mtd: nand: remove unused ->init_size() hook
[linux-2.6-block.git] / drivers / mtd / nand / fsmc_nand.c
CommitLineData
6c009ab8
LW
1/*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19#include <linux/clk.h>
4774fb0a
VK
20#include <linux/completion.h>
21#include <linux/dmaengine.h>
22#include <linux/dma-direction.h>
23#include <linux/dma-mapping.h>
6c009ab8
LW
24#include <linux/err.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/resource.h>
28#include <linux/sched.h>
29#include <linux/types.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/nand_ecc.h>
33#include <linux/platform_device.h>
eea62819 34#include <linux/of.h>
6c009ab8
LW
35#include <linux/mtd/partitions.h>
36#include <linux/io.h>
37#include <linux/slab.h>
38#include <linux/mtd/fsmc.h>
593cd871 39#include <linux/amba/bus.h>
6c009ab8
LW
40#include <mtd/mtd-abi.h>
41
e29ee57b 42static struct nand_ecclayout fsmc_ecc1_128_layout = {
6c009ab8
LW
43 .eccbytes = 24,
44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
46 .oobfree = {
47 {.offset = 8, .length = 8},
48 {.offset = 24, .length = 8},
49 {.offset = 40, .length = 8},
50 {.offset = 56, .length = 8},
51 {.offset = 72, .length = 8},
52 {.offset = 88, .length = 8},
53 {.offset = 104, .length = 8},
54 {.offset = 120, .length = 8}
55 }
56};
57
e29ee57b
BY
58static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67};
68
69static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75};
76
77/*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135};
136
0c78e93b
AV
137/*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171};
172
e29ee57b
BY
173/*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178static struct nand_ecclayout fsmc_ecc4_128_layout = {
6c009ab8
LW
179 .eccbytes = 104,
180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
181 9, 10, 11, 12, 13, 14,
182 18, 19, 20, 21, 22, 23, 24,
183 25, 26, 27, 28, 29, 30,
184 34, 35, 36, 37, 38, 39, 40,
185 41, 42, 43, 44, 45, 46,
186 50, 51, 52, 53, 54, 55, 56,
187 57, 58, 59, 60, 61, 62,
188 66, 67, 68, 69, 70, 71, 72,
189 73, 74, 75, 76, 77, 78,
190 82, 83, 84, 85, 86, 87, 88,
191 89, 90, 91, 92, 93, 94,
192 98, 99, 100, 101, 102, 103, 104,
193 105, 106, 107, 108, 109, 110,
194 114, 115, 116, 117, 118, 119, 120,
195 121, 122, 123, 124, 125, 126
196 },
197 .oobfree = {
198 {.offset = 15, .length = 3},
199 {.offset = 31, .length = 3},
200 {.offset = 47, .length = 3},
201 {.offset = 63, .length = 3},
202 {.offset = 79, .length = 3},
203 {.offset = 95, .length = 3},
204 {.offset = 111, .length = 3},
205 {.offset = 127, .length = 1}
206 }
207};
208
e29ee57b
BY
209/*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231};
232
233/*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246};
247
6c009ab8
LW
248/*
249 * ECC placement definitions in oobfree type format.
250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
251 * consecutively and immediately after the 512 byte data block for hardware to
252 * generate the error bit offsets in 512 byte data.
253 * Managing the ecc bytes in the following way makes it easier for software to
254 * read ecc bytes consecutive to data bytes. This way is similar to
255 * oobfree structure maintained already in generic nand driver
256 */
257static struct fsmc_eccplace fsmc_ecc4_lp_place = {
258 .eccplace = {
259 {.offset = 2, .length = 13},
260 {.offset = 18, .length = 13},
261 {.offset = 34, .length = 13},
262 {.offset = 50, .length = 13},
263 {.offset = 66, .length = 13},
264 {.offset = 82, .length = 13},
265 {.offset = 98, .length = 13},
266 {.offset = 114, .length = 13}
267 }
268};
269
6c009ab8
LW
270static struct fsmc_eccplace fsmc_ecc4_sp_place = {
271 .eccplace = {
272 {.offset = 0, .length = 4},
273 {.offset = 6, .length = 9}
274 }
275};
276
6c009ab8 277/**
593cd871 278 * struct fsmc_nand_data - structure for FSMC NAND device state
6c009ab8 279 *
593cd871 280 * @pid: Part ID on the AMBA PrimeCell format
6c009ab8
LW
281 * @mtd: MTD info for a NAND flash.
282 * @nand: Chip related info for a NAND flash.
71470324
VK
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
6c009ab8
LW
285 *
286 * @ecc_place: ECC placing locations in oobfree type format.
287 * @bank: Bank number for probed device.
288 * @clk: Clock structure for FSMC.
289 *
4774fb0a
VK
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
6c009ab8
LW
295 * @data_va: NAND port for Data.
296 * @cmd_va: NAND port for Command.
