mtd: denali: fix the format of comment blocks
[linux-2.6-block.git] / drivers / mtd / nand / denali.c
CommitLineData
ce082596
JR
1/*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
ce082596
JR
19#include <linux/interrupt.h>
20#include <linux/delay.h>
84457949 21#include <linux/dma-mapping.h>
ce082596
JR
22#include <linux/wait.h>
23#include <linux/mutex.h>
b8664b37 24#include <linux/slab.h>
ce082596
JR
25#include <linux/mtd/mtd.h>
26#include <linux/module.h>
27
28#include "denali.h"
29
30MODULE_LICENSE("GPL");
31
43914a2d
MY
32/*
33 * We define a module parameter that allows the user to override
ce082596
JR
34 * the hardware and decide what timing mode should be used.
35 */
36#define NAND_DEFAULT_TIMINGS -1
37
38static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39module_param(onfi_timing_mode, int, S_IRUGO);
bdca6dae
CD
40MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
41 " -1 indicates use default timings");
ce082596
JR
42
43#define DENALI_NAND_NAME "denali-nand"
44
43914a2d
MY
45/*
46 * We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience.
48 */
9589bf5b
JI
49#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
50 INTR_STATUS__ECC_TRANSACTION_DONE | \
51 INTR_STATUS__ECC_ERR | \
52 INTR_STATUS__PROGRAM_FAIL | \
53 INTR_STATUS__LOAD_COMP | \
54 INTR_STATUS__PROGRAM_COMP | \
55 INTR_STATUS__TIME_OUT | \
56 INTR_STATUS__ERASE_FAIL | \
57 INTR_STATUS__RST_COMP | \
58 INTR_STATUS__ERASE_COMP)
ce082596 59
43914a2d
MY
60/*
61 * indicates whether or not the internal value for the flash bank is
62 * valid or not
63 */
5bac3acf 64#define CHIP_SELECT_INVALID -1
ce082596
JR
65
66#define SUPPORT_8BITECC 1
67
43914a2d
MY
68/*
69 * This macro divides two integers and rounds fractional values up
70 * to the nearest integer value.
71 */
ce082596
JR
72#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
73
43914a2d
MY
74/*
75 * this macro allows us to convert from an MTD structure to our own
ce082596
JR
76 * device context (denali) structure.
77 */
78#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
79
43914a2d
MY
80/*
81 * These constants are defined by the driver to enable common driver
82 * configuration options.
83 */
ce082596
JR
84#define SPARE_ACCESS 0x41
85#define MAIN_ACCESS 0x42
86#define MAIN_SPARE_ACCESS 0x43
2902330e 87#define PIPELINE_ACCESS 0x2000
ce082596
JR
88
89#define DENALI_READ 0
90#define DENALI_WRITE 0x100
91
92/* types of device accesses. We can issue commands and get status */
93#define COMMAND_CYCLE 0
94#define ADDR_CYCLE 1
95#define STATUS_CYCLE 2
96
43914a2d
MY
97/*
98 * this is a helper macro that allows us to
99 * format the bank into the proper bits for the controller
100 */
ce082596
JR
101#define BANK(x) ((x) << 24)
102
ce082596
JR
103/* forward declarations */
104static void clear_interrupts(struct denali_nand_info *denali);
bdca6dae
CD
105static uint32_t wait_for_irq(struct denali_nand_info *denali,
106 uint32_t irq_mask);
107static void denali_irq_enable(struct denali_nand_info *denali,
108 uint32_t int_mask);
ce082596
JR
109static uint32_t read_interrupt_status(struct denali_nand_info *denali);
110
43914a2d
MY
111/*
112 * Certain operations for the denali NAND controller use an indexed mode to
113 * read/write data. The operation is performed by writing the address value
114 * of the command to the device memory followed by the data. This function
bdca6dae 115 * abstracts this common operation.
43914a2d 116 */
bdca6dae
CD
117static void index_addr(struct denali_nand_info *denali,
118 uint32_t address, uint32_t data)
ce082596 119{
24c3fa36
CD
120 iowrite32(address, denali->flash_mem);
121 iowrite32(data, denali->flash_mem + 0x10);
ce082596
JR
122}
123
124/* Perform an indexed read of the device */
125static void index_addr_read_data(struct denali_nand_info *denali,
126 uint32_t address, uint32_t *pdata)
127{
24c3fa36 128 iowrite32(address, denali->flash_mem);
ce082596
JR
129 *pdata = ioread32(denali->flash_mem + 0x10);
130}
131
43914a2d
MY
132/*
133 * We need to buffer some data for some of the NAND core routines.
134 * The operations manage buffering that data.
135 */
ce082596
JR
136static void reset_buf(struct denali_nand_info *denali)
137{
138 denali->buf.head = denali->buf.tail = 0;
139}
140
141static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
142{
ce082596
JR
143 denali->buf.buf[denali->buf.tail++] = byte;
144}
145
146/* reads the status of the device */
147static void read_status(struct denali_nand_info *denali)
148{
149 uint32_t cmd = 0x0;
150
151 /* initialize the data buffer to store status */
152 reset_buf(denali);
153
f0bc0c77
CD
154 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
155 if (cmd)
156 write_byte_to_buf(denali, NAND_STATUS_WP);
157 else
158 write_byte_to_buf(denali, 0);
ce082596
JR
159}
160
161/* resets a specific device connected to the core */
162static void reset_bank(struct denali_nand_info *denali)
163{
164 uint32_t irq_status = 0;
9589bf5b
JI
165 uint32_t irq_mask = INTR_STATUS__RST_COMP |
166 INTR_STATUS__TIME_OUT;
ce082596
JR
167
168 clear_interrupts(denali);
169
9589bf5b 170 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
ce082596
JR
171
172 irq_status = wait_for_irq(denali, irq_mask);
5bac3acf 173
9589bf5b 174 if (irq_status & INTR_STATUS__TIME_OUT)
84457949 175 dev_err(denali->dev, "reset bank failed.\n");
ce082596
JR
176}
177
178/* Reset the flash controller */
eda936ef 179static uint16_t denali_nand_reset(struct denali_nand_info *denali)
ce082596
JR
180{
181 uint32_t i;
182
84457949 183 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
184 __FILE__, __LINE__, __func__);
185
c89eeda8 186 for (i = 0 ; i < denali->max_banks; i++)
9589bf5b
JI
187 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
188 denali->flash_reg + INTR_STATUS(i));
ce082596 189
c89eeda8 190 for (i = 0 ; i < denali->max_banks; i++) {
9589bf5b 191 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
bdca6dae 192 while (!(ioread32(denali->flash_reg +
9589bf5b
JI
193 INTR_STATUS(i)) &
194 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
628bfd41 195 cpu_relax();
9589bf5b
JI
196 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
197 INTR_STATUS__TIME_OUT)
84457949 198 dev_dbg(denali->dev,
ce082596
JR
199 "NAND Reset operation timed out on bank %d\n", i);
200 }
201
c89eeda8 202 for (i = 0; i < denali->max_banks; i++)
9589bf5b
JI
203 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
204 denali->flash_reg + INTR_STATUS(i));
ce082596
JR
205
206 return PASS;
207}
208
43914a2d
MY
209/*
210 * this routine calculates the ONFI timing values for a given mode and
bdca6dae
CD
211 * programs the clocking register accordingly. The mode is determined by
212 * the get_onfi_nand_para routine.
