mtd: s3c2410: Fix potential NULL pointer dereference error
[linux-2.6-block.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 24 * if we have HW ECC support.
1da177e4
LT
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
ace4dfee 96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 97 int new_state);
1da177e4 98
8593fbc6
TG
99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 struct mtd_oob_ops *ops);
101
d470a97c 102/*
8e87d782 103 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
104 * compiled away when LED support is disabled.
105 */
106DEFINE_LED_TRIGGER(nand_led_trigger);
107
6fe5a6ac
VS
108static int check_offs_len(struct mtd_info *mtd,
109 loff_t ofs, uint64_t len)
110{
111 struct nand_chip *chip = mtd->priv;
112 int ret = 0;
113
114 /* Start address must align on block boundary */
115 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 116 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
117 ret = -EINVAL;
118 }
119
120 /* Length must align on block boundary */
121 if (len & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 122 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
123 ret = -EINVAL;
124 }
125
6fe5a6ac
VS
126 return ret;
127}
128
1da177e4
LT
129/**
130 * nand_release_device - [GENERIC] release chip
8b6e50c9 131 * @mtd: MTD device structure
61b03bd7 132 *
8b6e50c9 133 * Deselect, release chip lock and wake up anyone waiting on the device.
1da177e4 134 */
e0c7d767 135static void nand_release_device(struct mtd_info *mtd)
1da177e4 136{
ace4dfee 137 struct nand_chip *chip = mtd->priv;
1da177e4
LT
138
139 /* De-select the NAND device */
ace4dfee 140 chip->select_chip(mtd, -1);
0dfc6246 141
a36ed299 142 /* Release the controller and the chip */
ace4dfee
TG
143 spin_lock(&chip->controller->lock);
144 chip->controller->active = NULL;
145 chip->state = FL_READY;
146 wake_up(&chip->controller->wq);
147 spin_unlock(&chip->controller->lock);
1da177e4
LT
148}
149
150/**
151 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 152 * @mtd: MTD device structure
1da177e4 153 *
7854d3f7 154 * Default read function for 8bit buswidth
1da177e4 155 */
58dd8f2b 156static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 157{
ace4dfee
TG
158 struct nand_chip *chip = mtd->priv;
159 return readb(chip->IO_ADDR_R);
1da177e4
LT
160}
161
1da177e4
LT
162/**
163 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
7854d3f7 164 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 165 * @mtd: MTD device structure
1da177e4 166 *
7854d3f7
BN
167 * Default read function for 16bit buswidth with endianness conversion.
168 *
1da177e4 169 */
58dd8f2b 170static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 171{
ace4dfee
TG
172 struct nand_chip *chip = mtd->priv;
173 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
174}
175
1da177e4
LT
176/**
177 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 178 * @mtd: MTD device structure
1da177e4 179 *
7854d3f7 180 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
181 */
182static u16 nand_read_word(struct mtd_info *mtd)
183{
ace4dfee
TG
184 struct nand_chip *chip = mtd->priv;
185 return readw(chip->IO_ADDR_R);
1da177e4
LT
186}
187
1da177e4
LT
188/**
189 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
190 * @mtd: MTD device structure
191 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
192 *
193 * Default select function for 1 chip devices.
194 */
ace4dfee 195static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 196{
ace4dfee
TG
197 struct nand_chip *chip = mtd->priv;
198
199 switch (chipnr) {
1da177e4 200 case -1:
ace4dfee 201 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
202 break;
203 case 0:
1da177e4
LT
204 break;
205
206 default:
207 BUG();
208 }
209}
210
211/**
212 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
213 * @mtd: MTD device structure
214 * @buf: data buffer
215 * @len: number of bytes to write
1da177e4 216 *
7854d3f7 217 * Default write function for 8bit buswidth.
1da177e4 218 */
58dd8f2b 219static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
220{
221 int i;
ace4dfee 222 struct nand_chip *chip = mtd->priv;
1da177e4 223
e0c7d767 224 for (i = 0; i < len; i++)
ace4dfee 225 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
226}
227
228/**
61b03bd7 229 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
230 * @mtd: MTD device structure
231 * @buf: buffer to store date
232 * @len: number of bytes to read
1da177e4 233 *
7854d3f7 234 * Default read function for 8bit buswidth.
1da177e4 235 */
58dd8f2b 236static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
237{
238 int i;
ace4dfee 239 struct nand_chip *chip = mtd->priv;
1da177e4 240
e0c7d767 241 for (i = 0; i < len; i++)
ace4dfee 242 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
243}
244
1da177e4
LT
245/**
246 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
247 * @mtd: MTD device structure
248 * @buf: data buffer
249 * @len: number of bytes to write
1da177e4 250 *
7854d3f7 251 * Default write function for 16bit buswidth.
1da177e4 252 */
58dd8f2b 253static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
254{
255 int i;
ace4dfee 256 struct nand_chip *chip = mtd->priv;
1da177e4
LT
257 u16 *p = (u16 *) buf;
258 len >>= 1;
61b03bd7 259
e0c7d767 260 for (i = 0; i < len; i++)
ace4dfee 261 writew(p[i], chip->IO_ADDR_W);
61b03bd7 262
1da177e4
LT
263}
264
265/**
61b03bd7 266 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
1da177e4 270 *
7854d3f7 271 * Default read function for 16bit buswidth.
1da177e4 272 */
58dd8f2b 273static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
274{
275 int i;
ace4dfee 276 struct nand_chip *chip = mtd->priv;
1da177e4
LT
277 u16 *p = (u16 *) buf;
278 len >>= 1;
279
e0c7d767 280 for (i = 0; i < len; i++)
ace4dfee 281 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
282}
283
1da177e4
LT
284/**
285 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
286 * @mtd: MTD device structure
287 * @ofs: offset from device start
288 * @getchip: 0, if the chip is already selected
1da177e4 289 *
61b03bd7 290 * Check, if the block is bad.
1da177e4
LT
291 */
292static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
293{
cdbec050 294 int page, chipnr, res = 0, i = 0;
ace4dfee 295 struct nand_chip *chip = mtd->priv;
1da177e4
LT
296 u16 bad;
297
5fb1549d 298 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
299 ofs += mtd->erasesize - mtd->writesize;
300
1a12f46a
TK
301 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
302
1da177e4 303 if (getchip) {
ace4dfee 304 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 305
ace4dfee 306 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
307
308 /* Select the NAND device */
ace4dfee 309 chip->select_chip(mtd, chipnr);
1a12f46a 310 }
1da177e4 311
cdbec050
BN
312 do {
313 if (chip->options & NAND_BUSWIDTH_16) {
314 chip->cmdfunc(mtd, NAND_CMD_READOOB,
315 chip->badblockpos & 0xFE, page);
316 bad = cpu_to_le16(chip->read_word(mtd));
317 if (chip->badblockpos & 0x1)
318 bad >>= 8;
319 else
320 bad &= 0xFF;
321 } else {
322 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
323 page);
324 bad = chip->read_byte(mtd);
325 }
326
327 if (likely(chip->badblockbits == 8))
328 res = bad != 0xFF;
e0b58d0a 329 else
cdbec050
BN
330 res = hweight8(bad) < chip->badblockbits;
331 ofs += mtd->writesize;
332 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
333 i++;
334 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 335
ace4dfee 336 if (getchip)
1da177e4 337 nand_release_device(mtd);
61b03bd7 338
1da177e4
LT
339 return res;
340}
341
342/**
343 * nand_default_block_markbad - [DEFAULT] mark a block bad
8b6e50c9
BN
344 * @mtd: MTD device structure
345 * @ofs: offset from device start
1da177e4 346 *
8b6e50c9 347 * This is the default implementation, which can be overridden by a hardware
e2414f4c
BN
348 * specific driver. We try operations in the following order, according to our
349 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
350 * (1) erase the affected block, to allow OOB marker to be written cleanly
351 * (2) update in-memory BBT
352 * (3) write bad block marker to OOB area of affected block
353 * (4) update flash-based BBT
354 * Note that we retain the first error encountered in (3) or (4), finish the
355 * procedures, and dump the error in the end.
1da177e4
LT
356*/
357static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
358{
ace4dfee 359 struct nand_chip *chip = mtd->priv;
58dd8f2b 360 uint8_t buf[2] = { 0, 0 };
e2414f4c
BN
361 int block, res, ret = 0, i = 0;
362 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
61b03bd7 363
e2414f4c 364 if (write_oob) {
00918429
BN
365 struct erase_info einfo;
366
367 /* Attempt erase before marking OOB */
368 memset(&einfo, 0, sizeof(einfo));
369 einfo.mtd = mtd;
370 einfo.addr = ofs;
371 einfo.len = 1 << chip->phys_erase_shift;
372 nand_erase_nand(mtd, &einfo, 0);
373 }
374
1da177e4 375 /* Get block number */
4226b510 376 block = (int)(ofs >> chip->bbt_erase_shift);
e2414f4c 377 /* Mark block bad in memory-based BBT */
ace4dfee
TG
378 if (chip->bbt)
379 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4 380
e2414f4c
BN
381 /* Write bad block marker to OOB */
382 if (write_oob) {
4a89ff88 383 struct mtd_oob_ops ops;
df698621 384 loff_t wr_ofs = ofs;
4a89ff88 385
c0b8ba7b 386 nand_get_device(chip, mtd, FL_WRITING);
f1a28c02 387
4a89ff88
BN
388 ops.datbuf = NULL;
389 ops.oobbuf = buf;
85443319
BN
390 ops.ooboffs = chip->badblockpos;
391 if (chip->options & NAND_BUSWIDTH_16) {
392 ops.ooboffs &= ~0x01;
393 ops.len = ops.ooblen = 2;
394 } else {
395 ops.len = ops.ooblen = 1;
396 }
23b1a99b 397 ops.mode = MTD_OPS_PLACE_OOB;
df698621 398
e2414f4c 399 /* Write to first/last page(s) if necessary */
df698621
BN
400 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
401 wr_ofs += mtd->erasesize - mtd->writesize;
02ed70bb 402 do {
e2414f4c
BN
403 res = nand_do_write_oob(mtd, wr_ofs, &ops);
404 if (!ret)
405 ret = res;
02ed70bb 406
02ed70bb 407 i++;
df698621 408 wr_ofs += mtd->writesize;
e2414f4c 409 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
02ed70bb 410
c0b8ba7b 411 nand_release_device(mtd);
f1a28c02 412 }
e2414f4c
BN
413
414 /* Update flash-based bad block table */
415 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
416 res = nand_update_bbt(mtd, ofs);
417 if (!ret)
418 ret = res;
419 }
420
f1a28c02
TG
421 if (!ret)
422 mtd->ecc_stats.badblocks++;
c0b8ba7b 423
f1a28c02 424 return ret;
1da177e4
LT
425}
426
61b03bd7 427/**
1da177e4 428 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 429 * @mtd: MTD device structure
1da177e4 430 *
8b6e50c9
BN
431 * Check, if the device is write protected. The function expects, that the
432 * device is already selected.
1da177e4 433 */
e0c7d767 434static int nand_check_wp(struct mtd_info *mtd)
1da177e4 435{
ace4dfee 436 struct nand_chip *chip = mtd->priv;
93edbad6 437
8b6e50c9 438 /* Broken xD cards report WP despite being writable */
93edbad6
ML
439 if (chip->options & NAND_BROKEN_XD)
440 return 0;
441
1da177e4 442 /* Check the WP bit */
ace4dfee
TG
443 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
444 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
445}
446
447/**
448 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
449 * @mtd: MTD device structure
450 * @ofs: offset from device start
451 * @getchip: 0, if the chip is already selected
452 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
453 *
454 * Check, if the block is bad. Either by reading the bad block table or
455 * calling of the scan function.
456 */
2c0a2bed
TG
457static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
458 int allowbbt)
1da177e4 459{
ace4dfee 460 struct nand_chip *chip = mtd->priv;
61b03bd7 461
ace4dfee
TG
462 if (!chip->bbt)
463 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 464
1da177e4 465 /* Return info from the table */
e0c7d767 466 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
467}
468
2af7c653
SK
469/**
470 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
471 * @mtd: MTD device structure
472 * @timeo: Timeout
2af7c653
SK
473 *
474 * Helper function for nand_wait_ready used when needing to wait in interrupt
475 * context.
476 */
477static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
478{
479 struct nand_chip *chip = mtd->priv;
480 int i;
481
482 /* Wait for the device to get ready */
483 for (i = 0; i < timeo; i++) {
484 if (chip->dev_ready(mtd))
485 break;
486 touch_softlockup_watchdog();
487 mdelay(1);
488 }
489}
490
7854d3f7 491/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 492void nand_wait_ready(struct mtd_info *mtd)
3b88775c 493{
ace4dfee 494 struct nand_chip *chip = mtd->priv;
e0c7d767 495 unsigned long timeo = jiffies + 2;
3b88775c 496
2af7c653
SK
497 /* 400ms timeout */
498 if (in_interrupt() || oops_in_progress)
499 return panic_nand_wait_ready(mtd, 400);
500
8fe833c1 501 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 502 /* Wait until command is processed or timeout occurs */
3b88775c 503 do {
ace4dfee 504 if (chip->dev_ready(mtd))
8fe833c1 505 break;
8446f1d3 506 touch_softlockup_watchdog();
61b03bd7 507 } while (time_before(jiffies, timeo));
8fe833c1 508 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 509}
4b648b02 510EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 511
1da177e4
LT
512/**
513 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
514 * @mtd: MTD device structure
515 * @command: the command to be sent
516 * @column: the column address for this command, -1 if none
517 * @page_addr: the page address for this command, -1 if none
1da177e4 518 *
8b6e50c9
BN
519 * Send command to NAND device. This function is used for small page devices
520 * (256/512 Bytes per page).
