mtd: add LPC32xx SLC NAND driver
[linux-2.6-block.git] / drivers / mtd / nand / lpc32xx_slc.c
CommitLineData
2944a44d
RS
1/*
2 * NXP LPC32XX NAND SLC driver
3 *
4 * Authors:
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
7 *
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
21
22#include <linux/slab.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/mtd/mtd.h>
26#include <linux/mtd/nand.h>
27#include <linux/mtd/partitions.h>
28#include <linux/clk.h>
29#include <linux/err.h>
30#include <linux/delay.h>
31#include <linux/io.h>
32#include <linux/mm.h>
33#include <linux/dma-mapping.h>
34#include <linux/dmaengine.h>
35#include <linux/mtd/nand_ecc.h>
36#include <linux/gpio.h>
37#include <linux/of.h>
38#include <linux/of_mtd.h>
39#include <linux/of_gpio.h>
40#include <linux/amba/pl08x.h>
41
42#define LPC32XX_MODNAME "lpc32xx-nand"
43
44/**********************************************************************
45* SLC NAND controller register offsets
46**********************************************************************/
47
48#define SLC_DATA(x) (x + 0x000)
49#define SLC_ADDR(x) (x + 0x004)
50#define SLC_CMD(x) (x + 0x008)
51#define SLC_STOP(x) (x + 0x00C)
52#define SLC_CTRL(x) (x + 0x010)
53#define SLC_CFG(x) (x + 0x014)
54#define SLC_STAT(x) (x + 0x018)
55#define SLC_INT_STAT(x) (x + 0x01C)
56#define SLC_IEN(x) (x + 0x020)
57#define SLC_ISR(x) (x + 0x024)
58#define SLC_ICR(x) (x + 0x028)
59#define SLC_TAC(x) (x + 0x02C)
60#define SLC_TC(x) (x + 0x030)
61#define SLC_ECC(x) (x + 0x034)
62#define SLC_DMA_DATA(x) (x + 0x038)
63
64/**********************************************************************
65* slc_ctrl register definitions
66**********************************************************************/
67#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
68#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
69#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
70
71/**********************************************************************
72* slc_cfg register definitions
73**********************************************************************/
74#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
75#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
76#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
77#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
78#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
79#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
80
81/**********************************************************************
82* slc_stat register definitions
83**********************************************************************/
84#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
85#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
86#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
87
88/**********************************************************************
89* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90**********************************************************************/
91#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
92#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
93
94/**********************************************************************
95* slc_tac register definitions
96**********************************************************************/
97/* Clock setting for RDY write sample wait time in 2*n clocks */
98#define SLCTAC_WDR(n) (((n) & 0xF) << 28)
99/* Write pulse width in clock cycles, 1 to 16 clocks */
100#define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24)
101/* Write hold time of control and data signals, 1 to 16 clocks */
102#define SLCTAC_WHOLD(n) (((n) & 0xF) << 20)
103/* Write setup time of control and data signals, 1 to 16 clocks */
104#define SLCTAC_WSETUP(n) (((n) & 0xF) << 16)
105/* Clock setting for RDY read sample wait time in 2*n clocks */
106#define SLCTAC_RDR(n) (((n) & 0xF) << 12)
107/* Read pulse width in clock cycles, 1 to 16 clocks */
108#define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8)
109/* Read hold time of control and data signals, 1 to 16 clocks */
110#define SLCTAC_RHOLD(n) (((n) & 0xF) << 4)
111/* Read setup time of control and data signals, 1 to 16 clocks */
112#define SLCTAC_RSETUP(n) (((n) & 0xF) << 0)
113
114/**********************************************************************
115* slc_ecc register definitions
116**********************************************************************/
117/* ECC line party fetch macro */
118#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
119#define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
120
121/*
122 * DMA requires storage space for the DMA local buffer and the hardware ECC
123 * storage area. The DMA local buffer is only used if DMA mapping fails
124 * during runtime.
125 */
126#define LPC32XX_DMA_DATA_SIZE 4096
127#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
128
129/* Number of bytes used for ECC stored in NAND per 256 bytes */
130#define LPC32XX_SLC_DEV_ECC_BYTES 3
131
132/*
133 * If the NAND base clock frequency can't be fetched, this frequency will be
134 * used instead as the base. This rate is used to setup the timing registers
135 * used for NAND accesses.