ce082596 213 */
eda936ef 214static void nand_onfi_timing_set(struct denali_nand_info *denali,
bdca6dae 215 uint16_t mode)
ce082596
JR
216{
217 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
218 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
219 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
220 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
221 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
222 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
223 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
224 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
225 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
226 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
227 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
228 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
229
230 uint16_t TclsRising = 1;
231 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
232 uint16_t dv_window = 0;
233 uint16_t en_lo, en_hi;
234 uint16_t acc_clks;
235 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
236
84457949 237 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
238 __FILE__, __LINE__, __func__);
239
240 en_lo = CEIL_DIV(Trp[mode], CLK_X);
241 en_hi = CEIL_DIV(Treh[mode], CLK_X);
242#if ONFI_BLOOM_TIME
243 if ((en_hi * CLK_X) < (Treh[mode] + 2))
244 en_hi++;
245#endif
246
247 if ((en_lo + en_hi) * CLK_X < Trc[mode])
248 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
249
250 if ((en_lo + en_hi) < CLK_MULTI)
251 en_lo += CLK_MULTI - en_lo - en_hi;
252
253 while (dv_window < 8) {
254 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
255
256 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
257
258 data_invalid =
259 data_invalid_rhoh <
260 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
261
262 dv_window = data_invalid - Trea[mode];
263
264 if (dv_window < 8)
265 en_lo++;
266 }
267
268 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
269
270 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
271 acc_clks++;
272
273 if ((data_invalid - acc_clks * CLK_X) < 2)
84457949 274 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
ce082596
JR
275 __FILE__, __LINE__);
276
277 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
278 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
279 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
280 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
281 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
282 if (!TclsRising)
283 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
284 if (cs_cnt == 0)
285 cs_cnt = 1;
286
287 if (Tcea[mode]) {
288 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
289 cs_cnt++;
290 }
291
292#if MODE5_WORKAROUND
293 if (mode == 5)
294 acc_clks = 5;
295#endif
296
297 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
298 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
299 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
300 acc_clks = 6;
301
24c3fa36
CD
302 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
303 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
304 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
305 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
306 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
307 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
308 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
309 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
ce082596
JR
310}
311
ce082596
JR
312/* queries the NAND device to see what ONFI modes it supports. */
313static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
314{
315 int i;
43914a2d
MY
316
317 /*
318 * we needn't to do a reset here because driver has already
4c03bbdf 319 * reset all the banks before
43914a2d 320 */
ce082596
JR
321 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
322 ONFI_TIMING_MODE__VALUE))
323 return FAIL;
324
325 for (i = 5; i > 0; i--) {
bdca6dae
CD
326 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
327 (0x01 << i))
ce082596
JR
328 break;
329 }
330
eda936ef 331 nand_onfi_timing_set(denali, i);
ce082596 332
43914a2d
MY
333 /*
334 * By now, all the ONFI devices we know support the page cache
335 * rw feature. So here we enable the pipeline_rw_ahead feature
336 */
ce082596
JR
337 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
338 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
339
340 return PASS;
341}
342
4c03bbdf
CD
343static void get_samsung_nand_para(struct denali_nand_info *denali,
344 uint8_t device_id)
ce082596 345{
4c03bbdf 346 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
ce082596 347 /* Set timing register values according to datasheet */
24c3fa36
CD
348 iowrite32(5, denali->flash_reg + ACC_CLKS);
349 iowrite32(20, denali->flash_reg + RE_2_WE);
350 iowrite32(12, denali->flash_reg + WE_2_RE);
351 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
352 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
353 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
354 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
ce082596 355 }
ce082596
JR
356}
357
358static void get_toshiba_nand_para(struct denali_nand_info *denali)
359{
ce082596
JR
360 uint32_t tmp;
361
43914a2d
MY
362 /*
363 * Workaround to fix a controller bug which reports a wrong
364 * spare area size for some kind of Toshiba NAND device
365 */
ce082596
JR
366 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
367 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
24c3fa36 368 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
ce082596
JR
369 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
370 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
24c3fa36 371 iowrite32(tmp,
bdca6dae 372 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
ce082596 373#if SUPPORT_15BITECC
24c3fa36 374 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 375#elif SUPPORT_8BITECC
24c3fa36 376 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
377#endif
378 }
ce082596
JR
379}
380
ef41e1bb
CD
381static void get_hynix_nand_para(struct denali_nand_info *denali,
382 uint8_t device_id)
ce082596 383{
ce082596
JR
384 uint32_t main_size, spare_size;
385
ef41e1bb 386 switch (device_id) {
ce082596
JR
387 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
388 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
24c3fa36
CD
389 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
390 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
391 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
bdca6dae
CD
392 main_size = 4096 *
393 ioread32(denali->flash_reg + DEVICES_CONNECTED);
394 spare_size = 224 *
395 ioread32(denali->flash_reg + DEVICES_CONNECTED);
24c3fa36 396 iowrite32(main_size,
bdca6dae 397 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
24c3fa36 398 iowrite32(spare_size,
bdca6dae 399 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
24c3fa36 400 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
ce082596 401#if SUPPORT_15BITECC
24c3fa36 402 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 403#elif SUPPORT_8BITECC
24c3fa36 404 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596 405#endif
ce082596
JR
406 break;
407 default:
84457949 408 dev_warn(denali->dev,
ce082596
JR
409 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
410 "Will use default parameter values instead.\n",
66406524 411 device_id);
ce082596
JR
412 }
413}
414
43914a2d
MY
415/*
416 * determines how many NAND chips are connected to the controller. Note for
b292c341 417 * Intel CE4100 devices we don't support more than one device.
ce082596
JR
418 */
419static void find_valid_banks(struct denali_nand_info *denali)
420{
c89eeda8 421 uint32_t id[denali->max_banks];
ce082596
JR
422 int i;
423
424 denali->total_used_banks = 1;
c89eeda8 425 for (i = 0; i < denali->max_banks; i++) {
ce082596
JR
426 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
427 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
bdca6dae
CD
428 index_addr_read_data(denali,
429 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
ce082596 430
84457949 431 dev_dbg(denali->dev,
ce082596
JR
432 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
433
434 if (i == 0) {
435 if (!(id[i] & 0x0ff))
436 break; /* WTF? */
437 } else {
438 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
439 denali->total_used_banks++;
440 else
441 break;
442 }
443 }
444
345b1d3b 445 if (denali->platform == INTEL_CE4100) {
43914a2d
MY
446 /*
447 * Platform limitations of the CE4100 device limit
ce082596 448 * users to a single chip solution for NAND.
5bac3acf
C
449 * Multichip support is not enabled.
450 */
345b1d3b 451 if (denali->total_used_banks != 1) {
84457949 452 dev_err(denali->dev,
7cfffac0 453 "Sorry, Intel CE4100 only supports "
ce082596
JR
454 "a single NAND device.\n");
455 BUG();
456 }
457 }
84457949 458 dev_dbg(denali->dev,
ce082596
JR
459 "denali->total_used_banks: %d\n", denali->total_used_banks);
460}
461
c89eeda8
JI
462/*
463 * Use the configuration feature register to determine the maximum number of
464 * banks that the hardware supports.
465 */
466static void detect_max_banks(struct denali_nand_info *denali)
467{
468 uint32_t features = ioread32(denali->flash_reg + FEATURES);
469
470 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
471}
472
ce082596
JR
473static void detect_partition_feature(struct denali_nand_info *denali)
474{
43914a2d
MY
475 /*
476 * For MRST platform, denali->fwblks represent the
66406524
CD
477 * number of blocks firmware is taken,
478 * FW is in protect partition and MTD driver has no
479 * permission to access it. So let driver know how many
480 * blocks it can't touch.