1da177e4 521 */
7abd3ef9
TG
522static void nand_command(struct mtd_info *mtd, unsigned int command,
523 int column, int page_addr)
1da177e4 524{
ace4dfee 525 register struct nand_chip *chip = mtd->priv;
7abd3ef9 526 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 527
8b6e50c9 528 /* Write out the command to the device */
1da177e4
LT
529 if (command == NAND_CMD_SEQIN) {
530 int readcmd;
531
28318776 532 if (column >= mtd->writesize) {
1da177e4 533 /* OOB area */
28318776 534 column -= mtd->writesize;
1da177e4
LT
535 readcmd = NAND_CMD_READOOB;
536 } else if (column < 256) {
537 /* First 256 bytes --> READ0 */
538 readcmd = NAND_CMD_READ0;
539 } else {
540 column -= 256;
541 readcmd = NAND_CMD_READ1;
542 }
ace4dfee 543 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 544 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 545 }
ace4dfee 546 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 547
8b6e50c9 548 /* Address cycle, when necessary */
7abd3ef9
TG
549 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
550 /* Serially input address */
551 if (column != -1) {
552 /* Adjust columns for 16 bit buswidth */
ace4dfee 553 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 554 column >>= 1;
ace4dfee 555 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
556 ctrl &= ~NAND_CTRL_CHANGE;
557 }
558 if (page_addr != -1) {
ace4dfee 559 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 560 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 561 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 562 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
563 if (chip->chipsize > (32 << 20))
564 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 565 }
ace4dfee 566 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
567
568 /*
8b6e50c9
BN
569 * Program and erase have their own busy handlers status and sequential
570 * in needs no delay
e0c7d767 571 */
1da177e4 572 switch (command) {
61b03bd7 573
1da177e4
LT
574 case NAND_CMD_PAGEPROG:
575 case NAND_CMD_ERASE1:
576 case NAND_CMD_ERASE2:
577 case NAND_CMD_SEQIN:
578 case NAND_CMD_STATUS:
579 return;
580
581 case NAND_CMD_RESET:
ace4dfee 582 if (chip->dev_ready)
1da177e4 583 break;
ace4dfee
TG
584 udelay(chip->chip_delay);
585 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 586 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
587 chip->cmd_ctrl(mtd,
588 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
589 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
590 ;
1da177e4
LT
591 return;
592
e0c7d767 593 /* This applies to read commands */
1da177e4 594 default:
61b03bd7 595 /*
1da177e4
LT
596 * If we don't have access to the busy pin, we apply the given
597 * command delay
e0c7d767 598 */
ace4dfee
TG
599 if (!chip->dev_ready) {
600 udelay(chip->chip_delay);
1da177e4 601 return;
61b03bd7 602 }
1da177e4 603 }
8b6e50c9
BN
604 /*
605 * Apply this short delay always to ensure that we do wait tWB in
606 * any case on any machine.
607 */
e0c7d767 608 ndelay(100);
3b88775c
TG
609
610 nand_wait_ready(mtd);
1da177e4
LT
611}
612
613/**
614 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
615 * @mtd: MTD device structure
616 * @command: the command to be sent
617 * @column: the column address for this command, -1 if none
618 * @page_addr: the page address for this command, -1 if none
1da177e4 619 *
7abd3ef9 620 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
621 * devices. We don't have the separate regions as we have in the small page
622 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 623 */
7abd3ef9
TG
624static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
625 int column, int page_addr)
1da177e4 626{
ace4dfee 627 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
628
629 /* Emulate NAND_CMD_READOOB */
630 if (command == NAND_CMD_READOOB) {
28318776 631 column += mtd->writesize;
1da177e4
LT
632 command = NAND_CMD_READ0;
633 }
61b03bd7 634
7abd3ef9 635 /* Command latch cycle */
ace4dfee 636 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 637 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
638
639 if (column != -1 || page_addr != -1) {
7abd3ef9 640 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
641
642 /* Serially input address */
643 if (column != -1) {
644 /* Adjust columns for 16 bit buswidth */
ace4dfee 645 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 646 column >>= 1;
ace4dfee 647 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 648 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 649 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 650 }
1da177e4 651 if (page_addr != -1) {
ace4dfee
TG
652 chip->cmd_ctrl(mtd, page_addr, ctrl);
653 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 654 NAND_NCE | NAND_ALE);
1da177e4 655 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
656 if (chip->chipsize > (128 << 20))
657 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 658 NAND_NCE | NAND_ALE);
1da177e4 659 }
1da177e4 660 }
ace4dfee 661 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
662
663 /*
8b6e50c9
BN
664 * Program and erase have their own busy handlers status, sequential
665 * in, and deplete1 need no delay.
30f464b7 666 */
1da177e4 667 switch (command) {
61b03bd7 668
1da177e4
LT
669 case NAND_CMD_CACHEDPROG:
670 case NAND_CMD_PAGEPROG:
671 case NAND_CMD_ERASE1:
672 case NAND_CMD_ERASE2:
673 case NAND_CMD_SEQIN:
7bc3312b 674 case NAND_CMD_RNDIN:
1da177e4 675 case NAND_CMD_STATUS:
30f464b7 676 case NAND_CMD_DEPLETE1:
1da177e4
LT
677 return;
678
30f464b7
DM
679 case NAND_CMD_STATUS_ERROR:
680 case NAND_CMD_STATUS_ERROR0:
681 case NAND_CMD_STATUS_ERROR1:
682 case NAND_CMD_STATUS_ERROR2:
683 case NAND_CMD_STATUS_ERROR3:
8b6e50c9 684 /* Read error status commands require only a short delay */
ace4dfee 685 udelay(chip->chip_delay);
30f464b7 686 return;
1da177e4
LT
687
688 case NAND_CMD_RESET:
ace4dfee 689 if (chip->dev_ready)
1da177e4 690 break;
ace4dfee 691 udelay(chip->chip_delay);
12efdde3
TG
692 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
693 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
694 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
695 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
696 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
697 ;
1da177e4
LT
698 return;
699
7bc3312b
TG
700 case NAND_CMD_RNDOUT:
701 /* No ready / busy check necessary */
702 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
703 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
704 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
705 NAND_NCE | NAND_CTRL_CHANGE);
706 return;
707
1da177e4 708 case NAND_CMD_READ0:
12efdde3
TG
709 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
710 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
711 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
712 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 713
e0c7d767 714 /* This applies to read commands */
1da177e4 715 default:
61b03bd7 716 /*
1da177e4 717 * If we don't have access to the busy pin, we apply the given
8b6e50c9 718 * command delay.
e0c7d767 719 */
ace4dfee
TG
720 if (!chip->dev_ready) {
721 udelay(chip->chip_delay);
1da177e4 722 return;
61b03bd7 723 }
1da177e4 724 }
3b88775c 725
8b6e50c9
BN
726 /*
727 * Apply this short delay always to ensure that we do wait tWB in
728 * any case on any machine.
729 */
e0c7d767 730 ndelay(100);
3b88775c
TG
731
732 nand_wait_ready(mtd);
1da177e4
LT
733}
734
2af7c653
SK
735/**
736 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
737 * @chip: the nand chip descriptor
738 * @mtd: MTD device structure
739 * @new_state: the state which is requested
2af7c653
SK
740 *
741 * Used when in panic, no locks are taken.
742 */
743static void panic_nand_get_device(struct nand_chip *chip,
744 struct mtd_info *mtd, int new_state)
745{
7854d3f7 746 /* Hardware controller shared among independent devices */
2af7c653
SK
747 chip->controller->active = chip;
748 chip->state = new_state;
749}
750
1da177e4
LT
751/**
752 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
753 * @chip: the nand chip descriptor
754 * @mtd: MTD device structure
755 * @new_state: the state which is requested
1da177e4
LT
756 *
757 * Get the device and lock it for exclusive access
758 */
2c0a2bed 759static int
ace4dfee 760nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 761{
ace4dfee
TG
762 spinlock_t *lock = &chip->controller->lock;
763 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 764 DECLARE_WAITQUEUE(wait, current);
7351d3a5 765retry:
0dfc6246
TG
766 spin_lock(lock);
767
b8b3ee9a 768 /* Hardware controller shared among independent devices */
ace4dfee
TG
769 if (!chip->controller->active)
770 chip->controller->active = chip;
a36ed299 771
ace4dfee
TG
772 if (chip->controller->active == chip && chip->state == FL_READY) {
773 chip->state = new_state;
0dfc6246 774 spin_unlock(lock);
962034f4
VW
775 return 0;
776 }
777 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
778 if (chip->controller->active->state == FL_PM_SUSPENDED) {
779 chip->state = FL_PM_SUSPENDED;
780 spin_unlock(lock);
781 return 0;
6b0d9a84 782 }
0dfc6246
TG
783 }
784 set_current_state(TASK_UNINTERRUPTIBLE);
785 add_wait_queue(wq, &wait);
786 spin_unlock(lock);
787 schedule();
788 remove_wait_queue(wq, &wait);
1da177e4
LT
789 goto retry;
790}
791
2af7c653 792/**
8b6e50c9
BN
793 * panic_nand_wait - [GENERIC] wait until the command is done
794 * @mtd: MTD device structure
795 * @chip: NAND chip structure
796 * @timeo: timeout
2af7c653
SK
797 *
798 * Wait for command done. This is a helper function for nand_wait used when
799 * we are in interrupt context. May happen when in panic and trying to write
b595076a 800 * an oops through mtdoops.
2af7c653
SK
801 */
802static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
803 unsigned long timeo)
804{
805 int i;
806 for (i = 0; i < timeo; i++) {
807 if (chip->dev_ready) {
808 if (chip->dev_ready(mtd))
809 break;
810 } else {
811 if (chip->read_byte(mtd) & NAND_STATUS_READY)
812 break;
813 }
814 mdelay(1);
f8ac0414 815 }
2af7c653
SK
816}
817
1da177e4 818/**
8b6e50c9
BN
819 * nand_wait - [DEFAULT] wait until the command is done
820 * @mtd: MTD device structure
821 * @chip: NAND chip structure
1da177e4 822 *
8b6e50c9
BN
823 * Wait for command done. This applies to erase and program only. Erase can
824 * take up to 400ms and program up to 20ms according to general NAND and
825 * SmartMedia specs.
844d3b42 826 */
7bc3312b 827static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
828{
829
e0c7d767 830 unsigned long timeo = jiffies;
7bc3312b 831 int status, state = chip->state;
61b03bd7 832
1da177e4 833 if (state == FL_ERASING)
e0c7d767 834 timeo += (HZ * 400) / 1000;
1da177e4 835 else
e0c7d767 836 timeo += (HZ * 20) / 1000;
1da177e4 837
8fe833c1
RP
838 led_trigger_event(nand_led_trigger, LED_FULL);
839
8b6e50c9
BN
840 /*
841 * Apply this short delay always to ensure that we do wait tWB in any
842 * case on any machine.
843 */
e0c7d767 844 ndelay(100);
1da177e4 845
ace4dfee
TG
846 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
847 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 848 else
ace4dfee 849 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 850
2af7c653
SK
851 if (in_interrupt() || oops_in_progress)
852 panic_nand_wait(mtd, chip, timeo);
853 else {
854 while (time_before(jiffies, timeo)) {
855 if (chip->dev_ready) {
856 if (chip->dev_ready(mtd))
857 break;
858 } else {
859 if (chip->read_byte(mtd) & NAND_STATUS_READY)
860 break;
861 }
862 cond_resched();
1da177e4 863 }
1da177e4 864 }
8fe833c1
RP
865 led_trigger_event(nand_led_trigger, LED_OFF);
866
ace4dfee 867 status = (int)chip->read_byte(mtd);
f251b8df
MC
868 /* This can happen if in case of timeout or buggy dev_ready */
869 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
870 return status;
871}
872
7d70f334 873/**
b6d676db 874 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
875 * @mtd: mtd info
876 * @ofs: offset to start unlock from
877 * @len: length to unlock
8b6e50c9
BN
878 * @invert: when = 0, unlock the range of blocks within the lower and
879 * upper boundary address
880 * when = 1, unlock the range of blocks outside the boundaries
881 * of the lower and upper boundary address
7d70f334 882 *
8b6e50c9 883 * Returs unlock status.
7d70f334
VS
884 */
885static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
886 uint64_t len, int invert)
887{
888 int ret = 0;
889 int status, page;
890 struct nand_chip *chip = mtd->priv;
891
892 /* Submit address of first page to unlock */
893 page = ofs >> chip->page_shift;
894 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
895
896 /* Submit address of last page to unlock */
897 page = (ofs + len) >> chip->page_shift;
898 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
899 (page | invert) & chip->pagemask);
900
901 /* Call wait ready function */
902 status = chip->waitfunc(mtd, chip);
7d70f334 903 /* See if device thinks it succeeded */
74830966 904 if (status & NAND_STATUS_FAIL) {
289c0522 905 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
906 __func__, status);
907 ret = -EIO;
908 }
909
910 return ret;
911}
912
913/**
b6d676db 914 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
915 * @mtd: mtd info
916 * @ofs: offset to start unlock from
917 * @len: length to unlock
7d70f334 918 *
8b6e50c9 919 * Returns unlock status.
7d70f334
VS
920 */
921int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
922{
923 int ret = 0;
924 int chipnr;
925 struct nand_chip *chip = mtd->priv;
926
289c0522 927 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
928 __func__, (unsigned long long)ofs, len);
929
930 if (check_offs_len(mtd, ofs, len))
931 ret = -EINVAL;
932
933 /* Align to last block address if size addresses end of the device */
934 if (ofs + len == mtd->size)
935 len -= mtd->erasesize;
936
937 nand_get_device(chip, mtd, FL_UNLOCKING);
938
939 /* Shift to get chip number */
940 chipnr = ofs >> chip->chip_shift;
941
942 chip->select_chip(mtd, chipnr);
943
944 /* Check, if it is write protected */
945 if (nand_check_wp(mtd)) {
289c0522 946 pr_debug("%s: device is write protected!\n",
7d70f334
VS
947 __func__);
948 ret = -EIO;
949 goto out;
950 }
951
952 ret = __nand_unlock(mtd, ofs, len, 0);
953
954out:
7d70f334
VS
955 nand_release_device(mtd);
956
957 return ret;
958}
7351d3a5 959EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
960
961/**
b6d676db 962 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
963 * @mtd: mtd info
964 * @ofs: offset to start unlock from
965 * @len: length to unlock
7d70f334 966 *
8b6e50c9
BN
967 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
968 * have this feature, but it allows only to lock all blocks, not for specified
969 * range for block. Implementing 'lock' feature by making use of 'unlock', for
970 * now.
7d70f334 971 *
8b6e50c9 972 * Returns lock status.
7d70f334
VS
973 */
974int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
975{
976 int ret = 0;
977 int chipnr, status, page;
978 struct nand_chip *chip = mtd->priv;
979
289c0522 980 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
981 __func__, (unsigned long long)ofs, len);
982
983 if (check_offs_len(mtd, ofs, len))
984 ret = -EINVAL;
985
986 nand_get_device(chip, mtd, FL_LOCKING);
987
988 /* Shift to get chip number */
989 chipnr = ofs >> chip->chip_shift;
990
991 chip->select_chip(mtd, chipnr);
992
993 /* Check, if it is write protected */
994 if (nand_check_wp(mtd)) {
289c0522 995 pr_debug("%s: device is write protected!\n",
7d70f334
VS
996 __func__);
997 status = MTD_ERASE_FAILED;
998 ret = -EIO;
999 goto out;
1000 }
1001
1002 /* Submit address of first page to lock */
1003 page = ofs >> chip->page_shift;
1004 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1005
1006 /* Call wait ready function */
1007 status = chip->waitfunc(mtd, chip);
7d70f334 1008 /* See if device thinks it succeeded */
74830966 1009 if (status & NAND_STATUS_FAIL) {
289c0522 1010 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1011 __func__, status);
1012 ret = -EIO;
1013 goto out;
1014 }
1015
1016 ret = __nand_unlock(mtd, ofs, len, 0x1);
1017
1018out:
7d70f334
VS
1019 nand_release_device(mtd);
1020
1021 return ret;
1022}
7351d3a5 1023EXPORT_SYMBOL(nand_lock);
7d70f334 1024
8593fbc6 1025/**
7854d3f7 1026 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1027 * @mtd: mtd info structure
1028 * @chip: nand chip info structure
1029 * @buf: buffer to store read data
1fbb938d 1030 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1031 * @page: page number to read
52ff49df 1032 *
7854d3f7 1033 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1034 */
1035static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1036 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1037{
1038 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1039 if (oob_required)
1040 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1041 return 0;
1042}
1043
52ff49df 1044/**
7854d3f7 1045 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1046 * @mtd: mtd info structure
1047 * @chip: nand chip info structure
1048 * @buf: buffer to store read data
1fbb938d 1049 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1050 * @page: page number to read
52ff49df
DB
1051 *
1052 * We need a special oob layout and handling even when OOB isn't used.
