mtd: nand: Fix unfinished comment in nand_init_data_interface()
[linux-2.6-block.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
38b8d208 39#include <linux/nmi.h>
1da177e4
LT
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
d4092d76 42#include <linux/mtd/rawnand.h>
1da177e4 43#include <linux/mtd/nand_ecc.h>
193bd400 44#include <linux/mtd/nand_bch.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
7351d3a5 47#include <linux/io.h>
1da177e4 48#include <linux/mtd/partitions.h>
d48f62b9 49#include <linux/of.h>
1da177e4 50
41b207a7
BB
51static int nand_get_device(struct mtd_info *mtd, int new_state);
52
53static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54 struct mtd_oob_ops *ops);
1da177e4
LT
55
56/* Define default oob placement schemes for large and small page devices */
41b207a7
BB
57static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58 struct mtd_oob_region *oobregion)
59{
60 struct nand_chip *chip = mtd_to_nand(mtd);
61 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 62
41b207a7
BB
63 if (section > 1)
64 return -ERANGE;
1da177e4 65
41b207a7
BB
66 if (!section) {
67 oobregion->offset = 0;
f7f8c175
MR
68 if (mtd->oobsize == 16)
69 oobregion->length = 4;
70 else
71 oobregion->length = 3;
41b207a7 72 } else {
f7f8c175
MR
73 if (mtd->oobsize == 8)
74 return -ERANGE;
75
41b207a7
BB
76 oobregion->offset = 6;
77 oobregion->length = ecc->total - 4;
78 }
1da177e4 79
41b207a7
BB
80 return 0;
81}
82
83static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
84 struct mtd_oob_region *oobregion)
85{
86 if (section > 1)
87 return -ERANGE;
1da177e4 88
41b207a7
BB
89 if (mtd->oobsize == 16) {
90 if (section)
91 return -ERANGE;
92
93 oobregion->length = 8;
94 oobregion->offset = 8;
95 } else {
96 oobregion->length = 2;
97 if (!section)
98 oobregion->offset = 3;
99 else
100 oobregion->offset = 6;
101 }
102
103 return 0;
104}
105
106const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
107 .ecc = nand_ooblayout_ecc_sp,
108 .free = nand_ooblayout_free_sp,
81ec5364 109};
41b207a7 110EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
81ec5364 111
41b207a7
BB
112static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
113 struct mtd_oob_region *oobregion)
114{
115 struct nand_chip *chip = mtd_to_nand(mtd);
116 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 117
882fd157 118 if (section || !ecc->total)
41b207a7 119 return -ERANGE;
8593fbc6 120
41b207a7
BB
121 oobregion->length = ecc->total;
122 oobregion->offset = mtd->oobsize - oobregion->length;
123
124 return 0;
125}
126
127static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
128 struct mtd_oob_region *oobregion)
129{
130 struct nand_chip *chip = mtd_to_nand(mtd);
131 struct nand_ecc_ctrl *ecc = &chip->ecc;
132
133 if (section)
134 return -ERANGE;
135
136 oobregion->length = mtd->oobsize - ecc->total - 2;
137 oobregion->offset = 2;
138
139 return 0;
140}
141
142const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
143 .ecc = nand_ooblayout_ecc_lp,
144 .free = nand_ooblayout_free_lp,
145};
146EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
d470a97c 147
6a623e07
AC
148/*
149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
150 * are placed at a fixed offset.
151 */
152static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
153 struct mtd_oob_region *oobregion)
154{
155 struct nand_chip *chip = mtd_to_nand(mtd);
156 struct nand_ecc_ctrl *ecc = &chip->ecc;
157
158 if (section)
159 return -ERANGE;
160
161 switch (mtd->oobsize) {
162 case 64:
163 oobregion->offset = 40;
164 break;
165 case 128:
166 oobregion->offset = 80;
167 break;
168 default:
169 return -EINVAL;
170 }
171
172 oobregion->length = ecc->total;
173 if (oobregion->offset + oobregion->length > mtd->oobsize)
174 return -ERANGE;
175
176 return 0;
177}
178
179static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
180 struct mtd_oob_region *oobregion)
181{
182 struct nand_chip *chip = mtd_to_nand(mtd);
183 struct nand_ecc_ctrl *ecc = &chip->ecc;
184 int ecc_offset = 0;
185
186 if (section < 0 || section > 1)
187 return -ERANGE;
188
189 switch (mtd->oobsize) {
190 case 64:
191 ecc_offset = 40;
192 break;
193 case 128:
194 ecc_offset = 80;
195 break;
196 default:
197 return -EINVAL;
198 }
199
200 if (section == 0) {
201 oobregion->offset = 2;
202 oobregion->length = ecc_offset - 2;
203 } else {
204 oobregion->offset = ecc_offset + ecc->total;
205 oobregion->length = mtd->oobsize - oobregion->offset;
206 }
207
208 return 0;
209}
210
d4ed3b90 211static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
6a623e07
AC
212 .ecc = nand_ooblayout_ecc_lp_hamming,
213 .free = nand_ooblayout_free_lp_hamming,
214};
215
6fe5a6ac
VS
216static int check_offs_len(struct mtd_info *mtd,
217 loff_t ofs, uint64_t len)
218{
862eba51 219 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
220 int ret = 0;
221
222 /* Start address must align on block boundary */
daae74ca 223 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 224 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
225 ret = -EINVAL;
226 }
227
228 /* Length must align on block boundary */
daae74ca 229 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 230 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
231 ret = -EINVAL;
232 }
233
6fe5a6ac
VS
234 return ret;
235}
236
1da177e4
LT
237/**
238 * nand_release_device - [GENERIC] release chip
8b6e50c9 239 * @mtd: MTD device structure
61b03bd7 240 *
b0bb6903 241 * Release chip lock and wake up anyone waiting on the device.
1da177e4 242 */
e0c7d767 243static void nand_release_device(struct mtd_info *mtd)
1da177e4 244{
862eba51 245 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 246
a36ed299 247 /* Release the controller and the chip */
ace4dfee
TG
248 spin_lock(&chip->controller->lock);
249 chip->controller->active = NULL;
250 chip->state = FL_READY;
251 wake_up(&chip->controller->wq);
252 spin_unlock(&chip->controller->lock);
1da177e4
LT
253}
254
255/**
256 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 257 * @mtd: MTD device structure
1da177e4 258 *
7854d3f7 259 * Default read function for 8bit buswidth
1da177e4 260 */
58dd8f2b 261static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 262{
862eba51 263 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 264 return readb(chip->IO_ADDR_R);
1da177e4
LT
265}
266
1da177e4 267/**
7854d3f7 268 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 269 * @mtd: MTD device structure
1da177e4 270 *
7854d3f7
BN
271 * Default read function for 16bit buswidth with endianness conversion.
272 *
1da177e4 273 */
58dd8f2b 274static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 275{
862eba51 276 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 277 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
278}
279
1da177e4
LT
280/**
281 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 282 * @mtd: MTD device structure
1da177e4 283 *
7854d3f7 284 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
285 */
286static u16 nand_read_word(struct mtd_info *mtd)
287{
862eba51 288 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 289 return readw(chip->IO_ADDR_R);
1da177e4
LT
290}
291
1da177e4
LT
292/**
293 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
294 * @mtd: MTD device structure
295 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
296 *
297 * Default select function for 1 chip devices.
298 */
ace4dfee 299static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 300{
862eba51 301 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
302
303 switch (chipnr) {
1da177e4 304 case -1:
ace4dfee 305 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
306 break;
307 case 0:
1da177e4
LT
308 break;
309
310 default:
311 BUG();
312 }
313}
314
05f78359
UKK
315/**
316 * nand_write_byte - [DEFAULT] write single byte to chip
317 * @mtd: MTD device structure
318 * @byte: value to write
319 *
320 * Default function to write a byte to I/O[7:0]
321 */
322static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
323{
862eba51 324 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
325
326 chip->write_buf(mtd, &byte, 1);
327}
328
329/**
330 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
331 * @mtd: MTD device structure
332 * @byte: value to write
333 *
334 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
335 */
336static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
337{
862eba51 338 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
339 uint16_t word = byte;
340
341 /*
342 * It's not entirely clear what should happen to I/O[15:8] when writing
343 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
344 *
345 * When the host supports a 16-bit bus width, only data is
346 * transferred at the 16-bit width. All address and command line
347 * transfers shall use only the lower 8-bits of the data bus. During
348 * command transfers, the host may place any value on the upper
349 * 8-bits of the data bus. During address transfers, the host shall
350 * set the upper 8-bits of the data bus to 00h.
351 *
352 * One user of the write_byte callback is nand_onfi_set_features. The
353 * four parameters are specified to be written to I/O[7:0], but this is
354 * neither an address nor a command transfer. Let's assume a 0 on the
355 * upper I/O lines is OK.
356 */
357 chip->write_buf(mtd, (uint8_t *)&word, 2);
358}
359
1da177e4
LT
360/**
361 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
362 * @mtd: MTD device structure
363 * @buf: data buffer
364 * @len: number of bytes to write
1da177e4 365 *
7854d3f7 366 * Default write function for 8bit buswidth.
1da177e4 367 */
58dd8f2b 368static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 369{
862eba51 370 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 371
76413839 372 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
373}
374
375/**
61b03bd7 376 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
377 * @mtd: MTD device structure
378 * @buf: buffer to store date
379 * @len: number of bytes to read
1da177e4 380 *
7854d3f7 381 * Default read function for 8bit buswidth.
1da177e4 382 */
58dd8f2b 383static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 384{
862eba51 385 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 386
76413839 387 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
388}
389
1da177e4
LT
390/**
391 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
392 * @mtd: MTD device structure
393 * @buf: data buffer
394 * @len: number of bytes to write
1da177e4 395 *
7854d3f7 396 * Default write function for 16bit buswidth.
1da177e4 397 */
58dd8f2b 398static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 399{
862eba51 400 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 401 u16 *p = (u16 *) buf;
61b03bd7 402
76413839 403 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
404}
405
406/**
61b03bd7 407 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
408 * @mtd: MTD device structure
409 * @buf: buffer to store date
410 * @len: number of bytes to read
1da177e4 411 *
7854d3f7 412 * Default read function for 16bit buswidth.
1da177e4 413 */
58dd8f2b 414static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 415{
862eba51 416 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 417 u16 *p = (u16 *) buf;
1da177e4 418
76413839 419 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
420}
421
1da177e4
LT
422/**
423 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
424 * @mtd: MTD device structure
425 * @ofs: offset from device start
1da177e4 426 *
61b03bd7 427 * Check, if the block is bad.
1da177e4 428 */
9f3e0429 429static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
1da177e4 430{
c120e75e 431 int page, page_end, res;
862eba51 432 struct nand_chip *chip = mtd_to_nand(mtd);
c120e75e 433 u8 bad;
1da177e4 434
5fb1549d 435 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
436 ofs += mtd->erasesize - mtd->writesize;
437
1a12f46a 438 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
c120e75e 439 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
1a12f46a 440
c120e75e
MY
441 for (; page < page_end; page++) {
442 res = chip->ecc.read_oob(mtd, chip, page);
443 if (res)
444 return res;
445
446 bad = chip->oob_poi[chip->badblockpos];
cdbec050
BN
447
448 if (likely(chip->badblockbits == 8))
449 res = bad != 0xFF;
e0b58d0a 450 else
cdbec050 451 res = hweight8(bad) < chip->badblockbits;
c120e75e
MY
452 if (res)
453 return res;
454 }
e0b58d0a 455
c120e75e 456 return 0;
1da177e4
LT
457}
458
459/**
5a0edb25 460 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
461 * @mtd: MTD device structure
462 * @ofs: offset from device start
1da177e4 463 *
8b6e50c9 464 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
465 * specific driver. It provides the details for writing a bad block marker to a
466 * block.
467 */
468static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
469{
862eba51 470 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
471 struct mtd_oob_ops ops;
472 uint8_t buf[2] = { 0, 0 };
473 int ret = 0, res, i = 0;
474
0ec56dc4 475 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
476 ops.oobbuf = buf;
477 ops.ooboffs = chip->badblockpos;
478 if (chip->options & NAND_BUSWIDTH_16) {
479 ops.ooboffs &= ~0x01;
480 ops.len = ops.ooblen = 2;
481 } else {
482 ops.len = ops.ooblen = 1;
483 }
484 ops.mode = MTD_OPS_PLACE_OOB;
485
486 /* Write to first/last page(s) if necessary */
487 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
488 ofs += mtd->erasesize - mtd->writesize;
489 do {
490 res = nand_do_write_oob(mtd, ofs, &ops);
491 if (!ret)
492 ret = res;
493
494 i++;
495 ofs += mtd->writesize;
496 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
497
498 return ret;
499}
500
501/**
502 * nand_block_markbad_lowlevel - mark a block bad
503 * @mtd: MTD device structure
504 * @ofs: offset from device start
505 *
506 * This function performs the generic NAND bad block marking steps (i.e., bad
507 * block table(s) and/or marker(s)). We only allow the hardware driver to
508 * specify how to write bad block markers to OOB (chip->block_markbad).
509 *
b32843b7 510 * We try operations in the following order:
b6f6c294 511 *
e2414f4c 512 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
513 * (2) write bad block marker to OOB area of affected block (unless flag
514 * NAND_BBT_NO_OOB_BBM is present)
515 * (3) update the BBT
b6f6c294 516 *
b32843b7 517 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 518 * procedures, and dump the error in the end.
1da177e4 519*/
5a0edb25 520static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 521{
862eba51 522 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 523 int res, ret = 0;
61b03bd7 524
b32843b7 525 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
526 struct erase_info einfo;
527
528 /* Attempt erase before marking OOB */
529 memset(&einfo, 0, sizeof(einfo));
530 einfo.mtd = mtd;
531 einfo.addr = ofs;
daae74ca 532 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 533 nand_erase_nand(mtd, &einfo, 0);
1da177e4 534
b32843b7 535 /* Write bad block marker to OOB */
6a8214aa 536 nand_get_device(mtd, FL_WRITING);
5a0edb25 537 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 538 nand_release_device(mtd);
f1a28c02 539 }
e2414f4c 540
b32843b7
BN
541 /* Mark block bad in BBT */
542 if (chip->bbt) {
543 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
544 if (!ret)
545 ret = res;
546 }
547
f1a28c02
TG
548 if (!ret)
549 mtd->ecc_stats.badblocks++;
c0b8ba7b 550
f1a28c02 551 return ret;
1da177e4
LT
552}
553
61b03bd7 554/**
1da177e4 555 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 556 * @mtd: MTD device structure
1da177e4 557 *
8b6e50c9
BN
558 * Check, if the device is write protected. The function expects, that the
559 * device is already selected.
1da177e4 560 */
e0c7d767 561static int nand_check_wp(struct mtd_info *mtd)
1da177e4 562{
862eba51 563 struct nand_chip *chip = mtd_to_nand(mtd);
97d90da8
BB
564 u8 status;
565 int ret;
93edbad6 566
8b6e50c9 567 /* Broken xD cards report WP despite being writable */
93edbad6
ML
568 if (chip->options & NAND_BROKEN_XD)
569 return 0;
570
1da177e4 571 /* Check the WP bit */
97d90da8
BB
572 ret = nand_status_op(chip, &status);
573 if (ret)
574 return ret;
575
576 return status & NAND_STATUS_WP ? 0 : 1;
1da177e4
LT
577}
578
8471bb73 579/**
c30e1f79 580 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
581 * @mtd: MTD device structure
582 * @ofs: offset from device start
583 *
c30e1f79 584 * Check if the block is marked as reserved.
8471bb73
EG
585 */
586static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
587{
862eba51 588 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
589
590 if (!chip->bbt)
591 return 0;
592 /* Return info from the table */
593 return nand_isreserved_bbt(mtd, ofs);
594}
595
1da177e4
LT
596/**
597 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
598 * @mtd: MTD device structure
599 * @ofs: offset from device start
8b6e50c9 600 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
601 *
602 * Check, if the block is bad. Either by reading the bad block table or
603 * calling of the scan function.
604 */
9f3e0429 605static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1da177e4 606{
862eba51 607 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 608
ace4dfee 609 if (!chip->bbt)
9f3e0429 610 return chip->block_bad(mtd, ofs);
61b03bd7 611
1da177e4 612 /* Return info from the table */
e0c7d767 613 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
614}
615
2af7c653
SK
616/**
617 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
618 * @mtd: MTD device structure
619 * @timeo: Timeout
2af7c653
SK
620 *
621 * Helper function for nand_wait_ready used when needing to wait in interrupt
622 * context.
623 */
624static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
625{
862eba51 626 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
627 int i;
628
629 /* Wait for the device to get ready */
630 for (i = 0; i < timeo; i++) {
631 if (chip->dev_ready(mtd))
632 break;
633 touch_softlockup_watchdog();
634 mdelay(1);
635 }
636}
637
b70af9be
AS
638/**
639 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
640 * @mtd: MTD device structure
641 *
642 * Wait for the ready pin after a command, and warn if a timeout occurs.
643 */
4b648b02 644void nand_wait_ready(struct mtd_info *mtd)
3b88775c 645{
862eba51 646 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 647 unsigned long timeo = 400;
3b88775c 648
2af7c653 649 if (in_interrupt() || oops_in_progress)
b70af9be 650 return panic_nand_wait_ready(mtd, timeo);
2af7c653 651
7854d3f7 652 /* Wait until command is processed or timeout occurs */
b70af9be 653 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 654 do {
ace4dfee 655 if (chip->dev_ready(mtd))
4c7e054f 656 return;
b70af9be 657 cond_resched();
61b03bd7 658 } while (time_before(jiffies, timeo));
b70af9be 659
9ebfdf5b
BN
660 if (!chip->dev_ready(mtd))
661 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
3b88775c 662}
4b648b02 663EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 664
60c70d66
RQ
665/**
666 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
667 * @mtd: MTD device structure
668 * @timeo: Timeout in ms
669 *
670 * Wait for status ready (i.e. command done) or timeout.
671 */
672static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
673{
862eba51 674 register struct nand_chip *chip = mtd_to_nand(mtd);
97d90da8 675 int ret;
60c70d66
RQ
676
677 timeo = jiffies + msecs_to_jiffies(timeo);
678 do {
97d90da8
BB
679 u8 status;
680
681 ret = nand_read_data_op(chip, &status, sizeof(status), true);
682 if (ret)
683 return;
684
685 if (status & NAND_STATUS_READY)
60c70d66
RQ
686 break;
687 touch_softlockup_watchdog();
688 } while (time_before(jiffies, timeo));
689};
690
8878b126
MR
691/**
692 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
693 * @chip: NAND chip structure
694 * @timeout_ms: Timeout in ms
695 *
696 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
697 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
698 * returned.
699 *
700 * This helper is intended to be used when the controller does not have access
701 * to the NAND R/B pin.
702 *
703 * Be aware that calling this helper from an ->exec_op() implementation means
704 * ->exec_op() must be re-entrant.
705 *
706 * Return 0 if the NAND chip is ready, a negative error otherwise.
707 */
708int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
709{
710 u8 status = 0;
711 int ret;
712
713 if (!chip->exec_op)
714 return -ENOTSUPP;
715
716 ret = nand_status_op(chip, NULL);
717 if (ret)
718 return ret;
719
720 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
721 do {
722 ret = nand_read_data_op(chip, &status, sizeof(status), true);
723 if (ret)
724 break;
725
726 if (status & NAND_STATUS_READY)
727 break;
728
729 /*
730 * Typical lowest execution time for a tR on most NANDs is 10us,
731 * use this as polling delay before doing something smarter (ie.
732 * deriving a delay from the timeout value, timeout_ms/ratio).
733 */
734 udelay(10);
735 } while (time_before(jiffies, timeout_ms));
736
737 /*
738 * We have to exit READ_STATUS mode in order to read real data on the
739 * bus in case the WAITRDY instruction is preceding a DATA_IN
740 * instruction.
741 */
742 nand_exit_status_op(chip);
743
744 if (ret)
745 return ret;
746
747 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
748};
749EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
750
1da177e4
LT
751/**
752 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
753 * @mtd: MTD device structure
754 * @command: the command to be sent
755 * @column: the column address for this command, -1 if none
756 * @page_addr: the page address for this command, -1 if none
1da177e4 757 *
8b6e50c9 758 * Send command to NAND device. This function is used for small page devices
51148f1f 759 * (512 Bytes per page).
1da177e4 760 */
7abd3ef9
TG
761static void nand_command(struct mtd_info *mtd, unsigned int command,
762 int column, int page_addr)
1da177e4 763{
862eba51 764 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 765 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 766
8b6e50c9 767 /* Write out the command to the device */
1da177e4
LT
768 if (command == NAND_CMD_SEQIN) {
769 int readcmd;
770
28318776 771 if (column >= mtd->writesize) {
1da177e4 772 /* OOB area */
28318776 773 column -= mtd->writesize;
1da177e4
LT
774 readcmd = NAND_CMD_READOOB;
775 } else if (column < 256) {
776 /* First 256 bytes --> READ0 */
777 readcmd = NAND_CMD_READ0;
778 } else {
779 column -= 256;
780 readcmd = NAND_CMD_READ1;
781 }
ace4dfee 782 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 783 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 784 }
df467899
MR
785 if (command != NAND_CMD_NONE)
786 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 787
8b6e50c9 788 /* Address cycle, when necessary */
7abd3ef9
TG
789 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
790 /* Serially input address */
791 if (column != -1) {
792 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
793 if (chip->options & NAND_BUSWIDTH_16 &&
794 !nand_opcode_8bits(command))
7abd3ef9 795 column >>= 1;
ace4dfee 796 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
797 ctrl &= ~NAND_CTRL_CHANGE;
798 }
799 if (page_addr != -1) {
ace4dfee 800 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 801 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 802 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
14157f86 803 if (chip->options & NAND_ROW_ADDR_3)
ace4dfee 804 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 805 }
ace4dfee 806 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
807
808 /*
8b6e50c9
BN
809 * Program and erase have their own busy handlers status and sequential
810 * in needs no delay
e0c7d767 811 */
1da177e4 812 switch (command) {
61b03bd7 813
df467899 814 case NAND_CMD_NONE:
1da177e4
LT
815 case NAND_CMD_PAGEPROG:
816 case NAND_CMD_ERASE1:
817 case NAND_CMD_ERASE2:
818 case NAND_CMD_SEQIN:
819 case NAND_CMD_STATUS:
3158fa0e 820 case NAND_CMD_READID:
c5d664aa 821 case NAND_CMD_SET_FEATURES:
1da177e4
LT
822 return;
823
824 case NAND_CMD_RESET:
ace4dfee 825 if (chip->dev_ready)
1da177e4 826 break;
ace4dfee
TG
827 udelay(chip->chip_delay);
828 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 829 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
830 chip->cmd_ctrl(mtd,
831 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
832 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
833 nand_wait_status_ready(mtd, 250);
1da177e4
LT
834 return;
835
e0c7d767 836 /* This applies to read commands */
2165c4a1
BB
837 case NAND_CMD_READ0:
838 /*
839 * READ0 is sometimes used to exit GET STATUS mode. When this
840 * is the case no address cycles are requested, and we can use
841 * this information to detect that we should not wait for the
842 * device to be ready.
843 */
844 if (column == -1 && page_addr == -1)
845 return;
846
1da177e4 847 default:
61b03bd7 848 /*
1da177e4
LT
849 * If we don't have access to the busy pin, we apply the given
850 * command delay
e0c7d767 851 */
ace4dfee
TG
852 if (!chip->dev_ready) {
853 udelay(chip->chip_delay);
1da177e4 854 return;
61b03bd7 855 }
1da177e4 856 }
8b6e50c9
BN
857 /*
858 * Apply this short delay always to ensure that we do wait tWB in
859 * any case on any machine.
860 */
e0c7d767 861 ndelay(100);
3b88775c
TG
862
863 nand_wait_ready(mtd);
1da177e4
LT
864}
865
6ea40a3b
BB
866static void nand_ccs_delay(struct nand_chip *chip)
867{
868 /*
869 * The controller already takes care of waiting for tCCS when the RNDIN
870 * or RNDOUT command is sent, return directly.
871 */
872 if (!(chip->options & NAND_WAIT_TCCS))
873 return;
874
875 /*
876 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
877 * (which should be safe for all NANDs).
878 */
17fa8044
MR
879 if (chip->setup_data_interface)
880 ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
6ea40a3b
BB
881 else
882 ndelay(500);
883}
884
1da177e4
LT
885/**
886 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
887 * @mtd: MTD device structure
888 * @command: the command to be sent
889 * @column: the column address for this command, -1 if none
890 * @page_addr: the page address for this command, -1 if none
1da177e4 891 *
7abd3ef9 892 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
893 * devices. We don't have the separate regions as we have in the small page
894 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 895 */
7abd3ef9
TG
896static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
897 int column, int page_addr)
1da177e4 898{
862eba51 899 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
900
901 /* Emulate NAND_CMD_READOOB */
902 if (command == NAND_CMD_READOOB) {
28318776 903 column += mtd->writesize;
1da177e4
LT
904 command = NAND_CMD_READ0;
905 }
61b03bd7 906
7abd3ef9 907 /* Command latch cycle */
df467899
MR
908 if (command != NAND_CMD_NONE)
909 chip->cmd_ctrl(mtd, command,
910 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
911
912 if (column != -1 || page_addr != -1) {
7abd3ef9 913 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
914
915 /* Serially input address */
916 if (column != -1) {
917 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
918 if (chip->options & NAND_BUSWIDTH_16 &&
919 !nand_opcode_8bits(command))
1da177e4 920 column >>= 1;
ace4dfee 921 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 922 ctrl &= ~NAND_CTRL_CHANGE;
fde85cfd 923
f5b88de2 924 /* Only output a single addr cycle for 8bits opcodes. */
fde85cfd
BB
925 if (!nand_opcode_8bits(command))
926 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 927 }
1da177e4 928 if (page_addr != -1) {
ace4dfee
TG
929 chip->cmd_ctrl(mtd, page_addr, ctrl);
930 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 931 NAND_NCE | NAND_ALE);
14157f86 932 if (chip->options & NAND_ROW_ADDR_3)
ace4dfee 933 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 934 NAND_NCE | NAND_ALE);
1da177e4 935 }
1da177e4 936 }
ace4dfee 937 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
938
939 /*
8b6e50c9 940 * Program and erase have their own busy handlers status, sequential
7a442f17 941 * in and status need no delay.
30f464b7 942 */
1da177e4 943 switch (command) {
61b03bd7 944
df467899 945 case NAND_CMD_NONE:
1da177e4
LT
946 case NAND_CMD_CACHEDPROG:
947 case NAND_CMD_PAGEPROG:
948 case NAND_CMD_ERASE1:
949 case NAND_CMD_ERASE2:
950 case NAND_CMD_SEQIN:
951 case NAND_CMD_STATUS:
3158fa0e 952 case NAND_CMD_READID:
c5d664aa 953 case NAND_CMD_SET_FEATURES:
30f464b7 954 return;
1da177e4 955
6ea40a3b
BB
956 case NAND_CMD_RNDIN:
957 nand_ccs_delay(chip);
958 return;
959
1da177e4 960 case NAND_CMD_RESET:
ace4dfee 961 if (chip->dev_ready)
1da177e4 962 break;
ace4dfee 963 udelay(chip->chip_delay);
12efdde3
TG
964 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
965 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
966 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
967 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
968 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
969 nand_wait_status_ready(mtd, 250);
1da177e4
LT
970 return;
971
7bc3312b
TG
972 case NAND_CMD_RNDOUT:
973 /* No ready / busy check necessary */
974 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
975 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
976 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
977 NAND_NCE | NAND_CTRL_CHANGE);
6ea40a3b
BB
978
979 nand_ccs_delay(chip);
7bc3312b
TG
980 return;
981
1da177e4 982 case NAND_CMD_READ0:
2165c4a1
BB
983 /*
984 * READ0 is sometimes used to exit GET STATUS mode. When this
985 * is the case no address cycles are requested, and we can use
986 * this information to detect that READSTART should not be
987 * issued.