43914a2d 481 */
ce082596 482 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
9589bf5b
JI
483 if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
484 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
66406524 485 denali->fwblks =
9589bf5b
JI
486 ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
487 MIN_MAX_BANK__MIN_VALUE) *
66406524 488 denali->blksperchip)
ce082596 489 +
9589bf5b
JI
490 (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
491 MIN_BLK_ADDR__VALUE);
66406524
CD
492 } else
493 denali->fwblks = SPECTRA_START_BLOCK;
494 } else
495 denali->fwblks = SPECTRA_START_BLOCK;
ce082596
JR
496}
497
eda936ef 498static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
ce082596
JR
499{
500 uint16_t status = PASS;
d68a5c3d 501 uint32_t id_bytes[8], addr;
ef41e1bb 502 uint8_t i, maf_id, device_id;
ce082596 503
84457949 504 dev_dbg(denali->dev,
7cfffac0
CD
505 "%s, Line %d, Function: %s\n",
506 __FILE__, __LINE__, __func__);
ce082596 507
43914a2d
MY
508 /*
509 * Use read id method to get device ID and other params.
510 * For some NAND chips, controller can't report the correct
511 * device ID by reading from DEVICE_ID register
512 */
ef41e1bb
CD
513 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
514 index_addr(denali, (uint32_t)addr | 0, 0x90);
515 index_addr(denali, (uint32_t)addr | 1, 0);
d68a5c3d 516 for (i = 0; i < 8; i++)
ef41e1bb
CD
517 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
518 maf_id = id_bytes[0];
519 device_id = id_bytes[1];
ce082596
JR
520
521 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
522 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
523 if (FAIL == get_onfi_nand_para(denali))
524 return FAIL;
ef41e1bb 525 } else if (maf_id == 0xEC) { /* Samsung NAND */
4c03bbdf 526 get_samsung_nand_para(denali, device_id);
ef41e1bb 527 } else if (maf_id == 0x98) { /* Toshiba NAND */
ce082596 528 get_toshiba_nand_para(denali);
ef41e1bb
CD
529 } else if (maf_id == 0xAD) { /* Hynix NAND */
530 get_hynix_nand_para(denali, device_id);
ce082596
JR
531 }
532
84457949 533 dev_info(denali->dev,
7cfffac0
CD
534 "Dump timing register values:"
535 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
536 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
ce082596
JR
537 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
538 ioread32(denali->flash_reg + ACC_CLKS),
539 ioread32(denali->flash_reg + RE_2_WE),
7cfffac0 540 ioread32(denali->flash_reg + RE_2_RE),
ce082596
JR
541 ioread32(denali->flash_reg + WE_2_RE),
542 ioread32(denali->flash_reg + ADDR_2_DATA),
543 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
544 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
545 ioread32(denali->flash_reg + CS_SETUP_CNT));
546
ce082596
JR
547 find_valid_banks(denali);
548
549 detect_partition_feature(denali);
550
43914a2d
MY
551 /*
552 * If the user specified to override the default timings
5bac3acf 553 * with a specific ONFI mode, we apply those changes here.
ce082596
JR
554 */
555 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
eda936ef 556 nand_onfi_timing_set(denali, onfi_timing_mode);
ce082596
JR
557
558 return status;
559}
560
eda936ef 561static void denali_set_intr_modes(struct denali_nand_info *denali,
ce082596
JR
562 uint16_t INT_ENABLE)
563{
84457949 564 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
565 __FILE__, __LINE__, __func__);
566
567 if (INT_ENABLE)
24c3fa36 568 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596 569 else
24c3fa36 570 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596
JR
571}
572
43914a2d
MY
573/*
574 * validation function to verify that the controlling software is making
b292c341 575 * a valid request
ce082596
JR
576 */
577static inline bool is_flash_bank_valid(int flash_bank)
578{
5bac3acf 579 return (flash_bank >= 0 && flash_bank < 4);
ce082596
JR
580}
581
582static void denali_irq_init(struct denali_nand_info *denali)
583{
584 uint32_t int_mask = 0;
9589bf5b 585 int i;
ce082596
JR
586
587 /* Disable global interrupts */
eda936ef 588 denali_set_intr_modes(denali, false);
ce082596
JR
589
590 int_mask = DENALI_IRQ_ALL;
591
592 /* Clear all status bits */
c89eeda8 593 for (i = 0; i < denali->max_banks; ++i)
9589bf5b 594 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
ce082596
JR
595
596 denali_irq_enable(denali, int_mask);
597}
598
599static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
600{
eda936ef 601 denali_set_intr_modes(denali, false);
ce082596
JR
602 free_irq(irqnum, denali);
603}
604
bdca6dae
CD
605static void denali_irq_enable(struct denali_nand_info *denali,
606 uint32_t int_mask)
ce082596 607{
9589bf5b
JI
608 int i;
609
c89eeda8 610 for (i = 0; i < denali->max_banks; ++i)
9589bf5b 611 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
ce082596
JR
612}
613
43914a2d
MY
614/*
615 * This function only returns when an interrupt that this driver cares about
5bac3acf 616 * occurs. This is to reduce the overhead of servicing interrupts
ce082596
JR
617 */
618static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
619{
a99d1796 620 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
ce082596
JR
621}
622
623/* Interrupts are cleared by writing a 1 to the appropriate status bit */
bdca6dae
CD
624static inline void clear_interrupt(struct denali_nand_info *denali,
625 uint32_t irq_mask)
ce082596
JR
626{
627 uint32_t intr_status_reg = 0;
628
9589bf5b 629 intr_status_reg = INTR_STATUS(denali->flash_bank);
ce082596 630
24c3fa36 631 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
ce082596
JR
632}
633
634static void clear_interrupts(struct denali_nand_info *denali)
635{
636 uint32_t status = 0x0;
637 spin_lock_irq(&denali->irq_lock);
638
639 status = read_interrupt_status(denali);
8ae61ebd 640 clear_interrupt(denali, status);
ce082596 641
ce082596
JR
642 denali->irq_status = 0x0;
643 spin_unlock_irq(&denali->irq_lock);
644}
645
646static uint32_t read_interrupt_status(struct denali_nand_info *denali)
647{
648 uint32_t intr_status_reg = 0;
649
9589bf5b 650 intr_status_reg = INTR_STATUS(denali->flash_bank);
ce082596
JR
651
652 return ioread32(denali->flash_reg + intr_status_reg);
653}
654
43914a2d
MY
655/*
656 * This is the interrupt service routine. It handles all interrupts
657 * sent to this device. Note that on CE4100, this is a shared interrupt.