1053 */
7351d3a5 1054static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1055 struct nand_chip *chip, uint8_t *buf,
1056 int oob_required, int page)
52ff49df
DB
1057{
1058 int eccsize = chip->ecc.size;
1059 int eccbytes = chip->ecc.bytes;
1060 uint8_t *oob = chip->oob_poi;
1061 int steps, size;
1062
1063 for (steps = chip->ecc.steps; steps > 0; steps--) {
1064 chip->read_buf(mtd, buf, eccsize);
1065 buf += eccsize;
1066
1067 if (chip->ecc.prepad) {
1068 chip->read_buf(mtd, oob, chip->ecc.prepad);
1069 oob += chip->ecc.prepad;
1070 }
1071
1072 chip->read_buf(mtd, oob, eccbytes);
1073 oob += eccbytes;
1074
1075 if (chip->ecc.postpad) {
1076 chip->read_buf(mtd, oob, chip->ecc.postpad);
1077 oob += chip->ecc.postpad;
1078 }
1079 }
1080
1081 size = mtd->oobsize - (oob - chip->oob_poi);
1082 if (size)
1083 chip->read_buf(mtd, oob, size);
1084
1085 return 0;
1086}
1087
1da177e4 1088/**
7854d3f7 1089 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1090 * @mtd: mtd info structure
1091 * @chip: nand chip info structure
1092 * @buf: buffer to store read data
1fbb938d 1093 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1094 * @page: page number to read
068e3c0a 1095 */
f5bbdacc 1096static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1097 uint8_t *buf, int oob_required, int page)
1da177e4 1098{
f5bbdacc
TG
1099 int i, eccsize = chip->ecc.size;
1100 int eccbytes = chip->ecc.bytes;
1101 int eccsteps = chip->ecc.steps;
1102 uint8_t *p = buf;
4bf63fcb
DW
1103 uint8_t *ecc_calc = chip->buffers->ecccalc;
1104 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1105 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1106 unsigned int max_bitflips = 0;
f5bbdacc 1107
1fbb938d 1108 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1109
1110 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1111 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1112
1113 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1114 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1115
1116 eccsteps = chip->ecc.steps;
1117 p = buf;
1118
1119 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1120 int stat;
1121
1122 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1123 if (stat < 0) {
f5bbdacc 1124 mtd->ecc_stats.failed++;
3f91e94f 1125 } else {
f5bbdacc 1126 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1127 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1128 }
f5bbdacc 1129 }
3f91e94f 1130 return max_bitflips;
22c60f5f 1131}
1da177e4 1132
3d459559 1133/**
7854d3f7 1134 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
8b6e50c9
BN
1135 * @mtd: mtd info structure
1136 * @chip: nand chip info structure
1137 * @data_offs: offset of requested data within the page
1138 * @readlen: data length
1139 * @bufpoi: buffer to store read data
3d459559 1140 */
7351d3a5
FF
1141static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1142 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1143{
1144 int start_step, end_step, num_steps;
1145 uint32_t *eccpos = chip->ecc.layout->eccpos;
1146 uint8_t *p;
1147 int data_col_addr, i, gaps = 0;
1148 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1149 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1150 int index = 0;
3f91e94f 1151 unsigned int max_bitflips = 0;
3d459559 1152
7854d3f7 1153 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1154 start_step = data_offs / chip->ecc.size;
1155 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1156 num_steps = end_step - start_step + 1;
1157
8b6e50c9 1158 /* Data size aligned to ECC ecc.size */
3d459559
AK
1159 datafrag_len = num_steps * chip->ecc.size;
1160 eccfrag_len = num_steps * chip->ecc.bytes;
1161
1162 data_col_addr = start_step * chip->ecc.size;
1163 /* If we read not a page aligned data */
1164 if (data_col_addr != 0)
1165 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1166
1167 p = bufpoi + data_col_addr;
1168 chip->read_buf(mtd, p, datafrag_len);
1169
8b6e50c9 1170 /* Calculate ECC */
3d459559
AK
1171 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1172 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1173
8b6e50c9
BN
1174 /*
1175 * The performance is faster if we position offsets according to
7854d3f7 1176 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1177 */
3d459559
AK
1178 for (i = 0; i < eccfrag_len - 1; i++) {
1179 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1180 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1181 gaps = 1;
1182 break;
1183 }
1184 }
1185 if (gaps) {
1186 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1187 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1188 } else {
8b6e50c9 1189 /*
7854d3f7 1190 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1191 * about buswidth alignment in read_buf.
1192 */
7351d3a5
FF
1193 index = start_step * chip->ecc.bytes;
1194
1195 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1196 aligned_len = eccfrag_len;
7351d3a5 1197 if (eccpos[index] & (busw - 1))
3d459559 1198 aligned_len++;
7351d3a5 1199 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1200 aligned_len++;
1201
7351d3a5
FF
1202 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1203 mtd->writesize + aligned_pos, -1);
3d459559
AK
1204 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1205 }
1206
1207 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1208 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1209
1210 p = bufpoi + data_col_addr;
1211 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1212 int stat;
1213
7351d3a5
FF
1214 stat = chip->ecc.correct(mtd, p,
1215 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1216 if (stat < 0) {
3d459559 1217 mtd->ecc_stats.failed++;
3f91e94f 1218 } else {
3d459559 1219 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1220 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1221 }
3d459559 1222 }
3f91e94f 1223 return max_bitflips;
3d459559
AK
1224}
1225
068e3c0a 1226/**
7854d3f7 1227 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1228 * @mtd: mtd info structure
1229 * @chip: nand chip info structure
1230 * @buf: buffer to store read data
1fbb938d 1231 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1232 * @page: page number to read
068e3c0a 1233 *
7854d3f7 1234 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1235 */
f5bbdacc 1236static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1237 uint8_t *buf, int oob_required, int page)
1da177e4 1238{
f5bbdacc
TG
1239 int i, eccsize = chip->ecc.size;
1240 int eccbytes = chip->ecc.bytes;
1241 int eccsteps = chip->ecc.steps;
1242 uint8_t *p = buf;
4bf63fcb
DW
1243 uint8_t *ecc_calc = chip->buffers->ecccalc;
1244 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1245 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1246 unsigned int max_bitflips = 0;
f5bbdacc
TG
1247
1248 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1249 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1250 chip->read_buf(mtd, p, eccsize);
1251 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1252 }
f75e5097 1253 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1254
f5bbdacc 1255 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1256 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1257
f5bbdacc
TG
1258 eccsteps = chip->ecc.steps;
1259 p = buf;
61b03bd7 1260
f5bbdacc
TG
1261 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1262 int stat;
1da177e4 1263
f5bbdacc 1264 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1265 if (stat < 0) {
f5bbdacc 1266 mtd->ecc_stats.failed++;
3f91e94f 1267 } else {
f5bbdacc 1268 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1269 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1270 }
f5bbdacc 1271 }
3f91e94f 1272 return max_bitflips;
f5bbdacc 1273}
1da177e4 1274
6e0cb135 1275/**
7854d3f7 1276 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1277 * @mtd: mtd info structure
1278 * @chip: nand chip info structure
1279 * @buf: buffer to store read data
1fbb938d 1280 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1281 * @page: page number to read
6e0cb135 1282 *
8b6e50c9
BN
1283 * Hardware ECC for large page chips, require OOB to be read first. For this
1284 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1285 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1286 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1287 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1288 */
1289static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1290 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1291{
1292 int i, eccsize = chip->ecc.size;
1293 int eccbytes = chip->ecc.bytes;
1294 int eccsteps = chip->ecc.steps;
1295 uint8_t *p = buf;
1296 uint8_t *ecc_code = chip->buffers->ecccode;
1297 uint32_t *eccpos = chip->ecc.layout->eccpos;
1298 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1299 unsigned int max_bitflips = 0;
6e0cb135
SN
1300
1301 /* Read the OOB area first */
1302 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1303 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1304 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1305
1306 for (i = 0; i < chip->ecc.total; i++)
1307 ecc_code[i] = chip->oob_poi[eccpos[i]];
1308
1309 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1310 int stat;
1311
1312 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1313 chip->read_buf(mtd, p, eccsize);
1314 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1315
1316 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1317 if (stat < 0) {
6e0cb135 1318 mtd->ecc_stats.failed++;
3f91e94f 1319 } else {
6e0cb135 1320 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1321 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1322 }
6e0cb135 1323 }
3f91e94f 1324 return max_bitflips;
6e0cb135
SN
1325}
1326
f5bbdacc 1327/**
7854d3f7 1328 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1329 * @mtd: mtd info structure
1330 * @chip: nand chip info structure
1331 * @buf: buffer to store read data
1fbb938d 1332 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1333 * @page: page number to read
f5bbdacc 1334 *
8b6e50c9
BN
1335 * The hw generator calculates the error syndrome automatically. Therefore we
1336 * need a special oob layout and handling.
f5bbdacc
TG
1337 */
1338static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1339 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1340{
1341 int i, eccsize = chip->ecc.size;
1342 int eccbytes = chip->ecc.bytes;
1343 int eccsteps = chip->ecc.steps;
1344 uint8_t *p = buf;
f75e5097 1345 uint8_t *oob = chip->oob_poi;
3f91e94f 1346 unsigned int max_bitflips = 0;
1da177e4 1347
f5bbdacc
TG
1348 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1349 int stat;
61b03bd7 1350
f5bbdacc
TG
1351 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1352 chip->read_buf(mtd, p, eccsize);
1da177e4 1353
f5bbdacc
TG
1354 if (chip->ecc.prepad) {
1355 chip->read_buf(mtd, oob, chip->ecc.prepad);
1356 oob += chip->ecc.prepad;
1357 }
1da177e4 1358
f5bbdacc
TG
1359 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1360 chip->read_buf(mtd, oob, eccbytes);
1361 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1362
3f91e94f 1363 if (stat < 0) {
f5bbdacc 1364 mtd->ecc_stats.failed++;
3f91e94f 1365 } else {
f5bbdacc 1366 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1367 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1368 }
61b03bd7 1369
f5bbdacc 1370 oob += eccbytes;
1da177e4 1371
f5bbdacc
TG
1372 if (chip->ecc.postpad) {
1373 chip->read_buf(mtd, oob, chip->ecc.postpad);
1374 oob += chip->ecc.postpad;
61b03bd7 1375 }
f5bbdacc 1376 }
1da177e4 1377
f5bbdacc 1378 /* Calculate remaining oob bytes */
7e4178f9 1379 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1380 if (i)
1381 chip->read_buf(mtd, oob, i);
61b03bd7 1382
3f91e94f 1383 return max_bitflips;
f5bbdacc 1384}
1da177e4 1385
f5bbdacc 1386/**
7854d3f7 1387 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1388 * @chip: nand chip structure
1389 * @oob: oob destination address
1390 * @ops: oob ops structure
1391 * @len: size of oob to transfer
8593fbc6
TG
1392 */
1393static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1394 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1395{
f8ac0414 1396 switch (ops->mode) {
8593fbc6 1397
0612b9dd
BN
1398 case MTD_OPS_PLACE_OOB:
1399 case MTD_OPS_RAW:
8593fbc6
TG
1400 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1401 return oob + len;
1402
0612b9dd 1403 case MTD_OPS_AUTO_OOB: {
8593fbc6 1404 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1405 uint32_t boffs = 0, roffs = ops->ooboffs;
1406 size_t bytes = 0;
8593fbc6 1407
f8ac0414 1408 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1409 /* Read request not from offset 0? */
7bc3312b
TG
1410 if (unlikely(roffs)) {
1411 if (roffs >= free->length) {
1412 roffs -= free->length;
1413 continue;
1414 }
1415 boffs = free->offset + roffs;
1416 bytes = min_t(size_t, len,
1417 (free->length - roffs));
1418 roffs = 0;
1419 } else {
1420 bytes = min_t(size_t, len, free->length);
1421 boffs = free->offset;
1422 }
1423 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1424 oob += bytes;
1425 }
1426 return oob;
1427 }
1428 default:
1429 BUG();
1430 }
1431 return NULL;
1432}
1433
1434/**
7854d3f7 1435 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1436 * @mtd: MTD device structure
1437 * @from: offset to read from
1438 * @ops: oob ops structure
f5bbdacc
TG
1439 *
1440 * Internal function. Called with chip held.
1441 */
8593fbc6
TG
1442static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1443 struct mtd_oob_ops *ops)
f5bbdacc 1444{
e47f3db4 1445 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc
TG
1446 struct nand_chip *chip = mtd->priv;
1447 struct mtd_ecc_stats stats;
f5bbdacc 1448 int ret = 0;
8593fbc6 1449 uint32_t readlen = ops->len;
7014568b 1450 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1451 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1452 mtd->oobavail : mtd->oobsize;
1453
8593fbc6 1454 uint8_t *bufpoi, *oob, *buf;
edbc4540 1455 unsigned int max_bitflips = 0;
1da177e4 1456
f5bbdacc 1457 stats = mtd->ecc_stats;
1da177e4 1458
f5bbdacc
TG
1459 chipnr = (int)(from >> chip->chip_shift);
1460 chip->select_chip(mtd, chipnr);
61b03bd7 1461
f5bbdacc
TG
1462 realpage = (int)(from >> chip->page_shift);
1463 page = realpage & chip->pagemask;
1da177e4 1464
f5bbdacc 1465 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1466
8593fbc6
TG
1467 buf = ops->datbuf;
1468 oob = ops->oobbuf;
e47f3db4 1469 oob_required = oob ? 1 : 0;
8593fbc6 1470
f8ac0414 1471 while (1) {
f5bbdacc
TG
1472 bytes = min(mtd->writesize - col, readlen);
1473 aligned = (bytes == mtd->writesize);
61b03bd7 1474
8b6e50c9 1475 /* Is the current page in the buffer? */
8593fbc6 1476 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1477 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1478
c00a0991 1479 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1480
edbc4540
MD
1481 /*
1482 * Now read the page into the buffer. Absent an error,
1483 * the read methods return max bitflips per ecc step.