988 */
989 if (column == -1 && page_addr == -1)
990 return;
991
12efdde3
TG
992 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
993 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
994 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
995 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 996
e0c7d767 997 /* This applies to read commands */
1da177e4 998 default:
61b03bd7 999 /*
1da177e4 1000 * If we don't have access to the busy pin, we apply the given
8b6e50c9 1001 * command delay.
e0c7d767 1002 */
ace4dfee
TG
1003 if (!chip->dev_ready) {
1004 udelay(chip->chip_delay);
1da177e4 1005 return;
61b03bd7 1006 }
1da177e4 1007 }
3b88775c 1008
8b6e50c9
BN
1009 /*
1010 * Apply this short delay always to ensure that we do wait tWB in
1011 * any case on any machine.
1012 */
e0c7d767 1013 ndelay(100);
3b88775c
TG
1014
1015 nand_wait_ready(mtd);
1da177e4
LT
1016}
1017
2af7c653
SK
1018/**
1019 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
1020 * @chip: the nand chip descriptor
1021 * @mtd: MTD device structure
1022 * @new_state: the state which is requested
2af7c653
SK
1023 *
1024 * Used when in panic, no locks are taken.
1025 */
1026static void panic_nand_get_device(struct nand_chip *chip,
1027 struct mtd_info *mtd, int new_state)
1028{
7854d3f7 1029 /* Hardware controller shared among independent devices */
2af7c653
SK
1030 chip->controller->active = chip;
1031 chip->state = new_state;
1032}
1033
1da177e4
LT
1034/**
1035 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
1036 * @mtd: MTD device structure
1037 * @new_state: the state which is requested
1da177e4
LT
1038 *
1039 * Get the device and lock it for exclusive access
1040 */
2c0a2bed 1041static int
6a8214aa 1042nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 1043{
862eba51 1044 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
1045 spinlock_t *lock = &chip->controller->lock;
1046 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 1047 DECLARE_WAITQUEUE(wait, current);
7351d3a5 1048retry:
0dfc6246
TG
1049 spin_lock(lock);
1050
b8b3ee9a 1051 /* Hardware controller shared among independent devices */
ace4dfee
TG
1052 if (!chip->controller->active)
1053 chip->controller->active = chip;
a36ed299 1054
ace4dfee
TG
1055 if (chip->controller->active == chip && chip->state == FL_READY) {
1056 chip->state = new_state;
0dfc6246 1057 spin_unlock(lock);
962034f4
VW
1058 return 0;
1059 }
1060 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
1061 if (chip->controller->active->state == FL_PM_SUSPENDED) {
1062 chip->state = FL_PM_SUSPENDED;
1063 spin_unlock(lock);
1064 return 0;
6b0d9a84 1065 }
0dfc6246
TG
1066 }
1067 set_current_state(TASK_UNINTERRUPTIBLE);
1068 add_wait_queue(wq, &wait);
1069 spin_unlock(lock);
1070 schedule();
1071 remove_wait_queue(wq, &wait);
1da177e4
LT
1072 goto retry;
1073}
1074
2af7c653 1075/**
8b6e50c9
BN
1076 * panic_nand_wait - [GENERIC] wait until the command is done
1077 * @mtd: MTD device structure
1078 * @chip: NAND chip structure
1079 * @timeo: timeout
2af7c653
SK
1080 *
1081 * Wait for command done. This is a helper function for nand_wait used when
1082 * we are in interrupt context. May happen when in panic and trying to write
b595076a 1083 * an oops through mtdoops.
2af7c653
SK
1084 */
1085static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1086 unsigned long timeo)
1087{
1088 int i;
1089 for (i = 0; i < timeo; i++) {
1090 if (chip->dev_ready) {
1091 if (chip->dev_ready(mtd))
1092 break;
1093 } else {
97d90da8
BB
1094 int ret;
1095 u8 status;
1096
1097 ret = nand_read_data_op(chip, &status, sizeof(status),
1098 true);
1099 if (ret)
1100 return;
1101
1102 if (status & NAND_STATUS_READY)
2af7c653
SK
1103 break;
1104 }
1105 mdelay(1);
f8ac0414 1106 }
2af7c653
SK
1107}
1108
1da177e4 1109/**
8b6e50c9
BN
1110 * nand_wait - [DEFAULT] wait until the command is done
1111 * @mtd: MTD device structure
1112 * @chip: NAND chip structure
1da177e4 1113 *
b70af9be 1114 * Wait for command done. This applies to erase and program only.
844d3b42 1115 */
7bc3312b 1116static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
1117{
1118
b70af9be 1119 unsigned long timeo = 400;
97d90da8
BB
1120 u8 status;
1121 int ret;
1da177e4 1122
8b6e50c9
BN
1123 /*
1124 * Apply this short delay always to ensure that we do wait tWB in any
1125 * case on any machine.
1126 */
e0c7d767 1127 ndelay(100);
1da177e4 1128
97d90da8
BB
1129 ret = nand_status_op(chip, NULL);
1130 if (ret)
1131 return ret;
1da177e4 1132
2af7c653
SK
1133 if (in_interrupt() || oops_in_progress)
1134 panic_nand_wait(mtd, chip, timeo);
1135 else {
6d2559f8 1136 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 1137 do {
2af7c653
SK
1138 if (chip->dev_ready) {
1139 if (chip->dev_ready(mtd))
1140 break;
1141 } else {
97d90da8
BB
1142 ret = nand_read_data_op(chip, &status,
1143 sizeof(status), true);
1144 if (ret)
1145 return ret;
1146
1147 if (status & NAND_STATUS_READY)
2af7c653
SK
1148 break;
1149 }
1150 cond_resched();
b70af9be 1151 } while (time_before(jiffies, timeo));
1da177e4 1152 }
8fe833c1 1153
97d90da8
BB
1154 ret = nand_read_data_op(chip, &status, sizeof(status), true);
1155 if (ret)
1156 return ret;
1157
f251b8df
MC
1158 /* This can happen if in case of timeout or buggy dev_ready */
1159 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
1160 return status;
1161}
1162
d8e725dd
BB
1163/**
1164 * nand_reset_data_interface - Reset data interface and timings
1165 * @chip: The NAND chip
104e442a 1166 * @chipnr: Internal die id
d8e725dd
BB
1167 *
1168 * Reset the Data interface and timings to ONFI mode 0.
1169 *
1170 * Returns 0 for success or negative error code otherwise.
1171 */
104e442a 1172static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
d8e725dd
BB
1173{
1174 struct mtd_info *mtd = nand_to_mtd(chip);
d8e725dd
BB
1175 int ret;
1176
1177 if (!chip->setup_data_interface)
1178 return 0;
1179
1180 /*
1181 * The ONFI specification says:
1182 * "
1183 * To transition from NV-DDR or NV-DDR2 to the SDR data
1184 * interface, the host shall use the Reset (FFh) command
1185 * using SDR timing mode 0. A device in any timing mode is
1186 * required to recognize Reset (FFh) command issued in SDR
1187 * timing mode 0.
1188 * "
1189 *
1190 * Configure the data interface in SDR mode and set the
1191 * timings to timing mode 0.
1192 */
1193
17fa8044
MR
1194 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
1195 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
d8e725dd
BB
1196 if (ret)
1197 pr_err("Failed to configure data interface to SDR timing mode 0\n");
1198
1199 return ret;
1200}
1201
1202/**
1203 * nand_setup_data_interface - Setup the best data interface and timings
1204 * @chip: The NAND chip
104e442a 1205 * @chipnr: Internal die id
d8e725dd
BB
1206 *
1207 * Find and configure the best data interface and NAND timings supported by
1208 * the chip and the driver.
1209 * First tries to retrieve supported timing modes from ONFI information,
1210 * and if the NAND chip does not support ONFI, relies on the
1211 * ->onfi_timing_mode_default specified in the nand_ids table.
1212 *
1213 * Returns 0 for success or negative error code otherwise.
1214 */
104e442a 1215static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
d8e725dd
BB
1216{
1217 struct mtd_info *mtd = nand_to_mtd(chip);
1218 int ret;
1219
17fa8044 1220 if (!chip->setup_data_interface)
d8e725dd
BB
1221 return 0;
1222
1223 /*
1224 * Ensure the timing mode has been changed on the chip side
1225 * before changing timings on the controller side.
1226 */
a11bf5ed
BB
1227 if (chip->onfi_version &&
1228 (le16_to_cpu(chip->onfi_params.opt_cmd) &
1229 ONFI_OPT_CMD_SET_GET_FEATURES)) {
d8e725dd
BB
1230 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1231 chip->onfi_timing_mode_default,
1232 };
1233
1234 ret = chip->onfi_set_features(mtd, chip,
1235 ONFI_FEATURE_ADDR_TIMING_MODE,
1236 tmode_param);
1237 if (ret)
1238 goto err;
1239 }
1240
17fa8044 1241 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
d8e725dd
BB
1242err:
1243 return ret;
1244}
1245
1246/**
1247 * nand_init_data_interface - find the best data interface and timings
1248 * @chip: The NAND chip
1249 *
1250 * Find the best data interface and NAND timings supported by the chip
1251 * and the driver.
1252 * First tries to retrieve supported timing modes from ONFI information,
1253 * and if the NAND chip does not support ONFI, relies on the
1254 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1255 * function nand_chip->data_interface is initialized with the best timing mode
1256 * available.
1257 *
1258 * Returns 0 for success or negative error code otherwise.
1259 */
1260static int nand_init_data_interface(struct nand_chip *chip)
1261{
1262 struct mtd_info *mtd = nand_to_mtd(chip);
1263 int modes, mode, ret;
1264
1265 if (!chip->setup_data_interface)
1266 return 0;
1267
1268 /*
1269 * First try to identify the best timings from ONFI parameters and
1270 * if the NAND does not support ONFI, fallback to the default ONFI
1271 * timing mode.
1272 */
1273 modes = onfi_get_async_timing_mode(chip);
1274 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1275 if (!chip->onfi_timing_mode_default)
1276 return 0;
1277
1278 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1279 }
1280
d8e725dd
BB
1281
1282 for (mode = fls(modes) - 1; mode >= 0; mode--) {
17fa8044 1283 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
d8e725dd
BB
1284 if (ret)
1285 continue;
1286
d787b8b3
MR
1287 /*
1288 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
1289 * controller supports the requested timings.
1290 */
104e442a
BB
1291 ret = chip->setup_data_interface(mtd,
1292 NAND_DATA_IFACE_CHECK_ONLY,
17fa8044 1293 &chip->data_interface);
d8e725dd
BB
1294 if (!ret) {
1295 chip->onfi_timing_mode_default = mode;
1296 break;
1297 }
1298 }
1299
1300 return 0;
1301}
1302
8878b126
MR
1303/**
1304 * nand_fill_column_cycles - fill the column cycles of an address
1305 * @chip: The NAND chip
1306 * @addrs: Array of address cycles to fill
1307 * @offset_in_page: The offset in the page
1308 *
1309 * Fills the first or the first two bytes of the @addrs field depending
1310 * on the NAND bus width and the page size.
1311 *
1312 * Returns the number of cycles needed to encode the column, or a negative
1313 * error code in case one of the arguments is invalid.
1314 */
1315static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1316 unsigned int offset_in_page)
1317{
1318 struct mtd_info *mtd = nand_to_mtd(chip);
1319
1320 /* Make sure the offset is less than the actual page size. */
1321 if (offset_in_page > mtd->writesize + mtd->oobsize)
1322 return -EINVAL;
1323
1324 /*
1325 * On small page NANDs, there's a dedicated command to access the OOB
1326 * area, and the column address is relative to the start of the OOB
1327 * area, not the start of the page. Asjust the address accordingly.
1328 */
1329 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1330 offset_in_page -= mtd->writesize;
1331
1332 /*
1333 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1334 * wide, then it must be divided by 2.
1335 */
1336 if (chip->options & NAND_BUSWIDTH_16) {
1337 if (WARN_ON(offset_in_page % 2))
1338 return -EINVAL;
1339
1340 offset_in_page /= 2;
1341 }
1342
1343 addrs[0] = offset_in_page;
1344
1345 /*
1346 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1347 * need 2
1348 */
1349 if (mtd->writesize <= 512)
1350 return 1;
1351
1352 addrs[1] = offset_in_page >> 8;
1353
1354 return 2;
1355}
1356
1357static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1358 unsigned int offset_in_page, void *buf,
1359 unsigned int len)
1360{
1361 struct mtd_info *mtd = nand_to_mtd(chip);
1362 const struct nand_sdr_timings *sdr =
1363 nand_get_sdr_timings(&chip->data_interface);
1364 u8 addrs[4];
1365 struct nand_op_instr instrs[] = {
1366 NAND_OP_CMD(NAND_CMD_READ0, 0),
1367 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1368 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1369 PSEC_TO_NSEC(sdr->tRR_min)),
1370 NAND_OP_DATA_IN(len, buf, 0),
1371 };
1372 struct nand_operation op = NAND_OPERATION(instrs);
1373 int ret;
1374
1375 /* Drop the DATA_IN instruction if len is set to 0. */
1376 if (!len)
1377 op.ninstrs--;
1378
1379 if (offset_in_page >= mtd->writesize)
1380 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1381 else if (offset_in_page >= 256 &&
1382 !(chip->options & NAND_BUSWIDTH_16))
1383 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1384
1385 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1386 if (ret < 0)
1387 return ret;
1388
1389 addrs[1] = page;
1390 addrs[2] = page >> 8;
1391
1392 if (chip->options & NAND_ROW_ADDR_3) {
1393 addrs[3] = page >> 16;
1394 instrs[1].ctx.addr.naddrs++;
1395 }
1396
1397 return nand_exec_op(chip, &op);
1398}
1399
1400static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1401 unsigned int offset_in_page, void *buf,
1402 unsigned int len)
1403{
1404 const struct nand_sdr_timings *sdr =
1405 nand_get_sdr_timings(&chip->data_interface);
1406 u8 addrs[5];
1407 struct nand_op_instr instrs[] = {
1408 NAND_OP_CMD(NAND_CMD_READ0, 0),
1409 NAND_OP_ADDR(4, addrs, 0),
1410 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1411 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1412 PSEC_TO_NSEC(sdr->tRR_min)),
1413 NAND_OP_DATA_IN(len, buf, 0),
1414 };
1415 struct nand_operation op = NAND_OPERATION(instrs);
1416 int ret;
1417
1418 /* Drop the DATA_IN instruction if len is set to 0. */
1419 if (!len)
1420 op.ninstrs--;
1421
1422 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1423 if (ret < 0)
1424 return ret;
1425
1426 addrs[2] = page;
1427 addrs[3] = page >> 8;
1428
1429 if (chip->options & NAND_ROW_ADDR_3) {
1430 addrs[4] = page >> 16;
1431 instrs[1].ctx.addr.naddrs++;
1432 }
1433
1434 return nand_exec_op(chip, &op);
1435}
1436
97d90da8
BB
1437/**
1438 * nand_read_page_op - Do a READ PAGE operation
1439 * @chip: The NAND chip
1440 * @page: page to read
1441 * @offset_in_page: offset within the page
1442 * @buf: buffer used to store the data
1443 * @len: length of the buffer
1444 *
1445 * This function issues a READ PAGE operation.
1446 * This function does not select/unselect the CS line.
1447 *
1448 * Returns 0 on success, a negative error code otherwise.
1449 */
1450int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1451 unsigned int offset_in_page, void *buf, unsigned int len)
1452{
1453 struct mtd_info *mtd = nand_to_mtd(chip);
1454
1455 if (len && !buf)
1456 return -EINVAL;
1457
1458 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1459 return -EINVAL;
1460
8878b126
MR
1461 if (chip->exec_op) {
1462 if (mtd->writesize > 512)
1463 return nand_lp_exec_read_page_op(chip, page,
1464 offset_in_page, buf,
1465 len);
1466
1467 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1468 buf, len);
1469 }
1470
97d90da8
BB
1471 chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
1472 if (len)
1473 chip->read_buf(mtd, buf, len);
1474
1475 return 0;
1476}
1477EXPORT_SYMBOL_GPL(nand_read_page_op);
1478
1479/**
1480 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1481 * @chip: The NAND chip
1482 * @page: parameter page to read
1483 * @buf: buffer used to store the data
1484 * @len: length of the buffer
1485 *
1486 * This function issues a READ PARAMETER PAGE operation.
1487 * This function does not select/unselect the CS line.
1488 *
1489 * Returns 0 on success, a negative error code otherwise.
1490 */
1491static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1492 unsigned int len)
1493{
1494 struct mtd_info *mtd = nand_to_mtd(chip);
1495 unsigned int i;
1496 u8 *p = buf;
1497
1498 if (len && !buf)
1499 return -EINVAL;
1500
8878b126
MR
1501 if (chip->exec_op) {
1502 const struct nand_sdr_timings *sdr =
1503 nand_get_sdr_timings(&chip->data_interface);
1504 struct nand_op_instr instrs[] = {
1505 NAND_OP_CMD(NAND_CMD_PARAM, 0),
1506 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1507 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1508 PSEC_TO_NSEC(sdr->tRR_min)),
1509 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1510 };
1511 struct nand_operation op = NAND_OPERATION(instrs);
1512
1513 /* Drop the DATA_IN instruction if len is set to 0. */
1514 if (!len)
1515 op.ninstrs--;
1516
1517 return nand_exec_op(chip, &op);
1518 }
1519
97d90da8
BB
1520 chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
1521 for (i = 0; i < len; i++)
1522 p[i] = chip->read_byte(mtd);
1523
1524 return 0;
1525}
1526
1527/**
1528 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1529 * @chip: The NAND chip
1530 * @offset_in_page: offset within the page
1531 * @buf: buffer used to store the data
1532 * @len: length of the buffer
1533 * @force_8bit: force 8-bit bus access
1534 *
1535 * This function issues a CHANGE READ COLUMN operation.
1536 * This function does not select/unselect the CS line.
1537 *
1538 * Returns 0 on success, a negative error code otherwise.
1539 */
1540int nand_change_read_column_op(struct nand_chip *chip,
1541 unsigned int offset_in_page, void *buf,
1542 unsigned int len, bool force_8bit)
1543{
1544 struct mtd_info *mtd = nand_to_mtd(chip);
1545
1546 if (len && !buf)
1547 return -EINVAL;
1548
1549 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1550 return -EINVAL;
1551
8878b126
MR
1552 /* Small page NANDs do not support column change. */
1553 if (mtd->writesize <= 512)
1554 return -ENOTSUPP;
1555
1556 if (chip->exec_op) {
1557 const struct nand_sdr_timings *sdr =
1558 nand_get_sdr_timings(&chip->data_interface);
1559 u8 addrs[2] = {};
1560 struct nand_op_instr instrs[] = {
1561 NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1562 NAND_OP_ADDR(2, addrs, 0),
1563 NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1564 PSEC_TO_NSEC(sdr->tCCS_min)),
1565 NAND_OP_DATA_IN(len, buf, 0),
1566 };
1567 struct nand_operation op = NAND_OPERATION(instrs);
1568 int ret;
1569
1570 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1571 if (ret < 0)
1572 return ret;
1573
1574 /* Drop the DATA_IN instruction if len is set to 0. */
1575 if (!len)
1576 op.ninstrs--;
1577
1578 instrs[3].ctx.data.force_8bit = force_8bit;
1579
1580 return nand_exec_op(chip, &op);
1581 }
1582
97d90da8
BB
1583 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
1584 if (len)
1585 chip->read_buf(mtd, buf, len);
1586
1587 return 0;
1588}
1589EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1590
1591/**
1592 * nand_read_oob_op - Do a READ OOB operation
1593 * @chip: The NAND chip
1594 * @page: page to read
1595 * @offset_in_oob: offset within the OOB area
1596 * @buf: buffer used to store the data
1597 * @len: length of the buffer
1598 *
1599 * This function issues a READ OOB operation.
1600 * This function does not select/unselect the CS line.
1601 *
1602 * Returns 0 on success, a negative error code otherwise.
1603 */
1604int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1605 unsigned int offset_in_oob, void *buf, unsigned int len)
1606{
1607 struct mtd_info *mtd = nand_to_mtd(chip);
1608
1609 if (len && !buf)
1610 return -EINVAL;
1611
1612 if (offset_in_oob + len > mtd->oobsize)
1613 return -EINVAL;
1614
8878b126
MR
1615 if (chip->exec_op)
1616 return nand_read_page_op(chip, page,
1617 mtd->writesize + offset_in_oob,
1618 buf, len);
1619
97d90da8
BB
1620 chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
1621 if (len)
1622 chip->read_buf(mtd, buf, len);
1623
1624 return 0;
1625}
1626EXPORT_SYMBOL_GPL(nand_read_oob_op);
1627
8878b126
MR
1628static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1629 unsigned int offset_in_page, const void *buf,
1630 unsigned int len, bool prog)
1631{
1632 struct mtd_info *mtd = nand_to_mtd(chip);
1633 const struct nand_sdr_timings *sdr =
1634 nand_get_sdr_timings(&chip->data_interface);
1635 u8 addrs[5] = {};
1636 struct nand_op_instr instrs[] = {
1637 /*
1638 * The first instruction will be dropped if we're dealing
1639 * with a large page NAND and adjusted if we're dealing
1640 * with a small page NAND and the page offset is > 255.
1641 */
1642 NAND_OP_CMD(NAND_CMD_READ0, 0),
1643 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1644 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1645 NAND_OP_DATA_OUT(len, buf, 0),
1646 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1647 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1648 };
1649 struct nand_operation op = NAND_OPERATION(instrs);
1650 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1651 int ret;
1652 u8 status;
1653
1654 if (naddrs < 0)
1655 return naddrs;
1656
1657 addrs[naddrs++] = page;
1658 addrs[naddrs++] = page >> 8;
1659 if (chip->options & NAND_ROW_ADDR_3)
1660 addrs[naddrs++] = page >> 16;
1661
1662 instrs[2].ctx.addr.naddrs = naddrs;
1663
1664 /* Drop the last two instructions if we're not programming the page. */
1665 if (!prog) {
1666 op.ninstrs -= 2;
1667 /* Also drop the DATA_OUT instruction if empty. */
1668 if (!len)
1669 op.ninstrs--;
1670 }
1671
1672 if (mtd->writesize <= 512) {
1673 /*
1674 * Small pages need some more tweaking: we have to adjust the
1675 * first instruction depending on the page offset we're trying
1676 * to access.
1677 */
1678 if (offset_in_page >= mtd->writesize)
1679 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1680 else if (offset_in_page >= 256 &&
1681 !(chip->options & NAND_BUSWIDTH_16))
1682 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1683 } else {
1684 /*
1685 * Drop the first command if we're dealing with a large page
1686 * NAND.
1687 */
1688 op.instrs++;
1689 op.ninstrs--;
1690 }
1691
1692 ret = nand_exec_op(chip, &op);
1693 if (!prog || ret)
1694 return ret;
1695
1696 ret = nand_status_op(chip, &status);
1697 if (ret)
1698 return ret;
1699
1700 return status;
1701}
1702
97d90da8
BB
1703/**
1704 * nand_prog_page_begin_op - starts a PROG PAGE operation
1705 * @chip: The NAND chip
1706 * @page: page to write
1707 * @offset_in_page: offset within the page
1708 * @buf: buffer containing the data to write to the page
1709 * @len: length of the buffer
1710 *
1711 * This function issues the first half of a PROG PAGE operation.
1712 * This function does not select/unselect the CS line.
1713 *
1714 * Returns 0 on success, a negative error code otherwise.
1715 */
1716int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1717 unsigned int offset_in_page, const void *buf,
1718 unsigned int len)
1719{
1720 struct mtd_info *mtd = nand_to_mtd(chip);
1721
1722 if (len && !buf)
1723 return -EINVAL;
1724
1725 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1726 return -EINVAL;
1727
8878b126
MR
1728 if (chip->exec_op)
1729 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1730 len, false);
1731
97d90da8
BB
1732 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1733
1734 if (buf)
1735 chip->write_buf(mtd, buf, len);
1736
1737 return 0;
1738}
1739EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1740
1741/**
1742 * nand_prog_page_end_op - ends a PROG PAGE operation
1743 * @chip: The NAND chip
1744 *
1745 * This function issues the second half of a PROG PAGE operation.
1746 * This function does not select/unselect the CS line.
1747 *
1748 * Returns 0 on success, a negative error code otherwise.
1749 */
1750int nand_prog_page_end_op(struct nand_chip *chip)
1751{
1752 struct mtd_info *mtd = nand_to_mtd(chip);
8878b126
MR
1753 int ret;
1754 u8 status;
1755
1756 if (chip->exec_op) {
1757 const struct nand_sdr_timings *sdr =
1758 nand_get_sdr_timings(&chip->data_interface);
1759 struct nand_op_instr instrs[] = {
1760 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1761 PSEC_TO_NSEC(sdr->tWB_max)),
1762 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1763 };
1764 struct nand_operation op = NAND_OPERATION(instrs);
1765
1766 ret = nand_exec_op(chip, &op);
1767 if (ret)
1768 return ret;
97d90da8 1769
8878b126
MR
1770 ret = nand_status_op(chip, &status);
1771 if (ret)
1772 return ret;
1773 } else {
1774 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1775 ret = chip->waitfunc(mtd, chip);
1776 if (ret < 0)
1777 return ret;
1778
1779 status = ret;
1780 }
97d90da8 1781
97d90da8
BB
1782 if (status & NAND_STATUS_FAIL)
1783 return -EIO;
1784
1785 return 0;
1786}
1787EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1788
1789/**
1790 * nand_prog_page_op - Do a full PROG PAGE operation
1791 * @chip: The NAND chip
1792 * @page: page to write
1793 * @offset_in_page: offset within the page
1794 * @buf: buffer containing the data to write to the page
1795 * @len: length of the buffer
1796 *
1797 * This function issues a full PROG PAGE operation.
1798 * This function does not select/unselect the CS line.
1799 *
1800 * Returns 0 on success, a negative error code otherwise.
1801 */
1802int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1803 unsigned int offset_in_page, const void *buf,
1804 unsigned int len)
1805{
1806 struct mtd_info *mtd = nand_to_mtd(chip);
1807 int status;
1808
1809 if (!len || !buf)
1810 return -EINVAL;
1811
1812 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1813 return -EINVAL;
1814
8878b126
MR
1815 if (chip->exec_op) {
1816 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1817 len, true);
1818 } else {
1819 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1820 chip->write_buf(mtd, buf, len);
1821 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1822 status = chip->waitfunc(mtd, chip);
1823 }
97d90da8 1824
97d90da8
BB
1825 if (status & NAND_STATUS_FAIL)
1826 return -EIO;
1827
1828 return 0;
1829}
1830EXPORT_SYMBOL_GPL(nand_prog_page_op);
1831
1832/**
1833 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1834 * @chip: The NAND chip
1835 * @offset_in_page: offset within the page
1836 * @buf: buffer containing the data to send to the NAND
1837 * @len: length of the buffer
1838 * @force_8bit: force 8-bit bus access
1839 *
1840 * This function issues a CHANGE WRITE COLUMN operation.
1841 * This function does not select/unselect the CS line.
1842 *
1843 * Returns 0 on success, a negative error code otherwise.