297 * @addr_va: NAND port for Address.
298 * @regs_va: FSMC regs base address.
299 */
300struct fsmc_nand_data {
593cd871 301 u32 pid;
6c009ab8
LW
302 struct mtd_info mtd;
303 struct nand_chip nand;
71470324
VK
304 struct mtd_partition *partitions;
305 unsigned int nr_partitions;
6c009ab8
LW
306
307 struct fsmc_eccplace *ecc_place;
308 unsigned int bank;
712c4add 309 struct device *dev;
4774fb0a 310 enum access_mode mode;
6c009ab8
LW
311 struct clk *clk;
312
4774fb0a
VK
313 /* DMA related objects */
314 struct dma_chan *read_dma_chan;
315 struct dma_chan *write_dma_chan;
316 struct completion dma_access_complete;
317
e2f6bce8
VK
318 struct fsmc_nand_timings *dev_timings;
319
4774fb0a 320 dma_addr_t data_pa;
6c009ab8
LW
321 void __iomem *data_va;
322 void __iomem *cmd_va;
323 void __iomem *addr_va;
324 void __iomem *regs_va;
325
326 void (*select_chip)(uint32_t bank, uint32_t busw);
327};
328
329/* Assert CS signal based on chipnr */
330static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
331{
332 struct nand_chip *chip = mtd->priv;
333 struct fsmc_nand_data *host;
334
335 host = container_of(mtd, struct fsmc_nand_data, mtd);
336
337 switch (chipnr) {
338 case -1:
339 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
340 break;
341 case 0:
342 case 1:
343 case 2:
344 case 3:
345 if (host->select_chip)
346 host->select_chip(chipnr,
347 chip->options & NAND_BUSWIDTH_16);
348 break;
349
350 default:
351 BUG();
352 }
353}
354
355/*
356 * fsmc_cmd_ctrl - For facilitaing Hardware access
357 * This routine allows hardware specific access to control-lines(ALE,CLE)
358 */
359static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
360{
361 struct nand_chip *this = mtd->priv;
362 struct fsmc_nand_data *host = container_of(mtd,
363 struct fsmc_nand_data, mtd);
605add7d 364 void __iomem *regs = host->regs_va;
6c009ab8
LW
365 unsigned int bank = host->bank;
366
367 if (ctrl & NAND_CTRL_CHANGE) {
2a5dbead
VK
368 u32 pc;
369
6c009ab8 370 if (ctrl & NAND_CLE) {
2a5dbead
VK
371 this->IO_ADDR_R = host->cmd_va;
372 this->IO_ADDR_W = host->cmd_va;
6c009ab8 373 } else if (ctrl & NAND_ALE) {
2a5dbead
VK
374 this->IO_ADDR_R = host->addr_va;
375 this->IO_ADDR_W = host->addr_va;
6c009ab8 376 } else {
2a5dbead
VK
377 this->IO_ADDR_R = host->data_va;
378 this->IO_ADDR_W = host->data_va;
6c009ab8
LW
379 }
380
2a5dbead
VK
381 pc = readl(FSMC_NAND_REG(regs, bank, PC));
382 if (ctrl & NAND_NCE)
383 pc |= FSMC_ENABLE;
384 else
385 pc &= ~FSMC_ENABLE;
a4742d51 386 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
387 }
388
389 mb();
390
391 if (cmd != NAND_CMD_NONE)
a4742d51 392 writeb_relaxed(cmd, this->IO_ADDR_W);
6c009ab8
LW
393}
394
395/*
396 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
397 *
398 * This routine initializes timing parameters related to NAND memory access in
399 * FSMC registers
400 */
2a5dbead 401static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
e2f6bce8 402 uint32_t busw, struct fsmc_nand_timings *timings)
6c009ab8
LW
403{
404 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
e2f6bce8
VK
405 uint32_t tclr, tar, thiz, thold, twait, tset;
406 struct fsmc_nand_timings *tims;
407 struct fsmc_nand_timings default_timings = {
408 .tclr = FSMC_TCLR_1,
409 .tar = FSMC_TAR_1,
410 .thiz = FSMC_THIZ_1,
411 .thold = FSMC_THOLD_4,
412 .twait = FSMC_TWAIT_6,
413 .tset = FSMC_TSET_0,
414 };
415
416 if (timings)
417 tims = timings;
418 else
419 tims = &default_timings;
420
421 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
422 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
423 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
424 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
425 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
426 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
6c009ab8
LW
427
428 if (busw)
a4742d51
VK
429 writel_relaxed(value | FSMC_DEVWID_16,
430 FSMC_NAND_REG(regs, bank, PC));
6c009ab8 431 else
a4742d51
VK
432 writel_relaxed(value | FSMC_DEVWID_8,
433 FSMC_NAND_REG(regs, bank, PC));
6c009ab8 434
a4742d51 435 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
2a5dbead 436 FSMC_NAND_REG(regs, bank, PC));
a4742d51
VK
437 writel_relaxed(thiz | thold | twait | tset,
438 FSMC_NAND_REG(regs, bank, COMM));
439 writel_relaxed(thiz | thold | twait | tset,
440 FSMC_NAND_REG(regs, bank, ATTRIB));
6c009ab8
LW
441}
442
443/*
444 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