1484 */
0612b9dd 1485 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1486 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1487 oob_required,
1488 page);
a5ff4f10
JW
1489 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1490 !oob)
7351d3a5
FF
1491 ret = chip->ecc.read_subpage(mtd, chip,
1492 col, bytes, bufpoi);
956e944c 1493 else
46a8cf2d 1494 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1495 oob_required, page);
6d77b9d0
BN
1496 if (ret < 0) {
1497 if (!aligned)
1498 /* Invalidate page cache */
1499 chip->pagebuf = -1;
1da177e4 1500 break;
6d77b9d0 1501 }
f5bbdacc 1502
edbc4540
MD
1503 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1504
f5bbdacc
TG
1505 /* Transfer not aligned data */
1506 if (!aligned) {
a5ff4f10 1507 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
6d77b9d0 1508 !(mtd->ecc_stats.failed - stats.failed) &&
edbc4540 1509 (ops->mode != MTD_OPS_RAW)) {
3d459559 1510 chip->pagebuf = realpage;
edbc4540
MD
1511 chip->pagebuf_bitflips = ret;
1512 } else {
6d77b9d0
BN
1513 /* Invalidate page cache */
1514 chip->pagebuf = -1;
edbc4540 1515 }
4bf63fcb 1516 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1517 }
1518
8593fbc6
TG
1519 buf += bytes;
1520
1521 if (unlikely(oob)) {
b64d39d8
ML
1522 int toread = min(oobreadlen, max_oobsize);
1523
1524 if (toread) {
1525 oob = nand_transfer_oob(chip,
1526 oob, ops, toread);
1527 oobreadlen -= toread;
1528 }
8593fbc6 1529 }
8593fbc6 1530 } else {
4bf63fcb 1531 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1532 buf += bytes;
edbc4540
MD
1533 max_bitflips = max_t(unsigned int, max_bitflips,
1534 chip->pagebuf_bitflips);
8593fbc6 1535 }
1da177e4 1536
f5bbdacc 1537 readlen -= bytes;
61b03bd7 1538
f5bbdacc 1539 if (!readlen)
61b03bd7 1540 break;
1da177e4 1541
8b6e50c9 1542 /* For subsequent reads align to page boundary */
1da177e4
LT
1543 col = 0;
1544 /* Increment page address */
1545 realpage++;
1546
ace4dfee 1547 page = realpage & chip->pagemask;
1da177e4
LT
1548 /* Check, if we cross a chip boundary */
1549 if (!page) {
1550 chipnr++;
ace4dfee
TG
1551 chip->select_chip(mtd, -1);
1552 chip->select_chip(mtd, chipnr);
1da177e4 1553 }
1da177e4
LT
1554 }
1555
8593fbc6 1556 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1557 if (oob)
1558 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1559
3f91e94f 1560 if (ret < 0)
f5bbdacc
TG
1561 return ret;
1562
9a1fcdfd
TG
1563 if (mtd->ecc_stats.failed - stats.failed)
1564 return -EBADMSG;
1565
edbc4540 1566 return max_bitflips;
f5bbdacc
TG
1567}
1568
1569/**
25985edc 1570 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1571 * @mtd: MTD device structure
1572 * @from: offset to read from
1573 * @len: number of bytes to read
1574 * @retlen: pointer to variable to store the number of read bytes
1575 * @buf: the databuffer to put data
f5bbdacc 1576 *
8b6e50c9 1577 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1578 */
1579static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1580 size_t *retlen, uint8_t *buf)
1581{
8593fbc6 1582 struct nand_chip *chip = mtd->priv;
4a89ff88 1583 struct mtd_oob_ops ops;
f5bbdacc
TG
1584 int ret;
1585
8593fbc6 1586 nand_get_device(chip, mtd, FL_READING);
4a89ff88
BN
1587 ops.len = len;
1588 ops.datbuf = buf;
1589 ops.oobbuf = NULL;
11041ae6 1590 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1591 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1592 *retlen = ops.retlen;
f5bbdacc 1593 nand_release_device(mtd);
f5bbdacc 1594 return ret;
1da177e4
LT
1595}
1596
7bc3312b 1597/**
7854d3f7 1598 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1599 * @mtd: mtd info structure
1600 * @chip: nand chip info structure
1601 * @page: page number to read
7bc3312b
TG
1602 */
1603static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1604 int page)
7bc3312b 1605{
5c2ffb11 1606 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1607 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1608 return 0;
7bc3312b
TG
1609}
1610
1611/**
7854d3f7 1612 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1613 * with syndromes
8b6e50c9
BN
1614 * @mtd: mtd info structure
1615 * @chip: nand chip info structure
1616 * @page: page number to read
7bc3312b
TG
1617 */
1618static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1619 int page)
7bc3312b
TG
1620{
1621 uint8_t *buf = chip->oob_poi;
1622 int length = mtd->oobsize;
1623 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1624 int eccsize = chip->ecc.size;
1625 uint8_t *bufpoi = buf;
1626 int i, toread, sndrnd = 0, pos;
1627
1628 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1629 for (i = 0; i < chip->ecc.steps; i++) {
1630 if (sndrnd) {
1631 pos = eccsize + i * (eccsize + chunk);
1632 if (mtd->writesize > 512)
1633 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1634 else
1635 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1636 } else
1637 sndrnd = 1;
1638 toread = min_t(int, length, chunk);
1639 chip->read_buf(mtd, bufpoi, toread);
1640 bufpoi += toread;
1641 length -= toread;
1642 }
1643 if (length > 0)
1644 chip->read_buf(mtd, bufpoi, length);
1645
5c2ffb11 1646 return 0;
7bc3312b
TG
1647}
1648
1649/**
7854d3f7 1650 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1651 * @mtd: mtd info structure
1652 * @chip: nand chip info structure
1653 * @page: page number to write
7bc3312b
TG
1654 */
1655static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1656 int page)
1657{
1658 int status = 0;
1659 const uint8_t *buf = chip->oob_poi;
1660 int length = mtd->oobsize;
1661
1662 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1663 chip->write_buf(mtd, buf, length);
1664 /* Send command to program the OOB data */
1665 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1666
1667 status = chip->waitfunc(mtd, chip);
1668
0d420f9d 1669 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1670}
1671
1672/**
7854d3f7 1673 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1674 * with syndrome - only for large page flash
1675 * @mtd: mtd info structure
1676 * @chip: nand chip info structure
1677 * @page: page number to write
7bc3312b
TG
1678 */
1679static int nand_write_oob_syndrome(struct mtd_info *mtd,
1680 struct nand_chip *chip, int page)
1681{
1682 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1683 int eccsize = chip->ecc.size, length = mtd->oobsize;
1684 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1685 const uint8_t *bufpoi = chip->oob_poi;
1686
1687 /*
1688 * data-ecc-data-ecc ... ecc-oob
1689 * or
1690 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1691 */
1692 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1693 pos = steps * (eccsize + chunk);
1694 steps = 0;
1695 } else
8b0036ee 1696 pos = eccsize;
7bc3312b
TG
1697
1698 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1699 for (i = 0; i < steps; i++) {
1700 if (sndcmd) {
1701 if (mtd->writesize <= 512) {
1702 uint32_t fill = 0xFFFFFFFF;
1703
1704 len = eccsize;
1705 while (len > 0) {
1706 int num = min_t(int, len, 4);
1707 chip->write_buf(mtd, (uint8_t *)&fill,
1708 num);
1709 len -= num;
1710 }
1711 } else {
1712 pos = eccsize + i * (eccsize + chunk);
1713 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1714 }
1715 } else
1716 sndcmd = 1;
1717 len = min_t(int, length, chunk);
1718 chip->write_buf(mtd, bufpoi, len);
1719 bufpoi += len;
1720 length -= len;
1721 }
1722 if (length > 0)
1723 chip->write_buf(mtd, bufpoi, length);
1724
1725 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1726 status = chip->waitfunc(mtd, chip);
1727
1728 return status & NAND_STATUS_FAIL ? -EIO : 0;
1729}
1730
1da177e4 1731/**
7854d3f7 1732 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1733 * @mtd: MTD device structure
1734 * @from: offset to read from
1735 * @ops: oob operations description structure
1da177e4 1736 *
8b6e50c9 1737 * NAND read out-of-band data from the spare area.
1da177e4 1738 */
8593fbc6
TG
1739static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1740 struct mtd_oob_ops *ops)
1da177e4 1741{
c00a0991 1742 int page, realpage, chipnr;
ace4dfee 1743 struct nand_chip *chip = mtd->priv;
041e4575 1744 struct mtd_ecc_stats stats;
7014568b
VW
1745 int readlen = ops->ooblen;
1746 int len;
7bc3312b 1747 uint8_t *buf = ops->oobbuf;
1951f2f7 1748 int ret = 0;
61b03bd7 1749
289c0522 1750 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1751 __func__, (unsigned long long)from, readlen);
1da177e4 1752
041e4575
BN
1753 stats = mtd->ecc_stats;
1754
0612b9dd 1755 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1756 len = chip->ecc.layout->oobavail;
03736155
AH
1757 else
1758 len = mtd->oobsize;
1759
1760 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1761 pr_debug("%s: attempt to start read outside oob\n",
1762 __func__);
03736155
AH
1763 return -EINVAL;
1764 }
1765
1766 /* Do not allow reads past end of device */
1767 if (unlikely(from >= mtd->size ||
1768 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1769 (from >> chip->page_shift)) * len)) {
289c0522
BN
1770 pr_debug("%s: attempt to read beyond end of device\n",
1771 __func__);
03736155
AH
1772 return -EINVAL;
1773 }
7014568b 1774
7314e9e7 1775 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1776 chip->select_chip(mtd, chipnr);
1da177e4 1777
7314e9e7
TG
1778 /* Shift to get page */
1779 realpage = (int)(from >> chip->page_shift);
1780 page = realpage & chip->pagemask;
1da177e4 1781
f8ac0414 1782 while (1) {
0612b9dd 1783 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1784 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1785 else
1951f2f7
SL
1786 ret = chip->ecc.read_oob(mtd, chip, page);
1787
1788 if (ret < 0)
1789 break;
7014568b
VW
1790
1791 len = min(len, readlen);
1792 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1793
7014568b 1794 readlen -= len;
0d420f9d
SZ
1795 if (!readlen)
1796 break;
1797
7314e9e7
TG
1798 /* Increment page address */
1799 realpage++;
1800
1801 page = realpage & chip->pagemask;
1802 /* Check, if we cross a chip boundary */
1803 if (!page) {
1804 chipnr++;
1805 chip->select_chip(mtd, -1);
1806 chip->select_chip(mtd, chipnr);
1da177e4
LT
1807 }
1808 }
1809
1951f2f7
SL
1810 ops->oobretlen = ops->ooblen - readlen;
1811
1812 if (ret < 0)
1813 return ret;
041e4575
BN
1814
1815 if (mtd->ecc_stats.failed - stats.failed)
1816 return -EBADMSG;
1817
1818 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1819}
1820
1821/**
8593fbc6 1822 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1823 * @mtd: MTD device structure
1824 * @from: offset to read from
1825 * @ops: oob operation description structure
1da177e4 1826 *
8b6e50c9 1827 * NAND read data and/or out-of-band data.
1da177e4 1828 */
8593fbc6
TG
1829static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1830 struct mtd_oob_ops *ops)
1da177e4 1831{
ace4dfee 1832 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1833 int ret = -ENOTSUPP;
1834
1835 ops->retlen = 0;
1da177e4
LT
1836
1837 /* Do not allow reads past end of device */
7014568b 1838 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1839 pr_debug("%s: attempt to read beyond end of device\n",
1840 __func__);
1da177e4
LT
1841 return -EINVAL;
1842 }
1843
ace4dfee 1844 nand_get_device(chip, mtd, FL_READING);
1da177e4 1845
f8ac0414 1846 switch (ops->mode) {
0612b9dd
BN
1847 case MTD_OPS_PLACE_OOB:
1848 case MTD_OPS_AUTO_OOB:
1849 case MTD_OPS_RAW:
8593fbc6 1850 break;
1da177e4 1851
8593fbc6
TG
1852 default:
1853 goto out;
1854 }
1da177e4 1855
8593fbc6
TG
1856 if (!ops->datbuf)
1857 ret = nand_do_read_oob(mtd, from, ops);
1858 else
1859 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1860
7351d3a5 1861out:
8593fbc6
TG
1862 nand_release_device(mtd);
1863 return ret;
1864}
61b03bd7 1865
1da177e4 1866
8593fbc6 1867/**
7854d3f7 1868 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1869 * @mtd: mtd info structure
1870 * @chip: nand chip info structure
1871 * @buf: data buffer
1fbb938d 1872 * @oob_required: must write chip->oob_poi to OOB
52ff49df 1873 *
7854d3f7 1874 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1875 */
fdbad98d 1876static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1877 const uint8_t *buf, int oob_required)
8593fbc6
TG
1878{
1879 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1880 if (oob_required)
1881 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1882
1883 return 0;
1da177e4
LT
1884}
1885
52ff49df 1886/**
7854d3f7 1887 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1888 * @mtd: mtd info structure
1889 * @chip: nand chip info structure
1890 * @buf: data buffer
1fbb938d 1891 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
1892 *
1893 * We need a special oob layout and handling even when ECC isn't checked.