1844 */
1845int nand_change_write_column_op(struct nand_chip *chip,
1846 unsigned int offset_in_page,
1847 const void *buf, unsigned int len,
1848 bool force_8bit)
1849{
1850 struct mtd_info *mtd = nand_to_mtd(chip);
1851
1852 if (len && !buf)
1853 return -EINVAL;
1854
1855 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1856 return -EINVAL;
1857
8878b126
MR
1858 /* Small page NANDs do not support column change. */
1859 if (mtd->writesize <= 512)
1860 return -ENOTSUPP;
1861
1862 if (chip->exec_op) {
1863 const struct nand_sdr_timings *sdr =
1864 nand_get_sdr_timings(&chip->data_interface);
1865 u8 addrs[2];
1866 struct nand_op_instr instrs[] = {
1867 NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1868 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1869 NAND_OP_DATA_OUT(len, buf, 0),
1870 };
1871 struct nand_operation op = NAND_OPERATION(instrs);
1872 int ret;
1873
1874 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1875 if (ret < 0)
1876 return ret;
1877
1878 instrs[2].ctx.data.force_8bit = force_8bit;
1879
1880 /* Drop the DATA_OUT instruction if len is set to 0. */
1881 if (!len)
1882 op.ninstrs--;
1883
1884 return nand_exec_op(chip, &op);
1885 }
1886
97d90da8
BB
1887 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
1888 if (len)
1889 chip->write_buf(mtd, buf, len);
1890
1891 return 0;
1892}
1893EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1894
1895/**
1896 * nand_readid_op - Do a READID operation
1897 * @chip: The NAND chip
1898 * @addr: address cycle to pass after the READID command
1899 * @buf: buffer used to store the ID
1900 * @len: length of the buffer
1901 *
1902 * This function sends a READID command and reads back the ID returned by the
1903 * NAND.
1904 * This function does not select/unselect the CS line.
1905 *
1906 * Returns 0 on success, a negative error code otherwise.
1907 */
1908int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1909 unsigned int len)
1910{
1911 struct mtd_info *mtd = nand_to_mtd(chip);
1912 unsigned int i;
1913 u8 *id = buf;
1914
1915 if (len && !buf)
1916 return -EINVAL;
1917
8878b126
MR
1918 if (chip->exec_op) {
1919 const struct nand_sdr_timings *sdr =
1920 nand_get_sdr_timings(&chip->data_interface);
1921 struct nand_op_instr instrs[] = {
1922 NAND_OP_CMD(NAND_CMD_READID, 0),
1923 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1924 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1925 };
1926 struct nand_operation op = NAND_OPERATION(instrs);
1927
1928 /* Drop the DATA_IN instruction if len is set to 0. */
1929 if (!len)
1930 op.ninstrs--;
1931
1932 return nand_exec_op(chip, &op);
1933 }
1934
97d90da8
BB
1935 chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
1936
1937 for (i = 0; i < len; i++)
1938 id[i] = chip->read_byte(mtd);
1939
1940 return 0;
1941}
1942EXPORT_SYMBOL_GPL(nand_readid_op);
1943
1944/**
1945 * nand_status_op - Do a STATUS operation
1946 * @chip: The NAND chip
1947 * @status: out variable to store the NAND status
1948 *
1949 * This function sends a STATUS command and reads back the status returned by
1950 * the NAND.
1951 * This function does not select/unselect the CS line.
1952 *
1953 * Returns 0 on success, a negative error code otherwise.
1954 */
1955int nand_status_op(struct nand_chip *chip, u8 *status)
1956{
1957 struct mtd_info *mtd = nand_to_mtd(chip);
1958
8878b126
MR
1959 if (chip->exec_op) {
1960 const struct nand_sdr_timings *sdr =
1961 nand_get_sdr_timings(&chip->data_interface);
1962 struct nand_op_instr instrs[] = {
1963 NAND_OP_CMD(NAND_CMD_STATUS,
1964 PSEC_TO_NSEC(sdr->tADL_min)),
1965 NAND_OP_8BIT_DATA_IN(1, status, 0),
1966 };
1967 struct nand_operation op = NAND_OPERATION(instrs);
1968
1969 if (!status)
1970 op.ninstrs--;
1971
1972 return nand_exec_op(chip, &op);
1973 }
1974
97d90da8
BB
1975 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1976 if (status)
1977 *status = chip->read_byte(mtd);
1978
1979 return 0;
1980}
1981EXPORT_SYMBOL_GPL(nand_status_op);
1982
1983/**
1984 * nand_exit_status_op - Exit a STATUS operation
1985 * @chip: The NAND chip
1986 *
1987 * This function sends a READ0 command to cancel the effect of the STATUS
1988 * command to avoid reading only the status until a new read command is sent.
1989 *
1990 * This function does not select/unselect the CS line.
1991 *
1992 * Returns 0 on success, a negative error code otherwise.
1993 */
1994int nand_exit_status_op(struct nand_chip *chip)
1995{
1996 struct mtd_info *mtd = nand_to_mtd(chip);
1997
8878b126
MR
1998 if (chip->exec_op) {
1999 struct nand_op_instr instrs[] = {
2000 NAND_OP_CMD(NAND_CMD_READ0, 0),
2001 };
2002 struct nand_operation op = NAND_OPERATION(instrs);
2003
2004 return nand_exec_op(chip, &op);
2005 }
2006
97d90da8
BB
2007 chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
2008
2009 return 0;
2010}
2011EXPORT_SYMBOL_GPL(nand_exit_status_op);
2012
2013/**
2014 * nand_erase_op - Do an erase operation
2015 * @chip: The NAND chip
2016 * @eraseblock: block to erase
2017 *
2018 * This function sends an ERASE command and waits for the NAND to be ready
2019 * before returning.
2020 * This function does not select/unselect the CS line.
2021 *
2022 * Returns 0 on success, a negative error code otherwise.
2023 */
2024int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
2025{
2026 struct mtd_info *mtd = nand_to_mtd(chip);
2027 unsigned int page = eraseblock <<
2028 (chip->phys_erase_shift - chip->page_shift);
8878b126
MR
2029 int ret;
2030 u8 status;
97d90da8 2031
8878b126
MR
2032 if (chip->exec_op) {
2033 const struct nand_sdr_timings *sdr =
2034 nand_get_sdr_timings(&chip->data_interface);
2035 u8 addrs[3] = { page, page >> 8, page >> 16 };
2036 struct nand_op_instr instrs[] = {
2037 NAND_OP_CMD(NAND_CMD_ERASE1, 0),
2038 NAND_OP_ADDR(2, addrs, 0),
2039 NAND_OP_CMD(NAND_CMD_ERASE2,
2040 PSEC_TO_MSEC(sdr->tWB_max)),
2041 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
2042 };
2043 struct nand_operation op = NAND_OPERATION(instrs);
97d90da8 2044
8878b126
MR
2045 if (chip->options & NAND_ROW_ADDR_3)
2046 instrs[1].ctx.addr.naddrs++;
2047
2048 ret = nand_exec_op(chip, &op);
2049 if (ret)
2050 return ret;
2051
2052 ret = nand_status_op(chip, &status);
2053 if (ret)
2054 return ret;
2055 } else {
2056 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2057 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2058
2059 ret = chip->waitfunc(mtd, chip);
2060 if (ret < 0)
2061 return ret;
2062
2063 status = ret;
2064 }
97d90da8
BB
2065
2066 if (status & NAND_STATUS_FAIL)
2067 return -EIO;
2068
2069 return 0;
2070}
2071EXPORT_SYMBOL_GPL(nand_erase_op);
2072
2073/**
2074 * nand_set_features_op - Do a SET FEATURES operation
2075 * @chip: The NAND chip
2076 * @feature: feature id
2077 * @data: 4 bytes of data
2078 *
2079 * This function sends a SET FEATURES command and waits for the NAND to be
2080 * ready before returning.
2081 * This function does not select/unselect the CS line.
2082 *
2083 * Returns 0 on success, a negative error code otherwise.
2084 */
2085static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2086 const void *data)
2087{
2088 struct mtd_info *mtd = nand_to_mtd(chip);
2089 const u8 *params = data;
8878b126
MR
2090 int i, ret;
2091 u8 status;
97d90da8 2092
8878b126
MR
2093 if (chip->exec_op) {
2094 const struct nand_sdr_timings *sdr =
2095 nand_get_sdr_timings(&chip->data_interface);
2096 struct nand_op_instr instrs[] = {
2097 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2098 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
2099 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2100 PSEC_TO_NSEC(sdr->tWB_max)),
2101 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
2102 };
2103 struct nand_operation op = NAND_OPERATION(instrs);
2104
2105 ret = nand_exec_op(chip, &op);
2106 if (ret)
2107 return ret;
2108
2109 ret = nand_status_op(chip, &status);
2110 if (ret)
2111 return ret;
2112 } else {
2113 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
2114 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2115 chip->write_byte(mtd, params[i]);
2116
2117 ret = chip->waitfunc(mtd, chip);
2118 if (ret < 0)
2119 return ret;
2120
2121 status = ret;
2122 }
97d90da8 2123
97d90da8
BB
2124 if (status & NAND_STATUS_FAIL)
2125 return -EIO;
2126
2127 return 0;
2128}
2129
2130/**
2131 * nand_get_features_op - Do a GET FEATURES operation
2132 * @chip: The NAND chip
2133 * @feature: feature id
2134 * @data: 4 bytes of data
2135 *
2136 * This function sends a GET FEATURES command and waits for the NAND to be
2137 * ready before returning.
2138 * This function does not select/unselect the CS line.
2139 *
2140 * Returns 0 on success, a negative error code otherwise.
2141 */
2142static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2143 void *data)
2144{
2145 struct mtd_info *mtd = nand_to_mtd(chip);
2146 u8 *params = data;
2147 int i;
2148
8878b126
MR
2149 if (chip->exec_op) {
2150 const struct nand_sdr_timings *sdr =
2151 nand_get_sdr_timings(&chip->data_interface);
2152 struct nand_op_instr instrs[] = {
2153 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2154 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
2155 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
2156 PSEC_TO_NSEC(sdr->tRR_min)),
2157 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2158 data, 0),
2159 };
2160 struct nand_operation op = NAND_OPERATION(instrs);
2161
2162 return nand_exec_op(chip, &op);
2163 }
2164
97d90da8
BB
2165 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
2166 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2167 params[i] = chip->read_byte(mtd);
2168
2169 return 0;
2170}
2171
2172/**
2173 * nand_reset_op - Do a reset operation
2174 * @chip: The NAND chip
2175 *
2176 * This function sends a RESET command and waits for the NAND to be ready
2177 * before returning.
2178 * This function does not select/unselect the CS line.
2179 *
2180 * Returns 0 on success, a negative error code otherwise.
2181 */
2182int nand_reset_op(struct nand_chip *chip)
2183{
2184 struct mtd_info *mtd = nand_to_mtd(chip);
2185
8878b126
MR
2186 if (chip->exec_op) {
2187 const struct nand_sdr_timings *sdr =
2188 nand_get_sdr_timings(&chip->data_interface);
2189 struct nand_op_instr instrs[] = {
2190 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
2191 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
2192 };
2193 struct nand_operation op = NAND_OPERATION(instrs);
2194
2195 return nand_exec_op(chip, &op);
2196 }
2197
97d90da8
BB
2198 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2199
2200 return 0;
2201}
2202EXPORT_SYMBOL_GPL(nand_reset_op);
2203
2204/**
2205 * nand_read_data_op - Read data from the NAND
2206 * @chip: The NAND chip
2207 * @buf: buffer used to store the data
2208 * @len: length of the buffer
2209 * @force_8bit: force 8-bit bus access
2210 *
2211 * This function does a raw data read on the bus. Usually used after launching
2212 * another NAND operation like nand_read_page_op().
2213 * This function does not select/unselect the CS line.
2214 *
2215 * Returns 0 on success, a negative error code otherwise.
2216 */
2217int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2218 bool force_8bit)
2219{
2220 struct mtd_info *mtd = nand_to_mtd(chip);
2221
2222 if (!len || !buf)
2223 return -EINVAL;
2224
8878b126
MR
2225 if (chip->exec_op) {
2226 struct nand_op_instr instrs[] = {
2227 NAND_OP_DATA_IN(len, buf, 0),
2228 };
2229 struct nand_operation op = NAND_OPERATION(instrs);
2230
2231 instrs[0].ctx.data.force_8bit = force_8bit;
2232
2233 return nand_exec_op(chip, &op);
2234 }
2235
97d90da8
BB
2236 if (force_8bit) {
2237 u8 *p = buf;
2238 unsigned int i;
2239
2240 for (i = 0; i < len; i++)
2241 p[i] = chip->read_byte(mtd);
2242 } else {
2243 chip->read_buf(mtd, buf, len);
2244 }
2245
2246 return 0;
2247}
2248EXPORT_SYMBOL_GPL(nand_read_data_op);
2249
2250/**
2251 * nand_write_data_op - Write data from the NAND
2252 * @chip: The NAND chip
2253 * @buf: buffer containing the data to send on the bus
2254 * @len: length of the buffer
2255 * @force_8bit: force 8-bit bus access
2256 *
2257 * This function does a raw data write on the bus. Usually used after launching
2258 * another NAND operation like nand_write_page_begin_op().
2259 * This function does not select/unselect the CS line.
2260 *
2261 * Returns 0 on success, a negative error code otherwise.
2262 */
2263int nand_write_data_op(struct nand_chip *chip, const void *buf,
2264 unsigned int len, bool force_8bit)
2265{
2266 struct mtd_info *mtd = nand_to_mtd(chip);
2267
2268 if (!len || !buf)
2269 return -EINVAL;
2270
8878b126
MR
2271 if (chip->exec_op) {
2272 struct nand_op_instr instrs[] = {
2273 NAND_OP_DATA_OUT(len, buf, 0),
2274 };
2275 struct nand_operation op = NAND_OPERATION(instrs);
2276
2277 instrs[0].ctx.data.force_8bit = force_8bit;
2278
2279 return nand_exec_op(chip, &op);
2280 }
2281
97d90da8
BB
2282 if (force_8bit) {
2283 const u8 *p = buf;
2284 unsigned int i;
2285
2286 for (i = 0; i < len; i++)
2287 chip->write_byte(mtd, p[i]);
2288 } else {
2289 chip->write_buf(mtd, buf, len);
2290 }
2291
2292 return 0;
2293}
2294EXPORT_SYMBOL_GPL(nand_write_data_op);
2295
8878b126
MR
2296/**
2297 * struct nand_op_parser_ctx - Context used by the parser
2298 * @instrs: array of all the instructions that must be addressed
2299 * @ninstrs: length of the @instrs array
2300 * @subop: Sub-operation to be passed to the NAND controller
2301 *
2302 * This structure is used by the core to split NAND operations into
2303 * sub-operations that can be handled by the NAND controller.
2304 */
2305struct nand_op_parser_ctx {
2306 const struct nand_op_instr *instrs;
2307 unsigned int ninstrs;
2308 struct nand_subop subop;
2309};
2310
2311/**
2312 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2313 * @pat: the parser pattern element that matches @instr
2314 * @instr: pointer to the instruction to check
2315 * @start_offset: this is an in/out parameter. If @instr has already been
2316 * split, then @start_offset is the offset from which to start
2317 * (either an address cycle or an offset in the data buffer).
2318 * Conversely, if the function returns true (ie. instr must be
2319 * split), this parameter is updated to point to the first
2320 * data/address cycle that has not been taken care of.
2321 *
2322 * Some NAND controllers are limited and cannot send X address cycles with a
2323 * unique operation, or cannot read/write more than Y bytes at the same time.
2324 * In this case, split the instruction that does not fit in a single
2325 * controller-operation into two or more chunks.
2326 *
2327 * Returns true if the instruction must be split, false otherwise.
2328 * The @start_offset parameter is also updated to the offset at which the next
2329 * bundle of instruction must start (if an address or a data instruction).
2330 */
2331static bool
2332nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2333 const struct nand_op_instr *instr,
2334 unsigned int *start_offset)
2335{
2336 switch (pat->type) {
2337 case NAND_OP_ADDR_INSTR:
2338 if (!pat->addr.maxcycles)
2339 break;
2340
2341 if (instr->ctx.addr.naddrs - *start_offset >
2342 pat->addr.maxcycles) {
2343 *start_offset += pat->addr.maxcycles;
2344 return true;
2345 }
2346 break;
2347
2348 case NAND_OP_DATA_IN_INSTR:
2349 case NAND_OP_DATA_OUT_INSTR:
2350 if (!pat->data.maxlen)
2351 break;
2352
2353 if (instr->ctx.data.len - *start_offset > pat->data.maxlen) {
2354 *start_offset += pat->data.maxlen;
2355 return true;
2356 }
2357 break;
2358
2359 default:
2360 break;
2361 }
2362
2363 return false;
2364}
2365
2366/**
2367 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2368 * remaining in the parser context
2369 * @pat: the pattern to test
2370 * @ctx: the parser context structure to match with the pattern @pat
2371 *
2372 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2373 * Returns true if this is the case, false ortherwise. When true is returned,
2374 * @ctx->subop is updated with the set of instructions to be passed to the
2375 * controller driver.
2376 */
2377static bool
2378nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2379 struct nand_op_parser_ctx *ctx)
2380{
2381 unsigned int instr_offset = ctx->subop.first_instr_start_off;
2382 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2383 const struct nand_op_instr *instr = ctx->subop.instrs;
2384 unsigned int i, ninstrs;
2385
2386 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2387 /*
2388 * The pattern instruction does not match the operation
2389 * instruction. If the instruction is marked optional in the
2390 * pattern definition, we skip the pattern element and continue
2391 * to the next one. If the element is mandatory, there's no
2392 * match and we can return false directly.
2393 */
2394 if (instr->type != pat->elems[i].type) {
2395 if (!pat->elems[i].optional)
2396 return false;
2397
2398 continue;
2399 }
2400
2401 /*
2402 * Now check the pattern element constraints. If the pattern is
2403 * not able to handle the whole instruction in a single step,
2404 * we have to split it.
2405 * The last_instr_end_off value comes back updated to point to
2406 * the position where we have to split the instruction (the
2407 * start of the next subop chunk).
2408 */
2409 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2410 &instr_offset)) {
2411 ninstrs++;
2412 i++;
2413 break;
2414 }
2415
2416 instr++;
2417 ninstrs++;
2418 instr_offset = 0;
2419 }
2420
2421 /*
2422 * This can happen if all instructions of a pattern are optional.
2423 * Still, if there's not at least one instruction handled by this
2424 * pattern, this is not a match, and we should try the next one (if
2425 * any).
2426 */
2427 if (!ninstrs)
2428 return false;
2429
2430 /*
2431 * We had a match on the pattern head, but the pattern may be longer
2432 * than the instructions we're asked to execute. We need to make sure
2433 * there's no mandatory elements in the pattern tail.
2434 */
2435 for (; i < pat->nelems; i++) {
2436 if (!pat->elems[i].optional)
2437 return false;
2438 }
2439
2440 /*
2441 * We have a match: update the subop structure accordingly and return
2442 * true.
2443 */
2444 ctx->subop.ninstrs = ninstrs;
2445 ctx->subop.last_instr_end_off = instr_offset;
2446
2447 return true;
2448}
2449
2450#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2451static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2452{
2453 const struct nand_op_instr *instr;
2454 char *prefix = " ";
2455 unsigned int i;
2456
2457 pr_debug("executing subop:\n");
2458
2459 for (i = 0; i < ctx->ninstrs; i++) {
2460 instr = &ctx->instrs[i];
2461
2462 if (instr == &ctx->subop.instrs[0])
2463 prefix = " ->";
2464
2465 switch (instr->type) {
2466 case NAND_OP_CMD_INSTR:
2467 pr_debug("%sCMD [0x%02x]\n", prefix,
2468 instr->ctx.cmd.opcode);
2469 break;
2470 case NAND_OP_ADDR_INSTR:
2471 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
2472 instr->ctx.addr.naddrs,
2473 instr->ctx.addr.naddrs < 64 ?
2474 instr->ctx.addr.naddrs : 64,
2475 instr->ctx.addr.addrs);
2476 break;
2477 case NAND_OP_DATA_IN_INSTR:
2478 pr_debug("%sDATA_IN [%d B%s]\n", prefix,
2479 instr->ctx.data.len,
2480 instr->ctx.data.force_8bit ?
2481 ", force 8-bit" : "");
2482 break;
2483 case NAND_OP_DATA_OUT_INSTR:
2484 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
2485 instr->ctx.data.len,
2486 instr->ctx.data.force_8bit ?
2487 ", force 8-bit" : "");
2488 break;
2489 case NAND_OP_WAITRDY_INSTR:
2490 pr_debug("%sWAITRDY [max %d ms]\n", prefix,
2491 instr->ctx.waitrdy.timeout_ms);
2492 break;
2493 }
2494
2495 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2496 prefix = " ";
2497 }
2498}
2499#else
2500static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2501{
2502 /* NOP */
2503}
2504#endif
2505
2506/**
2507 * nand_op_parser_exec_op - exec_op parser
2508 * @chip: the NAND chip
2509 * @parser: patterns description provided by the controller driver
2510 * @op: the NAND operation to address
2511 * @check_only: when true, the function only checks if @op can be handled but
2512 * does not execute the operation
2513 *
2514 * Helper function designed to ease integration of NAND controller drivers that
2515 * only support a limited set of instruction sequences. The supported sequences
2516 * are described in @parser, and the framework takes care of splitting @op into
2517 * multiple sub-operations (if required) and pass them back to the ->exec()
2518 * callback of the matching pattern if @check_only is set to false.
2519 *
2520 * NAND controller drivers should call this function from their own ->exec_op()
2521 * implementation.
2522 *
2523 * Returns 0 on success, a negative error code otherwise. A failure can be
2524 * caused by an unsupported operation (none of the supported patterns is able
2525 * to handle the requested operation), or an error returned by one of the
2526 * matching pattern->exec() hook.
2527 */
2528int nand_op_parser_exec_op(struct nand_chip *chip,
2529 const struct nand_op_parser *parser,
2530 const struct nand_operation *op, bool check_only)
2531{
2532 struct nand_op_parser_ctx ctx = {
2533 .subop.instrs = op->instrs,
2534 .instrs = op->instrs,
2535 .ninstrs = op->ninstrs,
2536 };
2537 unsigned int i;
2538
2539 while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2540 int ret;
2541
2542 for (i = 0; i < parser->npatterns; i++) {
2543 const struct nand_op_parser_pattern *pattern;
2544
2545 pattern = &parser->patterns[i];
2546 if (!nand_op_parser_match_pat(pattern, &ctx))
2547 continue;
2548
2549 nand_op_parser_trace(&ctx);
2550
2551 if (check_only)
2552 break;
2553
2554 ret = pattern->exec(chip, &ctx.subop);
2555 if (ret)
2556 return ret;
2557
2558 break;
2559 }
2560
2561 if (i == parser->npatterns) {
2562 pr_debug("->exec_op() parser: pattern not found!\n");
2563 return -ENOTSUPP;
2564 }
2565
2566 /*
2567 * Update the context structure by pointing to the start of the
2568 * next subop.
2569 */
2570 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2571 if (ctx.subop.last_instr_end_off)
2572 ctx.subop.instrs -= 1;
2573
2574 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2575 }
2576
2577 return 0;
2578}
2579EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2580
2581static bool nand_instr_is_data(const struct nand_op_instr *instr)
2582{
2583 return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2584 instr->type == NAND_OP_DATA_OUT_INSTR);
2585}
2586
2587static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2588 unsigned int instr_idx)
2589{
2590 return subop && instr_idx < subop->ninstrs;
2591}
2592
2593static int nand_subop_get_start_off(const struct nand_subop *subop,
2594 unsigned int instr_idx)
2595{
2596 if (instr_idx)
2597 return 0;
2598
2599 return subop->first_instr_start_off;
2600}
2601
2602/**
2603 * nand_subop_get_addr_start_off - Get the start offset in an address array
2604 * @subop: The entire sub-operation
2605 * @instr_idx: Index of the instruction inside the sub-operation
2606 *
2607 * During driver development, one could be tempted to directly use the
2608 * ->addr.addrs field of address instructions. This is wrong as address
2609 * instructions might be split.
2610 *
2611 * Given an address instruction, returns the offset of the first cycle to issue.
2612 */
2613int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2614 unsigned int instr_idx)
2615{
2616 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2617 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2618 return -EINVAL;
2619
2620 return nand_subop_get_start_off(subop, instr_idx);
2621}
2622EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2623
2624/**
2625 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2626 * @subop: The entire sub-operation
2627 * @instr_idx: Index of the instruction inside the sub-operation
2628 *
2629 * During driver development, one could be tempted to directly use the
2630 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2631 * might be split.
2632 *
2633 * Given an address instruction, returns the number of address cycle to issue.
2634 */
2635int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2636 unsigned int instr_idx)
2637{
2638 int start_off, end_off;
2639
2640 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2641 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2642 return -EINVAL;
2643
2644 start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2645
2646 if (instr_idx == subop->ninstrs - 1 &&
2647 subop->last_instr_end_off)
2648 end_off = subop->last_instr_end_off;
2649 else
2650 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2651
2652 return end_off - start_off;
2653}
2654EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2655
2656/**
2657 * nand_subop_get_data_start_off - Get the start offset in a data array
2658 * @subop: The entire sub-operation
2659 * @instr_idx: Index of the instruction inside the sub-operation
2660 *
2661 * During driver development, one could be tempted to directly use the
2662 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2663 * instructions might be split.
2664 *
2665 * Given a data instruction, returns the offset to start from.
2666 */
2667int nand_subop_get_data_start_off(const struct nand_subop *subop,
2668 unsigned int instr_idx)
2669{
2670 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2671 !nand_instr_is_data(&subop->instrs[instr_idx]))
2672 return -EINVAL;
2673
2674 return nand_subop_get_start_off(subop, instr_idx);
2675}
2676EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2677
2678/**
2679 * nand_subop_get_data_len - Get the number of bytes to retrieve
2680 * @subop: The entire sub-operation
2681 * @instr_idx: Index of the instruction inside the sub-operation
2682 *
2683 * During driver development, one could be tempted to directly use the
2684 * ->data->len field of a data instruction. This is wrong as data instructions
2685 * might be split.
2686 *
2687 * Returns the length of the chunk of data to send/receive.
2688 */
2689int nand_subop_get_data_len(const struct nand_subop *subop,
2690 unsigned int instr_idx)
2691{
2692 int start_off = 0, end_off;
2693
2694 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2695 !nand_instr_is_data(&subop->instrs[instr_idx]))
2696 return -EINVAL;
2697
2698 start_off = nand_subop_get_data_start_off(subop, instr_idx);
2699
2700 if (instr_idx == subop->ninstrs - 1 &&
2701 subop->last_instr_end_off)
2702 end_off = subop->last_instr_end_off;
2703 else
2704 end_off = subop->instrs[instr_idx].ctx.data.len;
2705
2706 return end_off - start_off;
2707}
2708EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2709
2f94abfe
SH
2710/**
2711 * nand_reset - Reset and initialize a NAND device
2712 * @chip: The NAND chip
73f907fd 2713 * @chipnr: Internal die id
2f94abfe 2714 *
17fa8044
MR
2715 * Save the timings data structure, then apply SDR timings mode 0 (see
2716 * nand_reset_data_interface for details), do the reset operation, and
2717 * apply back the previous timings.
2718 *
2719 * Returns 0 on success, a negative error code otherwise.
2f94abfe 2720 */
73f907fd 2721int nand_reset(struct nand_chip *chip, int chipnr)
2f94abfe
SH
2722{
2723 struct mtd_info *mtd = nand_to_mtd(chip);
17fa8044 2724 struct nand_data_interface saved_data_intf = chip->data_interface;
d8e725dd
BB
2725 int ret;
2726
104e442a 2727 ret = nand_reset_data_interface(chip, chipnr);
d8e725dd
BB
2728 if (ret)
2729 return ret;
2f94abfe 2730
73f907fd
BB
2731 /*
2732 * The CS line has to be released before we can apply the new NAND
2733 * interface settings, hence this weird ->select_chip() dance.