445 */
446static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
447{
448 struct fsmc_nand_data *host = container_of(mtd,
449 struct fsmc_nand_data, mtd);
2a5dbead 450 void __iomem *regs = host->regs_va;
6c009ab8
LW
451 uint32_t bank = host->bank;
452
a4742d51 453 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
2a5dbead 454 FSMC_NAND_REG(regs, bank, PC));
a4742d51 455 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
2a5dbead 456 FSMC_NAND_REG(regs, bank, PC));
a4742d51 457 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
2a5dbead 458 FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
459}
460
461/*
462 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
25985edc 463 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
464 * max of 8-bits)
465 */
466static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
467 uint8_t *ecc)
468{
469 struct fsmc_nand_data *host = container_of(mtd,
470 struct fsmc_nand_data, mtd);
2a5dbead 471 void __iomem *regs = host->regs_va;
6c009ab8
LW
472 uint32_t bank = host->bank;
473 uint32_t ecc_tmp;
474 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
475
476 do {
a4742d51 477 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
6c009ab8
LW
478 break;
479 else
480 cond_resched();
481 } while (!time_after_eq(jiffies, deadline));
482
712c4add
VK
483 if (time_after_eq(jiffies, deadline)) {
484 dev_err(host->dev, "calculate ecc timed out\n");
485 return -ETIMEDOUT;
486 }
487
a4742d51 488 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
489 ecc[0] = (uint8_t) (ecc_tmp >> 0);
490 ecc[1] = (uint8_t) (ecc_tmp >> 8);
491 ecc[2] = (uint8_t) (ecc_tmp >> 16);
492 ecc[3] = (uint8_t) (ecc_tmp >> 24);
493
a4742d51 494 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
6c009ab8
LW
495 ecc[4] = (uint8_t) (ecc_tmp >> 0);
496 ecc[5] = (uint8_t) (ecc_tmp >> 8);
497 ecc[6] = (uint8_t) (ecc_tmp >> 16);
498 ecc[7] = (uint8_t) (ecc_tmp >> 24);
499
a4742d51 500 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
6c009ab8
LW
501 ecc[8] = (uint8_t) (ecc_tmp >> 0);
502 ecc[9] = (uint8_t) (ecc_tmp >> 8);
503 ecc[10] = (uint8_t) (ecc_tmp >> 16);
504 ecc[11] = (uint8_t) (ecc_tmp >> 24);
505
a4742d51 506 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
6c009ab8
LW
507 ecc[12] = (uint8_t) (ecc_tmp >> 16);
508
509 return 0;
510}
511
512/*
513 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
25985edc 514 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
515 * max of 1-bit)
516 */
517static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
518 uint8_t *ecc)
519{
520 struct fsmc_nand_data *host = container_of(mtd,
521 struct fsmc_nand_data, mtd);
2a5dbead 522 void __iomem *regs = host->regs_va;
6c009ab8
LW
523 uint32_t bank = host->bank;
524 uint32_t ecc_tmp;
525
a4742d51 526 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
527 ecc[0] = (uint8_t) (ecc_tmp >> 0);
528 ecc[1] = (uint8_t) (ecc_tmp >> 8);
529 ecc[2] = (uint8_t) (ecc_tmp >> 16);
530
531 return 0;
532}
533
519300cf
VK
534/* Count the number of 0's in buff upto a max of max_bits */
535static int count_written_bits(uint8_t *buff, int size, int max_bits)
536{
537 int k, written_bits = 0;
538
539 for (k = 0; k < size; k++) {
540 written_bits += hweight8(~buff[k]);
541 if (written_bits > max_bits)
542 break;
543 }
544
545 return written_bits;
546}
547
4774fb0a
VK
548static void dma_complete(void *param)
549{
550 struct fsmc_nand_data *host = param;
551
552 complete(&host->dma_access_complete);
553}
554
555static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
556 enum dma_data_direction direction)
557{
558 struct dma_chan *chan;
559 struct dma_device *dma_dev;
560 struct dma_async_tx_descriptor *tx;
561 dma_addr_t dma_dst, dma_src, dma_addr;
562 dma_cookie_t cookie;
563 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
564 int ret;
818a45b1 565 unsigned long time_left;
4774fb0a
VK
566
567 if (direction == DMA_TO_DEVICE)
568 chan = host->write_dma_chan;
569 else if (direction == DMA_FROM_DEVICE)
570 chan = host->read_dma_chan;
571 else
572 return -EINVAL;
573
574 dma_dev = chan->device;
575 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
576
577 if (direction == DMA_TO_DEVICE) {
578 dma_src = dma_addr;
579 dma_dst = host->data_pa;
4774fb0a
VK
580 } else {
581 dma_src = host->data_pa;
582 dma_dst = dma_addr;
4774fb0a
VK
583 }
584
585 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