1894 */
fdbad98d 1895static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 1896 struct nand_chip *chip,
1fbb938d 1897 const uint8_t *buf, int oob_required)
52ff49df
DB
1898{
1899 int eccsize = chip->ecc.size;
1900 int eccbytes = chip->ecc.bytes;
1901 uint8_t *oob = chip->oob_poi;
1902 int steps, size;
1903
1904 for (steps = chip->ecc.steps; steps > 0; steps--) {
1905 chip->write_buf(mtd, buf, eccsize);
1906 buf += eccsize;
1907
1908 if (chip->ecc.prepad) {
1909 chip->write_buf(mtd, oob, chip->ecc.prepad);
1910 oob += chip->ecc.prepad;
1911 }
1912
1913 chip->read_buf(mtd, oob, eccbytes);
1914 oob += eccbytes;
1915
1916 if (chip->ecc.postpad) {
1917 chip->write_buf(mtd, oob, chip->ecc.postpad);
1918 oob += chip->ecc.postpad;
1919 }
1920 }
1921
1922 size = mtd->oobsize - (oob - chip->oob_poi);
1923 if (size)
1924 chip->write_buf(mtd, oob, size);
fdbad98d
JW
1925
1926 return 0;
52ff49df 1927}
9223a456 1928/**
7854d3f7 1929 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
1930 * @mtd: mtd info structure
1931 * @chip: nand chip info structure
1932 * @buf: data buffer
1fbb938d 1933 * @oob_required: must write chip->oob_poi to OOB
9223a456 1934 */
fdbad98d 1935static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1936 const uint8_t *buf, int oob_required)
9223a456 1937{
f75e5097
TG
1938 int i, eccsize = chip->ecc.size;
1939 int eccbytes = chip->ecc.bytes;
1940 int eccsteps = chip->ecc.steps;
4bf63fcb 1941 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1942 const uint8_t *p = buf;
8b099a39 1943 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1944
7854d3f7 1945 /* Software ECC calculation */
8593fbc6
TG
1946 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1947 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1948
8593fbc6
TG
1949 for (i = 0; i < chip->ecc.total; i++)
1950 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1951
fdbad98d 1952 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 1953}
9223a456 1954
f75e5097 1955/**
7854d3f7 1956 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
1957 * @mtd: mtd info structure
1958 * @chip: nand chip info structure
1959 * @buf: data buffer
1fbb938d 1960 * @oob_required: must write chip->oob_poi to OOB
f75e5097 1961 */
fdbad98d 1962static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1963 const uint8_t *buf, int oob_required)
f75e5097
TG
1964{
1965 int i, eccsize = chip->ecc.size;
1966 int eccbytes = chip->ecc.bytes;
1967 int eccsteps = chip->ecc.steps;
4bf63fcb 1968 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1969 const uint8_t *p = buf;
8b099a39 1970 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1971
f75e5097
TG
1972 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1973 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1974 chip->write_buf(mtd, p, eccsize);
f75e5097 1975 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1976 }
1977
f75e5097
TG
1978 for (i = 0; i < chip->ecc.total; i++)
1979 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1980
1981 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1982
1983 return 0;
9223a456
TG
1984}
1985
61b03bd7 1986/**
7854d3f7 1987 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
1988 * @mtd: mtd info structure
1989 * @chip: nand chip info structure
1990 * @buf: data buffer
1fbb938d 1991 * @oob_required: must write chip->oob_poi to OOB
1da177e4 1992 *
8b6e50c9
BN
1993 * The hw generator calculates the error syndrome automatically. Therefore we
1994 * need a special oob layout and handling.
f75e5097 1995 */
fdbad98d 1996static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1997 struct nand_chip *chip,
1998 const uint8_t *buf, int oob_required)
1da177e4 1999{
f75e5097
TG
2000 int i, eccsize = chip->ecc.size;
2001 int eccbytes = chip->ecc.bytes;
2002 int eccsteps = chip->ecc.steps;
2003 const uint8_t *p = buf;
2004 uint8_t *oob = chip->oob_poi;
1da177e4 2005
f75e5097 2006 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2007
f75e5097
TG
2008 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2009 chip->write_buf(mtd, p, eccsize);
61b03bd7 2010
f75e5097
TG
2011 if (chip->ecc.prepad) {
2012 chip->write_buf(mtd, oob, chip->ecc.prepad);
2013 oob += chip->ecc.prepad;
2014 }
2015
2016 chip->ecc.calculate(mtd, p, oob);
2017 chip->write_buf(mtd, oob, eccbytes);
2018 oob += eccbytes;
2019
2020 if (chip->ecc.postpad) {
2021 chip->write_buf(mtd, oob, chip->ecc.postpad);
2022 oob += chip->ecc.postpad;
1da177e4 2023 }
1da177e4 2024 }
f75e5097
TG
2025
2026 /* Calculate remaining oob bytes */
7e4178f9 2027 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2028 if (i)
2029 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2030
2031 return 0;
f75e5097
TG
2032}
2033
2034/**
956e944c 2035 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2036 * @mtd: MTD device structure
2037 * @chip: NAND chip descriptor
2038 * @buf: the data to write
1fbb938d 2039 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2040 * @page: page number to write
2041 * @cached: cached programming
2042 * @raw: use _raw version of write_page
f75e5097
TG
2043 */
2044static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d
BN
2045 const uint8_t *buf, int oob_required, int page,
2046 int cached, int raw)
f75e5097
TG
2047{
2048 int status;
2049
2050 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2051
956e944c 2052 if (unlikely(raw))
fdbad98d 2053 status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
956e944c 2054 else
fdbad98d
JW
2055 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2056
2057 if (status < 0)
2058 return status;
f75e5097
TG
2059
2060 /*
7854d3f7 2061 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2062 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2063 */
2064 cached = 0;
2065
2066 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2067
2068 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2069 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2070 /*
2071 * See if operation failed and additional status checks are
8b6e50c9 2072 * available.
f75e5097
TG
2073 */
2074 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2075 status = chip->errstat(mtd, chip, FL_WRITING, status,
2076 page);
2077
2078 if (status & NAND_STATUS_FAIL)
2079 return -EIO;
2080 } else {
2081 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2082 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2083 }
2084
f75e5097 2085 return 0;
1da177e4
LT
2086}
2087
8593fbc6 2088/**
7854d3f7 2089 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2090 * @mtd: MTD device structure
8b6e50c9
BN
2091 * @oob: oob data buffer
2092 * @len: oob data write length
2093 * @ops: oob ops structure
8593fbc6 2094 */
f722013e
TAA
2095static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2096 struct mtd_oob_ops *ops)
8593fbc6 2097{
f722013e
TAA
2098 struct nand_chip *chip = mtd->priv;
2099
2100 /*
2101 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2102 * data from a previous OOB read.
2103 */
2104 memset(chip->oob_poi, 0xff, mtd->oobsize);
2105
f8ac0414 2106 switch (ops->mode) {
8593fbc6 2107
0612b9dd
BN
2108 case MTD_OPS_PLACE_OOB:
2109 case MTD_OPS_RAW:
8593fbc6
TG
2110 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2111 return oob + len;
2112
0612b9dd 2113 case MTD_OPS_AUTO_OOB: {
8593fbc6 2114 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2115 uint32_t boffs = 0, woffs = ops->ooboffs;
2116 size_t bytes = 0;
8593fbc6 2117
f8ac0414 2118 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2119 /* Write request not from offset 0? */
7bc3312b
TG
2120 if (unlikely(woffs)) {
2121 if (woffs >= free->length) {
2122 woffs -= free->length;
2123 continue;
2124 }
2125 boffs = free->offset + woffs;
2126 bytes = min_t(size_t, len,
2127 (free->length - woffs));
2128 woffs = 0;
2129 } else {
2130 bytes = min_t(size_t, len, free->length);
2131 boffs = free->offset;
2132 }
8b0036ee 2133 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2134 oob += bytes;
2135 }
2136 return oob;
2137 }
2138 default:
2139 BUG();
2140 }
2141 return NULL;
2142}
2143
f8ac0414 2144#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2145
2146/**
7854d3f7 2147 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2148 * @mtd: MTD device structure
2149 * @to: offset to write to
2150 * @ops: oob operations description structure
1da177e4 2151 *
8b6e50c9 2152 * NAND write with ECC.
1da177e4 2153 */
8593fbc6
TG
2154static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2155 struct mtd_oob_ops *ops)
1da177e4 2156{
29072b96 2157 int chipnr, realpage, page, blockmask, column;
ace4dfee 2158 struct nand_chip *chip = mtd->priv;
8593fbc6 2159 uint32_t writelen = ops->len;
782ce79a
ML
2160
2161 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2162 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2163 mtd->oobavail : mtd->oobsize;
2164
8593fbc6
TG
2165 uint8_t *oob = ops->oobbuf;
2166 uint8_t *buf = ops->datbuf;
29072b96 2167 int ret, subpage;
e47f3db4 2168 int oob_required = oob ? 1 : 0;
1da177e4 2169
8593fbc6 2170 ops->retlen = 0;
29072b96
TG
2171 if (!writelen)
2172 return 0;
1da177e4 2173
8b6e50c9 2174 /* Reject writes, which are not page aligned */
8593fbc6 2175 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2176 pr_notice("%s: attempt to write non page aligned data\n",
2177 __func__);
1da177e4
LT
2178 return -EINVAL;
2179 }
2180
29072b96
TG
2181 column = to & (mtd->writesize - 1);
2182 subpage = column || (writelen & (mtd->writesize - 1));
2183
2184 if (subpage && oob)
2185 return -EINVAL;
1da177e4 2186
6a930961
TG
2187 chipnr = (int)(to >> chip->chip_shift);
2188 chip->select_chip(mtd, chipnr);
2189
1da177e4
LT
2190 /* Check, if it is write protected */
2191 if (nand_check_wp(mtd))
8593fbc6 2192 return -EIO;
1da177e4 2193
f75e5097
TG
2194 realpage = (int)(to >> chip->page_shift);
2195 page = realpage & chip->pagemask;
2196 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2197
2198 /* Invalidate the page cache, when we write to the cached page */
2199 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2200 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2201 chip->pagebuf = -1;
61b03bd7 2202
782ce79a 2203 /* Don't allow multipage oob writes with offset */
cdcf12b2 2204 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
782ce79a
ML
2205 return -EINVAL;
2206
f8ac0414 2207 while (1) {
29072b96 2208 int bytes = mtd->writesize;
f75e5097 2209 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2210 uint8_t *wbuf = buf;
2211
8b6e50c9 2212 /* Partial page write? */
29072b96
TG
2213 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2214 cached = 0;
2215 bytes = min_t(int, bytes - column, (int) writelen);
2216 chip->pagebuf = -1;
2217 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2218 memcpy(&chip->buffers->databuf[column], buf, bytes);
2219 wbuf = chip->buffers->databuf;
2220 }
1da177e4 2221
782ce79a
ML
2222 if (unlikely(oob)) {
2223 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2224 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2225 oobwritelen -= len;
f722013e
TAA
2226 } else {
2227 /* We still need to erase leftover OOB data */
2228 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2229 }
8593fbc6 2230
e47f3db4
BN
2231 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2232 cached, (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2233 if (ret)
2234 break;
2235
2236 writelen -= bytes;
2237 if (!writelen)
2238 break;
2239
29072b96 2240 column = 0;
f75e5097
TG
2241 buf += bytes;
2242 realpage++;
2243
2244 page = realpage & chip->pagemask;
2245 /* Check, if we cross a chip boundary */
2246 if (!page) {
2247 chipnr++;
2248 chip->select_chip(mtd, -1);
2249 chip->select_chip(mtd, chipnr);
1da177e4
LT
2250 }
2251 }
8593fbc6 2252
8593fbc6 2253 ops->retlen = ops->len - writelen;
7014568b
VW
2254 if (unlikely(oob))
2255 ops->oobretlen = ops->ooblen;
1da177e4
LT
2256 return ret;
2257}
2258
2af7c653
SK
2259/**
2260 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2261 * @mtd: MTD device structure
2262 * @to: offset to write to
2263 * @len: number of bytes to write
2264 * @retlen: pointer to variable to store the number of written bytes
2265 * @buf: the data to write
2af7c653
SK
2266 *
2267 * NAND write with ECC. Used when performing writes in interrupt context, this
2268 * may for example be called by mtdoops when writing an oops while in panic.
2269 */
2270static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2271 size_t *retlen, const uint8_t *buf)
2272{
2273 struct nand_chip *chip = mtd->priv;
4a89ff88 2274 struct mtd_oob_ops ops;
2af7c653
SK
2275 int ret;
2276
8b6e50c9 2277 /* Wait for the device to get ready */
2af7c653
SK
2278 panic_nand_wait(mtd, chip, 400);
2279
8b6e50c9 2280 /* Grab the device */
2af7c653
SK
2281 panic_nand_get_device(chip, mtd, FL_WRITING);
2282
4a89ff88
BN
2283 ops.len = len;
2284 ops.datbuf = (uint8_t *)buf;
2285 ops.oobbuf = NULL;
11041ae6 2286 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2287
4a89ff88 2288 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2289
4a89ff88 2290 *retlen = ops.retlen;
2af7c653
SK
2291 return ret;
2292}
2293
f75e5097 2294/**
8593fbc6 2295 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2296 * @mtd: MTD device structure
2297 * @to: offset to write to
2298 * @len: number of bytes to write
2299 * @retlen: pointer to variable to store the number of written bytes
2300 * @buf: the data to write
f75e5097 2301 *
8b6e50c9 2302 * NAND write with ECC.
f75e5097 2303 */
8593fbc6
TG
2304static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2305 size_t *retlen, const uint8_t *buf)
f75e5097
TG
2306{
2307 struct nand_chip *chip = mtd->priv;
4a89ff88 2308 struct mtd_oob_ops ops;
f75e5097
TG
2309 int ret;
2310
7bc3312b 2311 nand_get_device(chip, mtd, FL_WRITING);
4a89ff88
BN
2312 ops.len = len;
2313 ops.datbuf = (uint8_t *)buf;
2314 ops.oobbuf = NULL;
11041ae6 2315 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2316 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2317 *retlen = ops.retlen;
f75e5097 2318 nand_release_device(mtd);
8593fbc6 2319 return ret;
f75e5097 2320}
7314e9e7 2321
1da177e4 2322/**
8593fbc6 2323 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2324 * @mtd: MTD device structure
2325 * @to: offset to write to
2326 * @ops: oob operation description structure
1da177e4 2327 *
8b6e50c9 2328 * NAND write out-of-band.
1da177e4 2329 */
8593fbc6
TG
2330static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2331 struct mtd_oob_ops *ops)
1da177e4 2332{
03736155 2333 int chipnr, page, status, len;
ace4dfee 2334 struct nand_chip *chip = mtd->priv;
1da177e4 2335
289c0522 2336 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2337 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2338
0612b9dd 2339 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2340 len = chip->ecc.layout->oobavail;
2341 else
2342 len = mtd->oobsize;
2343
1da177e4 2344 /* Do not allow write past end of page */
03736155 2345 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2346 pr_debug("%s: attempt to write past end of page\n",
2347 __func__);
1da177e4
LT
2348 return -EINVAL;
2349 }
2350
03736155 2351 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2352 pr_debug("%s: attempt to start write outside oob\n",
2353 __func__);
03736155
AH
2354 return -EINVAL;
2355 }
2356
775adc3d 2357 /* Do not allow write past end of device */
03736155
AH
2358 if (unlikely(to >= mtd->size ||
2359 ops->ooboffs + ops->ooblen >
2360 ((mtd->size >> chip->page_shift) -
2361 (to >> chip->page_shift)) * len)) {
289c0522
BN
2362 pr_debug("%s: attempt to write beyond end of device\n",
2363 __func__);
03736155
AH
2364 return -EINVAL;
2365 }
2366
7314e9e7 2367 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2368 chip->select_chip(mtd, chipnr);
1da177e4 2369
7314e9e7
TG
2370 /* Shift to get page */
2371 page = (int)(to >> chip->page_shift);
2372
2373 /*
2374 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2375 * of my DiskOnChip 2000 test units) will clear the whole data page too
2376 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2377 * it in the doc2000 driver in August 1999. dwmw2.
