doc: dt: mtd: new binding for jz4780-{nand,bch}
[linux-2.6-block.git] / drivers / mtd / nand / davinci_nand.c
CommitLineData
ff4569c7
DB
1/*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#include <linux/kernel.h>
ff4569c7
DB
27#include <linux/module.h>
28#include <linux/platform_device.h>
29#include <linux/err.h>
30#include <linux/clk.h>
31#include <linux/io.h>
32#include <linux/mtd/nand.h>
33#include <linux/mtd/partitions.h>
5a0e3ad6 34#include <linux/slab.h>
cdeadd71 35#include <linux/of_device.h>
c4f8cde8 36#include <linux/of.h>
75be1ea2 37#include <linux/of_mtd.h>
ff4569c7 38
ec2a0833
AB
39#include <linux/platform_data/mtd-davinci.h>
40#include <linux/platform_data/mtd-davinci-aemif.h>
ff4569c7 41
ff4569c7
DB
42/*
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
47 *
6a4123e5 48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
ff4569c7
DB
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
51 *
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 */
55struct davinci_nand_info {
ff4569c7 56 struct nand_chip chip;
6a4123e5 57 struct nand_ecclayout ecclayout;
ff4569c7
DB
58
59 struct device *dev;
60 struct clk *clk;
ff4569c7 61
6a4123e5
DB
62 bool is_readmode;
63
ff4569c7
DB
64 void __iomem *base;
65 void __iomem *vaddr;
66
67 uint32_t ioaddr;
68 uint32_t current_cs;
69
70 uint32_t mask_chipsel;
71 uint32_t mask_ale;
72 uint32_t mask_cle;
73
74 uint32_t core_chipsel;
a88dbc5b
SN
75
76 struct davinci_aemif_timing *timing;
ff4569c7
DB
77};
78
79static DEFINE_SPINLOCK(davinci_nand_lock);
6a4123e5 80static bool ecc4_busy;
ff4569c7 81
a5cfb4db
BB
82static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
83{
84 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
85}
ff4569c7
DB
86
87static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
88 int offset)
89{
90 return __raw_readl(info->base + offset);
91}
92
93static inline void davinci_nand_writel(struct davinci_nand_info *info,
94 int offset, unsigned long value)
95{
96 __raw_writel(value, info->base + offset);
97}
98
99/*----------------------------------------------------------------------*/
100
101/*
102 * Access to hardware control lines: ALE, CLE, secondary chipselect.
103 */
104
105static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
106 unsigned int ctrl)
107{
108 struct davinci_nand_info *info = to_davinci_nand(mtd);
109 uint32_t addr = info->current_cs;
4bd4ebcc 110 struct nand_chip *nand = mtd_to_nand(mtd);
ff4569c7
DB
111
112 /* Did the control lines change? */
113 if (ctrl & NAND_CTRL_CHANGE) {
114 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
115 addr |= info->mask_cle;
116 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
117 addr |= info->mask_ale;
118
119 nand->IO_ADDR_W = (void __iomem __force *)addr;
120 }
121
122 if (cmd != NAND_CMD_NONE)
123 iowrite8(cmd, nand->IO_ADDR_W);
124}
125
126static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
127{
128 struct davinci_nand_info *info = to_davinci_nand(mtd);
129 uint32_t addr = info->ioaddr;
130
131 /* maybe kick in a second chipselect */
132 if (chip > 0)
133 addr |= info->mask_chipsel;
134 info->current_cs = addr;
135
136 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
137 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
138}
139
140/*----------------------------------------------------------------------*/
141
142/*
143 * 1-bit hardware ECC ... context maintained for each core chipselect
144 */
145
146static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
147{
148 struct davinci_nand_info *info = to_davinci_nand(mtd);
149
150 return davinci_nand_readl(info, NANDF1ECC_OFFSET
151 + 4 * info->core_chipsel);
152}
153
154static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
155{
156 struct davinci_nand_info *info;
157 uint32_t nandcfr;
158 unsigned long flags;
159
160 info = to_davinci_nand(mtd);
161
162 /* Reset ECC hardware */
163 nand_davinci_readecc_1bit(mtd);
164
165 spin_lock_irqsave(&davinci_nand_lock, flags);
166
167 /* Restart ECC hardware */
168 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
169 nandcfr |= BIT(8 + info->core_chipsel);
170 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
171
172 spin_unlock_irqrestore(&davinci_nand_lock, flags);
173}
174
175/*
176 * Read hardware ECC value and pack into three bytes
177 */
178static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
179 const u_char *dat, u_char *ecc_code)
180{
181 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
182 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
183
184 /* invert so that erased block ecc is correct */
185 ecc24 = ~ecc24;
186 ecc_code[0] = (u_char)(ecc24);
187 ecc_code[1] = (u_char)(ecc24 >> 8);
188 ecc_code[2] = (u_char)(ecc24 >> 16);
189
190 return 0;
191}
192
193static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
194 u_char *read_ecc, u_char *calc_ecc)
195{
4bd4ebcc 196 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
197 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
198 (read_ecc[2] << 16);
199 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
200 (calc_ecc[2] << 16);
201 uint32_t diff = eccCalc ^ eccNand;
202
203 if (diff) {
204 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
205 /* Correctable error */
206 if ((diff >> (12 + 3)) < chip->ecc.size) {
207 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
208 return 1;
209 } else {
210 return -1;
211 }
212 } else if (!(diff & (diff - 1))) {
213 /* Single bit ECC error in the ECC itself,
214 * nothing to fix */
215 return 1;
216 } else {
217 /* Uncorrectable error */
218 return -1;
219 }
220
221 }
222 return 0;
223}
224
225/*----------------------------------------------------------------------*/
226
6a4123e5
DB
227/*
228 * 4-bit hardware ECC ... context maintained over entire AEMIF
229 *
230 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
231 * since that forces use of a problematic "infix OOB" layout.