586 len, flags);
4774fb0a
VK
587 if (!tx) {
588 dev_err(host->dev, "device_prep_dma_memcpy error\n");
d1806a5c
BZ
589 ret = -EIO;
590 goto unmap_dma;
4774fb0a
VK
591 }
592
593 tx->callback = dma_complete;
594 tx->callback_param = host;
595 cookie = tx->tx_submit(tx);
596
597 ret = dma_submit_error(cookie);
598 if (ret) {
599 dev_err(host->dev, "dma_submit_error %d\n", cookie);
d1806a5c 600 goto unmap_dma;
4774fb0a
VK
601 }
602
603 dma_async_issue_pending(chan);
604
818a45b1 605 time_left =
928aa2ae 606 wait_for_completion_timeout(&host->dma_access_complete,
4774fb0a 607 msecs_to_jiffies(3000));
818a45b1 608 if (time_left == 0) {
b177ea34 609 dmaengine_terminate_all(chan);
4774fb0a 610 dev_err(host->dev, "wait_for_completion_timeout\n");
0bda3e19 611 ret = -ETIMEDOUT;
d1806a5c 612 goto unmap_dma;
4774fb0a
VK
613 }
614
d1806a5c
BZ
615 ret = 0;
616
617unmap_dma:
618 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
619
620 return ret;
4774fb0a
VK
621}
622
604e7544
VK
623/*
624 * fsmc_write_buf - write buffer to chip
625 * @mtd: MTD device structure
626 * @buf: data buffer
627 * @len: number of bytes to write
628 */
629static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
630{
631 int i;
632 struct nand_chip *chip = mtd->priv;
633
634 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
635 IS_ALIGNED(len, sizeof(uint32_t))) {
636 uint32_t *p = (uint32_t *)buf;
637 len = len >> 2;
638 for (i = 0; i < len; i++)
a4742d51 639 writel_relaxed(p[i], chip->IO_ADDR_W);
604e7544
VK
640 } else {
641 for (i = 0; i < len; i++)
a4742d51 642 writeb_relaxed(buf[i], chip->IO_ADDR_W);
604e7544
VK
643 }
644}
645
646/*
647 * fsmc_read_buf - read chip data into buffer
648 * @mtd: MTD device structure
649 * @buf: buffer to store date
650 * @len: number of bytes to read
651 */
652static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
653{
654 int i;
655 struct nand_chip *chip = mtd->priv;
656
657 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
658 IS_ALIGNED(len, sizeof(uint32_t))) {
659 uint32_t *p = (uint32_t *)buf;
660 len = len >> 2;
661 for (i = 0; i < len; i++)
a4742d51 662 p[i] = readl_relaxed(chip->IO_ADDR_R);
604e7544
VK
663 } else {
664 for (i = 0; i < len; i++)
a4742d51 665 buf[i] = readb_relaxed(chip->IO_ADDR_R);
604e7544
VK
666 }
667}
668
4774fb0a
VK
669/*
670 * fsmc_read_buf_dma - read chip data into buffer
671 * @mtd: MTD device structure
672 * @buf: buffer to store date
673 * @len: number of bytes to read
674 */
675static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
676{
677 struct fsmc_nand_data *host;
678
679 host = container_of(mtd, struct fsmc_nand_data, mtd);
680 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
681}
682
683/*
684 * fsmc_write_buf_dma - write buffer to chip
685 * @mtd: MTD device structure
686 * @buf: data buffer
687 * @len: number of bytes to write
688 */
689static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
690 int len)
691{
692 struct fsmc_nand_data *host;
693
694 host = container_of(mtd, struct fsmc_nand_data, mtd);
695 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
696}
697
6c009ab8
LW
698/*
699 * fsmc_read_page_hwecc
700 * @mtd: mtd info structure
701 * @chip: nand chip info structure
702 * @buf: buffer to store read data
1fbb938d 703 * @oob_required: caller expects OOB data read to chip->oob_poi
6c009ab8
LW
704 * @page: page number to read
705 *
25985edc 706 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
6c009ab8
LW
707 * performed in a strict sequence as follows:
708 * data(512 byte) -> ecc(13 byte)
25985edc 709 * After this read, fsmc hardware generates and reports error data bits(up to a
6c009ab8
LW
710 * max of 8 bits)
711 */
712static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 713 uint8_t *buf, int oob_required, int page)
6c009ab8
LW
714{
715 struct fsmc_nand_data *host = container_of(mtd,
716 struct fsmc_nand_data, mtd);
717 struct fsmc_eccplace *ecc_place = host->ecc_place;
718 int i, j, s, stat, eccsize = chip->ecc.size;
719 int eccbytes = chip->ecc.bytes;
720 int eccsteps = chip->ecc.steps;
721 uint8_t *p = buf;
722 uint8_t *ecc_calc = chip->buffers->ecccalc;
723 uint8_t *ecc_code = chip->buffers->ecccode;
724 int off, len, group = 0;
725 /*
726 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
727 * end up reading 14 bytes (7 words) from oob. The local array is
728 * to maintain word alignment
729 */