136 */
137#define LPC32XX_DEF_BUS_RATE 133250000
138
139/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
140#define LPC32XX_DMA_TIMEOUT 100
141
142/*
143 * NAND ECC Layout for small page NAND devices
144 * Note: For large and huge page devices, the default layouts are used
145 */
146static struct nand_ecclayout lpc32xx_nand_oob_16 = {
147 .eccbytes = 6,
148 .eccpos = {10, 11, 12, 13, 14, 15},
149 .oobfree = {
150 { .offset = 0, .length = 4 },
151 { .offset = 6, .length = 4 },
152 },
153};
154
155static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
156static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
157
158/*
159 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
160 * Note: Large page devices used the default layout
161 */
162static struct nand_bbt_descr bbt_smallpage_main_descr = {
163 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
164 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
165 .offs = 0,
166 .len = 4,
167 .veroffs = 6,
168 .maxblocks = 4,
169 .pattern = bbt_pattern
170};
171
172static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
173 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
174 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
175 .offs = 0,
176 .len = 4,
177 .veroffs = 6,
178 .maxblocks = 4,
179 .pattern = mirror_pattern
180};
181
182/*
183 * NAND platform configuration structure
184 */
185struct lpc32xx_nand_cfg_slc {
186 uint32_t wdr_clks;
187 uint32_t wwidth;
188 uint32_t whold;
189 uint32_t wsetup;
190 uint32_t rdr_clks;
191 uint32_t rwidth;
192 uint32_t rhold;
193 uint32_t rsetup;
194 bool use_bbt;
195 unsigned wp_gpio;
196 struct mtd_partition *parts;
197 unsigned num_parts;
198};
199
200struct lpc32xx_nand_host {
201 struct nand_chip nand_chip;
202 struct clk *clk;
203 struct mtd_info mtd;
204 void __iomem *io_base;
205 struct lpc32xx_nand_cfg_slc *ncfg;
206
207 struct completion comp;
208 struct dma_chan *dma_chan;
209 uint32_t dma_buf_len;
210 struct dma_slave_config dma_slave_config;
211 struct scatterlist sgl;
212
213 /*
214 * DMA and CPU addresses of ECC work area and data buffer
215 */
216 uint32_t *ecc_buf;
217 uint8_t *data_buf;
218 dma_addr_t io_base_dma;
219};
220
221static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
222{
223 uint32_t clkrate, tmp;
224
225 /* Reset SLC controller */
226 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
227 udelay(1000);
228
229 /* Basic setup */
230 writel(0, SLC_CFG(host->io_base));
231 writel(0, SLC_IEN(host->io_base));
232 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
233 SLC_ICR(host->io_base));
234
235 /* Get base clock for SLC block */
236 clkrate = clk_get_rate(host->clk);
237 if (clkrate == 0)
238 clkrate = LPC32XX_DEF_BUS_RATE;
239
240 /* Compute clock setup values */
241 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
242 SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) |
243 SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) |
244 SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) |
245 SLCTAC_RDR(host->ncfg->rdr_clks) |
246 SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) |
247 SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) |
248 SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup));
249 writel(tmp, SLC_TAC(host->io_base));
250}
251
252/*
253 * Hardware specific access to control lines
254 */
255static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
256 unsigned int ctrl)
257{
258 uint32_t tmp;
259 struct nand_chip *chip = mtd->priv;
260 struct lpc32xx_nand_host *host = chip->priv;
261
262 /* Does CE state need to be changed? */
263 tmp = readl(SLC_CFG(host->io_base));
264 if (ctrl & NAND_NCE)
265 tmp |= SLCCFG_CE_LOW;
266 else
267 tmp &= ~SLCCFG_CE_LOW;
268 writel(tmp, SLC_CFG(host->io_base));
269
270 if (cmd != NAND_CMD_NONE) {
271 if (ctrl & NAND_CLE)
272 writel(cmd, SLC_CMD(host->io_base));
273 else
274 writel(cmd, SLC_ADDR(host->io_base));
275 }
276}
277
278/*
279 * Read the Device Ready pin
280 */
281static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
282{
283 struct nand_chip *chip = mtd->priv;
284 struct lpc32xx_nand_host *host = chip->priv;
285 int rdy = 0;
286
287 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
288 rdy = 1;
289
290 return rdy;
291}
292
293/*
294 * Enable NAND write protect
295 */
296static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
297{
298 gpio_set_value(host->ncfg->wp_gpio, 0);
299}
300
301/*
302 * Disable NAND write protect
303 */
304static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
305{
306 gpio_set_value(host->ncfg->wp_gpio, 1);
307}
308
309/*
310 * Prepares SLC for transfers with H/W ECC enabled
311 */
312static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
313{
314 /* Hardware ECC is enabled automatically in hardware as needed */
315}
316
317/*
318 * Calculates the ECC for the data
319 */
320static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
321 const unsigned char *buf,
322 unsigned char *code)
323{
324 /*
325 * ECC is calculated automatically in hardware during syndrome read
326 * and write operations, so it doesn't need to be calculated here.