2734 */
2735 chip->select_chip(mtd, chipnr);
97d90da8 2736 ret = nand_reset_op(chip);
73f907fd 2737 chip->select_chip(mtd, -1);
97d90da8
BB
2738 if (ret)
2739 return ret;
2f94abfe 2740
73f907fd 2741 chip->select_chip(mtd, chipnr);
17fa8044 2742 chip->data_interface = saved_data_intf;
104e442a 2743 ret = nand_setup_data_interface(chip, chipnr);
73f907fd 2744 chip->select_chip(mtd, -1);
d8e725dd
BB
2745 if (ret)
2746 return ret;
2747
2f94abfe
SH
2748 return 0;
2749}
b9bb9842 2750EXPORT_SYMBOL_GPL(nand_reset);
2f94abfe 2751
730a43fb
BB
2752/**
2753 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2754 * @buf: buffer to test
2755 * @len: buffer length
2756 * @bitflips_threshold: maximum number of bitflips
2757 *
2758 * Check if a buffer contains only 0xff, which means the underlying region
2759 * has been erased and is ready to be programmed.
2760 * The bitflips_threshold specify the maximum number of bitflips before
2761 * considering the region is not erased.
2762 * Note: The logic of this function has been extracted from the memweight
2763 * implementation, except that nand_check_erased_buf function exit before
2764 * testing the whole buffer if the number of bitflips exceed the
2765 * bitflips_threshold value.
2766 *
2767 * Returns a positive number of bitflips less than or equal to
2768 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2769 * threshold.
2770 */
2771static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2772{
2773 const unsigned char *bitmap = buf;
2774 int bitflips = 0;
2775 int weight;
2776
2777 for (; len && ((uintptr_t)bitmap) % sizeof(long);
2778 len--, bitmap++) {
2779 weight = hweight8(*bitmap);
2780 bitflips += BITS_PER_BYTE - weight;
2781 if (unlikely(bitflips > bitflips_threshold))
2782 return -EBADMSG;
2783 }
2784
2785 for (; len >= sizeof(long);
2786 len -= sizeof(long), bitmap += sizeof(long)) {
086567f1
PM
2787 unsigned long d = *((unsigned long *)bitmap);
2788 if (d == ~0UL)
2789 continue;
2790 weight = hweight_long(d);
730a43fb
BB
2791 bitflips += BITS_PER_LONG - weight;
2792 if (unlikely(bitflips > bitflips_threshold))
2793 return -EBADMSG;
2794 }
2795
2796 for (; len > 0; len--, bitmap++) {
2797 weight = hweight8(*bitmap);
2798 bitflips += BITS_PER_BYTE - weight;
2799 if (unlikely(bitflips > bitflips_threshold))
2800 return -EBADMSG;
2801 }
2802
2803 return bitflips;
2804}
2805
2806/**
2807 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2808 * 0xff data
2809 * @data: data buffer to test
2810 * @datalen: data length
2811 * @ecc: ECC buffer
2812 * @ecclen: ECC length
2813 * @extraoob: extra OOB buffer
2814 * @extraooblen: extra OOB length
2815 * @bitflips_threshold: maximum number of bitflips
2816 *
2817 * Check if a data buffer and its associated ECC and OOB data contains only
2818 * 0xff pattern, which means the underlying region has been erased and is
2819 * ready to be programmed.
2820 * The bitflips_threshold specify the maximum number of bitflips before
2821 * considering the region as not erased.
2822 *
2823 * Note:
2824 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2825 * different from the NAND page size. When fixing bitflips, ECC engines will
2826 * report the number of errors per chunk, and the NAND core infrastructure
2827 * expect you to return the maximum number of bitflips for the whole page.
2828 * This is why you should always use this function on a single chunk and
2829 * not on the whole page. After checking each chunk you should update your
2830 * max_bitflips value accordingly.
2831 * 2/ When checking for bitflips in erased pages you should not only check
2832 * the payload data but also their associated ECC data, because a user might
2833 * have programmed almost all bits to 1 but a few. In this case, we
2834 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
2835 * this case.
2836 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2837 * data are protected by the ECC engine.
2838 * It could also be used if you support subpages and want to attach some
2839 * extra OOB data to an ECC chunk.
2840 *
2841 * Returns a positive number of bitflips less than or equal to
2842 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2843 * threshold. In case of success, the passed buffers are filled with 0xff.
2844 */
2845int nand_check_erased_ecc_chunk(void *data, int datalen,
2846 void *ecc, int ecclen,
2847 void *extraoob, int extraooblen,
2848 int bitflips_threshold)
2849{
2850 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2851
2852 data_bitflips = nand_check_erased_buf(data, datalen,
2853 bitflips_threshold);
2854 if (data_bitflips < 0)
2855 return data_bitflips;
2856
2857 bitflips_threshold -= data_bitflips;
2858
2859 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2860 if (ecc_bitflips < 0)
2861 return ecc_bitflips;
2862
2863 bitflips_threshold -= ecc_bitflips;
2864
2865 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2866 bitflips_threshold);
2867 if (extraoob_bitflips < 0)
2868 return extraoob_bitflips;
2869
2870 if (data_bitflips)
2871 memset(data, 0xff, datalen);
2872
2873 if (ecc_bitflips)
2874 memset(ecc, 0xff, ecclen);
2875
2876 if (extraoob_bitflips)
2877 memset(extraoob, 0xff, extraooblen);
2878
2879 return data_bitflips + ecc_bitflips + extraoob_bitflips;
2880}
2881EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2882
8593fbc6 2883/**
7854d3f7 2884 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
2885 * @mtd: mtd info structure
2886 * @chip: nand chip info structure
2887 * @buf: buffer to store read data
1fbb938d 2888 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 2889 * @page: page number to read
52ff49df 2890 *
7854d3f7 2891 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2892 */
cc0f51ec
TP
2893int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2894 uint8_t *buf, int oob_required, int page)
8593fbc6 2895{
97d90da8
BB
2896 int ret;
2897
25f815f6 2898 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
97d90da8
BB
2899 if (ret)
2900 return ret;
2901
2902 if (oob_required) {
2903 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2904 false);
2905 if (ret)
2906 return ret;
2907 }
2908
8593fbc6
TG
2909 return 0;
2910}
cc0f51ec 2911EXPORT_SYMBOL(nand_read_page_raw);
8593fbc6 2912
52ff49df 2913/**
7854d3f7 2914 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
2915 * @mtd: mtd info structure
2916 * @chip: nand chip info structure
2917 * @buf: buffer to store read data
1fbb938d 2918 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 2919 * @page: page number to read
52ff49df
DB
2920 *
2921 * We need a special oob layout and handling even when OOB isn't used.
2922 */
7351d3a5 2923static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
2924 struct nand_chip *chip, uint8_t *buf,
2925 int oob_required, int page)
52ff49df
DB
2926{
2927 int eccsize = chip->ecc.size;
2928 int eccbytes = chip->ecc.bytes;
2929 uint8_t *oob = chip->oob_poi;
97d90da8 2930 int steps, size, ret;
52ff49df 2931
25f815f6
BB
2932 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2933 if (ret)
2934 return ret;
2935
52ff49df 2936 for (steps = chip->ecc.steps; steps > 0; steps--) {
97d90da8
BB
2937 ret = nand_read_data_op(chip, buf, eccsize, false);
2938 if (ret)
2939 return ret;
2940
52ff49df
DB
2941 buf += eccsize;
2942
2943 if (chip->ecc.prepad) {
97d90da8
BB
2944 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2945 false);
2946 if (ret)
2947 return ret;
2948
52ff49df
DB
2949 oob += chip->ecc.prepad;
2950 }
2951
97d90da8
BB
2952 ret = nand_read_data_op(chip, oob, eccbytes, false);
2953 if (ret)
2954 return ret;
2955
52ff49df
DB
2956 oob += eccbytes;
2957
2958 if (chip->ecc.postpad) {
97d90da8
BB
2959 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2960 false);
2961 if (ret)
2962 return ret;
2963
52ff49df
DB
2964 oob += chip->ecc.postpad;
2965 }
2966 }
2967
2968 size = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
2969 if (size) {
2970 ret = nand_read_data_op(chip, oob, size, false);
2971 if (ret)
2972 return ret;
2973 }
52ff49df
DB
2974
2975 return 0;
2976}
2977
1da177e4 2978/**
7854d3f7 2979 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
2980 * @mtd: mtd info structure
2981 * @chip: nand chip info structure
2982 * @buf: buffer to store read data
1fbb938d 2983 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 2984 * @page: page number to read
068e3c0a 2985 */
f5bbdacc 2986static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2987 uint8_t *buf, int oob_required, int page)
1da177e4 2988{
846031d3 2989 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
2990 int eccbytes = chip->ecc.bytes;
2991 int eccsteps = chip->ecc.steps;
2992 uint8_t *p = buf;
c0313b96
MY
2993 uint8_t *ecc_calc = chip->ecc.calc_buf;
2994 uint8_t *ecc_code = chip->ecc.code_buf;
3f91e94f 2995 unsigned int max_bitflips = 0;
f5bbdacc 2996
1fbb938d 2997 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
2998
2999 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3000 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3001
846031d3
BB
3002 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3003 chip->ecc.total);
3004 if (ret)
3005 return ret;
f5bbdacc
TG
3006
3007 eccsteps = chip->ecc.steps;
3008 p = buf;
3009
3010 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3011 int stat;
3012
3013 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 3014 if (stat < 0) {
f5bbdacc 3015 mtd->ecc_stats.failed++;
3f91e94f 3016 } else {
f5bbdacc 3017 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3018 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3019 }
f5bbdacc 3020 }
3f91e94f 3021 return max_bitflips;
22c60f5f 3022}
1da177e4 3023
3d459559 3024/**
837a6ba4 3025 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
3026 * @mtd: mtd info structure
3027 * @chip: nand chip info structure
3028 * @data_offs: offset of requested data within the page
3029 * @readlen: data length
3030 * @bufpoi: buffer to store read data
e004debd 3031 * @page: page number to read
3d459559 3032 */
7351d3a5 3033static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
3034 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
3035 int page)
3d459559 3036{
846031d3 3037 int start_step, end_step, num_steps, ret;
3d459559
AK
3038 uint8_t *p;
3039 int data_col_addr, i, gaps = 0;
3040 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3041 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
846031d3 3042 int index, section = 0;
3f91e94f 3043 unsigned int max_bitflips = 0;
846031d3 3044 struct mtd_oob_region oobregion = { };
3d459559 3045
7854d3f7 3046 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
3047 start_step = data_offs / chip->ecc.size;
3048 end_step = (data_offs + readlen - 1) / chip->ecc.size;
3049 num_steps = end_step - start_step + 1;
4a4163ca 3050 index = start_step * chip->ecc.bytes;
3d459559 3051
8b6e50c9 3052 /* Data size aligned to ECC ecc.size */
3d459559
AK
3053 datafrag_len = num_steps * chip->ecc.size;
3054 eccfrag_len = num_steps * chip->ecc.bytes;
3055
3056 data_col_addr = start_step * chip->ecc.size;
3057 /* If we read not a page aligned data */
3d459559 3058 p = bufpoi + data_col_addr;
25f815f6 3059 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
97d90da8
BB
3060 if (ret)
3061 return ret;
3d459559 3062
8b6e50c9 3063 /* Calculate ECC */
3d459559 3064 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
c0313b96 3065 chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
3d459559 3066
8b6e50c9
BN
3067 /*
3068 * The performance is faster if we position offsets according to
7854d3f7 3069 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 3070 */
846031d3
BB
3071 ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3072 if (ret)
3073 return ret;
3074
3075 if (oobregion.length < eccfrag_len)
3076 gaps = 1;
3077
3d459559 3078 if (gaps) {
97d90da8
BB
3079 ret = nand_change_read_column_op(chip, mtd->writesize,
3080 chip->oob_poi, mtd->oobsize,
3081 false);
3082 if (ret)
3083 return ret;
3d459559 3084 } else {
8b6e50c9 3085 /*
7854d3f7 3086 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
3087 * about buswidth alignment in read_buf.
3088 */
846031d3 3089 aligned_pos = oobregion.offset & ~(busw - 1);
3d459559 3090 aligned_len = eccfrag_len;
846031d3 3091 if (oobregion.offset & (busw - 1))
3d459559 3092 aligned_len++;
846031d3
BB
3093 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3094 (busw - 1))
3d459559
AK
3095 aligned_len++;
3096
97d90da8
BB
3097 ret = nand_change_read_column_op(chip,
3098 mtd->writesize + aligned_pos,
3099 &chip->oob_poi[aligned_pos],
3100 aligned_len, false);
3101 if (ret)
3102 return ret;
3d459559
AK
3103 }
3104
c0313b96 3105 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
846031d3
BB
3106 chip->oob_poi, index, eccfrag_len);
3107 if (ret)
3108 return ret;
3d459559
AK
3109
3110 p = bufpoi + data_col_addr;
3111 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3112 int stat;
3113
c0313b96
MY
3114 stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
3115 &chip->ecc.calc_buf[i]);
40cbe6ee
BB
3116 if (stat == -EBADMSG &&
3117 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3118 /* check for empty pages with bitflips */
3119 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
c0313b96 3120 &chip->ecc.code_buf[i],
40cbe6ee
BB
3121 chip->ecc.bytes,
3122 NULL, 0,
3123 chip->ecc.strength);
3124 }
3125
3f91e94f 3126 if (stat < 0) {
3d459559 3127 mtd->ecc_stats.failed++;
3f91e94f 3128 } else {
3d459559 3129 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3130 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3131 }
3d459559 3132 }
3f91e94f 3133 return max_bitflips;
3d459559
AK
3134}
3135
068e3c0a 3136/**
7854d3f7 3137 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
3138 * @mtd: mtd info structure
3139 * @chip: nand chip info structure
3140 * @buf: buffer to store read data
1fbb938d 3141 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3142 * @page: page number to read
068e3c0a 3143 *
7854d3f7 3144 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 3145 */
f5bbdacc 3146static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 3147 uint8_t *buf, int oob_required, int page)
1da177e4 3148{
846031d3 3149 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
3150 int eccbytes = chip->ecc.bytes;
3151 int eccsteps = chip->ecc.steps;
3152 uint8_t *p = buf;
c0313b96
MY
3153 uint8_t *ecc_calc = chip->ecc.calc_buf;
3154 uint8_t *ecc_code = chip->ecc.code_buf;
3f91e94f 3155 unsigned int max_bitflips = 0;
f5bbdacc 3156
25f815f6
BB
3157 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3158 if (ret)
3159 return ret;
3160
f5bbdacc
TG
3161 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3162 chip->ecc.hwctl(mtd, NAND_ECC_READ);
97d90da8
BB
3163
3164 ret = nand_read_data_op(chip, p, eccsize, false);
3165 if (ret)
3166 return ret;
3167
f5bbdacc 3168 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 3169 }
97d90da8
BB
3170
3171 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3172 if (ret)
3173 return ret;
1da177e4 3174
846031d3
BB
3175 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3176 chip->ecc.total);
3177 if (ret)
3178 return ret;
1da177e4 3179
f5bbdacc
TG
3180 eccsteps = chip->ecc.steps;
3181 p = buf;
61b03bd7 3182
f5bbdacc
TG
3183 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3184 int stat;
1da177e4 3185
f5bbdacc 3186 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
40cbe6ee
BB
3187 if (stat == -EBADMSG &&
3188 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3189 /* check for empty pages with bitflips */
3190 stat = nand_check_erased_ecc_chunk(p, eccsize,
3191 &ecc_code[i], eccbytes,
3192 NULL, 0,
3193 chip->ecc.strength);
3194 }
3195
3f91e94f 3196 if (stat < 0) {
f5bbdacc 3197 mtd->ecc_stats.failed++;
3f91e94f 3198 } else {
f5bbdacc 3199 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3200 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3201 }
f5bbdacc 3202 }
3f91e94f 3203 return max_bitflips;
f5bbdacc 3204}
1da177e4 3205
6e0cb135 3206/**
7854d3f7 3207 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
3208 * @mtd: mtd info structure
3209 * @chip: nand chip info structure
3210 * @buf: buffer to store read data
1fbb938d 3211 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3212 * @page: page number to read
6e0cb135 3213 *
8b6e50c9
BN
3214 * Hardware ECC for large page chips, require OOB to be read first. For this
3215 * ECC mode, the write_page method is re-used from ECC_HW. These methods
3216 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
3217 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
3218 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
3219 */
3220static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 3221 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135 3222{
846031d3 3223 int i, eccsize = chip->ecc.size, ret;
6e0cb135
SN
3224 int eccbytes = chip->ecc.bytes;
3225 int eccsteps = chip->ecc.steps;
3226 uint8_t *p = buf;
c0313b96
MY
3227 uint8_t *ecc_code = chip->ecc.code_buf;
3228 uint8_t *ecc_calc = chip->ecc.calc_buf;
3f91e94f 3229 unsigned int max_bitflips = 0;
6e0cb135
SN
3230
3231 /* Read the OOB area first */
97d90da8
BB
3232 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3233 if (ret)
3234 return ret;
3235
3236 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3237 if (ret)
3238 return ret;
6e0cb135 3239
846031d3
BB
3240 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3241 chip->ecc.total);
3242 if (ret)
3243 return ret;
6e0cb135
SN
3244
3245 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3246 int stat;
3247
3248 chip->ecc.hwctl(mtd, NAND_ECC_READ);
97d90da8
BB
3249
3250 ret = nand_read_data_op(chip, p, eccsize, false);
3251 if (ret)
3252 return ret;
3253
6e0cb135
SN
3254 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3255
3256 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
40cbe6ee
BB
3257 if (stat == -EBADMSG &&
3258 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3259 /* check for empty pages with bitflips */
3260 stat = nand_check_erased_ecc_chunk(p, eccsize,
3261 &ecc_code[i], eccbytes,
3262 NULL, 0,
3263 chip->ecc.strength);
3264 }
3265
3f91e94f 3266 if (stat < 0) {
6e0cb135 3267 mtd->ecc_stats.failed++;
3f91e94f 3268 } else {
6e0cb135 3269 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3270 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3271 }
6e0cb135 3272 }
3f91e94f 3273 return max_bitflips;
6e0cb135
SN
3274}
3275
f5bbdacc 3276/**
7854d3f7 3277 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
3278 * @mtd: mtd info structure
3279 * @chip: nand chip info structure
3280 * @buf: buffer to store read data
1fbb938d 3281 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3282 * @page: page number to read
f5bbdacc 3283 *
8b6e50c9
BN
3284 * The hw generator calculates the error syndrome automatically. Therefore we
3285 * need a special oob layout and handling.
f5bbdacc
TG
3286 */
3287static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 3288 uint8_t *buf, int oob_required, int page)
f5bbdacc 3289{
97d90da8 3290 int ret, i, eccsize = chip->ecc.size;
f5bbdacc
TG
3291 int eccbytes = chip->ecc.bytes;
3292 int eccsteps = chip->ecc.steps;
40cbe6ee 3293 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
f5bbdacc 3294 uint8_t *p = buf;
f75e5097 3295 uint8_t *oob = chip->oob_poi;
3f91e94f 3296 unsigned int max_bitflips = 0;
1da177e4 3297
25f815f6
BB
3298 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3299 if (ret)
3300 return ret;
3301
f5bbdacc
TG
3302 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3303 int stat;
61b03bd7 3304
f5bbdacc 3305 chip->ecc.hwctl(mtd, NAND_ECC_READ);
97d90da8
BB
3306
3307 ret = nand_read_data_op(chip, p, eccsize, false);
3308 if (ret)
3309 return ret;
1da177e4 3310
f5bbdacc 3311 if (chip->ecc.prepad) {
97d90da8
BB
3312 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3313 false);
3314 if (ret)
3315 return ret;
3316
f5bbdacc
TG
3317 oob += chip->ecc.prepad;
3318 }
1da177e4 3319
f5bbdacc 3320 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
97d90da8
BB
3321
3322 ret = nand_read_data_op(chip, oob, eccbytes, false);
3323 if (ret)
3324 return ret;
3325
f5bbdacc 3326 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 3327
f5bbdacc 3328 oob += eccbytes;
1da177e4 3329
f5bbdacc 3330 if (chip->ecc.postpad) {
97d90da8
BB
3331 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3332 false);
3333 if (ret)
3334 return ret;
3335
f5bbdacc 3336 oob += chip->ecc.postpad;
61b03bd7 3337 }
40cbe6ee
BB
3338
3339 if (stat == -EBADMSG &&
3340 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3341 /* check for empty pages with bitflips */
3342 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3343 oob - eccpadbytes,
3344 eccpadbytes,
3345 NULL, 0,
3346 chip->ecc.strength);
3347 }
3348
3349 if (stat < 0) {
3350 mtd->ecc_stats.failed++;
3351 } else {
3352 mtd->ecc_stats.corrected += stat;
3353 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3354 }
f5bbdacc 3355 }
1da177e4 3356
f5bbdacc 3357 /* Calculate remaining oob bytes */
7e4178f9 3358 i = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
3359 if (i) {
3360 ret = nand_read_data_op(chip, oob, i, false);
3361 if (ret)
3362 return ret;
3363 }
61b03bd7 3364
3f91e94f 3365 return max_bitflips;
f5bbdacc 3366}
1da177e4 3367
f5bbdacc 3368/**
7854d3f7 3369 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
846031d3 3370 * @mtd: mtd info structure
8b6e50c9
BN
3371 * @oob: oob destination address
3372 * @ops: oob ops structure
3373 * @len: size of oob to transfer
8593fbc6 3374 */
846031d3 3375static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
7014568b 3376 struct mtd_oob_ops *ops, size_t len)
8593fbc6 3377{
846031d3
BB
3378 struct nand_chip *chip = mtd_to_nand(mtd);
3379 int ret;
3380
f8ac0414 3381 switch (ops->mode) {
8593fbc6 3382
0612b9dd
BN
3383 case MTD_OPS_PLACE_OOB:
3384 case MTD_OPS_RAW:
8593fbc6
TG
3385 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3386 return oob + len;
3387
846031d3
BB
3388 case MTD_OPS_AUTO_OOB:
3389 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3390 ops->ooboffs, len);
3391 BUG_ON(ret);
3392 return oob + len;
3393
8593fbc6
TG
3394 default:
3395 BUG();
3396 }
3397 return NULL;
3398}
3399
ba84fb59
BN
3400/**
3401 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3402 * @mtd: MTD device structure
3403 * @retry_mode: the retry mode to use
3404 *
3405 * Some vendors supply a special command to shift the Vt threshold, to be used
3406 * when there are too many bitflips in a page (i.e., ECC error). After setting
3407 * a new threshold, the host should retry reading the page.
3408 */
3409static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
3410{
862eba51 3411 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
3412
3413 pr_debug("setting READ RETRY mode %d\n", retry_mode);
3414
3415 if (retry_mode >= chip->read_retries)
3416 return -EINVAL;
3417
3418 if (!chip->setup_read_retry)
3419 return -EOPNOTSUPP;
3420
3421 return chip->setup_read_retry(mtd, retry_mode);
3422}
3423
8593fbc6 3424/**
7854d3f7 3425 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
3426 * @mtd: MTD device structure
3427 * @from: offset to read from
3428 * @ops: oob ops structure
f5bbdacc
TG
3429 *
3430 * Internal function. Called with chip held.
3431 */
8593fbc6
TG
3432static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
3433 struct mtd_oob_ops *ops)
f5bbdacc 3434{
e47f3db4 3435 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 3436 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 3437 int ret = 0;
8593fbc6 3438 uint32_t readlen = ops->len;
7014568b 3439 uint32_t oobreadlen = ops->ooblen;
29f1058a 3440 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
9aca334e 3441
8593fbc6 3442 uint8_t *bufpoi, *oob, *buf;
66507c7b 3443 int use_bufpoi;
edbc4540 3444 unsigned int max_bitflips = 0;
ba84fb59 3445 int retry_mode = 0;
b72f3dfb 3446 bool ecc_fail = false;
1da177e4 3447
f5bbdacc
TG
3448 chipnr = (int)(from >> chip->chip_shift);
3449 chip->select_chip(mtd, chipnr);
61b03bd7 3450
f5bbdacc
TG
3451 realpage = (int)(from >> chip->page_shift);
3452 page = realpage & chip->pagemask;
1da177e4 3453
f5bbdacc 3454 col = (int)(from & (mtd->writesize - 1));
61b03bd7 3455
8593fbc6
TG
3456 buf = ops->datbuf;
3457 oob = ops->oobbuf;
e47f3db4 3458 oob_required = oob ? 1 : 0;
8593fbc6 3459
f8ac0414 3460 while (1) {
b72f3dfb
BN
3461 unsigned int ecc_failures = mtd->ecc_stats.failed;
3462
f5bbdacc
TG
3463 bytes = min(mtd->writesize - col, readlen);
3464 aligned = (bytes == mtd->writesize);
61b03bd7 3465
66507c7b
KD
3466 if (!aligned)
3467 use_bufpoi = 1;
3468 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
3469 use_bufpoi = !virt_addr_valid(buf) ||
3470 !IS_ALIGNED((unsigned long)buf,
3471 chip->buf_align);
66507c7b
KD
3472 else
3473 use_bufpoi = 0;
3474
8b6e50c9 3475 /* Is the current page in the buffer? */
8593fbc6 3476 if (realpage != chip->pagebuf || oob) {
c0313b96 3477 bufpoi = use_bufpoi ? chip->data_buf : buf;
66507c7b
KD
3478
3479 if (use_bufpoi && aligned)
3480 pr_debug("%s: using read bounce buffer for buf@%p\n",
3481 __func__, buf);
61b03bd7 3482
ba84fb59 3483read_retry:
edbc4540
MD
3484 /*
3485 * Now read the page into the buffer. Absent an error,
3486 * the read methods return max bitflips per ecc step.