730 uint16_t ecc_oob[7];
731 uint8_t *oob = (uint8_t *)&ecc_oob[0];
3f91e94f 732 unsigned int max_bitflips = 0;
6c009ab8
LW
733
734 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
6c009ab8
LW
735 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
736 chip->ecc.hwctl(mtd, NAND_ECC_READ);
737 chip->read_buf(mtd, p, eccsize);
738
739 for (j = 0; j < eccbytes;) {
740 off = ecc_place->eccplace[group].offset;
741 len = ecc_place->eccplace[group].length;
742 group++;
743
744 /*
4cbe1bf0
VK
745 * length is intentionally kept a higher multiple of 2
746 * to read at least 13 bytes even in case of 16 bit NAND
747 * devices
748 */
aea686b4
VK
749 if (chip->options & NAND_BUSWIDTH_16)
750 len = roundup(len, 2);
751
6c009ab8
LW
752 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
753 chip->read_buf(mtd, oob + j, len);
754 j += len;
755 }
756
519300cf 757 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
6c009ab8
LW
758 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
759
760 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 761 if (stat < 0) {
6c009ab8 762 mtd->ecc_stats.failed++;
3f91e94f 763 } else {
6c009ab8 764 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
765 max_bitflips = max_t(unsigned int, max_bitflips, stat);
766 }
6c009ab8
LW
767 }
768
3f91e94f 769 return max_bitflips;
6c009ab8
LW
770}
771
772/*
753e0139 773 * fsmc_bch8_correct_data
6c009ab8
LW
774 * @mtd: mtd info structure
775 * @dat: buffer of read data
776 * @read_ecc: ecc read from device spare area
777 * @calc_ecc: ecc calculated from read data
778 *
779 * calc_ecc is a 104 bit information containing maximum of 8 error
780 * offset informations of 13 bits each in 512 bytes of read data.
781 */
753e0139 782static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
6c009ab8
LW
783 uint8_t *read_ecc, uint8_t *calc_ecc)
784{
785 struct fsmc_nand_data *host = container_of(mtd,
786 struct fsmc_nand_data, mtd);
519300cf 787 struct nand_chip *chip = mtd->priv;
2a5dbead 788 void __iomem *regs = host->regs_va;
6c009ab8 789 unsigned int bank = host->bank;
a612c2ae 790 uint32_t err_idx[8];
6c009ab8 791 uint32_t num_err, i;
753e0139 792 uint32_t ecc1, ecc2, ecc3, ecc4;
6c009ab8 793
a4742d51 794 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
519300cf
VK
795
796 /* no bit flipping */
797 if (likely(num_err == 0))
798 return 0;
799
800 /* too many errors */
801 if (unlikely(num_err > 8)) {
802 /*
803 * This is a temporary erase check. A newly erased page read
804 * would result in an ecc error because the oob data is also
805 * erased to FF and the calculated ecc for an FF data is not
806 * FF..FF.
807 * This is a workaround to skip performing correction in case
808 * data is FF..FF
809 *
810 * Logic:
811 * For every page, each bit written as 0 is counted until these
812 * number of bits are greater than 8 (the maximum correction
813 * capability of FSMC for each 512 + 13 bytes)
814 */
815
816 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
817 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
818
819 if ((bits_ecc + bits_data) <= 8) {
820 if (bits_data)
821 memset(dat, 0xff, chip->ecc.size);
822 return bits_data;
823 }
824
825 return -EBADMSG;
826 }
827
6c009ab8
LW
828 /*
829 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
830 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
831 *
832 * calc_ecc is a 104 bit information containing maximum of 8 error
833 * offset informations of 13 bits each. calc_ecc is copied into a
834 * uint64_t array and error offset indexes are populated in err_idx
835 * array
836 */
a4742d51
VK
837 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
838 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
839 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
840 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
753e0139
AV
841
842 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
843 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
844 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
845 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
846 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
847 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
848 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
849 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
6c009ab8
LW
850
851 i = 0;
852 while (num_err--) {
853 change_bit(0, (unsigned long *)&err_idx[i]);