ce082596
JR
658 */
659static irqreturn_t denali_isr(int irq, void *dev_id)
660{
661 struct denali_nand_info *denali = dev_id;
662 uint32_t irq_status = 0x0;
663 irqreturn_t result = IRQ_NONE;
664
665 spin_lock(&denali->irq_lock);
666
43914a2d 667 /* check to see if a valid NAND chip has been selected. */
345b1d3b 668 if (is_flash_bank_valid(denali->flash_bank)) {
43914a2d
MY
669 /*
670 * check to see if controller generated the interrupt,
671 * since this is a shared interrupt
672 */
bdca6dae
CD
673 irq_status = denali_irq_detected(denali);
674 if (irq_status != 0) {
ce082596
JR
675 /* handle interrupt */
676 /* first acknowledge it */
677 clear_interrupt(denali, irq_status);
43914a2d
MY
678 /*
679 * store the status in the device context for someone
680 * to read
681 */
ce082596
JR
682 denali->irq_status |= irq_status;
683 /* notify anyone who cares that it happened */
684 complete(&denali->complete);
685 /* tell the OS that we've handled this */
686 result = IRQ_HANDLED;
687 }
688 }
689 spin_unlock(&denali->irq_lock);
690 return result;
691}
692#define BANK(x) ((x) << 24)
693
694static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
695{
696 unsigned long comp_res = 0;
697 uint32_t intr_status = 0;
698 bool retry = false;
699 unsigned long timeout = msecs_to_jiffies(1000);
700
345b1d3b 701 do {
bdca6dae
CD
702 comp_res =
703 wait_for_completion_timeout(&denali->complete, timeout);
ce082596
JR
704 spin_lock_irq(&denali->irq_lock);
705 intr_status = denali->irq_status;
706
345b1d3b 707 if (intr_status & irq_mask) {
ce082596
JR
708 denali->irq_status &= ~irq_mask;
709 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
710 /* our interrupt was detected */
711 break;
345b1d3b 712 } else {
43914a2d
MY
713 /*
714 * these are not the interrupts you are looking for -
715 * need to wait again
716 */
ce082596 717 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
718 retry = true;
719 }
720 } while (comp_res != 0);
721
345b1d3b 722 if (comp_res == 0) {
ce082596 723 /* timeout */
2a0a288e 724 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
5bac3acf 725 intr_status, irq_mask);
ce082596
JR
726
727 intr_status = 0;
728 }
729 return intr_status;
730}
731
43914a2d
MY
732/*
733 * This helper function setups the registers for ECC and whether or not
734 * the spare area will be transferred.
735 */
5bac3acf 736static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
ce082596
JR
737 bool transfer_spare)
738{
5bac3acf 739 int ecc_en_flag = 0, transfer_spare_flag = 0;
ce082596
JR
740
741 /* set ECC, transfer spare bits if needed */
742 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
743 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
744
745 /* Enable spare area/ECC per user's request. */
24c3fa36
CD
746 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
747 iowrite32(transfer_spare_flag,
bdca6dae 748 denali->flash_reg + TRANSFER_SPARE_REG);
ce082596
JR
749}
750
43914a2d
MY
751/*
752 * sends a pipeline command operation to the controller. See the Denali NAND
b292c341 753 * controller's user guide for more information (section 4.2.3.6).
ce082596 754 */
bdca6dae
CD
755static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
756 bool ecc_en,
757 bool transfer_spare,
758 int access_type,
759 int op)
ce082596
JR
760{
761 int status = PASS;
5bac3acf 762 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
ce082596
JR
763 irq_mask = 0;
764
a99d1796 765 if (op == DENALI_READ)
9589bf5b 766 irq_mask = INTR_STATUS__LOAD_COMP;
a99d1796
CD
767 else if (op == DENALI_WRITE)
768 irq_mask = 0;
769 else
770 BUG();
ce082596
JR
771
772 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
773
5bac3acf 774 clear_interrupts(denali);
ce082596
JR
775
776 addr = BANK(denali->flash_bank) | denali->page;
777
345b1d3b 778 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
5bac3acf 779 cmd = MODE_01 | addr;
24c3fa36 780 iowrite32(cmd, denali->flash_mem);
345b1d3b 781 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
ce082596 782 /* read spare area */
5bac3acf 783 cmd = MODE_10 | addr;
ce082596
JR
784 index_addr(denali, (uint32_t)cmd, access_type);
785
5bac3acf 786 cmd = MODE_01 | addr;
24c3fa36 787 iowrite32(cmd, denali->flash_mem);
345b1d3b 788 } else if (op == DENALI_READ) {
ce082596 789 /* setup page read request for access type */
5bac3acf 790 cmd = MODE_10 | addr;
ce082596
JR
791 index_addr(denali, (uint32_t)cmd, access_type);
792
43914a2d
MY
793 /*
794 * page 33 of the NAND controller spec indicates we should not
795 * use the pipeline commands in Spare area only mode.
796 * So we don't.
ce082596 797 */
345b1d3b 798 if (access_type == SPARE_ACCESS) {
ce082596 799 cmd = MODE_01 | addr;
24c3fa36 800 iowrite32(cmd, denali->flash_mem);
345b1d3b 801 } else {
bdca6dae 802 index_addr(denali, (uint32_t)cmd,
2902330e 803 PIPELINE_ACCESS | op | page_count);
5bac3acf 804
43914a2d
MY
805 /*
806 * wait for command to be accepted
bdca6dae 807 * can always use status0 bit as the
43914a2d
MY
808 * mask is identical for each bank.
809 */
ce082596
JR
810 irq_status = wait_for_irq(denali, irq_mask);
811
345b1d3b 812 if (irq_status == 0) {
84457949 813 dev_err(denali->dev,
7cfffac0
CD
814 "cmd, page, addr on timeout "
815 "(0x%x, 0x%x, 0x%x)\n",
816 cmd, denali->page, addr);
ce082596 817 status = FAIL;
345b1d3b 818 } else {
ce082596 819 cmd = MODE_01 | addr;
24c3fa36 820 iowrite32(cmd, denali->flash_mem);
ce082596
JR
821 }
822 }
823 }
824 return status;
825}
826
827/* helper function that simply writes a buffer to the flash */
bdca6dae
CD
828static int write_data_to_flash_mem(struct denali_nand_info *denali,
829 const uint8_t *buf,
830 int len)
ce082596
JR
831{
832 uint32_t i = 0, *buf32;
833
43914a2d
MY
834 /*
835 * verify that the len is a multiple of 4.
836 * see comment in read_data_from_flash_mem()
837 */
ce082596
JR
838 BUG_ON((len % 4) != 0);
839
840 /* write the data to the flash memory */
841 buf32 = (uint32_t *)buf;
842 for (i = 0; i < len / 4; i++)
24c3fa36 843 iowrite32(*buf32++, denali->flash_mem + 0x10);
5bac3acf 844 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
845}
846
847/* helper function that simply reads a buffer from the flash */
bdca6dae
CD
848static int read_data_from_flash_mem(struct denali_nand_info *denali,
849 uint8_t *buf,
850 int len)
ce082596
JR
851{
852 uint32_t i = 0, *buf32;
853
43914a2d
MY
854 /*
855 * we assume that len will be a multiple of 4, if not it would be nice
856 * to know about it ASAP rather than have random failures...
857 * This assumption is based on the fact that this function is designed
858 * to be used to read flash pages, which are typically multiples of 4.
ce082596 859 */
ce082596
JR
860 BUG_ON((len % 4) != 0);
861
862 /* transfer the data from the flash */
863 buf32 = (uint32_t *)buf;
864 for (i = 0; i < len / 4; i++)
ce082596 865 *buf32++ = ioread32(denali->flash_mem + 0x10);
5bac3acf 866 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
867}
868
869/* writes OOB data to the device */
870static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
871{
872 struct denali_nand_info *denali = mtd_to_denali(mtd);
873 uint32_t irq_status = 0;
9589bf5b
JI
874 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
875 INTR_STATUS__PROGRAM_FAIL;
ce082596
JR
876 int status = 0;
877
878 denali->page = page;
879
5bac3acf 880 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
345b1d3b 881 DENALI_WRITE) == PASS) {
ce082596
JR
882 write_data_to_flash_mem(denali, buf, mtd->oobsize);
883
ce082596
JR
884 /* wait for operation to complete */
885 irq_status = wait_for_irq(denali, irq_mask);
886
345b1d3b 887 if (irq_status == 0) {
84457949 888 dev_err(denali->dev, "OOB write failed\n");
ce082596
JR
889 status = -EIO;
890 }
345b1d3b 891 } else {
84457949 892 dev_err(denali->dev, "unable to send pipeline command\n");
5bac3acf 893 status = -EIO;
ce082596
JR
894 }
895 return status;
896}
897
898/* reads OOB data from the device */
899static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
900{
901 struct denali_nand_info *denali = mtd_to_denali(mtd);
9589bf5b 902 uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
bdca6dae 903 irq_status = 0, addr = 0x0, cmd = 0x0;
ce082596
JR
904
905 denali->page = page;
906
5bac3acf 907 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
345b1d3b 908 DENALI_READ) == PASS) {
5bac3acf 909 read_data_from_flash_mem(denali, buf, mtd->oobsize);
ce082596 910
43914a2d
MY
911 /*
912 * wait for command to be accepted
913 * can always use status0 bit as the
914 * mask is identical for each bank.