3487 */
0612b9dd 3488 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 3489 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
3490 oob_required,
3491 page);
a5ff4f10
JW
3492 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3493 !oob)
7351d3a5 3494 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
3495 col, bytes, bufpoi,
3496 page);
956e944c 3497 else
46a8cf2d 3498 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 3499 oob_required, page);
6d77b9d0 3500 if (ret < 0) {
66507c7b 3501 if (use_bufpoi)
6d77b9d0
BN
3502 /* Invalidate page cache */
3503 chip->pagebuf = -1;
1da177e4 3504 break;
6d77b9d0 3505 }
f5bbdacc
TG
3506
3507 /* Transfer not aligned data */
66507c7b 3508 if (use_bufpoi) {
a5ff4f10 3509 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 3510 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 3511 (ops->mode != MTD_OPS_RAW)) {
3d459559 3512 chip->pagebuf = realpage;
edbc4540
MD
3513 chip->pagebuf_bitflips = ret;
3514 } else {
6d77b9d0
BN
3515 /* Invalidate page cache */
3516 chip->pagebuf = -1;
edbc4540 3517 }
c0313b96 3518 memcpy(buf, chip->data_buf + col, bytes);
f5bbdacc
TG
3519 }
3520
8593fbc6 3521 if (unlikely(oob)) {
b64d39d8
ML
3522 int toread = min(oobreadlen, max_oobsize);
3523
3524 if (toread) {
846031d3 3525 oob = nand_transfer_oob(mtd,
b64d39d8
ML
3526 oob, ops, toread);
3527 oobreadlen -= toread;
3528 }
8593fbc6 3529 }
5bc7c33c
BN
3530
3531 if (chip->options & NAND_NEED_READRDY) {
3532 /* Apply delay or wait for ready/busy pin */
3533 if (!chip->dev_ready)
3534 udelay(chip->chip_delay);
3535 else
3536 nand_wait_ready(mtd);
3537 }
b72f3dfb 3538
ba84fb59 3539 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 3540 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
3541 retry_mode++;
3542 ret = nand_setup_read_retry(mtd,
3543 retry_mode);
3544 if (ret < 0)
3545 break;
3546
3547 /* Reset failures; retry */
3548 mtd->ecc_stats.failed = ecc_failures;
3549 goto read_retry;
3550 } else {
3551 /* No more retry modes; real failure */
3552 ecc_fail = true;
3553 }
3554 }
3555
3556 buf += bytes;
07604686 3557 max_bitflips = max_t(unsigned int, max_bitflips, ret);
8593fbc6 3558 } else {
c0313b96 3559 memcpy(buf, chip->data_buf + col, bytes);
8593fbc6 3560 buf += bytes;
edbc4540
MD
3561 max_bitflips = max_t(unsigned int, max_bitflips,
3562 chip->pagebuf_bitflips);
8593fbc6 3563 }
1da177e4 3564
f5bbdacc 3565 readlen -= bytes;
61b03bd7 3566
ba84fb59
BN
3567 /* Reset to retry mode 0 */
3568 if (retry_mode) {
3569 ret = nand_setup_read_retry(mtd, 0);
3570 if (ret < 0)
3571 break;
3572 retry_mode = 0;
3573 }
3574
f5bbdacc 3575 if (!readlen)
61b03bd7 3576 break;
1da177e4 3577
8b6e50c9 3578 /* For subsequent reads align to page boundary */
1da177e4
LT
3579 col = 0;
3580 /* Increment page address */
3581 realpage++;
3582
ace4dfee 3583 page = realpage & chip->pagemask;
1da177e4
LT
3584 /* Check, if we cross a chip boundary */
3585 if (!page) {
3586 chipnr++;
ace4dfee
TG
3587 chip->select_chip(mtd, -1);
3588 chip->select_chip(mtd, chipnr);
1da177e4 3589 }
1da177e4 3590 }
b0bb6903 3591 chip->select_chip(mtd, -1);
1da177e4 3592
8593fbc6 3593 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
3594 if (oob)
3595 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 3596
3f91e94f 3597 if (ret < 0)
f5bbdacc
TG
3598 return ret;
3599
b72f3dfb 3600 if (ecc_fail)
9a1fcdfd
TG
3601 return -EBADMSG;
3602
edbc4540 3603 return max_bitflips;
f5bbdacc
TG
3604}
3605
3606/**
25985edc 3607 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
3608 * @mtd: MTD device structure
3609 * @from: offset to read from
3610 * @len: number of bytes to read
3611 * @retlen: pointer to variable to store the number of read bytes
3612 * @buf: the databuffer to put data
f5bbdacc 3613 *
8b6e50c9 3614 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
3615 */
3616static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
3617 size_t *retlen, uint8_t *buf)
3618{
4a89ff88 3619 struct mtd_oob_ops ops;
f5bbdacc
TG
3620 int ret;
3621
6a8214aa 3622 nand_get_device(mtd, FL_READING);
0ec56dc4 3623 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
3624 ops.len = len;
3625 ops.datbuf = buf;
11041ae6 3626 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 3627 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 3628 *retlen = ops.retlen;
f5bbdacc 3629 nand_release_device(mtd);
f5bbdacc 3630 return ret;
1da177e4
LT
3631}
3632
7bc3312b 3633/**
7854d3f7 3634 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
3635 * @mtd: mtd info structure
3636 * @chip: nand chip info structure
3637 * @page: page number to read
7bc3312b 3638 */
9d02fc2a 3639int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b 3640{
97d90da8 3641 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
7bc3312b 3642}
9d02fc2a 3643EXPORT_SYMBOL(nand_read_oob_std);
7bc3312b
TG
3644
3645/**
7854d3f7 3646 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 3647 * with syndromes
8b6e50c9
BN
3648 * @mtd: mtd info structure
3649 * @chip: nand chip info structure
3650 * @page: page number to read
7bc3312b 3651 */
9d02fc2a
BB
3652int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3653 int page)
7bc3312b 3654{
7bc3312b
TG
3655 int length = mtd->oobsize;
3656 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3657 int eccsize = chip->ecc.size;
2ea69d21 3658 uint8_t *bufpoi = chip->oob_poi;
97d90da8
BB
3659 int i, toread, sndrnd = 0, pos, ret;
3660
3661 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3662 if (ret)
3663 return ret;
7bc3312b 3664
7bc3312b
TG
3665 for (i = 0; i < chip->ecc.steps; i++) {
3666 if (sndrnd) {
97d90da8
BB
3667 int ret;
3668
7bc3312b
TG
3669 pos = eccsize + i * (eccsize + chunk);
3670 if (mtd->writesize > 512)
97d90da8
BB
3671 ret = nand_change_read_column_op(chip, pos,
3672 NULL, 0,
3673 false);
7bc3312b 3674 else
97d90da8
BB
3675 ret = nand_read_page_op(chip, page, pos, NULL,
3676 0);
3677
3678 if (ret)
3679 return ret;
7bc3312b
TG
3680 } else
3681 sndrnd = 1;
3682 toread = min_t(int, length, chunk);
97d90da8
BB
3683
3684 ret = nand_read_data_op(chip, bufpoi, toread, false);
3685 if (ret)
3686 return ret;
3687
7bc3312b
TG
3688 bufpoi += toread;
3689 length -= toread;
3690 }
97d90da8
BB
3691 if (length > 0) {
3692 ret = nand_read_data_op(chip, bufpoi, length, false);
3693 if (ret)
3694 return ret;
3695 }
7bc3312b 3696
5c2ffb11 3697 return 0;
7bc3312b 3698}
9d02fc2a 3699EXPORT_SYMBOL(nand_read_oob_syndrome);
7bc3312b
TG
3700
3701/**
7854d3f7 3702 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
3703 * @mtd: mtd info structure
3704 * @chip: nand chip info structure
3705 * @page: page number to write
7bc3312b 3706 */
9d02fc2a 3707int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b 3708{
97d90da8
BB
3709 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3710 mtd->oobsize);
7bc3312b 3711}
9d02fc2a 3712EXPORT_SYMBOL(nand_write_oob_std);
7bc3312b
TG
3713
3714/**
7854d3f7 3715 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
3716 * with syndrome - only for large page flash
3717 * @mtd: mtd info structure
3718 * @chip: nand chip info structure
3719 * @page: page number to write
7bc3312b 3720 */
9d02fc2a
BB
3721int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3722 int page)
7bc3312b
TG
3723{
3724 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3725 int eccsize = chip->ecc.size, length = mtd->oobsize;
97d90da8 3726 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
7bc3312b
TG
3727 const uint8_t *bufpoi = chip->oob_poi;
3728
3729 /*
3730 * data-ecc-data-ecc ... ecc-oob
3731 * or
3732 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3733 */
3734 if (!chip->ecc.prepad && !chip->ecc.postpad) {
3735 pos = steps * (eccsize + chunk);
3736 steps = 0;
3737 } else
8b0036ee 3738 pos = eccsize;
7bc3312b 3739
97d90da8
BB
3740 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3741 if (ret)
3742 return ret;
3743
7bc3312b
TG
3744 for (i = 0; i < steps; i++) {
3745 if (sndcmd) {
3746 if (mtd->writesize <= 512) {
3747 uint32_t fill = 0xFFFFFFFF;
3748
3749 len = eccsize;
3750 while (len > 0) {
3751 int num = min_t(int, len, 4);
97d90da8
BB
3752
3753 ret = nand_write_data_op(chip, &fill,
3754 num, false);
3755 if (ret)
3756 return ret;
3757
7bc3312b
TG
3758 len -= num;
3759 }
3760 } else {
3761 pos = eccsize + i * (eccsize + chunk);
97d90da8
BB
3762 ret = nand_change_write_column_op(chip, pos,
3763 NULL, 0,
3764 false);
3765 if (ret)
3766 return ret;
7bc3312b
TG
3767 }
3768 } else
3769 sndcmd = 1;
3770 len = min_t(int, length, chunk);
97d90da8
BB
3771
3772 ret = nand_write_data_op(chip, bufpoi, len, false);
3773 if (ret)
3774 return ret;
3775
7bc3312b
TG
3776 bufpoi += len;
3777 length -= len;
3778 }
97d90da8
BB
3779 if (length > 0) {
3780 ret = nand_write_data_op(chip, bufpoi, length, false);
3781 if (ret)
3782 return ret;
3783 }
7bc3312b 3784
97d90da8 3785 return nand_prog_page_end_op(chip);
7bc3312b 3786}
9d02fc2a 3787EXPORT_SYMBOL(nand_write_oob_syndrome);
7bc3312b 3788
1da177e4 3789/**
7854d3f7 3790 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
3791 * @mtd: MTD device structure
3792 * @from: offset to read from
3793 * @ops: oob operations description structure
1da177e4 3794 *
8b6e50c9 3795 * NAND read out-of-band data from the spare area.
1da177e4 3796 */
8593fbc6
TG
3797static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
3798 struct mtd_oob_ops *ops)
1da177e4 3799{
c00a0991 3800 int page, realpage, chipnr;
862eba51 3801 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 3802 struct mtd_ecc_stats stats;
7014568b
VW
3803 int readlen = ops->ooblen;
3804 int len;
7bc3312b 3805 uint8_t *buf = ops->oobbuf;
1951f2f7 3806 int ret = 0;
61b03bd7 3807
289c0522 3808 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 3809 __func__, (unsigned long long)from, readlen);
1da177e4 3810
041e4575
BN
3811 stats = mtd->ecc_stats;
3812
29f1058a 3813 len = mtd_oobavail(mtd, ops);
03736155
AH
3814
3815 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
3816 pr_debug("%s: attempt to start read outside oob\n",
3817 __func__);
03736155
AH
3818 return -EINVAL;
3819 }
3820
3821 /* Do not allow reads past end of device */
3822 if (unlikely(from >= mtd->size ||
3823 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
3824 (from >> chip->page_shift)) * len)) {
289c0522
BN
3825 pr_debug("%s: attempt to read beyond end of device\n",
3826 __func__);
03736155
AH
3827 return -EINVAL;
3828 }
7014568b 3829
7314e9e7 3830 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 3831 chip->select_chip(mtd, chipnr);
1da177e4 3832
7314e9e7
TG
3833 /* Shift to get page */
3834 realpage = (int)(from >> chip->page_shift);
3835 page = realpage & chip->pagemask;
1da177e4 3836
f8ac0414 3837 while (1) {
0612b9dd 3838 if (ops->mode == MTD_OPS_RAW)
1951f2f7 3839 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 3840 else
1951f2f7
SL
3841 ret = chip->ecc.read_oob(mtd, chip, page);
3842
3843 if (ret < 0)
3844 break;
7014568b
VW
3845
3846 len = min(len, readlen);
846031d3 3847 buf = nand_transfer_oob(mtd, buf, ops, len);
8593fbc6 3848
5bc7c33c
BN
3849 if (chip->options & NAND_NEED_READRDY) {
3850 /* Apply delay or wait for ready/busy pin */
3851 if (!chip->dev_ready)
3852 udelay(chip->chip_delay);
3853 else
3854 nand_wait_ready(mtd);
3855 }
3856
7014568b 3857 readlen -= len;
0d420f9d
SZ
3858 if (!readlen)
3859 break;
3860
7314e9e7
TG
3861 /* Increment page address */
3862 realpage++;
3863
3864 page = realpage & chip->pagemask;
3865 /* Check, if we cross a chip boundary */
3866 if (!page) {
3867 chipnr++;
3868 chip->select_chip(mtd, -1);
3869 chip->select_chip(mtd, chipnr);
1da177e4
LT
3870 }
3871 }
b0bb6903 3872 chip->select_chip(mtd, -1);
1da177e4 3873
1951f2f7
SL
3874 ops->oobretlen = ops->ooblen - readlen;
3875
3876 if (ret < 0)
3877 return ret;
041e4575
BN
3878
3879 if (mtd->ecc_stats.failed - stats.failed)
3880 return -EBADMSG;
3881
3882 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
3883}
3884
3885/**
8593fbc6 3886 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
3887 * @mtd: MTD device structure
3888 * @from: offset to read from
3889 * @ops: oob operation description structure
1da177e4 3890 *
8b6e50c9 3891 * NAND read data and/or out-of-band data.
1da177e4 3892 */
8593fbc6
TG
3893static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3894 struct mtd_oob_ops *ops)
1da177e4 3895{
fc6b4d12 3896 int ret;
8593fbc6
TG
3897
3898 ops->retlen = 0;
1da177e4
LT
3899
3900 /* Do not allow reads past end of device */
7014568b 3901 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
3902 pr_debug("%s: attempt to read beyond end of device\n",
3903 __func__);
1da177e4
LT
3904 return -EINVAL;
3905 }
3906
fc6b4d12
AS
3907 if (ops->mode != MTD_OPS_PLACE_OOB &&
3908 ops->mode != MTD_OPS_AUTO_OOB &&
3909 ops->mode != MTD_OPS_RAW)
3910 return -ENOTSUPP;
1da177e4 3911
fc6b4d12 3912 nand_get_device(mtd, FL_READING);
1da177e4 3913
8593fbc6
TG
3914 if (!ops->datbuf)
3915 ret = nand_do_read_oob(mtd, from, ops);
3916 else
3917 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 3918
8593fbc6
TG
3919 nand_release_device(mtd);
3920 return ret;
3921}
61b03bd7 3922
1da177e4 3923
8593fbc6 3924/**
7854d3f7 3925 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
3926 * @mtd: mtd info structure
3927 * @chip: nand chip info structure
3928 * @buf: data buffer
1fbb938d 3929 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 3930 * @page: page number to write
52ff49df 3931 *
7854d3f7 3932 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 3933 */
cc0f51ec
TP
3934int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
3935 const uint8_t *buf, int oob_required, int page)
8593fbc6 3936{
97d90da8
BB
3937 int ret;
3938
25f815f6 3939 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
97d90da8
BB
3940 if (ret)
3941 return ret;
3942
3943 if (oob_required) {
3944 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3945 false);
3946 if (ret)
3947 return ret;
3948 }
fdbad98d 3949
25f815f6 3950 return nand_prog_page_end_op(chip);
1da177e4 3951}
cc0f51ec 3952EXPORT_SYMBOL(nand_write_page_raw);
1da177e4 3953
52ff49df 3954/**
7854d3f7 3955 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
3956 * @mtd: mtd info structure
3957 * @chip: nand chip info structure
3958 * @buf: data buffer
1fbb938d 3959 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 3960 * @page: page number to write
52ff49df
DB
3961 *
3962 * We need a special oob layout and handling even when ECC isn't checked.
3963 */
fdbad98d 3964static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 3965 struct nand_chip *chip,
45aaeff9
BB
3966 const uint8_t *buf, int oob_required,
3967 int page)
52ff49df
DB
3968{
3969 int eccsize = chip->ecc.size;
3970 int eccbytes = chip->ecc.bytes;
3971 uint8_t *oob = chip->oob_poi;
97d90da8 3972 int steps, size, ret;
52ff49df 3973
25f815f6
BB
3974 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3975 if (ret)
3976 return ret;
3977
52ff49df 3978 for (steps = chip->ecc.steps; steps > 0; steps--) {
97d90da8
BB
3979 ret = nand_write_data_op(chip, buf, eccsize, false);
3980 if (ret)
3981 return ret;
3982
52ff49df
DB
3983 buf += eccsize;
3984
3985 if (chip->ecc.prepad) {
97d90da8
BB
3986 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3987 false);
3988 if (ret)
3989 return ret;
3990
52ff49df
DB
3991 oob += chip->ecc.prepad;
3992 }
3993
97d90da8
BB
3994 ret = nand_write_data_op(chip, oob, eccbytes, false);
3995 if (ret)
3996 return ret;
3997
52ff49df
DB
3998 oob += eccbytes;
3999
4000 if (chip->ecc.postpad) {
97d90da8
BB
4001 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4002 false);
4003 if (ret)
4004 return ret;
4005
52ff49df
DB
4006 oob += chip->ecc.postpad;
4007 }
4008 }
4009
4010 size = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
4011 if (size) {
4012 ret = nand_write_data_op(chip, oob, size, false);
4013 if (ret)
4014 return ret;
4015 }
fdbad98d 4016
25f815f6 4017 return nand_prog_page_end_op(chip);
52ff49df 4018}
9223a456 4019/**
7854d3f7 4020 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
4021 * @mtd: mtd info structure
4022 * @chip: nand chip info structure
4023 * @buf: data buffer
1fbb938d 4024 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4025 * @page: page number to write
9223a456 4026 */
fdbad98d 4027static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
4028 const uint8_t *buf, int oob_required,
4029 int page)
9223a456 4030{
846031d3 4031 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
4032 int eccbytes = chip->ecc.bytes;
4033 int eccsteps = chip->ecc.steps;
c0313b96 4034 uint8_t *ecc_calc = chip->ecc.calc_buf;
f75e5097 4035 const uint8_t *p = buf;
9223a456 4036
7854d3f7 4037 /* Software ECC calculation */
8593fbc6
TG
4038 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4039 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 4040
846031d3
BB
4041 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4042 chip->ecc.total);
4043 if (ret)
4044 return ret;
9223a456 4045
45aaeff9 4046 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 4047}
9223a456 4048
f75e5097 4049/**
7854d3f7 4050 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
4051 * @mtd: mtd info structure
4052 * @chip: nand chip info structure
4053 * @buf: data buffer
1fbb938d 4054 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4055 * @page: page number to write
f75e5097 4056 */
fdbad98d 4057static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
4058 const uint8_t *buf, int oob_required,
4059 int page)
f75e5097 4060{
846031d3 4061 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
4062 int eccbytes = chip->ecc.bytes;
4063 int eccsteps = chip->ecc.steps;
c0313b96 4064 uint8_t *ecc_calc = chip->ecc.calc_buf;
f75e5097 4065 const uint8_t *p = buf;
9223a456 4066
25f815f6
BB
4067 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4068 if (ret)
4069 return ret;
4070
f75e5097
TG
4071 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4072 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
97d90da8
BB
4073
4074 ret = nand_write_data_op(chip, p, eccsize, false);
4075 if (ret)
4076 return ret;
4077
f75e5097 4078 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
4079 }
4080
846031d3
BB
4081 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4082 chip->ecc.total);
4083 if (ret)
4084 return ret;
f75e5097 4085
97d90da8
BB
4086 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4087 if (ret)
4088 return ret;
fdbad98d 4089
25f815f6 4090 return nand_prog_page_end_op(chip);
9223a456
TG
4091}
4092
837a6ba4
GP
4093
4094/**
73c8aaf4 4095 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
4096 * @mtd: mtd info structure
4097 * @chip: nand chip info structure
d6a95080 4098 * @offset: column address of subpage within the page
837a6ba4 4099 * @data_len: data length
d6a95080 4100 * @buf: data buffer
837a6ba4 4101 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4102 * @page: page number to write
837a6ba4
GP
4103 */
4104static int nand_write_subpage_hwecc(struct mtd_info *mtd,
4105 struct nand_chip *chip, uint32_t offset,
d6a95080 4106 uint32_t data_len, const uint8_t *buf,
45aaeff9 4107 int oob_required, int page)
837a6ba4
GP
4108{
4109 uint8_t *oob_buf = chip->oob_poi;
c0313b96 4110 uint8_t *ecc_calc = chip->ecc.calc_buf;
837a6ba4
GP
4111 int ecc_size = chip->ecc.size;
4112 int ecc_bytes = chip->ecc.bytes;
4113 int ecc_steps = chip->ecc.steps;
837a6ba4
GP
4114 uint32_t start_step = offset / ecc_size;
4115 uint32_t end_step = (offset + data_len - 1) / ecc_size;
4116 int oob_bytes = mtd->oobsize / ecc_steps;
846031d3 4117 int step, ret;
837a6ba4 4118
25f815f6
BB
4119 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4120 if (ret)
4121 return ret;
4122
837a6ba4
GP
4123 for (step = 0; step < ecc_steps; step++) {
4124 /* configure controller for WRITE access */
4125 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4126
4127 /* write data (untouched subpages already masked by 0xFF) */
97d90da8
BB
4128 ret = nand_write_data_op(chip, buf, ecc_size, false);
4129 if (ret)
4130 return ret;
837a6ba4
GP
4131
4132 /* mask ECC of un-touched subpages by padding 0xFF */
4133 if ((step < start_step) || (step > end_step))
4134 memset(ecc_calc, 0xff, ecc_bytes);
4135 else
d6a95080 4136 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
4137
4138 /* mask OOB of un-touched subpages by padding 0xFF */
4139 /* if oob_required, preserve OOB metadata of written subpage */
4140 if (!oob_required || (step < start_step) || (step > end_step))
4141 memset(oob_buf, 0xff, oob_bytes);
4142
d6a95080 4143 buf += ecc_size;
837a6ba4
GP
4144 ecc_calc += ecc_bytes;
4145 oob_buf += oob_bytes;
4146 }
4147
4148 /* copy calculated ECC for whole page to chip->buffer->oob */
4149 /* this include masked-value(0xFF) for unwritten subpages */
c0313b96 4150 ecc_calc = chip->ecc.calc_buf;
846031d3
BB
4151 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4152 chip->ecc.total);
4153 if (ret)
4154 return ret;
837a6ba4
GP
4155
4156 /* write OOB buffer to NAND device */
97d90da8
BB
4157 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4158 if (ret)
4159 return ret;
837a6ba4 4160
25f815f6 4161 return nand_prog_page_end_op(chip);
837a6ba4
GP
4162}
4163
4164
61b03bd7 4165/**
7854d3f7 4166 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
4167 * @mtd: mtd info structure
4168 * @chip: nand chip info structure
4169 * @buf: data buffer
1fbb938d 4170 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4171 * @page: page number to write
1da177e4 4172 *
8b6e50c9
BN
4173 * The hw generator calculates the error syndrome automatically. Therefore we
4174 * need a special oob layout and handling.
f75e5097 4175 */
fdbad98d 4176static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 4177 struct nand_chip *chip,
45aaeff9
BB
4178 const uint8_t *buf, int oob_required,
4179 int page)
1da177e4 4180{
f75e5097
TG
4181 int i, eccsize = chip->ecc.size;
4182 int eccbytes = chip->ecc.bytes;
4183 int eccsteps = chip->ecc.steps;
4184 const uint8_t *p = buf;
4185 uint8_t *oob = chip->oob_poi;
97d90da8 4186 int ret;
1da177e4 4187
25f815f6
BB
4188 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4189 if (ret)
4190 return ret;
4191
f75e5097 4192 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
f75e5097 4193 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
97d90da8
BB
4194
4195 ret = nand_write_data_op(chip, p, eccsize, false);
4196 if (ret)
4197 return ret;
61b03bd7 4198
f75e5097 4199 if (chip->ecc.prepad) {
97d90da8
BB
4200 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4201 false);
4202 if (ret)
4203 return ret;
4204
f75e5097
TG
4205 oob += chip->ecc.prepad;
4206 }
4207
4208 chip->ecc.calculate(mtd, p, oob);
97d90da8
BB
4209
4210 ret = nand_write_data_op(chip, oob, eccbytes, false);
4211 if (ret)
4212 return ret;
4213
f75e5097
TG
4214 oob += eccbytes;
4215
4216 if (chip->ecc.postpad) {
97d90da8
BB
4217 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4218 false);
4219 if (ret)
4220 return ret;
4221
f75e5097 4222 oob += chip->ecc.postpad;
1da177e4 4223 }
1da177e4 4224 }
f75e5097
TG
4225
4226 /* Calculate remaining oob bytes */
7e4178f9 4227 i = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
4228 if (i) {
4229 ret = nand_write_data_op(chip, oob, i, false);
4230 if (ret)
4231 return ret;
4232 }
fdbad98d 4233
25f815f6 4234 return nand_prog_page_end_op(chip);
f75e5097
TG
4235}
4236
4237/**
f107d7a4 4238 * nand_write_page - write one page
8b6e50c9
BN
4239 * @mtd: MTD device structure
4240 * @chip: NAND chip descriptor
837a6ba4
GP
4241 * @offset: address offset within the page
4242 * @data_len: length of actual data to be written
8b6e50c9 4243 * @buf: the data to write
1fbb938d 4244 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9 4245 * @page: page number to write
8b6e50c9 4246 * @raw: use _raw version of write_page
f75e5097
TG
4247 */
4248static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4 4249 uint32_t offset, int data_len, const uint8_t *buf,
0b4773fd 4250 int oob_required, int page, int raw)
f75e5097 4251{
837a6ba4
GP
4252 int status, subpage;
4253
4254 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4255 chip->ecc.write_subpage)
4256 subpage = offset || (data_len < mtd->writesize);
4257 else
4258 subpage = 0;
f75e5097 4259
956e944c 4260 if (unlikely(raw))
837a6ba4 4261 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 4262 oob_required, page);
837a6ba4
GP
4263 else if (subpage)
4264 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 4265 buf, oob_required, page);
956e944c 4266 else
45aaeff9
BB
4267 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
4268 page);
fdbad98d
JW
4269
4270 if (status < 0)
4271 return status;
f75e5097 4272
f75e5097 4273 return 0;
1da177e4
LT
4274}
4275
8593fbc6 4276/**
7854d3f7 4277 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 4278 * @mtd: MTD device structure
8b6e50c9
BN
4279 * @oob: oob data buffer
4280 * @len: oob data write length
4281 * @ops: oob ops structure
8593fbc6 4282 */
f722013e
TAA
4283static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
4284 struct mtd_oob_ops *ops)
8593fbc6 4285{
862eba51 4286 struct nand_chip *chip = mtd_to_nand(mtd);
846031d3 4287 int ret;
f722013e
TAA
4288
4289 /*
4290 * Initialise to all 0xFF, to avoid the possibility of left over OOB
4291 * data from a previous OOB read.
4292 */
4293 memset(chip->oob_poi, 0xff, mtd->oobsize);
4294
f8ac0414 4295 switch (ops->mode) {
8593fbc6 4296
0612b9dd
BN
4297 case MTD_OPS_PLACE_OOB:
4298 case MTD_OPS_RAW:
8593fbc6
TG
4299 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
4300 return oob + len;
4301
846031d3
BB
4302 case MTD_OPS_AUTO_OOB:
4303 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
4304 ops->ooboffs, len);
4305 BUG_ON(ret);
4306 return oob + len;
4307
8593fbc6
TG
4308 default:
4309 BUG();
4310 }
4311 return NULL;
4312}
4313
f8ac0414 4314#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
4315
4316/**
7854d3f7 4317 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
4318 * @mtd: MTD device structure
4319 * @to: offset to write to
4320 * @ops: oob operations description structure
1da177e4 4321 *
8b6e50c9 4322 * NAND write with ECC.