854 change_bit(1, (unsigned long *)&err_idx[i]);
855
b533f8d8 856 if (err_idx[i] < chip->ecc.size * 8) {
6c009ab8
LW
857 change_bit(err_idx[i], (unsigned long *)dat);
858 i++;
859 }
860 }
861 return i;
862}
863
4774fb0a
VK
864static bool filter(struct dma_chan *chan, void *slave)
865{
866 chan->private = slave;
867 return true;
868}
869
eea62819 870#ifdef CONFIG_OF
06f25510 871static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
d8929942 872 struct device_node *np)
eea62819
SR
873{
874 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
875 u32 val;
62b57f4c 876 int ret;
eea62819
SR
877
878 /* Set default NAND width to 8 bits */
879 pdata->width = 8;
880 if (!of_property_read_u32(np, "bank-width", &val)) {
881 if (val == 2) {
882 pdata->width = 16;
883 } else if (val != 1) {
884 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
885 return -EINVAL;
886 }
887 }
eea62819
SR
888 if (of_get_property(np, "nand-skip-bbtscan", NULL))
889 pdata->options = NAND_SKIP_BBTSCAN;
890
64ddba4d
MYK
891 pdata->nand_timings = devm_kzalloc(&pdev->dev,
892 sizeof(*pdata->nand_timings), GFP_KERNEL);
d9a21ae8 893 if (!pdata->nand_timings)
64ddba4d 894 return -ENOMEM;
62b57f4c 895 ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
64ddba4d 896 sizeof(*pdata->nand_timings));
62b57f4c
SR
897 if (ret) {
898 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
899 pdata->nand_timings = NULL;
900 }
64ddba4d
MYK
901
902 /* Set default NAND bank to 0 */
903 pdata->bank = 0;
904 if (!of_property_read_u32(np, "bank", &val)) {
905 if (val > 3) {
906 dev_err(&pdev->dev, "invalid bank %u\n", val);
907 return -EINVAL;
908 }
909 pdata->bank = val;
910 }
eea62819
SR
911 return 0;
912}
913#else
06f25510 914static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
d8929942 915 struct device_node *np)
eea62819
SR
916{
917 return -ENOSYS;
918}
919#endif
920
6c009ab8
LW
921/*
922 * fsmc_nand_probe - Probe function
923 * @pdev: platform device structure
924 */
925static int __init fsmc_nand_probe(struct platform_device *pdev)
926{
927 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
eea62819
SR
928 struct device_node __maybe_unused *np = pdev->dev.of_node;
929 struct mtd_part_parser_data ppdata = {};
6c009ab8
LW
930 struct fsmc_nand_data *host;
931 struct mtd_info *mtd;
932 struct nand_chip *nand;
6c009ab8 933 struct resource *res;
4774fb0a 934 dma_cap_mask_t mask;
4ad916bc 935 int ret = 0;
593cd871
LW
936 u32 pid;
937 int i;
6c009ab8 938
eea62819
SR
939 if (np) {
940 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
941 pdev->dev.platform_data = pdata;
942 ret = fsmc_nand_probe_config_dt(pdev, np);
943 if (ret) {
944 dev_err(&pdev->dev, "no platform data\n");
945 return -ENODEV;
946 }
947 }
948
6c009ab8
LW
949 if (!pdata) {
950 dev_err(&pdev->dev, "platform data is NULL\n");
951 return -EINVAL;
952 }
953
954 /* Allocate memory for the device structure (and zero it) */
82b9dbe2 955 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
d9a21ae8 956 if (!host)
6c009ab8 957 return -ENOMEM;
6c009ab8
LW
958
959 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
b0de774c
TR
960 host->data_va = devm_ioremap_resource(&pdev->dev, res);
961 if (IS_ERR(host->data_va))
962 return PTR_ERR(host->data_va);
963
6d7b42a4 964 host->data_pa = (dma_addr_t)res->start;
6c009ab8 965
6d7b42a4 966 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
b0de774c
TR
967 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
968 if (IS_ERR(host->addr_va))
969 return PTR_ERR(host->addr_va);
6c009ab8 970
6d7b42a4 971 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
b0de774c
TR
972 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
973 if (IS_ERR(host->cmd_va))
974 return PTR_ERR(host->cmd_va);
6c009ab8
LW
975
976 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
b0de774c
TR
977 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
978 if (IS_ERR(host->regs_va))
979 return PTR_ERR(host->regs_va);
6c009ab8
LW
980
981 host->clk = clk_get(&pdev->dev, NULL);
982 if (IS_ERR(host->clk)) {
983 dev_err(&pdev->dev, "failed to fetch block clock\n");
82b9dbe2 984 return PTR_ERR(host->clk);
6c009ab8
LW
985 }
986
e25da1c0 987 ret = clk_prepare_enable(host->clk);
6c009ab8 988 if (ret)
e25da1c0 989 goto err_clk_prepare_enable;
6c009ab8 990
593cd871
LW
991 /*
992 * This device ID is actually a common AMBA ID as used on the
993 * AMBA PrimeCell bus. However it is not a PrimeCell.