915 */
ce082596
JR
916 irq_status = wait_for_irq(denali, irq_mask);
917
918 if (irq_status == 0)
84457949 919 dev_err(denali->dev, "page on OOB timeout %d\n",
bdca6dae 920 denali->page);
ce082596 921
43914a2d
MY
922 /*
923 * We set the device back to MAIN_ACCESS here as I observed
ce082596
JR
924 * instability with the controller if you do a block erase
925 * and the last transaction was a SPARE_ACCESS. Block erase
926 * is reliable (according to the MTD test infrastructure)
5bac3acf 927 * if you are in MAIN_ACCESS.
ce082596
JR
928 */
929 addr = BANK(denali->flash_bank) | denali->page;
5bac3acf 930 cmd = MODE_10 | addr;
ce082596 931 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
ce082596
JR
932 }
933}
934
43914a2d
MY
935/*
936 * this function examines buffers to see if they contain data that
ce082596
JR
937 * indicate that the buffer is part of an erased region of flash.
938 */
919193ce 939static bool is_erased(uint8_t *buf, int len)
ce082596
JR
940{
941 int i = 0;
942 for (i = 0; i < len; i++)
ce082596 943 if (buf[i] != 0xFF)
ce082596 944 return false;
ce082596
JR
945 return true;
946}
947#define ECC_SECTOR_SIZE 512
948
949#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
950#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
951#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
8ae61ebd
CD
952#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
953#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
ce082596
JR
954#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
955
5bac3acf 956static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
3f91e94f 957 uint32_t irq_status, unsigned int *max_bitflips)
ce082596
JR
958{
959 bool check_erased_page = false;
3f91e94f 960 unsigned int bitflips = 0;
ce082596 961
9589bf5b 962 if (irq_status & INTR_STATUS__ECC_ERR) {
ce082596
JR
963 /* read the ECC errors. we'll ignore them for now */
964 uint32_t err_address = 0, err_correction_info = 0;
965 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
966 uint32_t err_correction_value = 0;
8ae61ebd 967 denali_set_intr_modes(denali, false);
ce082596 968
345b1d3b 969 do {
5bac3acf 970 err_address = ioread32(denali->flash_reg +
ce082596
JR
971 ECC_ERROR_ADDRESS);
972 err_sector = ECC_SECTOR(err_address);
973 err_byte = ECC_BYTE(err_address);
974
5bac3acf 975 err_correction_info = ioread32(denali->flash_reg +
ce082596 976 ERR_CORRECTION_INFO);
5bac3acf 977 err_correction_value =
ce082596
JR
978 ECC_CORRECTION_VALUE(err_correction_info);
979 err_device = ECC_ERR_DEVICE(err_correction_info);
980
345b1d3b 981 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
43914a2d
MY
982 /*
983 * If err_byte is larger than ECC_SECTOR_SIZE,
25985edc 984 * means error happened in OOB, so we ignore
8ae61ebd
CD
985 * it. It's no need for us to correct it
986 * err_device is represented the NAND error
987 * bits are happened in if there are more
988 * than one NAND connected.
43914a2d 989 */
8ae61ebd
CD
990 if (err_byte < ECC_SECTOR_SIZE) {
991 int offset;
992 offset = (err_sector *
993 ECC_SECTOR_SIZE +
994 err_byte) *
995 denali->devnum +
996 err_device;
ce082596
JR
997 /* correct the ECC error */
998 buf[offset] ^= err_correction_value;
999 denali->mtd.ecc_stats.corrected++;
3f91e94f 1000 bitflips++;
ce082596 1001 }
345b1d3b 1002 } else {
43914a2d
MY
1003 /*
1004 * if the error is not correctable, need to
bdca6dae
CD
1005 * look at the page to see if it is an erased
1006 * page. if so, then it's not a real ECC error
43914a2d 1007 */
ce082596
JR
1008 check_erased_page = true;
1009 }
ce082596 1010 } while (!ECC_LAST_ERR(err_correction_info));
43914a2d
MY
1011 /*
1012 * Once handle all ecc errors, controller will triger
8ae61ebd
CD
1013 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1014 * for a while for this interrupt
43914a2d 1015 */
8ae61ebd 1016 while (!(read_interrupt_status(denali) &
9589bf5b 1017 INTR_STATUS__ECC_TRANSACTION_DONE))
8ae61ebd
CD
1018 cpu_relax();
1019 clear_interrupts(denali);
1020 denali_set_intr_modes(denali, true);
ce082596 1021 }
3f91e94f 1022 *max_bitflips = bitflips;
ce082596
JR
1023 return check_erased_page;
1024}
1025
1026/* programs the controller to either enable/disable DMA transfers */
aadff49c 1027static void denali_enable_dma(struct denali_nand_info *denali, bool en)
ce082596
JR
1028{
1029 uint32_t reg_val = 0x0;
1030
a99d1796
CD
1031 if (en)
1032 reg_val = DMA_ENABLE__FLAG;
ce082596 1033
24c3fa36 1034 iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ce082596
JR
1035 ioread32(denali->flash_reg + DMA_ENABLE);
1036}
1037
1038/* setups the HW to perform the data DMA */
aadff49c 1039static void denali_setup_dma(struct denali_nand_info *denali, int op)
ce082596
JR
1040{
1041 uint32_t mode = 0x0;
1042 const int page_count = 1;
1043 dma_addr_t addr = denali->buf.dma_buf;
1044
1045 mode = MODE_10 | BANK(denali->flash_bank);
1046
1047 /* DMA is a four step process */
1048
1049 /* 1. setup transfer type and # of pages */
1050 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1051
1052 /* 2. set memory high address bits 23:8 */
1053 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1054
1055 /* 3. set memory low address bits 23:8 */
1056 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1057
43914a2d 1058 /* 4. interrupt when complete, burst len = 64 bytes */
ce082596
JR
1059 index_addr(denali, mode | 0x14000, 0x2400);
1060}
1061
43914a2d
MY
1062/*
1063 * writes a page. user specifies type, and this function handles the
1064 * configuration details.
