d25 4203 break;
e2788c98 4204 }
2ac63d90
RM
4205 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4206 ecc->size, mtd->writesize);
97de79e0 4207 ecc->mode = NAND_ECC_SOFT;
61b03bd7 4208
6dfc6d25 4209 case NAND_ECC_SOFT:
97de79e0
HS
4210 ecc->calculate = nand_calculate_ecc;
4211 ecc->correct = nand_correct_data;
4212 ecc->read_page = nand_read_page_swecc;
4213 ecc->read_subpage = nand_read_subpage;
4214 ecc->write_page = nand_write_page_swecc;
4215 ecc->read_page_raw = nand_read_page_raw;
4216 ecc->write_page_raw = nand_write_page_raw;
4217 ecc->read_oob = nand_read_oob_std;
4218 ecc->write_oob = nand_write_oob_std;
4219 if (!ecc->size)
4220 ecc->size = 256;
4221 ecc->bytes = 3;
4222 ecc->strength = 1;
1da177e4 4223 break;
61b03bd7 4224
193bd400
ID
4225 case NAND_ECC_SOFT_BCH:
4226 if (!mtd_nand_has_bch()) {
148256fa 4227 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
193bd400
ID
4228 BUG();
4229 }
97de79e0
HS
4230 ecc->calculate = nand_bch_calculate_ecc;
4231 ecc->correct = nand_bch_correct_data;
4232 ecc->read_page = nand_read_page_swecc;
4233 ecc->read_subpage = nand_read_subpage;
4234 ecc->write_page = nand_write_page_swecc;
4235 ecc->read_page_raw = nand_read_page_raw;
4236 ecc->write_page_raw = nand_write_page_raw;
4237 ecc->read_oob = nand_read_oob_std;
4238 ecc->write_oob = nand_write_oob_std;
193bd400 4239 /*
e0377cde
AS
4240 * Board driver should supply ecc.size and ecc.strength values
4241 * to select how many bits are correctable. Otherwise, default
4242 * to 4 bits for large page devices.
193bd400 4243 */
97de79e0
HS
4244 if (!ecc->size && (mtd->oobsize >= 64)) {
4245 ecc->size = 512;
e0377cde 4246 ecc->strength = 4;
193bd400 4247 }
e0377cde
AS
4248
4249 /* See nand_bch_init() for details. */
4250 ecc->bytes = DIV_ROUND_UP(
4251 ecc->strength * fls(8 * ecc->size), 8);
97de79e0
HS
4252 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4253 &ecc->layout);
4254 if (!ecc->priv) {
9a4d4d69 4255 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
4256 BUG();
4257 }
4258 break;
4259
61b03bd7 4260 case NAND_ECC_NONE:
2ac63d90 4261 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4262 ecc->read_page = nand_read_page_raw;
4263 ecc->write_page = nand_write_page_raw;
4264 ecc->read_oob = nand_read_oob_std;
4265 ecc->read_page_raw = nand_read_page_raw;
4266 ecc->write_page_raw = nand_write_page_raw;
4267 ecc->write_oob = nand_write_oob_std;
4268 ecc->size = mtd->writesize;
4269 ecc->bytes = 0;
4270 ecc->strength = 0;
1da177e4 4271 break;
956e944c 4272
1da177e4 4273 default:
97de79e0 4274 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 4275 BUG();
1da177e4 4276 }
61b03bd7 4277
9ce244b3 4278 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4279 if (!ecc->read_oob_raw)
4280 ecc->read_oob_raw = ecc->read_oob;
4281 if (!ecc->write_oob_raw)
4282 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4283
5bd34c09
TG
4284 /*
4285 * The number of bytes available for a client to place data into
8b6e50c9 4286 * the out of band area.
5bd34c09 4287 */
97de79e0
HS
4288 ecc->layout->oobavail = 0;
4289 for (i = 0; ecc->layout->oobfree[i].length
4290 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4291 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4292 mtd->oobavail = ecc->layout->oobavail;
5bd34c09 4293
54c39e9b
TP
4294 /* ECC sanity check: warn if it's too weak */
4295 if (!nand_ecc_strength_good(mtd))
4296 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4297 mtd->name);
67a9ad9b 4298
7aa65bfd
TG
4299 /*
4300 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4301 * mode.