994 */
995 for (pid = 0, i = 0; i < 4; i++)
996 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
997 host->pid = pid;
998 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
999 "revision %02x, config %02x\n",
1000 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1001 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1002
6c009ab8
LW
1003 host->bank = pdata->bank;
1004 host->select_chip = pdata->select_bank;
71470324
VK
1005 host->partitions = pdata->partitions;
1006 host->nr_partitions = pdata->nr_partitions;
712c4add 1007 host->dev = &pdev->dev;
e2f6bce8 1008 host->dev_timings = pdata->nand_timings;
4774fb0a
VK
1009 host->mode = pdata->mode;
1010
1011 if (host->mode == USE_DMA_ACCESS)
1012 init_completion(&host->dma_access_complete);
1013
6c009ab8
LW
1014 /* Link all private pointers */
1015 mtd = &host->mtd;
1016 nand = &host->nand;
1017 mtd->priv = nand;
1018 nand->priv = host;
1019
1020 host->mtd.owner = THIS_MODULE;
1021 nand->IO_ADDR_R = host->data_va;
1022 nand->IO_ADDR_W = host->data_va;
1023 nand->cmd_ctrl = fsmc_cmd_ctrl;
1024 nand->chip_delay = 30;
1025
1026 nand->ecc.mode = NAND_ECC_HW;
1027 nand->ecc.hwctl = fsmc_enable_hwecc;
1028 nand->ecc.size = 512;
1029 nand->options = pdata->options;
1030 nand->select_chip = fsmc_select_chip;
467e6e7b 1031 nand->badblockbits = 7;
6c009ab8
LW
1032
1033 if (pdata->width == FSMC_NAND_BW16)
1034 nand->options |= NAND_BUSWIDTH_16;
1035
4774fb0a
VK
1036 switch (host->mode) {
1037 case USE_DMA_ACCESS:
1038 dma_cap_zero(mask);
1039 dma_cap_set(DMA_MEMCPY, mask);
1040 host->read_dma_chan = dma_request_channel(mask, filter,
1041 pdata->read_dma_priv);
1042 if (!host->read_dma_chan) {
1043 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1044 goto err_req_read_chnl;
1045 }
1046 host->write_dma_chan = dma_request_channel(mask, filter,
1047 pdata->write_dma_priv);
1048 if (!host->write_dma_chan) {
1049 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1050 goto err_req_write_chnl;
1051 }
1052 nand->read_buf = fsmc_read_buf_dma;
1053 nand->write_buf = fsmc_write_buf_dma;
1054 break;
1055
1056 default:
1057 case USE_WORD_ACCESS:
604e7544
VK
1058 nand->read_buf = fsmc_read_buf;
1059 nand->write_buf = fsmc_write_buf;
4774fb0a 1060 break;
604e7544
VK
1061 }
1062
2a5dbead
VK
1063 fsmc_nand_setup(host->regs_va, host->bank,
1064 nand->options & NAND_BUSWIDTH_16,
e2f6bce8 1065 host->dev_timings);
6c009ab8 1066
593cd871 1067 if (AMBA_REV_BITS(host->pid) >= 8) {
6c009ab8
LW
1068 nand->ecc.read_page = fsmc_read_page_hwecc;
1069 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
753e0139 1070 nand->ecc.correct = fsmc_bch8_correct_data;
6c009ab8 1071 nand->ecc.bytes = 13;
6a918bad 1072 nand->ecc.strength = 8;
6c009ab8
LW
1073 } else {
1074 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1075 nand->ecc.correct = nand_correct_data;
1076 nand->ecc.bytes = 3;
6a918bad 1077 nand->ecc.strength = 1;
6c009ab8
LW
1078 }
1079
1080 /*
25985edc 1081 * Scan to find existence of the device
6c009ab8
LW
1082 */
1083 if (nand_scan_ident(&host->mtd, 1, NULL)) {
1084 ret = -ENXIO;
1085 dev_err(&pdev->dev, "No NAND Device found!\n");
82b9dbe2 1086 goto err_scan_ident;
6c009ab8
LW
1087 }
1088
593cd871 1089 if (AMBA_REV_BITS(host->pid) >= 8) {
e29ee57b
BY
1090 switch (host->mtd.oobsize) {
1091 case 16:
1092 nand->ecc.layout = &fsmc_ecc4_16_layout;
6c009ab8 1093 host->ecc_place = &fsmc_ecc4_sp_place;
e29ee57b
BY
1094 break;
1095 case 64:
1096 nand->ecc.layout = &fsmc_ecc4_64_layout;
1097 host->ecc_place = &fsmc_ecc4_lp_place;
1098 break;
1099 case 128:
1100 nand->ecc.layout = &fsmc_ecc4_128_layout;
1101 host->ecc_place = &fsmc_ecc4_lp_place;
1102 break;
0c78e93b
AV
1103 case 224:
1104 nand->ecc.layout = &fsmc_ecc4_224_layout;
1105 host->ecc_place = &fsmc_ecc4_lp_place;
1106 break;
e29ee57b
BY
1107 case 256:
1108 nand->ecc.layout = &fsmc_ecc4_256_layout;
6c009ab8 1109 host->ecc_place = &fsmc_ecc4_lp_place;
e29ee57b
BY
1110 break;
1111 default:
67b19a63
JH
1112 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1113 mtd->oobsize);
e29ee57b 1114 BUG();
6c009ab8
LW
1115 }
1116 } else {
e29ee57b
BY
1117 switch (host->mtd.oobsize) {
1118 case 16:
1119 nand->ecc.layout = &fsmc_ecc1_16_layout;
1120 break;
1121 case 64:
1122 nand->ecc.layout = &fsmc_ecc1_64_layout;
1123 break;
1124 case 128:
1125 nand->ecc.layout = &fsmc_ecc1_128_layout;
1126 break;
1127 default:
67b19a63
JH
1128 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1129 mtd->oobsize);
e29ee57b
BY
1130 BUG();
1131 }
6c009ab8
LW
1132 }
1133
1134 /* Second stage of scan to fill MTD data-structures */
1135 if (nand_scan_tail(&host->mtd)) {
1136 ret = -ENXIO;
1137 goto err_probe;
1138 }
1139
1140 /*
1141 * The partition information can is accessed by (in the same precedence)
1142 *
1143 * command line through Bootloader,
1144 * platform data,
1145 * default partition information present in driver.