1065 */
fdbad98d 1066static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1067 const uint8_t *buf, bool raw_xfer)
1068{
1069 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1070
1071 dma_addr_t addr = denali->buf.dma_buf;
1072 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1073
1074 uint32_t irq_status = 0;
9589bf5b
JI
1075 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1076 INTR_STATUS__PROGRAM_FAIL;
ce082596 1077
43914a2d
MY
1078 /*
1079 * if it is a raw xfer, we want to disable ecc and send the spare area.
ce082596
JR
1080 * !raw_xfer - enable ecc
1081 * raw_xfer - transfer spare
1082 */
1083 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1084
1085 /* copy buffer into DMA buffer */
1086 memcpy(denali->buf.buf, buf, mtd->writesize);
1087
345b1d3b 1088 if (raw_xfer) {
ce082596 1089 /* transfer the data to the spare area */
5bac3acf
C
1090 memcpy(denali->buf.buf + mtd->writesize,
1091 chip->oob_poi,
1092 mtd->oobsize);
ce082596
JR
1093 }
1094
84457949 1095 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
ce082596
JR
1096
1097 clear_interrupts(denali);
5bac3acf 1098 denali_enable_dma(denali, true);
ce082596 1099
aadff49c 1100 denali_setup_dma(denali, DENALI_WRITE);
ce082596
JR
1101
1102 /* wait for operation to complete */
1103 irq_status = wait_for_irq(denali, irq_mask);
1104
345b1d3b 1105 if (irq_status == 0) {
84457949 1106 dev_err(denali->dev,
7cfffac0
CD
1107 "timeout on write_page (type = %d)\n",
1108 raw_xfer);
c115add9 1109 denali->status = NAND_STATUS_FAIL;
ce082596
JR
1110 }
1111
5bac3acf 1112 denali_enable_dma(denali, false);
84457949 1113 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
fdbad98d
JW
1114
1115 return 0;
ce082596
JR
1116}
1117
1118/* NAND core entry points */
1119
43914a2d
MY
1120/*
1121 * this is the callback that the NAND core calls to write a page. Since
b292c341
CD
1122 * writing a page with ECC or without is similar, all the work is done
1123 * by write_page above.
43914a2d 1124 */
fdbad98d 1125static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1126 const uint8_t *buf, int oob_required)
ce082596 1127{
43914a2d
MY
1128 /*
1129 * for regular page writes, we let HW handle all the ECC
1130 * data written to the device.
1131 */
fdbad98d 1132 return write_page(mtd, chip, buf, false);
ce082596
JR
1133}
1134
43914a2d
MY
1135/*
1136 * This is the callback that the NAND core calls to write a page without ECC.
25985edc 1137 * raw access is similar to ECC page writes, so all the work is done in the
b292c341 1138 * write_page() function above.
ce082596 1139 */
fdbad98d 1140static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1141 const uint8_t *buf, int oob_required)
ce082596 1142{
43914a2d
MY
1143 /*
1144 * for raw page writes, we want to disable ECC and simply write
1145 * whatever data is in the buffer.
1146 */
fdbad98d 1147 return write_page(mtd, chip, buf, true);
ce082596
JR
1148}
1149
5bac3acf 1150static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1151 int page)
1152{
5bac3acf 1153 return write_oob_data(mtd, chip->oob_poi, page);
ce082596
JR
1154}
1155
5bac3acf 1156static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1157 int page)
ce082596
JR
1158{
1159 read_oob_data(mtd, chip->oob_poi, page);
1160
5c2ffb11 1161 return 0;
ce082596
JR
1162}
1163
1164static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1165 uint8_t *buf, int oob_required, int page)
ce082596 1166{
3f91e94f 1167 unsigned int max_bitflips;
ce082596 1168 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1169
1170 dma_addr_t addr = denali->buf.dma_buf;
1171 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1172
1173 uint32_t irq_status = 0;
9589bf5b
JI
1174 uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1175 INTR_STATUS__ECC_ERR;
ce082596
JR
1176 bool check_erased_page = false;
1177
7d8a26fd 1178 if (page != denali->page) {
84457949 1179 dev_err(denali->dev, "IN %s: page %d is not"
7d8a26fd
CD
1180 " equal to denali->page %d, investigate!!",
1181 __func__, page, denali->page);
1182 BUG();
1183 }
1184
ce082596
JR
1185 setup_ecc_for_xfer(denali, true, false);
1186
aadff49c 1187 denali_enable_dma(denali, true);
84457949 1188 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1189
1190 clear_interrupts(denali);
aadff49c 1191 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1192
1193 /* wait for operation to complete */
1194 irq_status = wait_for_irq(denali, irq_mask);
1195
84457949 1196 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1197
1198 memcpy(buf, denali->buf.buf, mtd->writesize);
5bac3acf 1199
3f91e94f 1200 check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
aadff49c 1201 denali_enable_dma(denali, false);
ce082596 1202
345b1d3b 1203 if (check_erased_page) {
ce082596
JR
1204 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1205
1206 /* check ECC failures that may have occurred on erased pages */
345b1d3b 1207 if (check_erased_page) {
ce082596 1208 if (!is_erased(buf, denali->mtd.writesize))
ce082596 1209 denali->mtd.ecc_stats.failed++;
ce082596 1210 if (!is_erased(buf, denali->mtd.oobsize))
ce082596 1211 denali->mtd.ecc_stats.failed++;
5bac3acf 1212 }
ce082596 1213 }
3f91e94f 1214 return max_bitflips;
ce082596
JR
1215}
1216
1217static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1218 uint8_t *buf, int oob_required, int page)
ce082596
JR
1219{
1220 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1221
1222 dma_addr_t addr = denali->buf.dma_buf;
1223 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1224
1225 uint32_t irq_status = 0;
9589bf5b 1226 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
5bac3acf 1227
7d8a26fd 1228 if (page != denali->page) {
84457949 1229 dev_err(denali->dev, "IN %s: page %d is not"
7d8a26fd
CD
1230 " equal to denali->page %d, investigate!!",
1231 __func__, page, denali->page);
1232 BUG();
1233 }
1234
ce082596 1235 setup_ecc_for_xfer(denali, false, true);
aadff49c 1236 denali_enable_dma(denali, true);
ce082596 1237
84457949 1238 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1239
1240 clear_interrupts(denali);
aadff49c 1241 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1242
1243 /* wait for operation to complete */
1244 irq_status = wait_for_irq(denali, irq_mask);
1245
84457949 1246 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596 1247
aadff49c 1248 denali_enable_dma(denali, false);
ce082596
JR
1249
1250 memcpy(buf, denali->buf.buf, mtd->writesize);
1251 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1252
1253 return 0;
1254}
1255
1256static uint8_t denali_read_byte(struct mtd_info *mtd)
1257{
1258 struct denali_nand_info *denali = mtd_to_denali(mtd);
1259 uint8_t result = 0xff;
1260
1261 if (denali->buf.head < denali->buf.tail)
ce082596 1262 result = denali->buf.buf[denali->buf.head++];
ce082596 1263
ce082596
JR
1264 return result;
1265}
1266
1267static void denali_select_chip(struct mtd_info *mtd, int chip)
1268{
1269 struct denali_nand_info *denali = mtd_to_denali(mtd);