2378 */
ace4dfee 2379 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2380
2381 /* Check, if it is write protected */
2382 if (nand_check_wp(mtd))
8593fbc6 2383 return -EROFS;
61b03bd7 2384
1da177e4 2385 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2386 if (page == chip->pagebuf)
2387 chip->pagebuf = -1;
1da177e4 2388
f722013e 2389 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2390
0612b9dd 2391 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2392 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2393 else
2394 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2395
7bc3312b
TG
2396 if (status)
2397 return status;
1da177e4 2398
7014568b 2399 ops->oobretlen = ops->ooblen;
1da177e4 2400
7bc3312b 2401 return 0;
8593fbc6
TG
2402}
2403
2404/**
2405 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2406 * @mtd: MTD device structure
2407 * @to: offset to write to
2408 * @ops: oob operation description structure
8593fbc6
TG
2409 */
2410static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2411 struct mtd_oob_ops *ops)
2412{
8593fbc6
TG
2413 struct nand_chip *chip = mtd->priv;
2414 int ret = -ENOTSUPP;
2415
2416 ops->retlen = 0;
2417
2418 /* Do not allow writes past end of device */
7014568b 2419 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2420 pr_debug("%s: attempt to write beyond end of device\n",
2421 __func__);
8593fbc6
TG
2422 return -EINVAL;
2423 }
2424
7bc3312b 2425 nand_get_device(chip, mtd, FL_WRITING);
8593fbc6 2426
f8ac0414 2427 switch (ops->mode) {
0612b9dd
BN
2428 case MTD_OPS_PLACE_OOB:
2429 case MTD_OPS_AUTO_OOB:
2430 case MTD_OPS_RAW:
8593fbc6
TG
2431 break;
2432
2433 default:
2434 goto out;
2435 }
2436
2437 if (!ops->datbuf)
2438 ret = nand_do_write_oob(mtd, to, ops);
2439 else
2440 ret = nand_do_write_ops(mtd, to, ops);
2441
7351d3a5 2442out:
1da177e4 2443 nand_release_device(mtd);
1da177e4
LT
2444 return ret;
2445}
2446
1da177e4 2447/**
7854d3f7 2448 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2449 * @mtd: MTD device structure
2450 * @page: the page address of the block which will be erased
1da177e4 2451 *
8b6e50c9 2452 * Standard erase command for NAND chips.
1da177e4 2453 */
e0c7d767 2454static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2455{
ace4dfee 2456 struct nand_chip *chip = mtd->priv;
1da177e4 2457 /* Send commands to erase a block */
ace4dfee
TG
2458 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2459 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2460}
2461
2462/**
7854d3f7 2463 * multi_erase_cmd - [GENERIC] AND specific block erase command function
8b6e50c9
BN
2464 * @mtd: MTD device structure
2465 * @page: the page address of the block which will be erased
1da177e4 2466 *
8b6e50c9 2467 * AND multi block erase command function. Erase 4 consecutive blocks.
1da177e4 2468 */
e0c7d767 2469static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2470{
ace4dfee 2471 struct nand_chip *chip = mtd->priv;
1da177e4 2472 /* Send commands to erase a block */
ace4dfee
TG
2473 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2474 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2475 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2476 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2477 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2478}
2479
2480/**
2481 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2482 * @mtd: MTD device structure
2483 * @instr: erase instruction
1da177e4 2484 *
8b6e50c9 2485 * Erase one ore more blocks.
1da177e4 2486 */
e0c7d767 2487static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2488{
e0c7d767 2489 return nand_erase_nand(mtd, instr, 0);
1da177e4 2490}
61b03bd7 2491
30f464b7 2492#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2493/**
7854d3f7 2494 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2495 * @mtd: MTD device structure
2496 * @instr: erase instruction
2497 * @allowbbt: allow erasing the bbt area
1da177e4 2498 *
8b6e50c9 2499 * Erase one ore more blocks.
1da177e4 2500 */
ace4dfee
TG
2501int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2502 int allowbbt)
1da177e4 2503{
69423d99 2504 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2505 struct nand_chip *chip = mtd->priv;
f8ac0414 2506 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
ace4dfee 2507 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2508 loff_t len;
1da177e4 2509
289c0522
BN
2510 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2511 __func__, (unsigned long long)instr->addr,
2512 (unsigned long long)instr->len);
1da177e4 2513
6fe5a6ac 2514 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2515 return -EINVAL;
1da177e4 2516
1da177e4 2517 /* Grab the lock and see if the device is available */
ace4dfee 2518 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
2519
2520 /* Shift to get first page */
ace4dfee
TG
2521 page = (int)(instr->addr >> chip->page_shift);
2522 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2523
2524 /* Calculate pages in each block */
ace4dfee 2525 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2526
2527 /* Select the NAND device */
ace4dfee 2528 chip->select_chip(mtd, chipnr);
1da177e4 2529
1da177e4
LT
2530 /* Check, if it is write protected */
2531 if (nand_check_wp(mtd)) {
289c0522
BN
2532 pr_debug("%s: device is write protected!\n",
2533 __func__);
1da177e4
LT
2534 instr->state = MTD_ERASE_FAILED;
2535 goto erase_exit;
2536 }
2537
ace4dfee
TG
2538 /*
2539 * If BBT requires refresh, set the BBT page mask to see if the BBT
2540 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2541 * can not be matched. This is also done when the bbt is actually
7854d3f7 2542 * erased to avoid recursive updates.
ace4dfee
TG
2543 */
2544 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2545 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2546
1da177e4
LT
2547 /* Loop through the pages */
2548 len = instr->len;
2549
2550 instr->state = MTD_ERASING;
2551
2552 while (len) {
12183a20 2553 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2554 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2555 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2556 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2557 __func__, page);
1da177e4
LT
2558 instr->state = MTD_ERASE_FAILED;
2559 goto erase_exit;
2560 }
61b03bd7 2561
ace4dfee
TG
2562 /*
2563 * Invalidate the page cache, if we erase the block which
8b6e50c9 2564 * contains the current cached page.
ace4dfee
TG
2565 */
2566 if (page <= chip->pagebuf && chip->pagebuf <
2567 (page + pages_per_block))
2568 chip->pagebuf = -1;
1da177e4 2569
ace4dfee 2570 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2571
7bc3312b 2572 status = chip->waitfunc(mtd, chip);
1da177e4 2573
ace4dfee
TG
2574 /*
2575 * See if operation failed and additional status checks are
2576 * available
2577 */
2578 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2579 status = chip->errstat(mtd, chip, FL_ERASING,
2580 status, page);
068e3c0a 2581
1da177e4 2582 /* See if block erase succeeded */
a4ab4c5d 2583 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2584 pr_debug("%s: failed erase, page 0x%08x\n",
2585 __func__, page);
1da177e4 2586 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2587 instr->fail_addr =
2588 ((loff_t)page << chip->page_shift);
1da177e4
LT
2589 goto erase_exit;
2590 }
30f464b7 2591
ace4dfee
TG
2592 /*
2593 * If BBT requires refresh, set the BBT rewrite flag to the
8b6e50c9 2594 * page being erased.
ace4dfee
TG
2595 */
2596 if (bbt_masked_page != 0xffffffff &&
2597 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2598 rewrite_bbt[chipnr] =
2599 ((loff_t)page << chip->page_shift);
61b03bd7 2600
1da177e4 2601 /* Increment page address and decrement length */
ace4dfee 2602 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2603 page += pages_per_block;
2604
2605 /* Check, if we cross a chip boundary */
ace4dfee 2606 if (len && !(page & chip->pagemask)) {
1da177e4 2607 chipnr++;
ace4dfee
TG
2608 chip->select_chip(mtd, -1);
2609 chip->select_chip(mtd, chipnr);
30f464b7 2610
ace4dfee
TG
2611 /*
2612 * If BBT requires refresh and BBT-PERCHIP, set the BBT
8b6e50c9 2613 * page mask to see if this BBT should be rewritten.
ace4dfee
TG
2614 */
2615 if (bbt_masked_page != 0xffffffff &&
2616 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2617 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2618 BBT_PAGE_MASK;
1da177e4
LT
2619 }
2620 }
2621 instr->state = MTD_ERASE_DONE;
2622
7351d3a5 2623erase_exit:
1da177e4
LT
2624
2625 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2626
2627 /* Deselect and wake up anyone waiting on the device */
2628 nand_release_device(mtd);
2629
49defc01
DW
2630 /* Do call back function */
2631 if (!ret)
2632 mtd_erase_callback(instr);
2633
ace4dfee
TG
2634 /*
2635 * If BBT requires refresh and erase was successful, rewrite any
8b6e50c9 2636 * selected bad block tables.
ace4dfee
TG
2637 */
2638 if (bbt_masked_page == 0xffffffff || ret)
2639 return ret;
2640
2641 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2642 if (!rewrite_bbt[chipnr])
2643 continue;
8b6e50c9 2644 /* Update the BBT for chip */
289c0522
BN
2645 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2646 __func__, chipnr, rewrite_bbt[chipnr],
2647 chip->bbt_td->pages[chipnr]);
ace4dfee 2648 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2649 }
2650
1da177e4
LT
2651 /* Return more or less happy */
2652 return ret;
2653}
2654
2655/**
2656 * nand_sync - [MTD Interface] sync
8b6e50c9 2657 * @mtd: MTD device structure
1da177e4 2658 *
8b6e50c9 2659 * Sync is actually a wait for chip ready function.
1da177e4 2660 */
e0c7d767 2661static void nand_sync(struct mtd_info *mtd)
1da177e4 2662{
ace4dfee 2663 struct nand_chip *chip = mtd->priv;
1da177e4 2664
289c0522 2665 pr_debug("%s: called\n", __func__);
1da177e4
LT
2666
2667 /* Grab the lock and see if the device is available */
ace4dfee 2668 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 2669 /* Release it and go back */
e0c7d767 2670 nand_release_device(mtd);
1da177e4
LT
2671}
2672
1da177e4 2673/**
ace4dfee 2674 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2675 * @mtd: MTD device structure
2676 * @offs: offset relative to mtd start
1da177e4 2677 */
ace4dfee 2678static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2679{
ace4dfee 2680 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2681}
2682
2683/**
ace4dfee 2684 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2685 * @mtd: MTD device structure
2686 * @ofs: offset relative to mtd start
1da177e4 2687 */
e0c7d767 2688static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2689{
ace4dfee 2690 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2691 int ret;
2692
f8ac0414
FF
2693 ret = nand_block_isbad(mtd, ofs);
2694 if (ret) {
8b6e50c9 2695 /* If it was bad already, return success and do nothing */
1da177e4
LT
2696 if (ret > 0)
2697 return 0;
e0c7d767
DW
2698 return ret;
2699 }
1da177e4 2700
ace4dfee 2701 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2702}
2703
7db03ecc
HS
2704/**
2705 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2706 * @mtd: MTD device structure
2707 * @chip: nand chip info structure
2708 * @addr: feature address.
2709 * @subfeature_param: the subfeature parameters, a four bytes array.
2710 */
2711static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2712 int addr, uint8_t *subfeature_param)
2713{
2714 int status;
2715
2716 if (!chip->onfi_version)
2717 return -EINVAL;
2718
2719 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2720 chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2721 status = chip->waitfunc(mtd, chip);
2722 if (status & NAND_STATUS_FAIL)
2723 return -EIO;
2724 return 0;
2725}
2726
2727/**
2728 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2729 * @mtd: MTD device structure
2730 * @chip: nand chip info structure
2731 * @addr: feature address.
2732 * @subfeature_param: the subfeature parameters, a four bytes array.
2733 */
2734static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2735 int addr, uint8_t *subfeature_param)
2736{
2737 if (!chip->onfi_version)
2738 return -EINVAL;
2739
2740 /* clear the sub feature parameters */
2741 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2742
2743 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2744 chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2745 return 0;
2746}
2747
962034f4
VW
2748/**
2749 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2750 * @mtd: MTD device structure
962034f4
VW
2751 */
2752static int nand_suspend(struct mtd_info *mtd)
2753{
ace4dfee 2754 struct nand_chip *chip = mtd->priv;
962034f4 2755
ace4dfee 2756 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
2757}
2758
2759/**
2760 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2761 * @mtd: MTD device structure
962034f4
VW
2762 */
2763static void nand_resume(struct mtd_info *mtd)
2764{
ace4dfee 2765 struct nand_chip *chip = mtd->priv;
962034f4 2766
ace4dfee 2767 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2768 nand_release_device(mtd);
2769 else
d0370219
BN
2770 pr_err("%s called for a chip which is not in suspended state\n",
2771 __func__);
962034f4
VW
2772}
2773
8b6e50c9 2774/* Set default functions */
ace4dfee 2775static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2776{
1da177e4 2777 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2778 if (!chip->chip_delay)
2779 chip->chip_delay = 20;
1da177e4
LT
2780
2781 /* check, if a user supplied command function given */
ace4dfee
TG
2782 if (chip->cmdfunc == NULL)
2783 chip->cmdfunc = nand_command;
1da177e4
LT
2784
2785 /* check, if a user supplied wait function given */
ace4dfee
TG
2786 if (chip->waitfunc == NULL)
2787 chip->waitfunc = nand_wait;
2788
2789 if (!chip->select_chip)
2790 chip->select_chip = nand_select_chip;
2791 if (!chip->read_byte)
2792 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2793 if (!chip->read_word)
2794 chip->read_word = nand_read_word;
2795 if (!chip->block_bad)
2796 chip->block_bad = nand_block_bad;
2797 if (!chip->block_markbad)
2798 chip->block_markbad = nand_default_block_markbad;
2799 if (!chip->write_buf)
2800 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2801 if (!chip->read_buf)
2802 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2803 if (!chip->scan_bbt)
2804 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2805
2806 if (!chip->controller) {
2807 chip->controller = &chip->hwcontrol;
2808 spin_lock_init(&chip->controller->lock);
2809 init_waitqueue_head(&chip->controller->wq);
2810 }
2811
7aa65bfd
TG
2812}
2813
8b6e50c9 2814/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2815static void sanitize_string(uint8_t *s, size_t len)
2816{
2817 ssize_t i;
2818
8b6e50c9 2819 /* Null terminate */
d1e1f4e4
FF
2820 s[len - 1] = 0;
2821
8b6e50c9 2822 /* Remove non printable chars */
d1e1f4e4
FF
2823 for (i = 0; i < len - 1; i++) {
2824 if (s[i] < ' ' || s[i] > 127)
2825 s[i] = '?';
2826 }
2827
8b6e50c9 2828 /* Remove trailing spaces */
d1e1f4e4
FF
2829 strim(s);
2830}
2831
2832static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2833{
2834 int i;
2835 while (len--) {
2836 crc ^= *p++ << 8;
2837 for (i = 0; i < 8; i++)
2838 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2839 }
2840
2841 return crc;
2842}
2843
6fb277ba 2844/*
8b6e50c9 2845 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
2846 */
2847static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 2848 int *busw)
6fb277ba
FF
2849{
2850 struct nand_onfi_params *p = &chip->onfi_params;
2851 int i;
2852 int val;
2853
7854d3f7 2854 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
2855 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2856 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2857 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2858 return 0;
2859
6fb277ba
FF
2860 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2861 for (i = 0; i < 3; i++) {
2862 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2863 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2864 le16_to_cpu(p->crc)) {
9a4d4d69 2865 pr_info("ONFI param page %d valid\n", i);
6fb277ba
FF
2866 break;
2867 }
2868 }
2869
2870 if (i == 3)
2871 return 0;
2872
8b6e50c9 2873 /* Check version */
6fb277ba 2874 val = le16_to_cpu(p->revision);
b7b1a29d
BN
2875 if (val & (1 << 5))
2876 chip->onfi_version = 23;
2877 else if (val & (1 << 4))
6fb277ba
FF
2878 chip->onfi_version = 22;
2879 else if (val & (1 << 3))
2880 chip->onfi_version = 21;
2881 else if (val & (1 << 2))
2882 chip->onfi_version = 20;
b7b1a29d 2883 else if (val & (1 << 1))
6fb277ba 2884 chip->onfi_version = 10;
b7b1a29d
BN
2885 else
2886 chip->onfi_version = 0;
2887
2888 if (!chip->onfi_version) {
d0370219 2889 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
b7b1a29d
BN
2890 return 0;
2891 }
6fb277ba
FF
2892
2893 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2894 sanitize_string(p->model, sizeof(p->model));
2895 if (!mtd->name)
2896 mtd->name = p->model;
2897 mtd->writesize = le32_to_cpu(p->byte_per_page);
2898 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2899 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
63795755
MC
2900 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2901 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
08c248fb 2902 *busw = 0;
6fb277ba 2903 if (le16_to_cpu(p->features) & 1)
08c248fb 2904 *busw = NAND_BUSWIDTH_16;
6fb277ba 2905
d42b5de3 2906 pr_info("ONFI flash detected\n");
6fb277ba
FF
2907 return 1;
2908}
2909
e3b88bd6
BN
2910/*
2911 * nand_id_has_period - Check if an ID string has a given wraparound period
2912 * @id_data: the ID string
2913 * @arrlen: the length of the @id_data array
2914 * @period: the period of repitition
2915 *
2916 * Check if an ID string is repeated within a given sequence of bytes at
2917 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2918 * period of 2). This is a helper function for nand_id_len(). Returns non-zero
2919 * if the repetition has a period of @period; otherwise, returns zero.