1146 */
6c009ab8 1147 /*
8d3f8bb8 1148 * Check for partition info passed
6c009ab8
LW
1149 */
1150 host->mtd.name = "nand";
eea62819
SR
1151 ppdata.of_node = np;
1152 ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata,
71470324 1153 host->partitions, host->nr_partitions);
99335d00 1154 if (ret)
6c009ab8 1155 goto err_probe;
6c009ab8
LW
1156
1157 platform_set_drvdata(pdev, host);
1158 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1159 return 0;
1160
1161err_probe:
82b9dbe2 1162err_scan_ident:
4774fb0a
VK
1163 if (host->mode == USE_DMA_ACCESS)
1164 dma_release_channel(host->write_dma_chan);
1165err_req_write_chnl:
1166 if (host->mode == USE_DMA_ACCESS)
1167 dma_release_channel(host->read_dma_chan);
1168err_req_read_chnl:
e25da1c0
VK
1169 clk_disable_unprepare(host->clk);
1170err_clk_prepare_enable:
82b9dbe2 1171 clk_put(host->clk);
6c009ab8
LW
1172 return ret;
1173}
1174
1175/*
1176 * Clean up routine
1177 */
1178static int fsmc_nand_remove(struct platform_device *pdev)
1179{
1180 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1181
6c009ab8 1182 if (host) {
82e023ab 1183 nand_release(&host->mtd);
4774fb0a
VK
1184
1185 if (host->mode == USE_DMA_ACCESS) {
1186 dma_release_channel(host->write_dma_chan);
1187 dma_release_channel(host->read_dma_chan);
1188 }
e25da1c0 1189 clk_disable_unprepare(host->clk);
6c009ab8 1190 clk_put(host->clk);
6c009ab8 1191 }
82b9dbe2 1192
6c009ab8
LW
1193 return 0;
1194}
1195
80ce4dde 1196#ifdef CONFIG_PM_SLEEP
6c009ab8
LW
1197static int fsmc_nand_suspend(struct device *dev)
1198{
1199 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1200 if (host)
e25da1c0 1201 clk_disable_unprepare(host->clk);
6c009ab8
LW
1202 return 0;
1203}
1204
1205static int fsmc_nand_resume(struct device *dev)
1206{
1207 struct fsmc_nand_data *host = dev_get_drvdata(dev);
f63acb75 1208 if (host) {
e25da1c0 1209 clk_prepare_enable(host->clk);
f63acb75 1210 fsmc_nand_setup(host->regs_va, host->bank,
e2f6bce8
VK
1211 host->nand.options & NAND_BUSWIDTH_16,
1212 host->dev_timings);
f63acb75 1213 }
6c009ab8
LW
1214 return 0;
1215}
80ce4dde 1216#endif
6c009ab8 1217
f63acb75 1218static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
6c009ab8 1219
eea62819
SR
1220#ifdef CONFIG_OF
1221static const struct of_device_id fsmc_nand_id_table[] = {
1222 { .compatible = "st,spear600-fsmc-nand" },
ba785205 1223 { .compatible = "stericsson,fsmc-nand" },
eea62819
SR
1224 {}
1225};
1226MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1227#endif
1228
6c009ab8
LW
1229static struct platform_driver fsmc_nand_driver = {
1230 .remove = fsmc_nand_remove,
1231 .driver = {
6c009ab8 1232 .name = "fsmc-nand",
eea62819 1233 .of_match_table = of_match_ptr(fsmc_nand_id_table),
6c009ab8 1234 .pm = &fsmc_nand_pm_ops,
6c009ab8
LW
1235 },
1236};
1237
307d2a51 1238module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
6c009ab8
LW
1239
1240MODULE_LICENSE("GPL");
1241MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1242MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");