327 */
328 return 0;
329}
330
331/*
332 * Read a single byte from NAND device
333 */
334static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
335{
336 struct nand_chip *chip = mtd->priv;
337 struct lpc32xx_nand_host *host = chip->priv;
338
339 return (uint8_t)readl(SLC_DATA(host->io_base));
340}
341
342/*
343 * Simple device read without ECC
344 */
345static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
346{
347 struct nand_chip *chip = mtd->priv;
348 struct lpc32xx_nand_host *host = chip->priv;
349
350 /* Direct device read with no ECC */
351 while (len-- > 0)
352 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
353}
354
355/*
356 * Simple device write without ECC
357 */
358static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
359{
360 struct nand_chip *chip = mtd->priv;
361 struct lpc32xx_nand_host *host = chip->priv;
362
363 /* Direct device write with no ECC */
364 while (len-- > 0)
365 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
366}
367
368/*
369 * Verify data in buffer to data on device
370 */
371static int lpc32xx_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
372{
373 struct nand_chip *chip = mtd->priv;
374 struct lpc32xx_nand_host *host = chip->priv;
375 int i;
376
377 /* DATA register must be read as 32 bits or it will fail */
378 for (i = 0; i < len; i++) {
379 if (buf[i] != (uint8_t)readl(SLC_DATA(host->io_base)))
380 return -EFAULT;
381 }
382
383 return 0;
384}
385
386/*
387 * Read the OOB data from the device without ECC using FIFO method
388 */
389static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
390 struct nand_chip *chip, int page)
391{
392 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
393 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
394
395 return 0;
396}
397
398/*
399 * Write the OOB data to the device without ECC using FIFO method
400 */
401static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
402 struct nand_chip *chip, int page)
403{
404 int status;
405
406 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
407 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
408
409 /* Send command to program the OOB data */
410 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
411
412 status = chip->waitfunc(mtd, chip);
413
414 return status & NAND_STATUS_FAIL ? -EIO : 0;
415}
416
417/*
418 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
419 */
420static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
421{
422 int i;
423
424 for (i = 0; i < (count * 3); i += 3) {
425 uint32_t ce = ecc[i / 3];
426 ce = ~(ce << 2) & 0xFFFFFF;
427 spare[i + 2] = (uint8_t)(ce & 0xFF);
428 ce >>= 8;
429 spare[i + 1] = (uint8_t)(ce & 0xFF);
430 ce >>= 8;
431 spare[i] = (uint8_t)(ce & 0xFF);
432 }
433}
434
435static void lpc32xx_dma_complete_func(void *completion)
436{
437 complete(completion);
438}
439
440static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
441 void *mem, int len, enum dma_transfer_direction dir)
442{
443 struct nand_chip *chip = mtd->priv;
444 struct lpc32xx_nand_host *host = chip->priv;
445 struct dma_async_tx_descriptor *desc;
446 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
447 int res;
448
449 host->dma_slave_config.direction = dir;
450 host->dma_slave_config.src_addr = dma;
451 host->dma_slave_config.dst_addr = dma;
452 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
453 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
454 host->dma_slave_config.src_maxburst = 4;
455 host->dma_slave_config.dst_maxburst = 4;
456 /* DMA controller does flow control: */
457 host->dma_slave_config.device_fc = false;
458 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
459 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
460 return -ENXIO;
461 }
462
463 sg_init_one(&host->sgl, mem, len);
464
465 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
466 DMA_BIDIRECTIONAL);
467 if (res != 1) {
468 dev_err(mtd->dev.parent, "Failed to map sg list\n");
469 return -ENXIO;
470 }
471 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
472 flags);
473 if (!desc) {
474 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
475 goto out1;
476 }
477
478 init_completion(&host->comp);
479 desc->callback = lpc32xx_dma_complete_func;
480 desc->callback_param = &host->comp;
481
482 dmaengine_submit(desc);
483 dma_async_issue_pending(host->dma_chan);
484
485 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
486
487 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
488 DMA_BIDIRECTIONAL);
489
490 return 0;
491out1:
492 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
493 DMA_BIDIRECTIONAL);
494 return -ENXIO;
495}
496
497/*
498 * DMA read/write transfers with ECC support
499 */
500static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
501 int read)
502{
503 struct nand_chip *chip = mtd->priv;
504 struct lpc32xx_nand_host *host = chip->priv;
505 int i, status = 0;
506 unsigned long timeout;
507 int res;
508 enum dma_transfer_direction dir =
509 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
510 uint8_t *dma_buf;
511 bool dma_mapped;
512
513 if ((void *)buf <= high_memory) {
514 dma_buf = buf;
515 dma_mapped = true;
516 } else {
517 dma_buf = host->data_buf;
518 dma_mapped = false;
519 if (!read)
520 memcpy(host->data_buf, buf, mtd->writesize);
521 }
522
523 if (read) {
524 writel(readl(SLC_CFG(host->io_base)) |
525 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
526 SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
527 } else {
528 writel((readl(SLC_CFG(host->io_base)) |
529 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
530 ~SLCCFG_DMA_DIR,
531 SLC_CFG(host->io_base));
532 }
533
534 /* Clear initial ECC */
535 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
536
537 /* Transfer size is data area only */
538 writel(mtd->writesize, SLC_TC(host->io_base));
539
540 /* Start transfer in the NAND controller */
541 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
542 SLC_CTRL(host->io_base));
543
544 for (i = 0; i < chip->ecc.steps; i++) {
545 /* Data */
546 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
547 dma_buf + i * chip->ecc.size,
548 mtd->writesize / chip->ecc.steps, dir);
549 if (res)
550 return res;
551
552 /* Always _read_ ECC */
553 if (i == chip->ecc.steps - 1)
554 break;
555 if (!read) /* ECC availability delayed on write */
556 udelay(10);
557 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
558 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
559 if (res)
560 return res;
561 }
562
563 /*
564 * According to NXP, the DMA can be finished here, but the NAND
565 * controller may still have buffered data. After porting to using the
566 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
567 * appears to be always true, according to tests. Keeping the check for
568 * safety reasons for now.
569 */
570 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
571 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
572 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
573 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
574 time_before(jiffies, timeout))
575 cpu_relax();
576 if (!time_before(jiffies, timeout)) {
577 dev_err(mtd->dev.parent, "FIFO held data too long\n");
578 status = -EIO;
579 }
580 }
581
582 /* Read last calculated ECC value */
583 if (!read)
584 udelay(10);
585 host->ecc_buf[chip->ecc.steps - 1] =
586 readl(SLC_ECC(host->io_base));
587
588 /* Flush DMA */
589 dmaengine_terminate_all(host->dma_chan);
590
591 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
592 readl(SLC_TC(host->io_base))) {
593 /* Something is left in the FIFO, something is wrong */
594 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
595 status = -EIO;
596 }
597
598 /* Stop DMA & HW ECC */
599 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
600 SLC_CTRL(host->io_base));
601 writel(readl(SLC_CFG(host->io_base)) &
602 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
603 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
604
605 if (!dma_mapped && read)
606 memcpy(buf, host->data_buf, mtd->writesize);
607
608 return status;
609}
610
611/*
612 * Read the data and OOB data from the device, use ECC correction with the
613 * data, disable ECC for the OOB data
614 */
615static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
616 struct nand_chip *chip, uint8_t *buf,
617 int oob_required, int page)
618{
619 struct lpc32xx_nand_host *host = chip->priv;
620 int stat, i, status;
621 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
622
623 /* Issue read command */
624 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
625
626 /* Read data and oob, calculate ECC */
627 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
628
629 /* Get OOB data */
630 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
631
632 /* Convert to stored ECC format */
633 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
634
635 /* Pointer to ECC data retrieved from NAND spare area */
636 oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
637
638 for (i = 0; i < chip->ecc.steps; i++) {