2920 */
2921static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2922{
2923 int i, j;
2924 for (i = 0; i < period; i++)
2925 for (j = i + period; j < arrlen; j += period)
2926 if (id_data[i] != id_data[j])
2927 return 0;
2928 return 1;
2929}
2930
2931/*
2932 * nand_id_len - Get the length of an ID string returned by CMD_READID
2933 * @id_data: the ID string
2934 * @arrlen: the length of the @id_data array
2935
2936 * Returns the length of the ID string, according to known wraparound/trailing
2937 * zero patterns. If no pattern exists, returns the length of the array.
2938 */
2939static int nand_id_len(u8 *id_data, int arrlen)
2940{
2941 int last_nonzero, period;
2942
2943 /* Find last non-zero byte */
2944 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2945 if (id_data[last_nonzero])
2946 break;
2947
2948 /* All zeros */
2949 if (last_nonzero < 0)
2950 return 0;
2951
2952 /* Calculate wraparound period */
2953 for (period = 1; period < arrlen; period++)
2954 if (nand_id_has_period(id_data, arrlen, period))
2955 break;
2956
2957 /* There's a repeated pattern */
2958 if (period < arrlen)
2959 return period;
2960
2961 /* There are trailing zeros */
2962 if (last_nonzero < arrlen - 1)
2963 return last_nonzero + 1;
2964
2965 /* No pattern detected */
2966 return arrlen;
2967}
2968
fc09bbc0
BN
2969/*
2970 * Many new NAND share similar device ID codes, which represent the size of the
2971 * chip. The rest of the parameters must be decoded according to generic or
2972 * manufacturer-specific "extended ID" decoding patterns.
2973 */
2974static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2975 u8 id_data[8], int *busw)
2976{
e3b88bd6 2977 int extid, id_len;
fc09bbc0
BN
2978 /* The 3rd id byte holds MLC / multichip data */
2979 chip->cellinfo = id_data[2];
2980 /* The 4th id byte is the important one */
2981 extid = id_data[3];
2982
e3b88bd6
BN
2983 id_len = nand_id_len(id_data, 8);
2984
fc09bbc0
BN
2985 /*
2986 * Field definitions are in the following datasheets:
2987 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 2988 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 2989 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 2990 *
af451af4
BN
2991 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
2992 * ID to decide what to do.
fc09bbc0 2993 */
af451af4 2994 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
6924d99f 2995 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
af451af4 2996 id_data[5] != 0x00) {
fc09bbc0
BN
2997 /* Calc pagesize */
2998 mtd->writesize = 2048 << (extid & 0x03);
2999 extid >>= 2;
3000 /* Calc oobsize */
e2d3a35e 3001 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3002 case 1:
3003 mtd->oobsize = 128;
3004 break;
3005 case 2:
3006 mtd->oobsize = 218;
3007 break;
3008 case 3:
3009 mtd->oobsize = 400;
3010 break;
e2d3a35e 3011 case 4:
fc09bbc0
BN
3012 mtd->oobsize = 436;
3013 break;
e2d3a35e
BN
3014 case 5:
3015 mtd->oobsize = 512;
3016 break;
3017 case 6:
3018 default: /* Other cases are "reserved" (unknown) */
3019 mtd->oobsize = 640;
3020 break;
fc09bbc0
BN
3021 }
3022 extid >>= 2;
3023 /* Calc blocksize */
3024 mtd->erasesize = (128 * 1024) <<
3025 (((extid >> 1) & 0x04) | (extid & 0x03));
3026 *busw = 0;
73ca392f
BN
3027 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3028 (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3029 unsigned int tmp;
3030
3031 /* Calc pagesize */
3032 mtd->writesize = 2048 << (extid & 0x03);
3033 extid >>= 2;
3034 /* Calc oobsize */
3035 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3036 case 0:
3037 mtd->oobsize = 128;
3038 break;
3039 case 1:
3040 mtd->oobsize = 224;
3041 break;
3042 case 2:
3043 mtd->oobsize = 448;
3044 break;
3045 case 3:
3046 mtd->oobsize = 64;
3047 break;
3048 case 4:
3049 mtd->oobsize = 32;
3050 break;
3051 case 5:
3052 mtd->oobsize = 16;
3053 break;
3054 default:
3055 mtd->oobsize = 640;
3056 break;
3057 }
3058 extid >>= 2;
3059 /* Calc blocksize */
3060 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3061 if (tmp < 0x03)
3062 mtd->erasesize = (128 * 1024) << tmp;
3063 else if (tmp == 0x03)
3064 mtd->erasesize = 768 * 1024;
3065 else
3066 mtd->erasesize = (64 * 1024) << tmp;
3067 *busw = 0;
fc09bbc0
BN
3068 } else {
3069 /* Calc pagesize */
3070 mtd->writesize = 1024 << (extid & 0x03);
3071 extid >>= 2;
3072 /* Calc oobsize */
3073 mtd->oobsize = (8 << (extid & 0x01)) *
3074 (mtd->writesize >> 9);
3075 extid >>= 2;
3076 /* Calc blocksize. Blocksize is multiples of 64KiB */
3077 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3078 extid >>= 2;
3079 /* Get buswidth information */
3080 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3081 }
3082}
3083
f23a481c
BN
3084/*
3085 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3086 * decodes a matching ID table entry and assigns the MTD size parameters for
3087 * the chip.
3088 */
3089static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3090 struct nand_flash_dev *type, u8 id_data[8],
3091 int *busw)
3092{
3093 int maf_id = id_data[0];
3094
3095 mtd->erasesize = type->erasesize;
3096 mtd->writesize = type->pagesize;
3097 mtd->oobsize = mtd->writesize / 32;
3098 *busw = type->options & NAND_BUSWIDTH_16;
3099
3100 /*
3101 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3102 * some Spansion chips have erasesize that conflicts with size
3103 * listed in nand_ids table.
3104 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3105 */
3106 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3107 && id_data[6] == 0x00 && id_data[7] == 0x00
3108 && mtd->writesize == 512) {
3109 mtd->erasesize = 128 * 1024;
3110 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3111 }
3112}
3113
7e74c2d7
BN
3114/*
3115 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3116 * heuristic patterns using various detected parameters (e.g., manufacturer,
3117 * page size, cell-type information).
3118 */
3119static void nand_decode_bbm_options(struct mtd_info *mtd,
3120 struct nand_chip *chip, u8 id_data[8])
3121{
3122 int maf_id = id_data[0];
3123
3124 /* Set the bad block position */
3125 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3126 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3127 else
3128 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3129
3130 /*
3131 * Bad block marker is stored in the last page of each block on Samsung
3132 * and Hynix MLC devices; stored in first two pages of each block on
3133 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3134 * AMD/Spansion, and Macronix. All others scan only the first page.
3135 */
3136 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3137 (maf_id == NAND_MFR_SAMSUNG ||
3138 maf_id == NAND_MFR_HYNIX))
3139 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3140 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3141 (maf_id == NAND_MFR_SAMSUNG ||
3142 maf_id == NAND_MFR_HYNIX ||
3143 maf_id == NAND_MFR_TOSHIBA ||
3144 maf_id == NAND_MFR_AMD ||
3145 maf_id == NAND_MFR_MACRONIX)) ||
3146 (mtd->writesize == 2048 &&
3147 maf_id == NAND_MFR_MICRON))
3148 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3149}
3150
7aa65bfd 3151/*
8b6e50c9 3152 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3153 */
3154static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3155 struct nand_chip *chip,
7351d3a5
FF
3156 int busw,
3157 int *maf_id, int *dev_id,
5e81e88a 3158 struct nand_flash_dev *type)
7aa65bfd 3159{
d1e1f4e4 3160 int i, maf_idx;
426c457a 3161 u8 id_data[8];
1da177e4
LT
3162
3163 /* Select the device */
ace4dfee 3164 chip->select_chip(mtd, 0);
1da177e4 3165
ef89a880
KB
3166 /*
3167 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3168 * after power-up.
ef89a880
KB
3169 */
3170 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3171
1da177e4 3172 /* Send the command for reading device ID */
ace4dfee 3173 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3174
3175 /* Read manufacturer and device IDs */
ace4dfee 3176 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3177 *dev_id = chip->read_byte(mtd);
1da177e4 3178
8b6e50c9
BN
3179 /*
3180 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3181 * interface concerns can cause random data which looks like a
3182 * possibly credible NAND flash to appear. If the two results do
3183 * not match, ignore the device completely.
3184 */
3185
3186 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3187
4aef9b78
BN
3188 /* Read entire ID string */
3189 for (i = 0; i < 8; i++)
426c457a 3190 id_data[i] = chip->read_byte(mtd);
ed8165c7 3191
d1e1f4e4 3192 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
9a4d4d69 3193 pr_info("%s: second ID read did not match "
d0370219
BN
3194 "%02x,%02x against %02x,%02x\n", __func__,
3195 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3196 return ERR_PTR(-ENODEV);
3197 }
3198
7aa65bfd 3199 if (!type)
5e81e88a
DW
3200 type = nand_flash_ids;
3201
3202 for (; type->name != NULL; type++)
d1e1f4e4 3203 if (*dev_id == type->id)
f8ac0414 3204 break;
5e81e88a 3205
d1e1f4e4
FF
3206 chip->onfi_version = 0;
3207 if (!type->name || !type->pagesize) {
6fb277ba 3208 /* Check is chip is ONFI compliant */
47450b35 3209 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3210 goto ident_done;
d1e1f4e4
FF
3211 }
3212
5e81e88a 3213 if (!type->name)
7aa65bfd
TG
3214 return ERR_PTR(-ENODEV);
3215
ba0251fe
TG
3216 if (!mtd->name)
3217 mtd->name = type->name;
3218
69423d99 3219 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3220
12a40a57 3221 if (!type->pagesize && chip->init_size) {
8b6e50c9 3222 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3223 busw = chip->init_size(mtd, chip, id_data);
3224 } else if (!type->pagesize) {
fc09bbc0
BN
3225 /* Decode parameters from extended ID */
3226 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3227 } else {
f23a481c 3228 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3229 }
bf7a01bf
BN
3230 /* Get chip options */
3231 chip->options |= type->options;
d1e1f4e4 3232
8b6e50c9
BN
3233 /*
3234 * Check if chip is not a Samsung device. Do not clear the
3235 * options for chips which do not have an extended id.
d1e1f4e4
FF
3236 */
3237 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3238 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3239ident_done:
3240
7aa65bfd 3241 /* Try to identify manufacturer */
9a909867 3242 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3243 if (nand_manuf_ids[maf_idx].id == *maf_id)
3244 break;
3245 }
0ea4a755 3246
7aa65bfd
TG
3247 /*
3248 * Check, if buswidth is correct. Hardware drivers should set
8b6e50c9 3249 * chip correct!
7aa65bfd 3250 */
ace4dfee 3251 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
9a4d4d69 3252 pr_info("NAND device: Manufacturer ID:"
d0370219
BN
3253 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3254 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
9a4d4d69 3255 pr_warn("NAND bus width %d instead %d bit\n",
d0370219
BN
3256 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3257 busw ? 16 : 8);
7aa65bfd
TG
3258 return ERR_PTR(-EINVAL);
3259 }
61b03bd7 3260
7e74c2d7
BN
3261 nand_decode_bbm_options(mtd, chip, id_data);
3262
7aa65bfd 3263 /* Calculate the address shift from the page size */
ace4dfee 3264 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3265 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3266 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3267
ace4dfee 3268 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3269 ffs(mtd->erasesize) - 1;
69423d99
AH
3270 if (chip->chipsize & 0xffffffff)
3271 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3272 else {
3273 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3274 chip->chip_shift += 32 - 1;
3275 }
1da177e4 3276
26d9be11
AB
3277 chip->badblockbits = 8;
3278
7aa65bfd 3279 /* Check for AND chips with 4 page planes */
ace4dfee
TG
3280 if (chip->options & NAND_4PAGE_ARRAY)
3281 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 3282 else
ace4dfee 3283 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3284
8b6e50c9 3285 /* Do not replace user supplied command function! */
ace4dfee
TG
3286 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3287 chip->cmdfunc = nand_command_lp;
7aa65bfd 3288
886bd33d
HS
3289 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3290 " page size: %d, OOB size: %d\n",
3291 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3292 chip->onfi_version ? chip->onfi_params.model : type->name,
3293 mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3294
3295 return type;
3296}
3297
7aa65bfd 3298/**
3b85c321 3299 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3300 * @mtd: MTD device structure
3301 * @maxchips: number of chips to scan for
3302 * @table: alternative NAND ID table
7aa65bfd 3303 *
8b6e50c9
BN
3304 * This is the first phase of the normal nand_scan() function. It reads the
3305 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3306 *
3b85c321 3307 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3308 */
5e81e88a
DW
3309int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3310 struct nand_flash_dev *table)
7aa65bfd 3311{
d1e1f4e4 3312 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3313 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3314 struct nand_flash_dev *type;
3315
7aa65bfd 3316 /* Get buswidth to select the correct functions */
ace4dfee 3317 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3318 /* Set the default functions */
ace4dfee 3319 nand_set_defaults(chip, busw);
7aa65bfd
TG
3320
3321 /* Read the flash type */
7351d3a5
FF
3322 type = nand_get_flash_type(mtd, chip, busw,
3323 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3324
3325 if (IS_ERR(type)) {
b1c6e6db 3326 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3327 pr_warn("No NAND device found\n");
ace4dfee 3328 chip->select_chip(mtd, -1);
7aa65bfd 3329 return PTR_ERR(type);
1da177e4
LT
3330 }
3331
7aa65bfd 3332 /* Check for a chip array */
e0c7d767 3333 for (i = 1; i < maxchips; i++) {
ace4dfee 3334 chip->select_chip(mtd, i);
ef89a880
KB
3335 /* See comment in nand_get_flash_type for reset */
3336 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3337 /* Send the command for reading device ID */
ace4dfee 3338 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3339 /* Read manufacturer and device IDs */
ace4dfee 3340 if (nand_maf_id != chip->read_byte(mtd) ||
d1e1f4e4 3341 nand_dev_id != chip->read_byte(mtd))
1da177e4
LT
3342 break;
3343 }
3344 if (i > 1)
9a4d4d69 3345 pr_info("%d NAND chips detected\n", i);
61b03bd7 3346
1da177e4 3347 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3348 chip->numchips = i;
3349 mtd->size = i * chip->chipsize;
7aa65bfd 3350
3b85c321
DW
3351 return 0;
3352}
7351d3a5 3353EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3354
3355
3356/**
3357 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3358 * @mtd: MTD device structure
3b85c321 3359 *
8b6e50c9
BN
3360 * This is the second phase of the normal nand_scan() function. It fills out
3361 * all the uninitialized function pointers with the defaults and scans for a
3362 * bad block table if appropriate.