1da177e4 4323 */
8593fbc6
TG
4324static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
4325 struct mtd_oob_ops *ops)
1da177e4 4326{
73600b61 4327 int chipnr, realpage, page, column;
862eba51 4328 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 4329 uint32_t writelen = ops->len;
782ce79a
ML
4330
4331 uint32_t oobwritelen = ops->ooblen;
29f1058a 4332 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
782ce79a 4333
8593fbc6
TG
4334 uint8_t *oob = ops->oobbuf;
4335 uint8_t *buf = ops->datbuf;
837a6ba4 4336 int ret;
e47f3db4 4337 int oob_required = oob ? 1 : 0;
1da177e4 4338
8593fbc6 4339 ops->retlen = 0;
29072b96
TG
4340 if (!writelen)
4341 return 0;
1da177e4 4342
8b6e50c9 4343 /* Reject writes, which are not page aligned */
8593fbc6 4344 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
4345 pr_notice("%s: attempt to write non page aligned data\n",
4346 __func__);
1da177e4
LT
4347 return -EINVAL;
4348 }
4349
29072b96 4350 column = to & (mtd->writesize - 1);
1da177e4 4351
6a930961
TG
4352 chipnr = (int)(to >> chip->chip_shift);
4353 chip->select_chip(mtd, chipnr);
4354
1da177e4 4355 /* Check, if it is write protected */
b0bb6903
HS
4356 if (nand_check_wp(mtd)) {
4357 ret = -EIO;
4358 goto err_out;
4359 }
1da177e4 4360
f75e5097
TG
4361 realpage = (int)(to >> chip->page_shift);
4362 page = realpage & chip->pagemask;
f75e5097
TG
4363
4364 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
4365 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
4366 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 4367 chip->pagebuf = -1;
61b03bd7 4368
782ce79a 4369 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
4370 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4371 ret = -EINVAL;
4372 goto err_out;
4373 }
782ce79a 4374
f8ac0414 4375 while (1) {
29072b96 4376 int bytes = mtd->writesize;
29072b96 4377 uint8_t *wbuf = buf;
66507c7b 4378 int use_bufpoi;
144f4c98 4379 int part_pagewr = (column || writelen < mtd->writesize);
66507c7b
KD
4380
4381 if (part_pagewr)
4382 use_bufpoi = 1;
4383 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
4384 use_bufpoi = !virt_addr_valid(buf) ||
4385 !IS_ALIGNED((unsigned long)buf,
4386 chip->buf_align);
66507c7b
KD
4387 else
4388 use_bufpoi = 0;
29072b96 4389
66507c7b
KD
4390 /* Partial page write?, or need to use bounce buffer */
4391 if (use_bufpoi) {
4392 pr_debug("%s: using write bounce buffer for buf@%p\n",
4393 __func__, buf);
66507c7b
KD
4394 if (part_pagewr)
4395 bytes = min_t(int, bytes - column, writelen);
29072b96 4396 chip->pagebuf = -1;
c0313b96
MY
4397 memset(chip->data_buf, 0xff, mtd->writesize);
4398 memcpy(&chip->data_buf[column], buf, bytes);
4399 wbuf = chip->data_buf;
29072b96 4400 }
1da177e4 4401
782ce79a
ML
4402 if (unlikely(oob)) {
4403 size_t len = min(oobwritelen, oobmaxlen);
f722013e 4404 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 4405 oobwritelen -= len;
f722013e
TAA
4406 } else {
4407 /* We still need to erase leftover OOB data */
4408 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 4409 }
f107d7a4
BB
4410
4411 ret = nand_write_page(mtd, chip, column, bytes, wbuf,
0b4773fd 4412 oob_required, page,
f107d7a4 4413 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
4414 if (ret)
4415 break;
4416
4417 writelen -= bytes;
4418 if (!writelen)
4419 break;
4420
29072b96 4421 column = 0;
f75e5097
TG
4422 buf += bytes;
4423 realpage++;
4424
4425 page = realpage & chip->pagemask;
4426 /* Check, if we cross a chip boundary */
4427 if (!page) {
4428 chipnr++;
4429 chip->select_chip(mtd, -1);
4430 chip->select_chip(mtd, chipnr);
1da177e4
LT
4431 }
4432 }
8593fbc6 4433
8593fbc6 4434 ops->retlen = ops->len - writelen;
7014568b
VW
4435 if (unlikely(oob))
4436 ops->oobretlen = ops->ooblen;
b0bb6903
HS
4437
4438err_out:
4439 chip->select_chip(mtd, -1);
1da177e4
LT
4440 return ret;
4441}
4442
2af7c653
SK
4443/**
4444 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
4445 * @mtd: MTD device structure
4446 * @to: offset to write to
4447 * @len: number of bytes to write
4448 * @retlen: pointer to variable to store the number of written bytes
4449 * @buf: the data to write
2af7c653
SK
4450 *
4451 * NAND write with ECC. Used when performing writes in interrupt context, this
4452 * may for example be called by mtdoops when writing an oops while in panic.
4453 */
4454static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4455 size_t *retlen, const uint8_t *buf)
4456{
862eba51 4457 struct nand_chip *chip = mtd_to_nand(mtd);
30863e38 4458 int chipnr = (int)(to >> chip->chip_shift);
4a89ff88 4459 struct mtd_oob_ops ops;
2af7c653
SK
4460 int ret;
4461
8b6e50c9 4462 /* Grab the device */
2af7c653
SK
4463 panic_nand_get_device(chip, mtd, FL_WRITING);
4464
30863e38
BT
4465 chip->select_chip(mtd, chipnr);
4466
4467 /* Wait for the device to get ready */
4468 panic_nand_wait(mtd, chip, 400);
4469
0ec56dc4 4470 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
4471 ops.len = len;
4472 ops.datbuf = (uint8_t *)buf;
11041ae6 4473 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 4474
4a89ff88 4475 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 4476
4a89ff88 4477 *retlen = ops.retlen;
2af7c653
SK
4478 return ret;
4479}
4480
f75e5097 4481/**
8593fbc6 4482 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
4483 * @mtd: MTD device structure
4484 * @to: offset to write to
4485 * @len: number of bytes to write
4486 * @retlen: pointer to variable to store the number of written bytes
4487 * @buf: the data to write
f75e5097 4488 *
8b6e50c9 4489 * NAND write with ECC.
f75e5097 4490 */
8593fbc6
TG
4491static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4492 size_t *retlen, const uint8_t *buf)
f75e5097 4493{
4a89ff88 4494 struct mtd_oob_ops ops;
f75e5097
TG
4495 int ret;
4496
6a8214aa 4497 nand_get_device(mtd, FL_WRITING);
0ec56dc4 4498 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
4499 ops.len = len;
4500 ops.datbuf = (uint8_t *)buf;
11041ae6 4501 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 4502 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 4503 *retlen = ops.retlen;
f75e5097 4504 nand_release_device(mtd);
8593fbc6 4505 return ret;
f75e5097 4506}
7314e9e7 4507
1da177e4 4508/**
8593fbc6 4509 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
4510 * @mtd: MTD device structure
4511 * @to: offset to write to
4512 * @ops: oob operation description structure
1da177e4 4513 *
8b6e50c9 4514 * NAND write out-of-band.
1da177e4 4515 */
8593fbc6
TG
4516static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
4517 struct mtd_oob_ops *ops)
1da177e4 4518{
03736155 4519 int chipnr, page, status, len;
862eba51 4520 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 4521
289c0522 4522 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 4523 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 4524
29f1058a 4525 len = mtd_oobavail(mtd, ops);
03736155 4526
1da177e4 4527 /* Do not allow write past end of page */
03736155 4528 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
4529 pr_debug("%s: attempt to write past end of page\n",
4530 __func__);
1da177e4
LT
4531 return -EINVAL;
4532 }
4533
03736155 4534 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
4535 pr_debug("%s: attempt to start write outside oob\n",
4536 __func__);
03736155
AH
4537 return -EINVAL;
4538 }
4539
775adc3d 4540 /* Do not allow write past end of device */
03736155
AH
4541 if (unlikely(to >= mtd->size ||
4542 ops->ooboffs + ops->ooblen >
4543 ((mtd->size >> chip->page_shift) -
4544 (to >> chip->page_shift)) * len)) {
289c0522
BN
4545 pr_debug("%s: attempt to write beyond end of device\n",
4546 __func__);
03736155
AH
4547 return -EINVAL;
4548 }
4549
7314e9e7 4550 chipnr = (int)(to >> chip->chip_shift);
7314e9e7
TG
4551
4552 /*
4553 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
4554 * of my DiskOnChip 2000 test units) will clear the whole data page too
4555 * if we don't do this. I have no clue why, but I seem to have 'fixed'
4556 * it in the doc2000 driver in August 1999. dwmw2.
4557 */
73f907fd
BB
4558 nand_reset(chip, chipnr);
4559
4560 chip->select_chip(mtd, chipnr);
4561
4562 /* Shift to get page */
4563 page = (int)(to >> chip->page_shift);
1da177e4
LT
4564
4565 /* Check, if it is write protected */
b0bb6903
HS
4566 if (nand_check_wp(mtd)) {
4567 chip->select_chip(mtd, -1);
8593fbc6 4568 return -EROFS;
b0bb6903 4569 }
61b03bd7 4570
1da177e4 4571 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
4572 if (page == chip->pagebuf)
4573 chip->pagebuf = -1;
1da177e4 4574
f722013e 4575 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 4576
0612b9dd 4577 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
4578 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
4579 else
4580 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 4581
b0bb6903
HS
4582 chip->select_chip(mtd, -1);
4583
7bc3312b
TG
4584 if (status)
4585 return status;
1da177e4 4586
7014568b 4587 ops->oobretlen = ops->ooblen;
1da177e4 4588
7bc3312b 4589 return 0;
8593fbc6
TG
4590}
4591
4592/**
4593 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
4594 * @mtd: MTD device structure
4595 * @to: offset to write to
4596 * @ops: oob operation description structure
8593fbc6
TG
4597 */
4598static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4599 struct mtd_oob_ops *ops)
4600{
8593fbc6
TG
4601 int ret = -ENOTSUPP;
4602
4603 ops->retlen = 0;
4604
4605 /* Do not allow writes past end of device */
7014568b 4606 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
4607 pr_debug("%s: attempt to write beyond end of device\n",
4608 __func__);
8593fbc6
TG
4609 return -EINVAL;
4610 }
4611
6a8214aa 4612 nand_get_device(mtd, FL_WRITING);
8593fbc6 4613
f8ac0414 4614 switch (ops->mode) {
0612b9dd
BN
4615 case MTD_OPS_PLACE_OOB:
4616 case MTD_OPS_AUTO_OOB:
4617 case MTD_OPS_RAW:
8593fbc6
TG
4618 break;
4619
4620 default:
4621 goto out;
4622 }
4623
4624 if (!ops->datbuf)
4625 ret = nand_do_write_oob(mtd, to, ops);
4626 else
4627 ret = nand_do_write_ops(mtd, to, ops);
4628
7351d3a5 4629out:
1da177e4 4630 nand_release_device(mtd);
1da177e4
LT
4631 return ret;
4632}
4633
1da177e4 4634/**
49c50b97 4635 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
4636 * @mtd: MTD device structure
4637 * @page: the page address of the block which will be erased
1da177e4 4638 *
49c50b97 4639 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 4640 */
49c50b97 4641static int single_erase(struct mtd_info *mtd, int page)
1da177e4 4642{
862eba51 4643 struct nand_chip *chip = mtd_to_nand(mtd);
97d90da8 4644 unsigned int eraseblock;
eb94555e 4645
1da177e4 4646 /* Send commands to erase a block */
97d90da8 4647 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
49c50b97 4648
97d90da8 4649 return nand_erase_op(chip, eraseblock);
1da177e4
LT
4650}
4651
1da177e4
LT
4652/**
4653 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
4654 * @mtd: MTD device structure
4655 * @instr: erase instruction
1da177e4 4656 *
8b6e50c9 4657 * Erase one ore more blocks.
1da177e4 4658 */
e0c7d767 4659static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 4660{
e0c7d767 4661 return nand_erase_nand(mtd, instr, 0);
1da177e4 4662}
61b03bd7 4663
1da177e4 4664/**
7854d3f7 4665 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
4666 * @mtd: MTD device structure
4667 * @instr: erase instruction
4668 * @allowbbt: allow erasing the bbt area
1da177e4 4669 *
8b6e50c9 4670 * Erase one ore more blocks.
1da177e4 4671 */
ace4dfee
TG
4672int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
4673 int allowbbt)
1da177e4 4674{
69423d99 4675 int page, status, pages_per_block, ret, chipnr;
862eba51 4676 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 4677 loff_t len;
1da177e4 4678
289c0522
BN
4679 pr_debug("%s: start = 0x%012llx, len = %llu\n",
4680 __func__, (unsigned long long)instr->addr,
4681 (unsigned long long)instr->len);
1da177e4 4682
6fe5a6ac 4683 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 4684 return -EINVAL;
1da177e4 4685
1da177e4 4686 /* Grab the lock and see if the device is available */
6a8214aa 4687 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
4688
4689 /* Shift to get first page */
ace4dfee
TG
4690 page = (int)(instr->addr >> chip->page_shift);
4691 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
4692
4693 /* Calculate pages in each block */
ace4dfee 4694 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
4695
4696 /* Select the NAND device */
ace4dfee 4697 chip->select_chip(mtd, chipnr);
1da177e4 4698
1da177e4
LT
4699 /* Check, if it is write protected */
4700 if (nand_check_wp(mtd)) {
289c0522
BN
4701 pr_debug("%s: device is write protected!\n",
4702 __func__);
1da177e4
LT
4703 instr->state = MTD_ERASE_FAILED;
4704 goto erase_exit;
4705 }
4706
4707 /* Loop through the pages */
4708 len = instr->len;
4709
4710 instr->state = MTD_ERASING;
4711
4712 while (len) {
12183a20 4713 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee 4714 if (nand_block_checkbad(mtd, ((loff_t) page) <<
9f3e0429 4715 chip->page_shift, allowbbt)) {
d0370219
BN
4716 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4717 __func__, page);
1da177e4
LT
4718 instr->state = MTD_ERASE_FAILED;
4719 goto erase_exit;
4720 }
61b03bd7 4721
ace4dfee
TG
4722 /*
4723 * Invalidate the page cache, if we erase the block which
8b6e50c9 4724 * contains the current cached page.
ace4dfee
TG
4725 */
4726 if (page <= chip->pagebuf && chip->pagebuf <
4727 (page + pages_per_block))
4728 chip->pagebuf = -1;
1da177e4 4729
49c50b97 4730 status = chip->erase(mtd, page & chip->pagemask);
1da177e4
LT
4731
4732 /* See if block erase succeeded */
eb94555e 4733 if (status) {
289c0522
BN
4734 pr_debug("%s: failed erase, page 0x%08x\n",
4735 __func__, page);
1da177e4 4736 instr->state = MTD_ERASE_FAILED;
69423d99
AH
4737 instr->fail_addr =
4738 ((loff_t)page << chip->page_shift);
1da177e4
LT
4739 goto erase_exit;
4740 }
30f464b7 4741
1da177e4 4742 /* Increment page address and decrement length */
daae74ca 4743 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
4744 page += pages_per_block;
4745
4746 /* Check, if we cross a chip boundary */
ace4dfee 4747 if (len && !(page & chip->pagemask)) {
1da177e4 4748 chipnr++;
ace4dfee
TG
4749 chip->select_chip(mtd, -1);
4750 chip->select_chip(mtd, chipnr);
1da177e4
LT
4751 }
4752 }
4753 instr->state = MTD_ERASE_DONE;
4754
7351d3a5 4755erase_exit:
1da177e4
LT
4756
4757 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
4758
4759 /* Deselect and wake up anyone waiting on the device */
b0bb6903 4760 chip->select_chip(mtd, -1);
1da177e4
LT
4761 nand_release_device(mtd);
4762
49defc01
DW
4763 /* Do call back function */
4764 if (!ret)
4765 mtd_erase_callback(instr);
4766
1da177e4
LT
4767 /* Return more or less happy */
4768 return ret;
4769}
4770
4771/**
4772 * nand_sync - [MTD Interface] sync
8b6e50c9 4773 * @mtd: MTD device structure
1da177e4 4774 *
8b6e50c9 4775 * Sync is actually a wait for chip ready function.
1da177e4 4776 */
e0c7d767 4777static void nand_sync(struct mtd_info *mtd)
1da177e4 4778{
289c0522 4779 pr_debug("%s: called\n", __func__);
1da177e4
LT
4780
4781 /* Grab the lock and see if the device is available */
6a8214aa 4782 nand_get_device(mtd, FL_SYNCING);
1da177e4 4783 /* Release it and go back */
e0c7d767 4784 nand_release_device(mtd);
1da177e4
LT
4785}
4786
1da177e4 4787/**
ace4dfee 4788 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
4789 * @mtd: MTD device structure
4790 * @offs: offset relative to mtd start
1da177e4 4791 */
ace4dfee 4792static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 4793{
9f3e0429
AT
4794 struct nand_chip *chip = mtd_to_nand(mtd);
4795 int chipnr = (int)(offs >> chip->chip_shift);
4796 int ret;
4797
4798 /* Select the NAND device */
4799 nand_get_device(mtd, FL_READING);
4800 chip->select_chip(mtd, chipnr);
4801
4802 ret = nand_block_checkbad(mtd, offs, 0);
4803
4804 chip->select_chip(mtd, -1);
4805 nand_release_device(mtd);
4806
4807 return ret;
1da177e4
LT
4808}
4809
4810/**
ace4dfee 4811 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
4812 * @mtd: MTD device structure
4813 * @ofs: offset relative to mtd start
1da177e4 4814 */
e0c7d767 4815static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 4816{
1da177e4
LT
4817 int ret;
4818
f8ac0414
FF
4819 ret = nand_block_isbad(mtd, ofs);
4820 if (ret) {
8b6e50c9 4821 /* If it was bad already, return success and do nothing */
1da177e4
LT
4822 if (ret > 0)
4823 return 0;
e0c7d767
DW
4824 return ret;
4825 }
1da177e4 4826
5a0edb25 4827 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
4828}
4829
5671842f
ZB
4830/**
4831 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
4832 * @mtd: MTD device structure
4833 * @ofs: offset relative to mtd start
4834 * @len: length of mtd
4835 */
4836static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
4837{
4838 struct nand_chip *chip = mtd_to_nand(mtd);
4839 u32 part_start_block;
4840 u32 part_end_block;
4841 u32 part_start_die;
4842 u32 part_end_die;
4843
4844 /*
4845 * max_bb_per_die and blocks_per_die used to determine
4846 * the maximum bad block count.
4847 */
4848 if (!chip->max_bb_per_die || !chip->blocks_per_die)
4849 return -ENOTSUPP;
4850
4851 /* Get the start and end of the partition in erase blocks. */
4852 part_start_block = mtd_div_by_eb(ofs, mtd);
4853 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
4854
4855 /* Get the start and end LUNs of the partition. */
4856 part_start_die = part_start_block / chip->blocks_per_die;
4857 part_end_die = part_end_block / chip->blocks_per_die;
4858
4859 /*
4860 * Look up the bad blocks per unit and multiply by the number of units
4861 * that the partition spans.
4862 */
4863 return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
4864}
4865
7db03ecc
HS
4866/**
4867 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
4868 * @mtd: MTD device structure
4869 * @chip: nand chip info structure
4870 * @addr: feature address.
4871 * @subfeature_param: the subfeature parameters, a four bytes array.
4872 */
4873static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
4874 int addr, uint8_t *subfeature_param)
4875{
d914c932
DM
4876 if (!chip->onfi_version ||
4877 !(le16_to_cpu(chip->onfi_params.opt_cmd)
4878 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
4879 return -EINVAL;
4880
97d90da8 4881 return nand_set_features_op(chip, addr, subfeature_param);
7db03ecc
HS
4882}
4883
4884/**
4885 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
4886 * @mtd: MTD device structure
4887 * @chip: nand chip info structure
4888 * @addr: feature address.
4889 * @subfeature_param: the subfeature parameters, a four bytes array.
4890 */
4891static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
4892 int addr, uint8_t *subfeature_param)
4893{
d914c932
DM
4894 if (!chip->onfi_version ||
4895 !(le16_to_cpu(chip->onfi_params.opt_cmd)
4896 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
4897 return -EINVAL;
4898
97d90da8 4899 return nand_get_features_op(chip, addr, subfeature_param);
7db03ecc
HS
4900}
4901
4a78cc64
BB
4902/**
4903 * nand_onfi_get_set_features_notsupp - set/get features stub returning
4904 * -ENOTSUPP
4905 * @mtd: MTD device structure
4906 * @chip: nand chip info structure
4907 * @addr: feature address.
4908 * @subfeature_param: the subfeature parameters, a four bytes array.
4909 *
4910 * Should be used by NAND controller drivers that do not support the SET/GET
4911 * FEATURES operations.
4912 */
4913int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
4914 struct nand_chip *chip, int addr,
4915 u8 *subfeature_param)
4916{
4917 return -ENOTSUPP;
4918}
4919EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
4920
962034f4
VW
4921/**
4922 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 4923 * @mtd: MTD device structure
962034f4
VW
4924 */
4925static int nand_suspend(struct mtd_info *mtd)
4926{
6a8214aa 4927 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
4928}
4929
4930/**
4931 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 4932 * @mtd: MTD device structure
962034f4
VW
4933 */
4934static void nand_resume(struct mtd_info *mtd)
4935{
862eba51 4936 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 4937
ace4dfee 4938 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
4939 nand_release_device(mtd);
4940 else
d0370219
BN
4941 pr_err("%s called for a chip which is not in suspended state\n",
4942 __func__);
962034f4
VW
4943}
4944
72ea4036
SB
4945/**
4946 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4947 * prevent further operations
4948 * @mtd: MTD device structure
4949 */
4950static void nand_shutdown(struct mtd_info *mtd)
4951{
9ca641b0 4952 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
4953}
4954
8b6e50c9 4955/* Set default functions */
29a198a1 4956static void nand_set_defaults(struct nand_chip *chip)
7aa65bfd 4957{
29a198a1
BB
4958 unsigned int busw = chip->options & NAND_BUSWIDTH_16;
4959
1da177e4 4960 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
4961 if (!chip->chip_delay)
4962 chip->chip_delay = 20;
1da177e4
LT
4963
4964 /* check, if a user supplied command function given */
8878b126 4965 if (!chip->cmdfunc && !chip->exec_op)
ace4dfee 4966 chip->cmdfunc = nand_command;
1da177e4
LT
4967
4968 /* check, if a user supplied wait function given */
ace4dfee
TG
4969 if (chip->waitfunc == NULL)
4970 chip->waitfunc = nand_wait;
4971
4972 if (!chip->select_chip)
4973 chip->select_chip = nand_select_chip;
68e80780 4974
4204cccd
HS
4975 /* set for ONFI nand */
4976 if (!chip->onfi_set_features)
4977 chip->onfi_set_features = nand_onfi_set_features;
4978 if (!chip->onfi_get_features)
4979 chip->onfi_get_features = nand_onfi_get_features;
4980
68e80780
BN
4981 /* If called twice, pointers that depend on busw may need to be reset */
4982 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
4983 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
4984 if (!chip->read_word)
4985 chip->read_word = nand_read_word;
4986 if (!chip->block_bad)
4987 chip->block_bad = nand_block_bad;
4988 if (!chip->block_markbad)
4989 chip->block_markbad = nand_default_block_markbad;
68e80780 4990 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 4991 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
4992 if (!chip->write_byte || chip->write_byte == nand_write_byte)
4993 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 4994 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 4995 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
4996 if (!chip->scan_bbt)
4997 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
4998
4999 if (!chip->controller) {
5000 chip->controller = &chip->hwcontrol;
d45bc58d 5001 nand_hw_control_init(chip->controller);
f75e5097
TG
5002 }
5003
477544c6
MY
5004 if (!chip->buf_align)
5005 chip->buf_align = 1;
7aa65bfd
TG
5006}
5007
8b6e50c9 5008/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
5009static void sanitize_string(uint8_t *s, size_t len)
5010{
5011 ssize_t i;
5012
8b6e50c9 5013 /* Null terminate */
d1e1f4e4
FF
5014 s[len - 1] = 0;
5015
8b6e50c9 5016 /* Remove non printable chars */
d1e1f4e4
FF
5017 for (i = 0; i < len - 1; i++) {
5018 if (s[i] < ' ' || s[i] > 127)
5019 s[i] = '?';
5020 }
5021
8b6e50c9 5022 /* Remove trailing spaces */
d1e1f4e4
FF
5023 strim(s);
5024}
5025
5026static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
5027{
5028 int i;
5029 while (len--) {
5030 crc ^= *p++ << 8;
5031 for (i = 0; i < 8; i++)
5032 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
5033 }
5034
5035 return crc;
5036}
5037
6dcbe0cd 5038/* Parse the Extended Parameter Page. */
cbe435a1
BB
5039static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
5040 struct nand_onfi_params *p)
6dcbe0cd
HS
5041{
5042 struct onfi_ext_param_page *ep;
5043 struct onfi_ext_section *s;
5044 struct onfi_ext_ecc_info *ecc;
5045 uint8_t *cursor;
97d90da8 5046 int ret;
6dcbe0cd
HS
5047 int len;
5048 int i;
5049
5050 len = le16_to_cpu(p->ext_param_page_length) * 16;
5051 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
5052 if (!ep)
5053 return -ENOMEM;
6dcbe0cd
HS
5054
5055 /* Send our own NAND_CMD_PARAM. */
97d90da8
BB
5056 ret = nand_read_param_page_op(chip, 0, NULL, 0);
5057 if (ret)
5058 goto ext_out;
6dcbe0cd
HS
5059
5060 /* Use the Change Read Column command to skip the ONFI param pages. */
97d90da8
BB
5061 ret = nand_change_read_column_op(chip,
5062 sizeof(*p) * p->num_of_param_pages,
5063 ep, len, true);
5064 if (ret)
5065 goto ext_out;
6dcbe0cd 5066
97d90da8 5067 ret = -EINVAL;
6dcbe0cd
HS
5068 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
5069 != le16_to_cpu(ep->crc))) {
5070 pr_debug("fail in the CRC.\n");
5071 goto ext_out;
5072 }
5073
5074 /*
5075 * Check the signature.
5076 * Do not strictly follow the ONFI spec, maybe changed in future.
5077 */
5078 if (strncmp(ep->sig, "EPPS", 4)) {
5079 pr_debug("The signature is invalid.\n");
5080 goto ext_out;
5081 }
5082
5083 /* find the ECC section. */
5084 cursor = (uint8_t *)(ep + 1);
5085 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
5086 s = ep->sections + i;
5087 if (s->type == ONFI_SECTION_TYPE_2)
5088 break;
5089 cursor += s->length * 16;
5090 }
5091 if (i == ONFI_EXT_SECTION_MAX) {
5092 pr_debug("We can not find the ECC section.\n");
5093 goto ext_out;
5094 }
5095
5096 /* get the info we want. */
5097 ecc = (struct onfi_ext_ecc_info *)cursor;
5098
4ae7d228
BN
5099 if (!ecc->codeword_size) {
5100 pr_debug("Invalid codeword size\n");
5101 goto ext_out;
6dcbe0cd
HS
5102 }
5103
4ae7d228
BN
5104 chip->ecc_strength_ds = ecc->ecc_bits;
5105 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 5106 ret = 0;
6dcbe0cd
HS
5107
5108ext_out:
5109 kfree(ep);
5110 return ret;
5111}
5112
6fb277ba 5113/*
8b6e50c9 5114 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba 5115 */
29a198a1 5116static int nand_flash_detect_onfi(struct nand_chip *chip)
6fb277ba 5117{
cbe435a1 5118 struct mtd_info *mtd = nand_to_mtd(chip);
6fb277ba 5119 struct nand_onfi_params *p = &chip->onfi_params;
97d90da8
BB
5120 char id[4];
5121 int i, ret, val;
6fb277ba 5122
7854d3f7 5123 /* Try ONFI for unknown chip or LP */
97d90da8
BB
5124 ret = nand_readid_op(chip, 0x20, id, sizeof(id));
5125 if (ret || strncmp(id, "ONFI", 4))
5126 return 0;
5127
5128 ret = nand_read_param_page_op(chip, 0, NULL, 0);
5129 if (ret)
6fb277ba
FF
5130 return 0;
5131
6fb277ba 5132 for (i = 0; i < 3; i++) {
97d90da8
BB
5133 ret = nand_read_data_op(chip, p, sizeof(*p), true);
5134 if (ret)
5135 return 0;
5136
6fb277ba
FF
5137 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
5138 le16_to_cpu(p->crc)) {
6fb277ba
FF
5139 break;
5140 }
5141 }
5142
c7f23a70
BN
5143 if (i == 3) {
5144 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 5145 return 0;
c7f23a70 5146 }
6fb277ba 5147
8b6e50c9 5148 /* Check version */
6fb277ba 5149 val = le16_to_cpu(p->revision);
b7b1a29d
BN
5150 if (val & (1 << 5))
5151 chip->onfi_version = 23;
5152 else if (val & (1 << 4))
6fb277ba
FF
5153 chip->onfi_version = 22;
5154 else if (val & (1 << 3))
5155 chip->onfi_version = 21;
5156 else if (val & (1 << 2))
5157 chip->onfi_version = 20;
b7b1a29d 5158 else if (val & (1 << 1))
6fb277ba 5159 chip->onfi_version = 10;
b7b1a29d
BN
5160
5161 if (!chip->onfi_version) {
20171642 5162 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
5163 return 0;
5164 }
6fb277ba
FF
5165
5166 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5167 sanitize_string(p->model, sizeof(p->model));
5168 if (!mtd->name)
5169 mtd->name = p->model;
4355b70c 5170
6fb277ba 5171 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
5172
5173 /*
5174 * pages_per_block and blocks_per_lun may not be a power-of-2 size
5175 * (don't ask me who thought of this...). MTD assumes that these
5176 * dimensions will be power-of-2, so just truncate the remaining area.