639 stat = chip->ecc.correct(mtd, buf, oobecc,
640 &tmpecc[i * chip->ecc.bytes]);
641 if (stat < 0)
642 mtd->ecc_stats.failed++;
643 else
644 mtd->ecc_stats.corrected += stat;
645
646 buf += chip->ecc.size;
647 oobecc += chip->ecc.bytes;
648 }
649
650 return status;
651}
652
653/*
654 * Read the data and OOB data from the device, no ECC correction with the
655 * data or OOB data
656 */
657static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
658 struct nand_chip *chip,
659 uint8_t *buf, int oob_required,
660 int page)
661{
662 /* Issue read command */
663 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
664
665 /* Raw reads can just use the FIFO interface */
666 chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
667 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
668
669 return 0;
670}
671
672/*
673 * Write the data and OOB data to the device, use ECC with the data,
674 * disable ECC for the OOB data
675 */
676static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
677 struct nand_chip *chip,
678 const uint8_t *buf, int oob_required)
679{
680 struct lpc32xx_nand_host *host = chip->priv;
681 uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
682 int error;
683
684 /* Write data, calculate ECC on outbound data */
685 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
686 if (error)
687 return error;
688
689 /*
690 * The calculated ECC needs some manual work done to it before
691 * committing it to NAND. Process the calculated ECC and place
692 * the resultant values directly into the OOB buffer. */
693 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
694
695 /* Write ECC data to device */
696 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
697 return 0;
698}
699
700/*
701 * Write the data and OOB data to the device, no ECC correction with the
702 * data or OOB data
703 */
704static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
705 struct nand_chip *chip,
706 const uint8_t *buf,
707 int oob_required)
708{
709 /* Raw writes can just use the FIFO interface */
710 chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
711 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
712 return 0;
713}
714
715static bool lpc32xx_dma_filter(struct dma_chan *chan, void *param)
716{
717 struct pl08x_dma_chan *ch =
718 container_of(chan, struct pl08x_dma_chan, chan);
719
720 /* In LPC32xx's PL080 DMA wiring, the SLC NAND DMA signal is #1 */
721 if (ch->cd->min_signal == 1)
722 return true;
723 return false;
724}
725
726static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
727{
728 struct mtd_info *mtd = &host->mtd;
729 dma_cap_mask_t mask;
730
731 dma_cap_zero(mask);
732 dma_cap_set(DMA_SLAVE, mask);
733 host->dma_chan = dma_request_channel(mask, lpc32xx_dma_filter, NULL);
734 if (!host->dma_chan) {
735 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
736 return -EBUSY;
737 }
738
739 return 0;
740}
741
742#ifdef CONFIG_OF
743static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
744{
745 struct lpc32xx_nand_cfg_slc *pdata;
746 struct device_node *np = dev->of_node;
747
748 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
749 if (!pdata) {
750 dev_err(dev, "could not allocate memory for platform data\n");
751 return NULL;
752 }
753
754 of_property_read_u32(np, "nxp,wdr-clks", &pdata->wdr_clks);
755 of_property_read_u32(np, "nxp,wwidth", &pdata->wwidth);
756 of_property_read_u32(np, "nxp,whold", &pdata->whold);
757 of_property_read_u32(np, "nxp,wsetup", &pdata->wsetup);
758 of_property_read_u32(np, "nxp,rdr-clks", &pdata->rdr_clks);
759 of_property_read_u32(np, "nxp,rwidth", &pdata->rwidth);
760 of_property_read_u32(np, "nxp,rhold", &pdata->rhold);
761 of_property_read_u32(np, "nxp,rsetup", &pdata->rsetup);
762
763 if (!pdata->wdr_clks || !pdata->wwidth || !pdata->whold ||
764 !pdata->wsetup || !pdata->rdr_clks || !pdata->rwidth ||
765 !pdata->rhold || !pdata->rsetup) {
766 dev_err(dev, "chip parameters not specified correctly\n");
767 return NULL;
768 }
769
770 pdata->use_bbt = of_get_nand_on_flash_bbt(np);
771 pdata->wp_gpio = of_get_named_gpio_flags(np, "gpios", 0, NULL);
772
773 return pdata;
774}
775#else
776static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
777{
778 return NULL;
779}
780#endif
781
782/*
783 * Probe for NAND controller
784 */
785static int __devinit lpc32xx_nand_probe(struct platform_device *pdev)
786{
787 struct lpc32xx_nand_host *host;
788 struct mtd_info *mtd;
789 struct nand_chip *chip;
790 struct resource *rc;
791 struct mtd_part_parser_data ppdata = {};