7aa65bfd 4302 */
97de79e0
HS
4303 ecc->steps = mtd->writesize / ecc->size;
4304 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 4305 pr_warn("Invalid ECC parameters\n");
6dfc6d25 4306 BUG();
1da177e4 4307 }
97de79e0 4308 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4309
8b6e50c9 4310 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4311 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4312 switch (ecc->steps) {
29072b96
TG
4313 case 2:
4314 mtd->subpage_sft = 1;
4315 break;
4316 case 4:
4317 case 8:
81ec5364 4318 case 16:
29072b96
TG
4319 mtd->subpage_sft = 2;
4320 break;
4321 }
4322 }
4323 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4324
04bbd0ea 4325 /* Initialize state */
ace4dfee 4326 chip->state = FL_READY;
1da177e4 4327
1da177e4 4328 /* Invalidate the pagebuffer reference */
ace4dfee 4329 chip->pagebuf = -1;
1da177e4 4330
a5ff4f10 4331 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4332 switch (ecc->mode) {
4333 case NAND_ECC_SOFT:
4334 case NAND_ECC_SOFT_BCH:
4335 if (chip->page_shift > 9)
4336 chip->options |= NAND_SUBPAGE_READ;
4337 break;
4338
4339 default:
4340 break;
4341 }
a5ff4f10 4342
1da177e4 4343 /* Fill in remaining MTD driver data */
963d1c28 4344 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4345 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4346 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4347 mtd->_erase = nand_erase;
4348 mtd->_point = NULL;
4349 mtd->_unpoint = NULL;
4350 mtd->_read = nand_read;
4351 mtd->_write = nand_write;
4352 mtd->_panic_write = panic_nand_write;
4353 mtd->_read_oob = nand_read_oob;
4354 mtd->_write_oob = nand_write_oob;
4355 mtd->_sync = nand_sync;
4356 mtd->_lock = NULL;
4357 mtd->_unlock = NULL;
4358 mtd->_suspend = nand_suspend;
4359 mtd->_resume = nand_resume;
72ea4036 4360 mtd->_reboot = nand_shutdown;
8471bb73 4361 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4362 mtd->_block_isbad = nand_block_isbad;
4363 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4364 mtd->writebufsize = mtd->writesize;
1da177e4 4365
6a918bad 4366 /* propagate ecc info to mtd_info */
97de79e0
HS
4367 mtd->ecclayout = ecc->layout;
4368 mtd->ecc_strength = ecc->strength;
4369 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4370 /*
4371 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4372 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4373 * properly set.
4374 */
4375 if (!mtd->bitflip_threshold)
240181fd 4376 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 4377
0040bf38 4378 /* Check, if we should skip the bad block table scan */
ace4dfee 4379 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4380 return 0;
1da177e4
LT
4381
4382 /* Build bad block table */
ace4dfee 4383 return chip->scan_bbt(mtd);
1da177e4 4384}
7351d3a5 4385EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4386
8b6e50c9
BN
4387/*
4388 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4389 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4390 * to call us from in-kernel code if the core NAND support is modular.
4391 */
3b85c321
DW
4392#ifdef MODULE
4393#define caller_is_module() (1)
4394#else
4395#define caller_is_module() \
a6e6abd5 4396 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4397#endif
4398
4399/**
4400 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4401 * @mtd: MTD device structure
4402 * @maxchips: number of chips to scan for
3b85c321 4403 *
8b6e50c9
BN
4404 * This fills out all the uninitialized function pointers with the defaults.
4405 * The flash ID is read and the mtd/chip structures are filled with the
4406 * appropriate values. The mtd->owner field must be set to the module of the
4407 * caller.
3b85c321
DW
4408 */
4409int nand_scan(struct mtd_info *mtd, int maxchips)
4410{
4411 int ret;
4412
4413 /* Many callers got this wrong, so check for it for a while... */
4414 if (!mtd->owner && caller_is_module()) {
d0370219 4415 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4416 BUG();
4417 }
4418
5e81e88a 4419 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4420 if (!ret)
4421 ret = nand_scan_tail(mtd);
4422 return ret;
4423}
7351d3a5 4424EXPORT_SYMBOL(nand_scan);
3b85c321 4425
1da177e4 4426/**
61b03bd7 4427 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4428 * @mtd: MTD device structure
4429 */
e0c7d767 4430void nand_release(struct mtd_info *mtd)
1da177e4 4431{
862eba51 4432 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 4433
193bd400
ID
4434 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4435 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4436
5ffcaf3d 4437 mtd_device_unregister(mtd);
1da177e4 4438
fa671646 4439 /* Free bad block table memory */
ace4dfee 4440 kfree(chip->bbt);
4bf63fcb
DW
4441 if (!(chip->options & NAND_OWN_BUFFERS))
4442 kfree(chip->buffers);
58373ff0
BN
4443
4444 /* Free bad block descriptor memory */
4445 if (chip->badblock_pattern && chip->badblock_pattern->options
4446 & NAND_BBT_DYNAMICSTRUCT)
4447 kfree(chip->badblock_pattern);
1da177e4 4448}
e0c7d767 4449EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
4450
4451static int __init nand_base_init(void)
4452{
4453 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4454 return 0;
4455}
4456
4457static void __exit nand_base_exit(void)
4458{
4459 led_trigger_unregister_simple(nand_led_trigger);
4460}
4461
4462module_init(nand_base_init);
4463module_exit(nand_base_exit);
4464
e0c7d767 4465MODULE_LICENSE("GPL");
7351d3a5
FF
4466MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4467MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4468MODULE_DESCRIPTION("Generic NAND flash driver code");