5177 */
5178 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5179 mtd->erasesize *= mtd->writesize;
5180
6fb277ba 5181 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
5182
5183 /* See erasesize comment */
5184 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 5185 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 5186 chip->bits_per_cell = p->bits_per_cell;
e2985fc1 5187
34da5f5f
ZB
5188 chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
5189 chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
5190
e2985fc1 5191 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
29a198a1 5192 chip->options |= NAND_BUSWIDTH_16;
6fb277ba 5193
10c86bab
HS
5194 if (p->ecc_bits != 0xff) {
5195 chip->ecc_strength_ds = p->ecc_bits;
5196 chip->ecc_step_ds = 512;
6dcbe0cd
HS
5197 } else if (chip->onfi_version >= 21 &&
5198 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
5199
5200 /*
5201 * The nand_flash_detect_ext_param_page() uses the
5202 * Change Read Column command which maybe not supported
5203 * by the chip->cmdfunc. So try to update the chip->cmdfunc
5204 * now. We do not replace user supplied command function.
5205 */
5206 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5207 chip->cmdfunc = nand_command_lp;
5208
5209 /* The Extended Parameter Page is supported since ONFI 2.1. */
cbe435a1 5210 if (nand_flash_detect_ext_param_page(chip, p))
c7f23a70
BN
5211 pr_warn("Failed to detect ONFI extended param page\n");
5212 } else {
5213 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
5214 }
5215
6fb277ba
FF
5216 return 1;
5217}
5218
91361818
HS
5219/*
5220 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
5221 */
29a198a1 5222static int nand_flash_detect_jedec(struct nand_chip *chip)
91361818 5223{
cbe435a1 5224 struct mtd_info *mtd = nand_to_mtd(chip);
91361818
HS
5225 struct nand_jedec_params *p = &chip->jedec_params;
5226 struct jedec_ecc_info *ecc;
97d90da8
BB
5227 char id[5];
5228 int i, val, ret;
91361818
HS
5229
5230 /* Try JEDEC for unknown chip or LP */
97d90da8
BB
5231 ret = nand_readid_op(chip, 0x40, id, sizeof(id));
5232 if (ret || strncmp(id, "JEDEC", sizeof(id)))
5233 return 0;
5234
5235 ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
5236 if (ret)
91361818
HS
5237 return 0;
5238
91361818 5239 for (i = 0; i < 3; i++) {
97d90da8
BB
5240 ret = nand_read_data_op(chip, p, sizeof(*p), true);
5241 if (ret)
5242 return 0;
91361818
HS
5243
5244 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
5245 le16_to_cpu(p->crc))
5246 break;
5247 }
5248
5249 if (i == 3) {
5250 pr_err("Could not find valid JEDEC parameter page; aborting\n");
5251 return 0;
5252 }
5253
5254 /* Check version */
5255 val = le16_to_cpu(p->revision);
5256 if (val & (1 << 2))
5257 chip->jedec_version = 10;
5258 else if (val & (1 << 1))
5259 chip->jedec_version = 1; /* vendor specific version */
5260
5261 if (!chip->jedec_version) {
5262 pr_info("unsupported JEDEC version: %d\n", val);
5263 return 0;
5264 }
5265
5266 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5267 sanitize_string(p->model, sizeof(p->model));
5268 if (!mtd->name)
5269 mtd->name = p->model;
5270
5271 mtd->writesize = le32_to_cpu(p->byte_per_page);
5272
5273 /* Please reference to the comment for nand_flash_detect_onfi. */
5274 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5275 mtd->erasesize *= mtd->writesize;
5276
5277 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5278
5279 /* Please reference to the comment for nand_flash_detect_onfi. */
5280 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5281 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5282 chip->bits_per_cell = p->bits_per_cell;
5283
5284 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
29a198a1 5285 chip->options |= NAND_BUSWIDTH_16;
91361818
HS
5286
5287 /* ECC info */
5288 ecc = &p->ecc_info[0];
5289
5290 if (ecc->codeword_size >= 9) {
5291 chip->ecc_strength_ds = ecc->ecc_bits;
5292 chip->ecc_step_ds = 1 << ecc->codeword_size;
5293 } else {
5294 pr_warn("Invalid codeword size\n");
5295 }
5296
5297 return 1;
5298}
5299
e3b88bd6
BN
5300/*
5301 * nand_id_has_period - Check if an ID string has a given wraparound period
5302 * @id_data: the ID string
5303 * @arrlen: the length of the @id_data array
5304 * @period: the period of repitition
5305 *
5306 * Check if an ID string is repeated within a given sequence of bytes at
5307 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 5308 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
5309 * if the repetition has a period of @period; otherwise, returns zero.
5310 */
5311static int nand_id_has_period(u8 *id_data, int arrlen, int period)
5312{
5313 int i, j;
5314 for (i = 0; i < period; i++)
5315 for (j = i + period; j < arrlen; j += period)
5316 if (id_data[i] != id_data[j])
5317 return 0;
5318 return 1;
5319}
5320
5321/*
5322 * nand_id_len - Get the length of an ID string returned by CMD_READID
5323 * @id_data: the ID string
5324 * @arrlen: the length of the @id_data array
5325
5326 * Returns the length of the ID string, according to known wraparound/trailing
5327 * zero patterns. If no pattern exists, returns the length of the array.
5328 */
5329static int nand_id_len(u8 *id_data, int arrlen)
5330{
5331 int last_nonzero, period;
5332
5333 /* Find last non-zero byte */
5334 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
5335 if (id_data[last_nonzero])
5336 break;
5337
5338 /* All zeros */
5339 if (last_nonzero < 0)
5340 return 0;
5341
5342 /* Calculate wraparound period */
5343 for (period = 1; period < arrlen; period++)
5344 if (nand_id_has_period(id_data, arrlen, period))
5345 break;
5346
5347 /* There's a repeated pattern */
5348 if (period < arrlen)
5349 return period;
5350
5351 /* There are trailing zeros */
5352 if (last_nonzero < arrlen - 1)
5353 return last_nonzero + 1;
5354
5355 /* No pattern detected */
5356 return arrlen;
5357}
5358
7db906b7
HS
5359/* Extract the bits of per cell from the 3rd byte of the extended ID */
5360static int nand_get_bits_per_cell(u8 cellinfo)
5361{
5362 int bits;
5363
5364 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
5365 bits >>= NAND_CI_CELLTYPE_SHIFT;
5366 return bits + 1;
5367}
5368
fc09bbc0
BN
5369/*
5370 * Many new NAND share similar device ID codes, which represent the size of the
5371 * chip. The rest of the parameters must be decoded according to generic or
5372 * manufacturer-specific "extended ID" decoding patterns.
5373 */
abbe26d1 5374void nand_decode_ext_id(struct nand_chip *chip)
fc09bbc0 5375{
cbe435a1 5376 struct mtd_info *mtd = nand_to_mtd(chip);
9b2d61f8 5377 int extid;
7f501f0a 5378 u8 *id_data = chip->id.data;
fc09bbc0 5379 /* The 3rd id byte holds MLC / multichip data */
7db906b7 5380 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
5381 /* The 4th id byte is the important one */
5382 extid = id_data[3];
5383
01389b6b
BB
5384 /* Calc pagesize */
5385 mtd->writesize = 1024 << (extid & 0x03);
5386 extid >>= 2;
5387 /* Calc oobsize */
5388 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5389 extid >>= 2;
5390 /* Calc blocksize. Blocksize is multiples of 64KiB */
5391 mtd->erasesize = (64 * 1024) << (extid & 0x03);
5392 extid >>= 2;
5393 /* Get buswidth information */
5394 if (extid & 0x1)
5395 chip->options |= NAND_BUSWIDTH_16;
fc09bbc0 5396}
abbe26d1 5397EXPORT_SYMBOL_GPL(nand_decode_ext_id);
fc09bbc0 5398
f23a481c
BN
5399/*
5400 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5401 * decodes a matching ID table entry and assigns the MTD size parameters for
5402 * the chip.
5403 */
29a198a1 5404static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
f23a481c 5405{
cbe435a1 5406 struct mtd_info *mtd = nand_to_mtd(chip);
f23a481c
BN
5407
5408 mtd->erasesize = type->erasesize;
5409 mtd->writesize = type->pagesize;
5410 mtd->oobsize = mtd->writesize / 32;
f23a481c 5411
1c195e90
HS
5412 /* All legacy ID NAND are small-page, SLC */
5413 chip->bits_per_cell = 1;
f23a481c
BN
5414}
5415
7e74c2d7
BN
5416/*
5417 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5418 * heuristic patterns using various detected parameters (e.g., manufacturer,
5419 * page size, cell-type information).
5420 */
7f501f0a 5421static void nand_decode_bbm_options(struct nand_chip *chip)
7e74c2d7 5422{
cbe435a1 5423 struct mtd_info *mtd = nand_to_mtd(chip);
7e74c2d7
BN
5424
5425 /* Set the bad block position */
5426 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5427 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
5428 else
5429 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
7e74c2d7
BN
5430}
5431
ec6e87e3
HS
5432static inline bool is_full_id_nand(struct nand_flash_dev *type)
5433{
5434 return type->id_len;
5435}
5436
cbe435a1 5437static bool find_full_id_nand(struct nand_chip *chip,
29a198a1 5438 struct nand_flash_dev *type)
ec6e87e3 5439{
cbe435a1 5440 struct mtd_info *mtd = nand_to_mtd(chip);
7f501f0a 5441 u8 *id_data = chip->id.data;
cbe435a1 5442
ec6e87e3
HS
5443 if (!strncmp(type->id, id_data, type->id_len)) {
5444 mtd->writesize = type->pagesize;
5445 mtd->erasesize = type->erasesize;
5446 mtd->oobsize = type->oobsize;
5447
7db906b7 5448 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
5449 chip->chipsize = (uint64_t)type->chipsize << 20;
5450 chip->options |= type->options;
57219342
HS
5451 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
5452 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
5453 chip->onfi_timing_mode_default =
5454 type->onfi_timing_mode_default;
ec6e87e3 5455
092b6a1d
CZ
5456 if (!mtd->name)
5457 mtd->name = type->name;
5458
ec6e87e3
HS
5459 return true;
5460 }
5461 return false;
5462}
5463
abbe26d1
BB
5464/*
5465 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5466 * compliant and does not have a full-id or legacy-id entry in the nand_ids
5467 * table.
5468 */
5469static void nand_manufacturer_detect(struct nand_chip *chip)
5470{
5471 /*
5472 * Try manufacturer detection if available and use
5473 * nand_decode_ext_id() otherwise.
5474 */
5475 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
69fc0129
LW
5476 chip->manufacturer.desc->ops->detect) {
5477 /* The 3rd id byte holds MLC / multichip data */
5478 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
abbe26d1 5479 chip->manufacturer.desc->ops->detect(chip);
69fc0129 5480 } else {
abbe26d1 5481 nand_decode_ext_id(chip);
69fc0129 5482 }
abbe26d1
BB
5483}
5484
5485/*
5486 * Manufacturer initialization. This function is called for all NANDs including
5487 * ONFI and JEDEC compliant ones.
5488 * Manufacturer drivers should put all their specific initialization code in
5489 * their ->init() hook.
5490 */
5491static int nand_manufacturer_init(struct nand_chip *chip)
5492{
5493 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5494 !chip->manufacturer.desc->ops->init)
5495 return 0;
5496
5497 return chip->manufacturer.desc->ops->init(chip);
5498}
5499
5500/*
5501 * Manufacturer cleanup. This function is called for all NANDs including
5502 * ONFI and JEDEC compliant ones.
5503 * Manufacturer drivers should put all their specific cleanup code in their
5504 * ->cleanup() hook.
5505 */
5506static void nand_manufacturer_cleanup(struct nand_chip *chip)
5507{
5508 /* Release manufacturer private data */
5509 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5510 chip->manufacturer.desc->ops->cleanup)
5511 chip->manufacturer.desc->ops->cleanup(chip);
5512}
5513
7aa65bfd 5514/*
8b6e50c9 5515 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd 5516 */
7bb42799 5517static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
7aa65bfd 5518{
bcc678c2 5519 const struct nand_manufacturer *manufacturer;
cbe435a1 5520 struct mtd_info *mtd = nand_to_mtd(chip);
97d90da8 5521 int busw, ret;
7f501f0a
BB
5522 u8 *id_data = chip->id.data;
5523 u8 maf_id, dev_id;
1da177e4 5524
ef89a880
KB
5525 /*
5526 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 5527 * after power-up.
ef89a880 5528 */
97d90da8
BB
5529 ret = nand_reset(chip, 0);
5530 if (ret)
5531 return ret;
73f907fd
BB
5532
5533 /* Select the device */
5534 chip->select_chip(mtd, 0);
ef89a880 5535
1da177e4 5536 /* Send the command for reading device ID */
97d90da8
BB
5537 ret = nand_readid_op(chip, 0, id_data, 2);
5538 if (ret)
5539 return ret;
1da177e4
LT
5540
5541 /* Read manufacturer and device IDs */
97d90da8
BB
5542 maf_id = id_data[0];
5543 dev_id = id_data[1];
1da177e4 5544
8b6e50c9
BN
5545 /*
5546 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
5547 * interface concerns can cause random data which looks like a
5548 * possibly credible NAND flash to appear. If the two results do
5549 * not match, ignore the device completely.
5550 */
5551
4aef9b78 5552 /* Read entire ID string */
97d90da8
BB
5553 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5554 if (ret)
5555 return ret;
ed8165c7 5556
7f501f0a 5557 if (id_data[0] != maf_id || id_data[1] != dev_id) {
20171642 5558 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
7f501f0a 5559 maf_id, dev_id, id_data[0], id_data[1]);
4722c0e9 5560 return -ENODEV;
ed8165c7
BD
5561 }
5562
5158bd55 5563 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
7f501f0a 5564
abbe26d1
BB
5565 /* Try to identify manufacturer */
5566 manufacturer = nand_get_manufacturer(maf_id);
5567 chip->manufacturer.desc = manufacturer;
5568
7aa65bfd 5569 if (!type)
5e81e88a
DW
5570 type = nand_flash_ids;
5571
29a198a1
BB
5572 /*
5573 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5574 * override it.
5575 * This is required to make sure initial NAND bus width set by the
5576 * NAND controller driver is coherent with the real NAND bus width
5577 * (extracted by auto-detection code).
5578 */
5579 busw = chip->options & NAND_BUSWIDTH_16;
5580
5581 /*
5582 * The flag is only set (never cleared), reset it to its default value
5583 * before starting auto-detection.
5584 */
5585 chip->options &= ~NAND_BUSWIDTH_16;
5586
ec6e87e3
HS
5587 for (; type->name != NULL; type++) {
5588 if (is_full_id_nand(type)) {
29a198a1 5589 if (find_full_id_nand(chip, type))
ec6e87e3 5590 goto ident_done;
7f501f0a 5591 } else if (dev_id == type->dev_id) {
db5b09f6 5592 break;
ec6e87e3
HS
5593 }
5594 }
5e81e88a 5595
d1e1f4e4
FF
5596 chip->onfi_version = 0;
5597 if (!type->name || !type->pagesize) {
35fc5195 5598 /* Check if the chip is ONFI compliant */
29a198a1 5599 if (nand_flash_detect_onfi(chip))
6fb277ba 5600 goto ident_done;
91361818
HS
5601
5602 /* Check if the chip is JEDEC compliant */
29a198a1 5603 if (nand_flash_detect_jedec(chip))
91361818 5604 goto ident_done;
d1e1f4e4
FF
5605 }
5606
5e81e88a 5607 if (!type->name)
4722c0e9 5608 return -ENODEV;
7aa65bfd 5609
ba0251fe
TG
5610 if (!mtd->name)
5611 mtd->name = type->name;
5612
69423d99 5613 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 5614
abbe26d1
BB
5615 if (!type->pagesize)
5616 nand_manufacturer_detect(chip);
5617 else
29a198a1 5618 nand_decode_id(chip, type);
abbe26d1 5619
bf7a01bf
BN
5620 /* Get chip options */
5621 chip->options |= type->options;
d1e1f4e4 5622
d1e1f4e4
FF
5623ident_done:
5624
64b37b2a 5625 if (chip->options & NAND_BUSWIDTH_AUTO) {
29a198a1
BB
5626 WARN_ON(busw & NAND_BUSWIDTH_16);
5627 nand_set_defaults(chip);
64b37b2a
MC
5628 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5629 /*
5630 * Check, if buswidth is correct. Hardware drivers should set
5631 * chip correct!
5632 */
20171642 5633 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 5634 maf_id, dev_id);
bcc678c2
BB
5635 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5636 mtd->name);
29a198a1
BB
5637 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5638 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4722c0e9 5639 return -EINVAL;
7aa65bfd 5640 }
61b03bd7 5641
7f501f0a 5642 nand_decode_bbm_options(chip);
7e74c2d7 5643
7aa65bfd 5644 /* Calculate the address shift from the page size */
ace4dfee 5645 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 5646 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 5647 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 5648
ace4dfee 5649 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 5650 ffs(mtd->erasesize) - 1;
69423d99
AH
5651 if (chip->chipsize & 0xffffffff)
5652 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
5653 else {
5654 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
5655 chip->chip_shift += 32 - 1;
5656 }
1da177e4 5657
14157f86
MY
5658 if (chip->chip_shift - chip->page_shift > 16)
5659 chip->options |= NAND_ROW_ADDR_3;
5660
26d9be11 5661 chip->badblockbits = 8;
49c50b97 5662 chip->erase = single_erase;
7aa65bfd 5663
8b6e50c9 5664 /* Do not replace user supplied command function! */
ace4dfee
TG
5665 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5666 chip->cmdfunc = nand_command_lp;
7aa65bfd 5667
20171642 5668 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 5669 maf_id, dev_id);
ffdac6cd
HS
5670
5671 if (chip->onfi_version)
bcc678c2
BB
5672 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5673 chip->onfi_params.model);
ffdac6cd 5674 else if (chip->jedec_version)
bcc678c2
BB
5675 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5676 chip->jedec_params.model);
ffdac6cd 5677 else
bcc678c2
BB
5678 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5679 type->name);
ffdac6cd 5680
3755a991 5681 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 5682 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 5683 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4722c0e9 5684 return 0;
7aa65bfd
TG
5685}
5686
d48f62b9
BB
5687static const char * const nand_ecc_modes[] = {
5688 [NAND_ECC_NONE] = "none",
5689 [NAND_ECC_SOFT] = "soft",
5690 [NAND_ECC_HW] = "hw",
5691 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
5692 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
785818fa 5693 [NAND_ECC_ON_DIE] = "on-die",
d48f62b9
BB
5694};
5695
5696static int of_get_nand_ecc_mode(struct device_node *np)
5697{
5698 const char *pm;
5699 int err, i;
5700
5701 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5702 if (err < 0)
5703 return err;
5704
5705 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
5706 if (!strcasecmp(pm, nand_ecc_modes[i]))
5707 return i;
5708
ae211bcf
RM
5709 /*
5710 * For backward compatibility we support few obsoleted values that don't
5711 * have their mappings into nand_ecc_modes_t anymore (they were merged
5712 * with other enums).
5713 */
5714 if (!strcasecmp(pm, "soft_bch"))
5715 return NAND_ECC_SOFT;
5716
d48f62b9
BB
5717 return -ENODEV;
5718}
5719
ba4f46b2
RM
5720static const char * const nand_ecc_algos[] = {
5721 [NAND_ECC_HAMMING] = "hamming",
5722 [NAND_ECC_BCH] = "bch",
5723};
5724
d48f62b9
BB
5725static int of_get_nand_ecc_algo(struct device_node *np)
5726{
5727 const char *pm;
ba4f46b2 5728 int err, i;
d48f62b9 5729
ba4f46b2
RM
5730 err = of_property_read_string(np, "nand-ecc-algo", &pm);
5731 if (!err) {
5732 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
5733 if (!strcasecmp(pm, nand_ecc_algos[i]))
5734 return i;
5735 return -ENODEV;
5736 }
d48f62b9
BB
5737
5738 /*
5739 * For backward compatibility we also read "nand-ecc-mode" checking
5740 * for some obsoleted values that were specifying ECC algorithm.
5741 */
5742 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5743 if (err < 0)
5744 return err;
5745
5746 if (!strcasecmp(pm, "soft"))
5747 return NAND_ECC_HAMMING;
5748 else if (!strcasecmp(pm, "soft_bch"))
5749 return NAND_ECC_BCH;
5750
5751 return -ENODEV;
5752}
5753
5754static int of_get_nand_ecc_step_size(struct device_node *np)
5755{
5756 int ret;
5757 u32 val;
5758
5759 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5760 return ret ? ret : val;
5761}
5762
5763static int of_get_nand_ecc_strength(struct device_node *np)
5764{
5765 int ret;
5766 u32 val;
5767
5768 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5769 return ret ? ret : val;
5770}
5771
5772static int of_get_nand_bus_width(struct device_node *np)
5773{
5774 u32 val;
5775
5776 if (of_property_read_u32(np, "nand-bus-width", &val))
5777 return 8;
5778
5779 switch (val) {
5780 case 8:
5781 case 16:
5782 return val;
5783 default:
5784 return -EIO;
5785 }
5786}
5787
5788static bool of_get_nand_on_flash_bbt(struct device_node *np)
5789{
5790 return of_property_read_bool(np, "nand-on-flash-bbt");
5791}
5792
7194a29a 5793static int nand_dt_init(struct nand_chip *chip)
5844feea 5794{
7194a29a 5795 struct device_node *dn = nand_get_flash_node(chip);
79082457 5796 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5844feea 5797
7194a29a
BB
5798 if (!dn)
5799 return 0;
5800
5844feea
BN
5801 if (of_get_nand_bus_width(dn) == 16)
5802 chip->options |= NAND_BUSWIDTH_16;
5803
5804 if (of_get_nand_on_flash_bbt(dn))
5805 chip->bbt_options |= NAND_BBT_USE_FLASH;
5806
5807 ecc_mode = of_get_nand_ecc_mode(dn);
79082457 5808 ecc_algo = of_get_nand_ecc_algo(dn);
5844feea
BN
5809 ecc_strength = of_get_nand_ecc_strength(dn);
5810 ecc_step = of_get_nand_ecc_step_size(dn);
5811
5844feea
BN
5812 if (ecc_mode >= 0)
5813 chip->ecc.mode = ecc_mode;
5814
79082457
RM
5815 if (ecc_algo >= 0)
5816 chip->ecc.algo = ecc_algo;
5817
5844feea
BN
5818 if (ecc_strength >= 0)
5819 chip->ecc.strength = ecc_strength;
5820
5821 if (ecc_step > 0)
5822 chip->ecc.size = ecc_step;
5823
ba78ee00
BB
5824 if (of_property_read_bool(dn, "nand-ecc-maximize"))
5825 chip->ecc.options |= NAND_ECC_MAXIMIZE;
5826
5844feea
BN
5827 return 0;
5828}
5829
7aa65bfd 5830/**
3b85c321 5831 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
5832 * @mtd: MTD device structure
5833 * @maxchips: number of chips to scan for
5834 * @table: alternative NAND ID table
7aa65bfd 5835 *
8b6e50c9
BN
5836 * This is the first phase of the normal nand_scan() function. It reads the
5837 * flash ID and sets up MTD fields accordingly.
7aa65bfd
TG
5838 *
5839 */
5e81e88a
DW
5840int nand_scan_ident(struct mtd_info *mtd, int maxchips,
5841 struct nand_flash_dev *table)
7aa65bfd 5842{
bb77082f 5843 int i, nand_maf_id, nand_dev_id;
862eba51 5844 struct nand_chip *chip = mtd_to_nand(mtd);
5844feea
BN
5845 int ret;
5846
17fa8044
MR
5847 /* Enforce the right timings for reset/detection */
5848 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5849
7194a29a
BB
5850 ret = nand_dt_init(chip);
5851 if (ret)
5852 return ret;
7aa65bfd 5853
f7a8e38f
BN
5854 if (!mtd->name && mtd->dev.parent)
5855 mtd->name = dev_name(mtd->dev.parent);
5856
8878b126
MR
5857 /*
5858 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
5859 * populated.
5860 */
5861 if (!chip->exec_op) {
76fe334f 5862 /*
8878b126
MR
5863 * Default functions assigned for ->cmdfunc() and
5864 * ->select_chip() both expect ->cmd_ctrl() to be populated.
76fe334f 5865 */
8878b126
MR
5866 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
5867 pr_err("->cmd_ctrl() should be provided\n");
5868 return -EINVAL;
5869 }
76fe334f 5870 }
8878b126 5871
7aa65bfd 5872 /* Set the default functions */
29a198a1 5873 nand_set_defaults(chip);
7aa65bfd
TG
5874
5875 /* Read the flash type */
7bb42799 5876 ret = nand_detect(chip, table);
4722c0e9 5877 if (ret) {
b1c6e6db 5878 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 5879 pr_warn("No NAND device found\n");
ace4dfee 5880 chip->select_chip(mtd, -1);
4722c0e9 5881 return ret;
1da177e4
LT
5882 }
5883
7f501f0a
BB
5884 nand_maf_id = chip->id.data[0];
5885 nand_dev_id = chip->id.data[1];
5886
07300164
HS
5887 chip->select_chip(mtd, -1);
5888
7aa65bfd 5889 /* Check for a chip array */
e0c7d767 5890 for (i = 1; i < maxchips; i++) {
97d90da8
BB
5891 u8 id[2];
5892
ef89a880 5893 /* See comment in nand_get_flash_type for reset */
73f907fd
BB
5894 nand_reset(chip, i);
5895
5896 chip->select_chip(mtd, i);
1da177e4 5897 /* Send the command for reading device ID */
97d90da8 5898 nand_readid_op(chip, 0, id, sizeof(id));
1da177e4 5899 /* Read manufacturer and device IDs */
97d90da8 5900 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
07300164 5901 chip->select_chip(mtd, -1);
1da177e4 5902 break;
07300164
HS
5903 }
5904 chip->select_chip(mtd, -1);
1da177e4
LT
5905 }
5906 if (i > 1)
20171642 5907 pr_info("%d chips detected\n", i);
61b03bd7 5908
1da177e4 5909 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
5910 chip->numchips = i;
5911 mtd->size = i * chip->chipsize;
7aa65bfd 5912
3b85c321
DW
5913 return 0;
5914}
7351d3a5 5915EXPORT_SYMBOL(nand_scan_ident);
3b85c321 5916
06f384c9
RM
5917static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
5918{
5919 struct nand_chip *chip = mtd_to_nand(mtd);
5920 struct nand_ecc_ctrl *ecc = &chip->ecc;
5921
e4225ae8 5922 if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
06f384c9
RM
5923 return -EINVAL;
5924
5925 switch (ecc->algo) {
5926 case NAND_ECC_HAMMING:
5927 ecc->calculate = nand_calculate_ecc;
5928 ecc->correct = nand_correct_data;
5929 ecc->read_page = nand_read_page_swecc;
5930 ecc->read_subpage = nand_read_subpage;
5931 ecc->write_page = nand_write_page_swecc;
5932 ecc->read_page_raw = nand_read_page_raw;
5933 ecc->write_page_raw = nand_write_page_raw;
5934 ecc->read_oob = nand_read_oob_std;
5935 ecc->write_oob = nand_write_oob_std;
5936 if (!ecc->size)
5937 ecc->size = 256;
5938 ecc->bytes = 3;
5939 ecc->strength = 1;
5940 return 0;
5941 case NAND_ECC_BCH:
5942 if (!mtd_nand_has_bch()) {
5943 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
5944 return -EINVAL;
5945 }
5946 ecc->calculate = nand_bch_calculate_ecc;
5947 ecc->correct = nand_bch_correct_data;
5948 ecc->read_page = nand_read_page_swecc;
5949 ecc->read_subpage = nand_read_subpage;
5950 ecc->write_page = nand_write_page_swecc;
5951 ecc->read_page_raw = nand_read_page_raw;
5952 ecc->write_page_raw = nand_write_page_raw;
5953 ecc->read_oob = nand_read_oob_std;
5954 ecc->write_oob = nand_write_oob_std;
8bbba481 5955
06f384c9
RM
5956 /*
5957 * Board driver should supply ecc.size and ecc.strength
5958 * values to select how many bits are correctable.