7cfffac0 1270
ce082596
JR
1271 spin_lock_irq(&denali->irq_lock);
1272 denali->flash_bank = chip;
1273 spin_unlock_irq(&denali->irq_lock);
1274}
1275
1276static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1277{
1278 struct denali_nand_info *denali = mtd_to_denali(mtd);
1279 int status = denali->status;
1280 denali->status = 0;
1281
ce082596
JR
1282 return status;
1283}
1284
49c50b97 1285static int denali_erase(struct mtd_info *mtd, int page)
ce082596
JR
1286{
1287 struct denali_nand_info *denali = mtd_to_denali(mtd);
1288
1289 uint32_t cmd = 0x0, irq_status = 0;
1290
5bac3acf 1291 clear_interrupts(denali);
ce082596
JR
1292
1293 /* setup page read request for access type */
1294 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1295 index_addr(denali, (uint32_t)cmd, 0x1);
1296
1297 /* wait for erase to complete or failure to occur */
9589bf5b
JI
1298 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1299 INTR_STATUS__ERASE_FAIL);
ce082596 1300
49c50b97 1301 return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
ce082596
JR
1302}
1303
5bac3acf 1304static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
ce082596
JR
1305 int page)
1306{
1307 struct denali_nand_info *denali = mtd_to_denali(mtd);
ef41e1bb
CD
1308 uint32_t addr, id;
1309 int i;
ce082596 1310
345b1d3b 1311 switch (cmd) {
a99d1796
CD
1312 case NAND_CMD_PAGEPROG:
1313 break;
1314 case NAND_CMD_STATUS:
1315 read_status(denali);
1316 break;
1317 case NAND_CMD_READID:
42af8b58 1318 case NAND_CMD_PARAM:
a99d1796 1319 reset_buf(denali);
43914a2d
MY
1320 /*
1321 * sometimes ManufactureId read from register is not right
ef41e1bb
CD
1322 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1323 * So here we send READID cmd to NAND insteand
43914a2d 1324 */
ef41e1bb
CD
1325 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1326 index_addr(denali, (uint32_t)addr | 0, 0x90);
1327 index_addr(denali, (uint32_t)addr | 1, 0);
d68a5c3d 1328 for (i = 0; i < 8; i++) {
ef41e1bb
CD
1329 index_addr_read_data(denali,
1330 (uint32_t)addr | 2,
1331 &id);
1332 write_byte_to_buf(denali, id);
a99d1796
CD
1333 }
1334 break;
1335 case NAND_CMD_READ0:
1336 case NAND_CMD_SEQIN:
1337 denali->page = page;
1338 break;
1339 case NAND_CMD_RESET:
1340 reset_bank(denali);
1341 break;
1342 case NAND_CMD_READOOB:
1343 /* TODO: Read OOB data */
1344 break;
1345 default:
2a0a288e 1346 pr_err(": unsupported command received 0x%x\n", cmd);
a99d1796 1347 break;
ce082596
JR
1348 }
1349}
1350
1351/* stubs for ECC functions not used by the NAND core */
5bac3acf 1352static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
ce082596
JR
1353 uint8_t *ecc_code)
1354{
7cfffac0 1355 struct denali_nand_info *denali = mtd_to_denali(mtd);
84457949 1356 dev_err(denali->dev,
7cfffac0 1357 "denali_ecc_calculate called unexpectedly\n");
ce082596
JR
1358 BUG();
1359 return -EIO;
1360}
1361
5bac3acf 1362static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
ce082596
JR
1363 uint8_t *read_ecc, uint8_t *calc_ecc)
1364{
7cfffac0 1365 struct denali_nand_info *denali = mtd_to_denali(mtd);
84457949 1366 dev_err(denali->dev,
7cfffac0 1367 "denali_ecc_correct called unexpectedly\n");
ce082596
JR
1368 BUG();
1369 return -EIO;
1370}
1371
1372static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1373{
7cfffac0 1374 struct denali_nand_info *denali = mtd_to_denali(mtd);
84457949 1375 dev_err(denali->dev,
7cfffac0 1376 "denali_ecc_hwctl called unexpectedly\n");
ce082596
JR
1377 BUG();
1378}
1379/* end NAND core entry points */
1380
1381/* Initialization code to bring the device up to a known good state */
1382static void denali_hw_init(struct denali_nand_info *denali)
1383{
43914a2d
MY
1384 /*
1385 * tell driver how many bit controller will skip before
db9a3210
CD
1386 * writing ECC code in OOB, this register may be already
1387 * set by firmware. So we read this value out.
1388 * if this value is 0, just let it be.
43914a2d 1389 */
db9a3210
CD
1390 denali->bbtskipbytes = ioread32(denali->flash_reg +
1391 SPARE_AREA_SKIP_BYTES);
bc27ede3 1392 detect_max_banks(denali);
eda936ef 1393 denali_nand_reset(denali);
24c3fa36
CD
1394 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1395 iowrite32(CHIP_EN_DONT_CARE__FLAG,
bdca6dae 1396 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
ce082596 1397
24c3fa36 1398 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
ce082596
JR
1399
1400 /* Should set value for these registers when init */
24c3fa36
CD
1401 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1402 iowrite32(1, denali->flash_reg + ECC_ENABLE);
5eab6aaa
CD
1403 denali_nand_timing_set(denali);
1404 denali_irq_init(denali);
ce082596
JR
1405}
1406
43914a2d
MY
1407/*
1408 * Althogh controller spec said SLC ECC is forceb to be 4bit,
db9a3210
CD
1409 * but denali controller in MRST only support 15bit and 8bit ECC
1410 * correction
43914a2d 1411 */
db9a3210
CD
1412#define ECC_8BITS 14
1413static struct nand_ecclayout nand_8bit_oob = {
1414 .eccbytes = 14,
ce082596
JR
1415};
1416
db9a3210
CD
1417#define ECC_15BITS 26
1418static struct nand_ecclayout nand_15bit_oob = {
1419 .eccbytes = 26,
ce082596
JR
1420};
1421
1422static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1423static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1424
1425static struct nand_bbt_descr bbt_main_descr = {
1426 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1427 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1428 .offs = 8,
1429 .len = 4,
1430 .veroffs = 12,
1431 .maxblocks = 4,
1432 .pattern = bbt_pattern,
1433};
1434
1435static struct nand_bbt_descr bbt_mirror_descr = {
1436 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1437 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1438 .offs = 8,
1439 .len = 4,
1440 .veroffs = 12,
1441 .maxblocks = 4,
1442 .pattern = mirror_pattern,
1443};
1444
421f91d2 1445/* initialize driver data structures */
8c519436 1446static void denali_drv_init(struct denali_nand_info *denali)
ce082596
JR
1447{
1448 denali->idx = 0;
1449
1450 /* setup interrupt handler */
43914a2d
MY
1451 /*
1452 * the completion object will be used to notify
1453 * the callee that the interrupt is done
1454 */
ce082596
JR
1455 init_completion(&denali->complete);
1456
43914a2d
MY
1457 /*
1458 * the spinlock will be used to synchronize the ISR with any
1459 * element that might be access shared data (interrupt status)
1460 */
ce082596
JR
1461 spin_lock_init(&denali->irq_lock);
1462
1463 /* indicate that MTD has not selected a valid bank yet */
1464 denali->flash_bank = CHIP_SELECT_INVALID;
1465
1466 /* initialize our irq_status variable to indicate no interrupts */
1467 denali->irq_status = 0;
1468}
1469
2a0a288e 1470int denali_init(struct denali_nand_info *denali)
ce082596 1471{
2a0a288e 1472 int ret;
ce082596 1473
2a0a288e 1474 if (denali->platform == INTEL_CE4100) {
43914a2d
MY
1475 /*
1476 * Due to a silicon limitation, we can only support
5bac3acf
C
1477 * ONFI timing mode 1 and below.