792 int res;
793
794 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
795 if (rc == NULL) {
796 dev_err(&pdev->dev, "No memory resource found for device\n");
797 return -EBUSY;
798 }
799
800 /* Allocate memory for the device structure (and zero it) */
801 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
802 if (!host) {
803 dev_err(&pdev->dev, "failed to allocate device structure\n");
804 return -ENOMEM;
805 }
806 host->io_base_dma = rc->start;
807
808 host->io_base = devm_request_and_ioremap(&pdev->dev, rc);
809 if (host->io_base == NULL) {
810 dev_err(&pdev->dev, "ioremap failed\n");
811 return -ENOMEM;
812 }
813
814 if (pdev->dev.of_node)
815 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
816 else
817 host->ncfg = pdev->dev.platform_data;
818 if (!host->ncfg) {
819 dev_err(&pdev->dev, "Missing platform data\n");
820 return -ENOENT;
821 }
822 if (gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
823 dev_err(&pdev->dev, "GPIO not available\n");
824 return -EBUSY;
825 }
826 lpc32xx_wp_disable(host);
827
828 mtd = &host->mtd;
829 chip = &host->nand_chip;
830 chip->priv = host;
831 mtd->priv = chip;
832 mtd->owner = THIS_MODULE;
833 mtd->dev.parent = &pdev->dev;
834
835 /* Get NAND clock */
836 host->clk = clk_get(&pdev->dev, NULL);
837 if (IS_ERR(host->clk)) {
838 dev_err(&pdev->dev, "Clock failure\n");
839 res = -ENOENT;
840 goto err_exit1;
841 }
842 clk_enable(host->clk);
843
844 /* Set NAND IO addresses and command/ready functions */
845 chip->IO_ADDR_R = SLC_DATA(host->io_base);
846 chip->IO_ADDR_W = SLC_DATA(host->io_base);
847 chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
848 chip->dev_ready = lpc32xx_nand_device_ready;
849 chip->chip_delay = 20; /* 20us command delay time */
850
851 /* Init NAND controller */
852 lpc32xx_nand_setup(host);
853
854 platform_set_drvdata(pdev, host);
855
856 /* NAND callbacks for LPC32xx SLC hardware */
857 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
858 chip->read_byte = lpc32xx_nand_read_byte;
859 chip->read_buf = lpc32xx_nand_read_buf;
860 chip->write_buf = lpc32xx_nand_write_buf;
861 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
862 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
863 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
864 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
865 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
866 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
867 chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
868 chip->ecc.correct = nand_correct_data;
869 chip->ecc.strength = 1;
870 chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
871 chip->verify_buf = lpc32xx_verify_buf;
872
873 /* bitflip_threshold's default is defined as ecc_strength anyway.
874 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
875 * being 0, it causes bad block table scanning errors in
876 * nand_scan_tail(), so preparing it here already. */
877 mtd->bitflip_threshold = chip->ecc.strength;
878
879 /*
880 * Allocate a large enough buffer for a single huge page plus
881 * extra space for the spare area and ECC storage area
882 */
883 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
884 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
885 GFP_KERNEL);
886 if (host->data_buf == NULL) {
887 dev_err(&pdev->dev, "Error allocating memory\n");
888 res = -ENOMEM;
889 goto err_exit2;
890 }
891
892 res = lpc32xx_nand_dma_setup(host);
893 if (res) {
894 res = -EIO;
895 goto err_exit2;
896 }
897
898 /* Find NAND device */
899 if (nand_scan_ident(mtd, 1, NULL)) {
900 res = -ENXIO;
901 goto err_exit3;
902 }
903
904 /* OOB and ECC CPU and DMA work areas */
905 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
906
907 /*
908 * Small page FLASH has a unique OOB layout, but large and huge
909 * page FLASH use the standard layout. Small page FLASH uses a
910 * custom BBT marker layout.
911 */
912 if (mtd->writesize <= 512)
913 chip->ecc.layout = &lpc32xx_nand_oob_16;
914
915 /* These sizes remain the same regardless of page size */
916 chip->ecc.size = 256;
917 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
918 chip->ecc.prepad = chip->ecc.postpad = 0;
919
920 /* Avoid extra scan if using BBT, setup BBT support */
921 if (host->ncfg->use_bbt) {
922 chip->options |= NAND_SKIP_BBTSCAN;
923 chip->bbt_options |= NAND_BBT_USE_FLASH;
924
925 /*
926 * Use a custom BBT marker setup for small page FLASH that
927 * won't interfere with the ECC layout. Large and huge page
928 * FLASH use the standard layout.