3b85c321
DW
3363 */
3364int nand_scan_tail(struct mtd_info *mtd)
3365{
3366 int i;
3367 struct nand_chip *chip = mtd->priv;
3368
e2414f4c
BN
3369 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3370 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3371 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3372
4bf63fcb
DW
3373 if (!(chip->options & NAND_OWN_BUFFERS))
3374 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3375 if (!chip->buffers)
3376 return -ENOMEM;
3377
7dcdcbef 3378 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3379 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3380
7aa65bfd 3381 /*
8b6e50c9 3382 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3383 */
193bd400 3384 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3385 switch (mtd->oobsize) {
1da177e4 3386 case 8:
5bd34c09 3387 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3388 break;
3389 case 16:
5bd34c09 3390 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3391 break;
3392 case 64:
5bd34c09 3393 chip->ecc.layout = &nand_oob_64;
1da177e4 3394 break;
81ec5364
TG
3395 case 128:
3396 chip->ecc.layout = &nand_oob_128;
3397 break;
1da177e4 3398 default:
d0370219
BN
3399 pr_warn("No oob scheme defined for oobsize %d\n",
3400 mtd->oobsize);
1da177e4
LT
3401 BUG();
3402 }
3403 }
61b03bd7 3404
956e944c
DW
3405 if (!chip->write_page)
3406 chip->write_page = nand_write_page;
3407
7db03ecc
HS
3408 /* set for ONFI nand */
3409 if (!chip->onfi_set_features)
3410 chip->onfi_set_features = nand_onfi_set_features;
3411 if (!chip->onfi_get_features)
3412 chip->onfi_get_features = nand_onfi_get_features;
3413
61b03bd7 3414 /*
8b6e50c9 3415 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3416 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3417 */
956e944c 3418
ace4dfee 3419 switch (chip->ecc.mode) {
6e0cb135
SN
3420 case NAND_ECC_HW_OOB_FIRST:
3421 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3422 if (!chip->ecc.calculate || !chip->ecc.correct ||
3423 !chip->ecc.hwctl) {
9a4d4d69 3424 pr_warn("No ECC functions supplied; "
d0370219 3425 "hardware ECC not possible\n");
6e0cb135
SN
3426 BUG();
3427 }
3428 if (!chip->ecc.read_page)
3429 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3430
6dfc6d25 3431 case NAND_ECC_HW:
8b6e50c9 3432 /* Use standard hwecc read page function? */
f5bbdacc
TG
3433 if (!chip->ecc.read_page)
3434 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3435 if (!chip->ecc.write_page)
3436 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3437 if (!chip->ecc.read_page_raw)
3438 chip->ecc.read_page_raw = nand_read_page_raw;
3439 if (!chip->ecc.write_page_raw)
3440 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3441 if (!chip->ecc.read_oob)
3442 chip->ecc.read_oob = nand_read_oob_std;
3443 if (!chip->ecc.write_oob)
3444 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3445
6dfc6d25 3446 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3447 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3448 !chip->ecc.hwctl) &&
3449 (!chip->ecc.read_page ||
1c45f604 3450 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3451 !chip->ecc.write_page ||
1c45f604 3452 chip->ecc.write_page == nand_write_page_hwecc)) {
9a4d4d69 3453 pr_warn("No ECC functions supplied; "
d0370219 3454 "hardware ECC not possible\n");
6dfc6d25
TG
3455 BUG();
3456 }
8b6e50c9 3457 /* Use standard syndrome read/write page function? */
f5bbdacc
TG
3458 if (!chip->ecc.read_page)
3459 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3460 if (!chip->ecc.write_page)
3461 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3462 if (!chip->ecc.read_page_raw)
3463 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3464 if (!chip->ecc.write_page_raw)
3465 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3466 if (!chip->ecc.read_oob)
3467 chip->ecc.read_oob = nand_read_oob_syndrome;
3468 if (!chip->ecc.write_oob)
3469 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3470
e2788c98
MD
3471 if (mtd->writesize >= chip->ecc.size) {
3472 if (!chip->ecc.strength) {
3473 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3474 BUG();
3475 }
6dfc6d25 3476 break;
e2788c98 3477 }
9a4d4d69 3478 pr_warn("%d byte HW ECC not possible on "
d0370219
BN
3479 "%d byte page size, fallback to SW ECC\n",
3480 chip->ecc.size, mtd->writesize);
ace4dfee 3481 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3482
6dfc6d25 3483 case NAND_ECC_SOFT:
ace4dfee
TG
3484 chip->ecc.calculate = nand_calculate_ecc;
3485 chip->ecc.correct = nand_correct_data;
f5bbdacc 3486 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3487 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3488 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3489 chip->ecc.read_page_raw = nand_read_page_raw;
3490 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3491 chip->ecc.read_oob = nand_read_oob_std;
3492 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3493 if (!chip->ecc.size)
3494 chip->ecc.size = 256;
ace4dfee 3495 chip->ecc.bytes = 3;
6a918bad 3496 chip->ecc.strength = 1;
1da177e4 3497 break;
61b03bd7 3498
193bd400
ID
3499 case NAND_ECC_SOFT_BCH:
3500 if (!mtd_nand_has_bch()) {
9a4d4d69 3501 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
193bd400
ID
3502 BUG();
3503 }
3504 chip->ecc.calculate = nand_bch_calculate_ecc;
3505 chip->ecc.correct = nand_bch_correct_data;
3506 chip->ecc.read_page = nand_read_page_swecc;
3507 chip->ecc.read_subpage = nand_read_subpage;
3508 chip->ecc.write_page = nand_write_page_swecc;
3509 chip->ecc.read_page_raw = nand_read_page_raw;
3510 chip->ecc.write_page_raw = nand_write_page_raw;
3511 chip->ecc.read_oob = nand_read_oob_std;
3512 chip->ecc.write_oob = nand_write_oob_std;
3513 /*
3514 * Board driver should supply ecc.size and ecc.bytes values to
3515 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3516 * for details. Otherwise, default to 4 bits for large page
3517 * devices.
193bd400
ID
3518 */
3519 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3520 chip->ecc.size = 512;
3521 chip->ecc.bytes = 7;
3522 }
3523 chip->ecc.priv = nand_bch_init(mtd,
3524 chip->ecc.size,
3525 chip->ecc.bytes,
3526 &chip->ecc.layout);
3527 if (!chip->ecc.priv) {
9a4d4d69 3528 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3529 BUG();
3530 }
6a918bad 3531 chip->ecc.strength =
e2788c98 3532 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
193bd400
ID
3533 break;
3534
61b03bd7 3535 case NAND_ECC_NONE:
9a4d4d69 3536 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3537 "This is not recommended!\n");
8593fbc6
TG
3538 chip->ecc.read_page = nand_read_page_raw;
3539 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3540 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3541 chip->ecc.read_page_raw = nand_read_page_raw;
3542 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3543 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3544 chip->ecc.size = mtd->writesize;
3545 chip->ecc.bytes = 0;
6a918bad 3546 chip->ecc.strength = 0;
1da177e4 3547 break;
956e944c 3548
1da177e4 3549 default:
d0370219 3550 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
61b03bd7 3551 BUG();
1da177e4 3552 }
61b03bd7 3553
9ce244b3 3554 /* For many systems, the standard OOB write also works for raw */
c46f6483
BN
3555 if (!chip->ecc.read_oob_raw)
3556 chip->ecc.read_oob_raw = chip->ecc.read_oob;
9ce244b3
BN
3557 if (!chip->ecc.write_oob_raw)
3558 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3559
5bd34c09
TG
3560 /*
3561 * The number of bytes available for a client to place data into
8b6e50c9 3562 * the out of band area.
5bd34c09
TG
3563 */
3564 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3565 for (i = 0; chip->ecc.layout->oobfree[i].length
3566 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3567 chip->ecc.layout->oobavail +=
3568 chip->ecc.layout->oobfree[i].length;
1f92267c 3569 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3570
7aa65bfd
TG
3571 /*
3572 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3573 * mode.
7aa65bfd 3574 */
ace4dfee 3575 chip->ecc.steps = mtd->writesize / chip->ecc.size;
f8ac0414 3576 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
9a4d4d69 3577 pr_warn("Invalid ECC parameters\n");
6dfc6d25 3578 BUG();
1da177e4 3579 }
f5bbdacc 3580 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3581
8b6e50c9 3582 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
29072b96
TG
3583 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3584 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
f8ac0414 3585 switch (chip->ecc.steps) {
29072b96
TG
3586 case 2:
3587 mtd->subpage_sft = 1;
3588 break;
3589 case 4:
3590 case 8:
81ec5364 3591 case 16:
29072b96
TG
3592 mtd->subpage_sft = 2;
3593 break;
3594 }
3595 }
3596 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3597
04bbd0ea 3598 /* Initialize state */
ace4dfee 3599 chip->state = FL_READY;
1da177e4
LT
3600
3601 /* De-select the device */
ace4dfee 3602 chip->select_chip(mtd, -1);
1da177e4
LT
3603
3604 /* Invalidate the pagebuffer reference */
ace4dfee 3605 chip->pagebuf = -1;
1da177e4 3606
a5ff4f10
JW
3607 /* Large page NAND with SOFT_ECC should support subpage reads */
3608 if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3609 chip->options |= NAND_SUBPAGE_READ;
3610
1da177e4
LT
3611 /* Fill in remaining MTD driver data */
3612 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3613 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3614 MTD_CAP_NANDFLASH;
3c3c10bb
AB
3615 mtd->_erase = nand_erase;
3616 mtd->_point = NULL;
3617 mtd->_unpoint = NULL;
3618 mtd->_read = nand_read;
3619 mtd->_write = nand_write;
3620 mtd->_panic_write = panic_nand_write;
3621 mtd->_read_oob = nand_read_oob;
3622 mtd->_write_oob = nand_write_oob;
3623 mtd->_sync = nand_sync;
3624 mtd->_lock = NULL;
3625 mtd->_unlock = NULL;
3626 mtd->_suspend = nand_suspend;
3627 mtd->_resume = nand_resume;
3628 mtd->_block_isbad = nand_block_isbad;
3629 mtd->_block_markbad = nand_block_markbad;
cbcab65a 3630 mtd->writebufsize = mtd->writesize;
1da177e4 3631
6a918bad 3632 /* propagate ecc info to mtd_info */
5bd34c09 3633 mtd->ecclayout = chip->ecc.layout;
86c2072b 3634 mtd->ecc_strength = chip->ecc.strength;
ea3b2ea2
SL
3635 /*
3636 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3637 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3638 * properly set.
3639 */
3640 if (!mtd->bitflip_threshold)
3641 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 3642
0040bf38 3643 /* Check, if we should skip the bad block table scan */
ace4dfee 3644 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3645 return 0;
1da177e4
LT
3646
3647 /* Build bad block table */
ace4dfee 3648 return chip->scan_bbt(mtd);
1da177e4 3649}
7351d3a5 3650EXPORT_SYMBOL(nand_scan_tail);
1da177e4 3651
8b6e50c9
BN
3652/*
3653 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 3654 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
3655 * to call us from in-kernel code if the core NAND support is modular.
3656 */
3b85c321
DW
3657#ifdef MODULE
3658#define caller_is_module() (1)
3659#else
3660#define caller_is_module() \
a6e6abd5 3661 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3662#endif
3663
3664/**
3665 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3666 * @mtd: MTD device structure
3667 * @maxchips: number of chips to scan for
3b85c321 3668 *
8b6e50c9
BN
3669 * This fills out all the uninitialized function pointers with the defaults.
3670 * The flash ID is read and the mtd/chip structures are filled with the
3671 * appropriate values. The mtd->owner field must be set to the module of the
3672 * caller.
3b85c321
DW
3673 */
3674int nand_scan(struct mtd_info *mtd, int maxchips)
3675{
3676 int ret;
3677
3678 /* Many callers got this wrong, so check for it for a while... */
3679 if (!mtd->owner && caller_is_module()) {
d0370219 3680 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
3681 BUG();
3682 }
3683
5e81e88a 3684 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3685 if (!ret)
3686 ret = nand_scan_tail(mtd);
3687 return ret;
3688}
7351d3a5 3689EXPORT_SYMBOL(nand_scan);
3b85c321 3690
1da177e4 3691/**
61b03bd7 3692 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
3693 * @mtd: MTD device structure
3694 */
e0c7d767 3695void nand_release(struct mtd_info *mtd)
1da177e4 3696{
ace4dfee 3697 struct nand_chip *chip = mtd->priv;
1da177e4 3698
193bd400
ID
3699 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3700 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3701
5ffcaf3d 3702 mtd_device_unregister(mtd);
1da177e4 3703
fa671646 3704 /* Free bad block table memory */
ace4dfee 3705 kfree(chip->bbt);
4bf63fcb
DW
3706 if (!(chip->options & NAND_OWN_BUFFERS))
3707 kfree(chip->buffers);
58373ff0
BN
3708
3709 /* Free bad block descriptor memory */
3710 if (chip->badblock_pattern && chip->badblock_pattern->options
3711 & NAND_BBT_DYNAMICSTRUCT)
3712 kfree(chip->badblock_pattern);
1da177e4 3713}
e0c7d767 3714EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3715
3716static int __init nand_base_init(void)
3717{
3718 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3719 return 0;
3720}
3721
3722static void __exit nand_base_exit(void)
3723{
3724 led_trigger_unregister_simple(nand_led_trigger);
3725}
3726
3727module_init(nand_base_init);
3728module_exit(nand_base_exit);
3729
e0c7d767 3730MODULE_LICENSE("GPL");
7351d3a5
FF
3731MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3732MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 3733MODULE_DESCRIPTION("Generic NAND flash driver code");