1478 */
345b1d3b 1479 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
2a0a288e
DN
1480 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1481 return -EINVAL;
ce082596
JR
1482 }
1483 }
1484
e07caa36
HS
1485 /* allocate a temporary buffer for nand_scan_ident() */
1486 denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1487 GFP_DMA | GFP_KERNEL);
1488 if (!denali->buf.buf)
1489 return -ENOMEM;
ce082596 1490
2a0a288e 1491 denali->mtd.dev.parent = denali->dev;
ce082596
JR
1492 denali_hw_init(denali);
1493 denali_drv_init(denali);
1494
43914a2d
MY
1495 /*
1496 * denali_isr register is done after all the hardware
1497 * initilization is finished
1498 */
2a0a288e 1499 if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
ce082596 1500 DENALI_NAND_NAME, denali)) {
2a0a288e
DN
1501 pr_err("Spectra: Unable to allocate IRQ\n");
1502 return -ENODEV;
ce082596
JR
1503 }
1504
1505 /* now that our ISR is registered, we can enable interrupts */
eda936ef 1506 denali_set_intr_modes(denali, true);
5eab6aaa 1507 denali->mtd.name = "denali-nand";
ce082596
JR
1508 denali->mtd.owner = THIS_MODULE;
1509 denali->mtd.priv = &denali->nand;
1510
1511 /* register the driver with the NAND core subsystem */
1512 denali->nand.select_chip = denali_select_chip;
1513 denali->nand.cmdfunc = denali_cmdfunc;
1514 denali->nand.read_byte = denali_read_byte;
1515 denali->nand.waitfunc = denali_waitfunc;
1516
43914a2d
MY
1517 /*
1518 * scan for NAND devices attached to the controller
ce082596 1519 * this is the first stage in a two step process to register
43914a2d
MY
1520 * with the nand subsystem
1521 */
c89eeda8 1522 if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
ce082596 1523 ret = -ENXIO;
5c0eb900 1524 goto failed_req_irq;
ce082596 1525 }
5bac3acf 1526
e07caa36
HS
1527 /* allocate the right size buffer now */
1528 devm_kfree(denali->dev, denali->buf.buf);
1529 denali->buf.buf = devm_kzalloc(denali->dev,
1530 denali->mtd.writesize + denali->mtd.oobsize,
1531 GFP_KERNEL);
1532 if (!denali->buf.buf) {
1533 ret = -ENOMEM;
1534 goto failed_req_irq;
1535 }
1536
1537 /* Is 32-bit DMA supported? */
1538 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1539 if (ret) {
1540 pr_err("Spectra: no usable DMA configuration\n");
1541 goto failed_req_irq;
1542 }
1543
1544 denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1545 denali->mtd.writesize + denali->mtd.oobsize,
1546 DMA_BIDIRECTIONAL);
1547 if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1548 dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1549 ret = -EIO;
5c0eb900 1550 goto failed_req_irq;
66406524
CD
1551 }
1552
43914a2d
MY
1553 /*
1554 * support for multi nand
1555 * MTD known nothing about multi nand, so we should tell it
1556 * the real pagesize and anything necessery
08b9ab99
CD
1557 */
1558 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1559 denali->nand.chipsize <<= (denali->devnum - 1);
1560 denali->nand.page_shift += (denali->devnum - 1);
1561 denali->nand.pagemask = (denali->nand.chipsize >>
1562 denali->nand.page_shift) - 1;
1563 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1564 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1565 denali->nand.chip_shift += (denali->devnum - 1);
1566 denali->mtd.writesize <<= (denali->devnum - 1);
1567 denali->mtd.oobsize <<= (denali->devnum - 1);
1568 denali->mtd.erasesize <<= (denali->devnum - 1);
1569 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1570 denali->bbtskipbytes *= denali->devnum;
1571
43914a2d
MY
1572 /*
1573 * second stage of the NAND scan
5bac3acf 1574 * this stage requires information regarding ECC and
43914a2d
MY
1575 * bad block management.
1576 */
ce082596
JR
1577
1578 /* Bad block management */
1579 denali->nand.bbt_td = &bbt_main_descr;
1580 denali->nand.bbt_md = &bbt_mirror_descr;
1581
1582 /* skip the scan for now until we have OOB read and write support */
bb9ebd4e 1583 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
a40f7341 1584 denali->nand.options |= NAND_SKIP_BBTSCAN;
ce082596
JR
1585 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1586
43914a2d
MY
1587 /*
1588 * Denali Controller only support 15bit and 8bit ECC in MRST,
db9a3210
CD
1589 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1590 * SLC if possible.
1591 * */
1d0ed69d 1592 if (!nand_is_slc(&denali->nand) &&
db9a3210
CD
1593 (denali->mtd.oobsize > (denali->bbtskipbytes +
1594 ECC_15BITS * (denali->mtd.writesize /
1595 ECC_SECTOR_SIZE)))) {
1596 /* if MLC OOB size is large enough, use 15bit ECC*/
6a918bad 1597 denali->nand.ecc.strength = 15;
db9a3210
CD
1598 denali->nand.ecc.layout = &nand_15bit_oob;
1599 denali->nand.ecc.bytes = ECC_15BITS;
24c3fa36 1600 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
db9a3210
CD
1601 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1602 ECC_8BITS * (denali->mtd.writesize /
1603 ECC_SECTOR_SIZE))) {
2a0a288e
DN
1604 pr_err("Your NAND chip OOB is not large enough to \
1605 contain 8bit ECC correction codes");
5c0eb900 1606 goto failed_req_irq;
db9a3210 1607 } else {
6a918bad 1608 denali->nand.ecc.strength = 8;
db9a3210
CD
1609 denali->nand.ecc.layout = &nand_8bit_oob;
1610 denali->nand.ecc.bytes = ECC_8BITS;
24c3fa36 1611 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
1612 }
1613
08b9ab99 1614 denali->nand.ecc.bytes *= denali->devnum;
6a918bad 1615 denali->nand.ecc.strength *= denali->devnum;
db9a3210
CD
1616 denali->nand.ecc.layout->eccbytes *=
1617 denali->mtd.writesize / ECC_SECTOR_SIZE;
1618 denali->nand.ecc.layout->oobfree[0].offset =
1619 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1620 denali->nand.ecc.layout->oobfree[0].length =
1621 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1622 denali->bbtskipbytes;
1623
43914a2d
MY
1624 /*
1625 * Let driver know the total blocks number and how many blocks
1626 * contained by each nand chip. blksperchip will help driver to
1627 * know how many blocks is taken by FW.
1628 */
66406524
CD
1629 denali->totalblks = denali->mtd.size >>
1630 denali->nand.phys_erase_shift;
1631 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1632
43914a2d
MY
1633 /*
1634 * These functions are required by the NAND core framework, otherwise,
5bac3acf 1635 * the NAND core will assert. However, we don't need them, so we'll stub
43914a2d
MY
1636 * them out.
1637 */
ce082596
JR
1638 denali->nand.ecc.calculate = denali_ecc_calculate;
1639 denali->nand.ecc.correct = denali_ecc_correct;
1640 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1641
1642 /* override the default read operations */
08b9ab99 1643 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
ce082596
JR
1644 denali->nand.ecc.read_page = denali_read_page;
1645 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1646 denali->nand.ecc.write_page = denali_write_page;
1647 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1648 denali->nand.ecc.read_oob = denali_read_oob;
1649 denali->nand.ecc.write_oob = denali_write_oob;
49c50b97 1650 denali->nand.erase = denali_erase;
ce082596 1651
345b1d3b 1652 if (nand_scan_tail(&denali->mtd)) {
ce082596 1653 ret = -ENXIO;
5c0eb900 1654 goto failed_req_irq;
ce082596
JR
1655 }
1656
ee0e87b1 1657 ret = mtd_device_register(&denali->mtd, NULL, 0);
ce082596 1658 if (ret) {
2a0a288e 1659 dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
7cfffac0 1660 ret);
5c0eb900 1661 goto failed_req_irq;
ce082596
JR
1662 }
1663 return 0;
1664
5c0eb900 1665failed_req_irq:
2a0a288e
DN
1666 denali_irq_cleanup(denali->irq, denali);
1667
ce082596
JR
1668 return ret;
1669}
2a0a288e 1670EXPORT_SYMBOL(denali_init);
ce082596
JR
1671
1672/* driver exit point */
2a0a288e 1673void denali_remove(struct denali_nand_info *denali)
ce082596 1674{
2a0a288e 1675 denali_irq_cleanup(denali->irq, denali);
e07caa36
HS
1676 dma_unmap_single(denali->dev, denali->buf.dma_buf,
1677 denali->mtd.writesize + denali->mtd.oobsize,
2a0a288e 1678 DMA_BIDIRECTIONAL);
ce082596 1679}
2a0a288e 1680EXPORT_SYMBOL(denali_remove);