929 */
930 if (mtd->writesize <= 512) {
931 chip->bbt_td = &bbt_smallpage_main_descr;
932 chip->bbt_md = &bbt_smallpage_mirror_descr;
933 }
934 }
935
936 /*
937 * Fills out all the uninitialized function pointers with the defaults
938 */
939 if (nand_scan_tail(mtd)) {
940 res = -ENXIO;
941 goto err_exit3;
942 }
943
944 /* Standard layout in FLASH for bad block tables */
945 if (host->ncfg->use_bbt) {
946 if (nand_default_bbt(mtd) < 0)
947 dev_err(&pdev->dev,
948 "Error initializing default bad block tables\n");
949 }
950
951 mtd->name = "nxp_lpc3220_slc";
952 ppdata.of_node = pdev->dev.of_node;
953 res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
954 host->ncfg->num_parts);
955 if (!res)
956 return res;
957
958 nand_release(mtd);
959
960err_exit3:
961 dma_release_channel(host->dma_chan);
962err_exit2:
963 clk_disable(host->clk);
964 clk_put(host->clk);
965 platform_set_drvdata(pdev, NULL);
966err_exit1:
967 lpc32xx_wp_enable(host);
968 gpio_free(host->ncfg->wp_gpio);
969
970 return res;
971}
972
973/*
974 * Remove NAND device.
975 */
976static int __devexit lpc32xx_nand_remove(struct platform_device *pdev)
977{
978 uint32_t tmp;
979 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
980 struct mtd_info *mtd = &host->mtd;
981
982 nand_release(mtd);
983 dma_release_channel(host->dma_chan);
984
985 /* Force CE high */
986 tmp = readl(SLC_CTRL(host->io_base));
987 tmp &= ~SLCCFG_CE_LOW;
988 writel(tmp, SLC_CTRL(host->io_base));
989
990 clk_disable(host->clk);
991 clk_put(host->clk);
992 platform_set_drvdata(pdev, NULL);
993 lpc32xx_wp_enable(host);
994 gpio_free(host->ncfg->wp_gpio);
995
996 return 0;
997}
998
999#ifdef CONFIG_PM
1000static int lpc32xx_nand_resume(struct platform_device *pdev)
1001{
1002 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
1003
1004 /* Re-enable NAND clock */
1005 clk_enable(host->clk);
1006
1007 /* Fresh init of NAND controller */
1008 lpc32xx_nand_setup(host);
1009
1010 /* Disable write protect */
1011 lpc32xx_wp_disable(host);
1012
1013 return 0;
1014}
1015
1016static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
1017{
1018 uint32_t tmp;
1019 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
1020
1021 /* Force CE high */
1022 tmp = readl(SLC_CTRL(host->io_base));
1023 tmp &= ~SLCCFG_CE_LOW;
1024 writel(tmp, SLC_CTRL(host->io_base));
1025
1026 /* Enable write protect for safety */
1027 lpc32xx_wp_enable(host);
1028
1029 /* Disable clock */
1030 clk_disable(host->clk);
1031
1032 return 0;
1033}
1034
1035#else
1036#define lpc32xx_nand_resume NULL
1037#define lpc32xx_nand_suspend NULL
1038#endif
1039
1040#if defined(CONFIG_OF)
1041static const struct of_device_id lpc32xx_nand_match[] = {
1042 { .compatible = "nxp,lpc3220-slc" },
1043 { /* sentinel */ },
1044};
1045MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1046#endif
1047
1048static struct platform_driver lpc32xx_nand_driver = {
1049 .probe = lpc32xx_nand_probe,
1050 .remove = __devexit_p(lpc32xx_nand_remove),
1051 .resume = lpc32xx_nand_resume,
1052 .suspend = lpc32xx_nand_suspend,
1053 .driver = {
1054 .name = LPC32XX_MODNAME,
1055 .owner = THIS_MODULE,
1056 .of_match_table = of_match_ptr(lpc32xx_nand_match),
1057 },
1058};
1059
1060module_platform_driver(lpc32xx_nand_driver);
1061
1062MODULE_LICENSE("GPL");
1063MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1064MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1065MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");