5959 * Otherwise, default to 4 bits for large page devices.
5960 */
5961 if (!ecc->size && (mtd->oobsize >= 64)) {
5962 ecc->size = 512;
5963 ecc->strength = 4;
5964 }
5965
5966 /*
5967 * if no ecc placement scheme was provided pickup the default
5968 * large page one.
5969 */
5970 if (!mtd->ooblayout) {
5971 /* handle large page devices only */
5972 if (mtd->oobsize < 64) {
5973 WARN(1, "OOB layout is required when using software BCH on small pages\n");
5974 return -EINVAL;
5975 }
5976
5977 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
8bbba481
BB
5978
5979 }
5980
5981 /*
5982 * We can only maximize ECC config when the default layout is
5983 * used, otherwise we don't know how many bytes can really be
5984 * used.
5985 */
5986 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5987 ecc->options & NAND_ECC_MAXIMIZE) {
5988 int steps, bytes;
5989
5990 /* Always prefer 1k blocks over 512bytes ones */
5991 ecc->size = 1024;
5992 steps = mtd->writesize / ecc->size;
5993
5994 /* Reserve 2 bytes for the BBM */
5995 bytes = (mtd->oobsize - 2) / steps;
5996 ecc->strength = bytes * 8 / fls(8 * ecc->size);
06f384c9
RM
5997 }
5998
5999 /* See nand_bch_init() for details. */
6000 ecc->bytes = 0;
6001 ecc->priv = nand_bch_init(mtd);
6002 if (!ecc->priv) {
6003 WARN(1, "BCH ECC initialization failed!\n");
6004 return -EINVAL;
6005 }
6006 return 0;
6007 default:
6008 WARN(1, "Unsupported ECC algorithm!\n");
6009 return -EINVAL;
6010 }
6011}
6012
2c8f8afa
MY
6013/**
6014 * nand_check_ecc_caps - check the sanity of preset ECC settings
6015 * @chip: nand chip info structure
6016 * @caps: ECC caps info structure
6017 * @oobavail: OOB size that the ECC engine can use
6018 *
6019 * When ECC step size and strength are already set, check if they are supported
6020 * by the controller and the calculated ECC bytes fit within the chip's OOB.
6021 * On success, the calculated ECC bytes is set.
6022 */
6023int nand_check_ecc_caps(struct nand_chip *chip,
6024 const struct nand_ecc_caps *caps, int oobavail)
6025{
6026 struct mtd_info *mtd = nand_to_mtd(chip);
6027 const struct nand_ecc_step_info *stepinfo;
6028 int preset_step = chip->ecc.size;
6029 int preset_strength = chip->ecc.strength;
6030 int nsteps, ecc_bytes;
6031 int i, j;
6032
6033 if (WARN_ON(oobavail < 0))
6034 return -EINVAL;
6035
6036 if (!preset_step || !preset_strength)
6037 return -ENODATA;
6038
6039 nsteps = mtd->writesize / preset_step;
6040
6041 for (i = 0; i < caps->nstepinfos; i++) {
6042 stepinfo = &caps->stepinfos[i];
6043
6044 if (stepinfo->stepsize != preset_step)
6045 continue;
6046
6047 for (j = 0; j < stepinfo->nstrengths; j++) {
6048 if (stepinfo->strengths[j] != preset_strength)
6049 continue;
6050
6051 ecc_bytes = caps->calc_ecc_bytes(preset_step,
6052 preset_strength);
6053 if (WARN_ON_ONCE(ecc_bytes < 0))
6054 return ecc_bytes;
6055
6056 if (ecc_bytes * nsteps > oobavail) {
6057 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6058 preset_step, preset_strength);
6059 return -ENOSPC;
6060 }
6061
6062 chip->ecc.bytes = ecc_bytes;
6063
6064 return 0;
6065 }
6066 }
6067
6068 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6069 preset_step, preset_strength);
6070
6071 return -ENOTSUPP;
6072}
6073EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
6074
6075/**
6076 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6077 * @chip: nand chip info structure
6078 * @caps: ECC engine caps info structure
6079 * @oobavail: OOB size that the ECC engine can use
6080 *
6081 * If a chip's ECC requirement is provided, try to meet it with the least
6082 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6083 * On success, the chosen ECC settings are set.
6084 */
6085int nand_match_ecc_req(struct nand_chip *chip,
6086 const struct nand_ecc_caps *caps, int oobavail)
6087{
6088 struct mtd_info *mtd = nand_to_mtd(chip);
6089 const struct nand_ecc_step_info *stepinfo;
6090 int req_step = chip->ecc_step_ds;
6091 int req_strength = chip->ecc_strength_ds;
6092 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6093 int best_step, best_strength, best_ecc_bytes;
6094 int best_ecc_bytes_total = INT_MAX;
6095 int i, j;
6096
6097 if (WARN_ON(oobavail < 0))
6098 return -EINVAL;
6099
6100 /* No information provided by the NAND chip */
6101 if (!req_step || !req_strength)
6102 return -ENOTSUPP;
6103
6104 /* number of correctable bits the chip requires in a page */
6105 req_corr = mtd->writesize / req_step * req_strength;
6106
6107 for (i = 0; i < caps->nstepinfos; i++) {
6108 stepinfo = &caps->stepinfos[i];
6109 step_size = stepinfo->stepsize;
6110
6111 for (j = 0; j < stepinfo->nstrengths; j++) {
6112 strength = stepinfo->strengths[j];
6113
6114 /*
6115 * If both step size and strength are smaller than the
6116 * chip's requirement, it is not easy to compare the
6117 * resulted reliability.
6118 */
6119 if (step_size < req_step && strength < req_strength)
6120 continue;
6121
6122 if (mtd->writesize % step_size)
6123 continue;
6124
6125 nsteps = mtd->writesize / step_size;
6126
6127 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6128 if (WARN_ON_ONCE(ecc_bytes < 0))
6129 continue;
6130 ecc_bytes_total = ecc_bytes * nsteps;
6131
6132 if (ecc_bytes_total > oobavail ||
6133 strength * nsteps < req_corr)
6134 continue;
6135
6136 /*
6137 * We assume the best is to meet the chip's requrement
6138 * with the least number of ECC bytes.
6139 */
6140 if (ecc_bytes_total < best_ecc_bytes_total) {
6141 best_ecc_bytes_total = ecc_bytes_total;
6142 best_step = step_size;
6143 best_strength = strength;
6144 best_ecc_bytes = ecc_bytes;
6145 }
6146 }
6147 }
6148
6149 if (best_ecc_bytes_total == INT_MAX)
6150 return -ENOTSUPP;
6151
6152 chip->ecc.size = best_step;
6153 chip->ecc.strength = best_strength;
6154 chip->ecc.bytes = best_ecc_bytes;
6155
6156 return 0;
6157}
6158EXPORT_SYMBOL_GPL(nand_match_ecc_req);
6159
6160/**
6161 * nand_maximize_ecc - choose the max ECC strength available
6162 * @chip: nand chip info structure
6163 * @caps: ECC engine caps info structure
6164 * @oobavail: OOB size that the ECC engine can use
6165 *
6166 * Choose the max ECC strength that is supported on the controller, and can fit
6167 * within the chip's OOB. On success, the chosen ECC settings are set.
6168 */
6169int nand_maximize_ecc(struct nand_chip *chip,
6170 const struct nand_ecc_caps *caps, int oobavail)
6171{
6172 struct mtd_info *mtd = nand_to_mtd(chip);
6173 const struct nand_ecc_step_info *stepinfo;
6174 int step_size, strength, nsteps, ecc_bytes, corr;
6175 int best_corr = 0;
6176 int best_step = 0;
6177 int best_strength, best_ecc_bytes;
6178 int i, j;
6179
6180 if (WARN_ON(oobavail < 0))
6181 return -EINVAL;
6182
6183 for (i = 0; i < caps->nstepinfos; i++) {
6184 stepinfo = &caps->stepinfos[i];
6185 step_size = stepinfo->stepsize;
6186
6187 /* If chip->ecc.size is already set, respect it */
6188 if (chip->ecc.size && step_size != chip->ecc.size)
6189 continue;
6190
6191 for (j = 0; j < stepinfo->nstrengths; j++) {
6192 strength = stepinfo->strengths[j];
6193
6194 if (mtd->writesize % step_size)
6195 continue;
6196
6197 nsteps = mtd->writesize / step_size;
6198
6199 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6200 if (WARN_ON_ONCE(ecc_bytes < 0))
6201 continue;
6202
6203 if (ecc_bytes * nsteps > oobavail)
6204 continue;
6205
6206 corr = strength * nsteps;
6207
6208 /*
6209 * If the number of correctable bits is the same,
6210 * bigger step_size has more reliability.
6211 */
6212 if (corr > best_corr ||
6213 (corr == best_corr && step_size > best_step)) {
6214 best_corr = corr;
6215 best_step = step_size;
6216 best_strength = strength;
6217 best_ecc_bytes = ecc_bytes;
6218 }
6219 }
6220 }
6221
6222 if (!best_corr)
6223 return -ENOTSUPP;
6224
6225 chip->ecc.size = best_step;
6226 chip->ecc.strength = best_strength;
6227 chip->ecc.bytes = best_ecc_bytes;
6228
6229 return 0;
6230}
6231EXPORT_SYMBOL_GPL(nand_maximize_ecc);
6232
67a9ad9b
EG
6233/*
6234 * Check if the chip configuration meet the datasheet requirements.
6235
6236 * If our configuration corrects A bits per B bytes and the minimum
6237 * required correction level is X bits per Y bytes, then we must ensure
6238 * both of the following are true:
6239 *
6240 * (1) A / B >= X / Y
6241 * (2) A >= X
6242 *
6243 * Requirement (1) ensures we can correct for the required bitflip density.
6244 * Requirement (2) ensures we can correct even when all bitflips are clumped
6245 * in the same sector.
6246 */
6247static bool nand_ecc_strength_good(struct mtd_info *mtd)
6248{
862eba51 6249 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
6250 struct nand_ecc_ctrl *ecc = &chip->ecc;
6251 int corr, ds_corr;
6252
6253 if (ecc->size == 0 || chip->ecc_step_ds == 0)
6254 /* Not enough information */
6255 return true;
6256
6257 /*
6258 * We get the number of corrected bits per page to compare
6259 * the correction density.
6260 */
6261 corr = (mtd->writesize * ecc->strength) / ecc->size;
6262 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
6263
6264 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
6265}
3b85c321
DW
6266
6267/**
6268 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 6269 * @mtd: MTD device structure
3b85c321 6270 *
8b6e50c9
BN
6271 * This is the second phase of the normal nand_scan() function. It fills out
6272 * all the uninitialized function pointers with the defaults and scans for a
6273 * bad block table if appropriate.
3b85c321
DW
6274 */
6275int nand_scan_tail(struct mtd_info *mtd)
6276{
862eba51 6277 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 6278 struct nand_ecc_ctrl *ecc = &chip->ecc;
f84674b8 6279 int ret, i;
3b85c321 6280
e2414f4c 6281 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
11eaf6df 6282 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
78771049 6283 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
f84674b8 6284 return -EINVAL;
78771049 6285 }
e2414f4c 6286
c0313b96 6287 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
aeb93af9
BB
6288 if (!chip->data_buf)
6289 return -ENOMEM;
f02ea4e6 6290
f84674b8
BB
6291 /*
6292 * FIXME: some NAND manufacturer drivers expect the first die to be
6293 * selected when manufacturer->init() is called. They should be fixed
6294 * to explictly select the relevant die when interacting with the NAND
6295 * chip.
6296 */
6297 chip->select_chip(mtd, 0);
6298 ret = nand_manufacturer_init(chip);
6299 chip->select_chip(mtd, -1);
6300 if (ret)
c0313b96 6301 goto err_free_buf;
f84674b8 6302
7dcdcbef 6303 /* Set the internal oob buffer location, just after the page data */
c0313b96 6304 chip->oob_poi = chip->data_buf + mtd->writesize;
1da177e4 6305
7aa65bfd 6306 /*
8b6e50c9 6307 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 6308 */
06f384c9 6309 if (!mtd->ooblayout &&
e4225ae8 6310 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
61b03bd7 6311 switch (mtd->oobsize) {
1da177e4 6312 case 8:
1da177e4 6313 case 16:
41b207a7 6314 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
1da177e4
LT
6315 break;
6316 case 64:
81ec5364 6317 case 128:
6a623e07 6318 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
81ec5364 6319 break;
1da177e4 6320 default:
882fd157
MR
6321 /*
6322 * Expose the whole OOB area to users if ECC_NONE
6323 * is passed. We could do that for all kind of
6324 * ->oobsize, but we must keep the old large/small
6325 * page with ECC layout when ->oobsize <= 128 for
6326 * compatibility reasons.
6327 */
6328 if (ecc->mode == NAND_ECC_NONE) {
6329 mtd_set_ooblayout(mtd,
6330 &nand_ooblayout_lp_ops);
6331 break;
6332 }
6333
11eaf6df
EG
6334 WARN(1, "No oob scheme defined for oobsize %d\n",
6335 mtd->oobsize);
6336 ret = -EINVAL;
f84674b8 6337 goto err_nand_manuf_cleanup;
1da177e4
LT
6338 }
6339 }
61b03bd7 6340
61b03bd7 6341 /*
8b6e50c9 6342 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 6343 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 6344 */
956e944c 6345
97de79e0 6346 switch (ecc->mode) {
6e0cb135
SN
6347 case NAND_ECC_HW_OOB_FIRST:
6348 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 6349 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
11eaf6df
EG
6350 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6351 ret = -EINVAL;
f84674b8 6352 goto err_nand_manuf_cleanup;
6e0cb135 6353 }
97de79e0
HS
6354 if (!ecc->read_page)
6355 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 6356
6dfc6d25 6357 case NAND_ECC_HW:
8b6e50c9 6358 /* Use standard hwecc read page function? */
97de79e0
HS
6359 if (!ecc->read_page)
6360 ecc->read_page = nand_read_page_hwecc;
6361 if (!ecc->write_page)
6362 ecc->write_page = nand_write_page_hwecc;
6363 if (!ecc->read_page_raw)
6364 ecc->read_page_raw = nand_read_page_raw;
6365 if (!ecc->write_page_raw)
6366 ecc->write_page_raw = nand_write_page_raw;
6367 if (!ecc->read_oob)
6368 ecc->read_oob = nand_read_oob_std;
6369 if (!ecc->write_oob)
6370 ecc->write_oob = nand_write_oob_std;
6371 if (!ecc->read_subpage)
6372 ecc->read_subpage = nand_read_subpage;
44991b3d 6373 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
97de79e0 6374 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 6375
6dfc6d25 6376 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
6377 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
6378 (!ecc->read_page ||
6379 ecc->read_page == nand_read_page_hwecc ||
6380 !ecc->write_page ||
6381 ecc->write_page == nand_write_page_hwecc)) {
11eaf6df
EG
6382 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6383 ret = -EINVAL;
f84674b8 6384 goto err_nand_manuf_cleanup;
6dfc6d25 6385 }
8b6e50c9 6386 /* Use standard syndrome read/write page function? */
97de79e0
HS
6387 if (!ecc->read_page)
6388 ecc->read_page = nand_read_page_syndrome;
6389 if (!ecc->write_page)
6390 ecc->write_page = nand_write_page_syndrome;
6391 if (!ecc->read_page_raw)
6392 ecc->read_page_raw = nand_read_page_raw_syndrome;
6393 if (!ecc->write_page_raw)
6394 ecc->write_page_raw = nand_write_page_raw_syndrome;
6395 if (!ecc->read_oob)
6396 ecc->read_oob = nand_read_oob_syndrome;
6397 if (!ecc->write_oob)
6398 ecc->write_oob = nand_write_oob_syndrome;
6399
6400 if (mtd->writesize >= ecc->size) {
6401 if (!ecc->strength) {
11eaf6df
EG
6402 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6403 ret = -EINVAL;
f84674b8 6404 goto err_nand_manuf_cleanup;
e2788c98 6405 }
6dfc6d25 6406 break;
e2788c98 6407 }
2ac63d90
RM
6408 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6409 ecc->size, mtd->writesize);
97de79e0 6410 ecc->mode = NAND_ECC_SOFT;
e9d4faed 6411 ecc->algo = NAND_ECC_HAMMING;
61b03bd7 6412
6dfc6d25 6413 case NAND_ECC_SOFT:
06f384c9
RM
6414 ret = nand_set_ecc_soft_ops(mtd);
6415 if (ret) {
11eaf6df 6416 ret = -EINVAL;
f84674b8 6417 goto err_nand_manuf_cleanup;
193bd400
ID
6418 }
6419 break;
6420
785818fa
TP
6421 case NAND_ECC_ON_DIE:
6422 if (!ecc->read_page || !ecc->write_page) {
6423 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6424 ret = -EINVAL;
f84674b8 6425 goto err_nand_manuf_cleanup;
785818fa
TP
6426 }
6427 if (!ecc->read_oob)
6428 ecc->read_oob = nand_read_oob_std;
6429 if (!ecc->write_oob)
6430 ecc->write_oob = nand_write_oob_std;
6431 break;
6432
61b03bd7 6433 case NAND_ECC_NONE:
2ac63d90 6434 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
6435 ecc->read_page = nand_read_page_raw;
6436 ecc->write_page = nand_write_page_raw;
6437 ecc->read_oob = nand_read_oob_std;
6438 ecc->read_page_raw = nand_read_page_raw;
6439 ecc->write_page_raw = nand_write_page_raw;
6440 ecc->write_oob = nand_write_oob_std;
6441 ecc->size = mtd->writesize;
6442 ecc->bytes = 0;
6443 ecc->strength = 0;
1da177e4 6444 break;
956e944c 6445
1da177e4 6446 default:
11eaf6df
EG
6447 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
6448 ret = -EINVAL;
f84674b8 6449 goto err_nand_manuf_cleanup;
1da177e4 6450 }
61b03bd7 6451
aeb93af9
BB
6452 if (ecc->correct || ecc->calculate) {
6453 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6454 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6455 if (!ecc->calc_buf || !ecc->code_buf) {
6456 ret = -ENOMEM;
6457 goto err_nand_manuf_cleanup;
6458 }
6459 }
6460
9ce244b3 6461 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
6462 if (!ecc->read_oob_raw)
6463 ecc->read_oob_raw = ecc->read_oob;
6464 if (!ecc->write_oob_raw)
6465 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 6466
846031d3 6467 /* propagate ecc info to mtd_info */
846031d3
BB
6468 mtd->ecc_strength = ecc->strength;
6469 mtd->ecc_step_size = ecc->size;
67a9ad9b 6470
7aa65bfd
TG
6471 /*
6472 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 6473 * mode.
7aa65bfd 6474 */
97de79e0
HS
6475 ecc->steps = mtd->writesize / ecc->size;
6476 if (ecc->steps * ecc->size != mtd->writesize) {
11eaf6df
EG
6477 WARN(1, "Invalid ECC parameters\n");
6478 ret = -EINVAL;
f84674b8 6479 goto err_nand_manuf_cleanup;
1da177e4 6480 }
97de79e0 6481 ecc->total = ecc->steps * ecc->bytes;
79e0348c
MY
6482 if (ecc->total > mtd->oobsize) {
6483 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6484 ret = -EINVAL;
f84674b8 6485 goto err_nand_manuf_cleanup;
79e0348c 6486 }
61b03bd7 6487
846031d3
BB
6488 /*
6489 * The number of bytes available for a client to place data into
6490 * the out of band area.
6491 */
6492 ret = mtd_ooblayout_count_freebytes(mtd);
6493 if (ret < 0)
6494 ret = 0;
6495
6496 mtd->oobavail = ret;
6497
6498 /* ECC sanity check: warn if it's too weak */
6499 if (!nand_ecc_strength_good(mtd))
6500 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
6501 mtd->name);
6502
8b6e50c9 6503 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 6504 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 6505 switch (ecc->steps) {
29072b96
TG
6506 case 2:
6507 mtd->subpage_sft = 1;
6508 break;
6509 case 4:
6510 case 8:
81ec5364 6511 case 16:
29072b96
TG
6512 mtd->subpage_sft = 2;
6513 break;
6514 }
6515 }
6516 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6517
04bbd0ea 6518 /* Initialize state */
ace4dfee 6519 chip->state = FL_READY;
1da177e4 6520
1da177e4 6521 /* Invalidate the pagebuffer reference */
ace4dfee 6522 chip->pagebuf = -1;
1da177e4 6523
a5ff4f10 6524 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
6525 switch (ecc->mode) {
6526 case NAND_ECC_SOFT:
4007e2d1
RL
6527 if (chip->page_shift > 9)
6528 chip->options |= NAND_SUBPAGE_READ;
6529 break;
6530
6531 default:
6532 break;
6533 }
a5ff4f10 6534
1da177e4 6535 /* Fill in remaining MTD driver data */
963d1c28 6536 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
6537 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
6538 MTD_CAP_NANDFLASH;
3c3c10bb
AB
6539 mtd->_erase = nand_erase;
6540 mtd->_point = NULL;
6541 mtd->_unpoint = NULL;
6542 mtd->_read = nand_read;
6543 mtd->_write = nand_write;
6544 mtd->_panic_write = panic_nand_write;
6545 mtd->_read_oob = nand_read_oob;
6546 mtd->_write_oob = nand_write_oob;
6547 mtd->_sync = nand_sync;
6548 mtd->_lock = NULL;
6549 mtd->_unlock = NULL;
6550 mtd->_suspend = nand_suspend;
6551 mtd->_resume = nand_resume;
72ea4036 6552 mtd->_reboot = nand_shutdown;
8471bb73 6553 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
6554 mtd->_block_isbad = nand_block_isbad;
6555 mtd->_block_markbad = nand_block_markbad;
5671842f 6556 mtd->_max_bad_blocks = nand_max_bad_blocks;
cbcab65a 6557 mtd->writebufsize = mtd->writesize;
1da177e4 6558
ea3b2ea2
SL
6559 /*
6560 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6561 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6562 * properly set.
6563 */
6564 if (!mtd->bitflip_threshold)
240181fd 6565 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 6566
f84674b8
BB
6567 /* Initialize the ->data_interface field. */
6568 ret = nand_init_data_interface(chip);
6569 if (ret)
6570 goto err_nand_manuf_cleanup;
6571
6572 /* Enter fastest possible mode on all dies. */
6573 for (i = 0; i < chip->numchips; i++) {
6574 chip->select_chip(mtd, i);
6575 ret = nand_setup_data_interface(chip, i);
6576 chip->select_chip(mtd, -1);
6577
6578 if (ret)
17fa8044 6579 goto err_nand_manuf_cleanup;
f84674b8
BB
6580 }
6581
0040bf38 6582 /* Check, if we should skip the bad block table scan */
ace4dfee 6583 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 6584 return 0;
1da177e4
LT
6585
6586 /* Build bad block table */
44d4182e
BN
6587 ret = chip->scan_bbt(mtd);
6588 if (ret)
17fa8044 6589 goto err_nand_manuf_cleanup;
f84674b8 6590
44d4182e
BN
6591 return 0;
6592
f84674b8
BB
6593
6594err_nand_manuf_cleanup:
6595 nand_manufacturer_cleanup(chip);
6596
c0313b96
MY
6597err_free_buf:
6598 kfree(chip->data_buf);
6599 kfree(ecc->code_buf);
6600 kfree(ecc->calc_buf);
78771049 6601
11eaf6df 6602 return ret;
1da177e4 6603}
7351d3a5 6604EXPORT_SYMBOL(nand_scan_tail);
1da177e4 6605
8b6e50c9
BN
6606/*
6607 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 6608 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
6609 * to call us from in-kernel code if the core NAND support is modular.
6610 */
3b85c321
DW
6611#ifdef MODULE
6612#define caller_is_module() (1)
6613#else
6614#define caller_is_module() \
a6e6abd5 6615 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
6616#endif
6617
6618/**
6619 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
6620 * @mtd: MTD device structure
6621 * @maxchips: number of chips to scan for
3b85c321 6622 *
8b6e50c9
BN
6623 * This fills out all the uninitialized function pointers with the defaults.
6624 * The flash ID is read and the mtd/chip structures are filled with the
20c07a5b 6625 * appropriate values.
3b85c321
DW
6626 */
6627int nand_scan(struct mtd_info *mtd, int maxchips)
6628{
6629 int ret;
6630
5e81e88a 6631 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
6632 if (!ret)
6633 ret = nand_scan_tail(mtd);
6634 return ret;
6635}
7351d3a5 6636EXPORT_SYMBOL(nand_scan);
3b85c321 6637
1da177e4 6638/**
d44154f9
RW
6639 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6640 * @chip: NAND chip object
8b6e50c9 6641 */
d44154f9 6642void nand_cleanup(struct nand_chip *chip)
1da177e4 6643{
e4225ae8 6644 if (chip->ecc.mode == NAND_ECC_SOFT &&
06f384c9 6645 chip->ecc.algo == NAND_ECC_BCH)
193bd400
ID
6646 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6647
fa671646 6648 /* Free bad block table memory */
ace4dfee 6649 kfree(chip->bbt);
c0313b96
MY
6650 kfree(chip->data_buf);
6651 kfree(chip->ecc.code_buf);
6652 kfree(chip->ecc.calc_buf);
58373ff0
BN
6653
6654 /* Free bad block descriptor memory */
6655 if (chip->badblock_pattern && chip->badblock_pattern->options
6656 & NAND_BBT_DYNAMICSTRUCT)
6657 kfree(chip->badblock_pattern);
abbe26d1
BB
6658
6659 /* Free manufacturer priv data. */
6660 nand_manufacturer_cleanup(chip);
1da177e4 6661}
d44154f9
RW
6662EXPORT_SYMBOL_GPL(nand_cleanup);
6663
6664/**
6665 * nand_release - [NAND Interface] Unregister the MTD device and free resources
6666 * held by the NAND device
6667 * @mtd: MTD device structure
6668 */
6669void nand_release(struct mtd_info *mtd)
6670{
6671 mtd_device_unregister(mtd);
6672 nand_cleanup(mtd_to_nand(mtd));
6673}
e0c7d767 6674EXPORT_SYMBOL_GPL(nand_release);
8fe833c1 6675
e0c7d767 6676MODULE_LICENSE("GPL");
7351d3a5
FF
6677MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6678MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 6679MODULE_DESCRIPTION("Generic NAND flash driver code");