232 * Among other things, it trashes manufacturer bad block markers.
233 * Also, and specific to this hardware, it ECC-protects the "prepad"
234 * in the OOB ... while having ECC protection for parts of OOB would
235 * seem useful, the current MTD stack sometimes wants to update the
236 * OOB without recomputing ECC.
237 */
238
239static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
240{
241 struct davinci_nand_info *info = to_davinci_nand(mtd);
242 unsigned long flags;
243 u32 val;
244
245 spin_lock_irqsave(&davinci_nand_lock, flags);
246
247 /* Start 4-bit ECC calculation for read/write */
248 val = davinci_nand_readl(info, NANDFCR_OFFSET);
249 val &= ~(0x03 << 4);
250 val |= (info->core_chipsel << 4) | BIT(12);
251 davinci_nand_writel(info, NANDFCR_OFFSET, val);
252
253 info->is_readmode = (mode == NAND_ECC_READ);
254
255 spin_unlock_irqrestore(&davinci_nand_lock, flags);
256}
257
258/* Read raw ECC code after writing to NAND. */
259static void
260nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
261{
262 const u32 mask = 0x03ff03ff;
263
264 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
265 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
266 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
267 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
268}
269
270/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
271static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
272 const u_char *dat, u_char *ecc_code)
273{
274 struct davinci_nand_info *info = to_davinci_nand(mtd);
275 u32 raw_ecc[4], *p;
276 unsigned i;
277
278 /* After a read, terminate ECC calculation by a dummy read
279 * of some 4-bit ECC register. ECC covers everything that
280 * was read; correct() just uses the hardware state, so
281 * ecc_code is not needed.
282 */
283 if (info->is_readmode) {
284 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
285 return 0;
286 }
287
288 /* Pack eight raw 10-bit ecc values into ten bytes, making
289 * two passes which each convert four values (in upper and
290 * lower halves of two 32-bit words) into five bytes. The
291 * ROM boot loader uses this same packing scheme.
292 */
293 nand_davinci_readecc_4bit(info, raw_ecc);
294 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
295 *ecc_code++ = p[0] & 0xff;
296 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
297 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
298 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
299 *ecc_code++ = (p[1] >> 18) & 0xff;
300 }
301
302 return 0;
303}
304
305/* Correct up to 4 bits in data we just read, using state left in the
306 * hardware plus the ecc_code computed when it was first written.
307 */
308static int nand_davinci_correct_4bit(struct mtd_info *mtd,
309 u_char *data, u_char *ecc_code, u_char *null)
310{
311 int i;
312 struct davinci_nand_info *info = to_davinci_nand(mtd);
313 unsigned short ecc10[8];
314 unsigned short *ecc16;
315 u32 syndrome[4];
1c3275b6 316 u32 ecc_state;
6a4123e5 317 unsigned num_errors, corrected;
2bdb053a 318 unsigned long timeo;
6a4123e5
DB
319
320 /* All bytes 0xff? It's an erased page; ignore its ECC. */
321 for (i = 0; i < 10; i++) {
322 if (ecc_code[i] != 0xff)
323 goto compare;
324 }
325 return 0;
326
327compare:
328 /* Unpack ten bytes into eight 10 bit values. We know we're
329 * little-endian, and use type punning for less shifting/masking.
330 */
331 if (WARN_ON(0x01 & (unsigned) ecc_code))
332 return -EINVAL;
333 ecc16 = (unsigned short *)ecc_code;
334
335 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
336 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
337 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
338 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
339 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
340 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
341 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
342 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
343
344 /* Tell ECC controller about the expected ECC codes. */
345 for (i = 7; i >= 0; i--)
346 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
347
348 /* Allow time for syndrome calculation ... then read it.
349 * A syndrome of all zeroes 0 means no detected errors.
350 */
351 davinci_nand_readl(info, NANDFSR_OFFSET);
352 nand_davinci_readecc_4bit(info, syndrome);
353 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
354 return 0;
355
f12a9473
SN
356 /*
357 * Clear any previous address calculation by doing a dummy read of an
358 * error address register.
359 */
360 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
361
6a4123e5
DB
362 /* Start address calculation, and wait for it to complete.
363 * We _could_ start reading more data while this is working,
364 * to speed up the overall page read.
365 */
366 davinci_nand_writel(info, NANDFCR_OFFSET,
367 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
1c3275b6
SR
368
369 /*
370 * ECC_STATE field reads 0x3 (Error correction complete) immediately
371 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
372 * begin trying to poll for the state, you may fall right out of your
373 * loop without any of the correction calculations having taken place.
eea116ed
WS
374 * The recommendation from the hardware team is to initially delay as
375 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
376 * correction state.
1c3275b6 377 */
2bdb053a 378 timeo = jiffies + usecs_to_jiffies(100);
1c3275b6
SR
379 do {
380 ecc_state = (davinci_nand_readl(info,
381 NANDFSR_OFFSET) >> 8) & 0x0f;
382 cpu_relax();
383 } while ((ecc_state < 4) && time_before(jiffies, timeo));
384
6a4123e5
DB
385 for (;;) {
386 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
387
388 switch ((fsr >> 8) & 0x0f) {
389 case 0: /* no error, should not happen */
f12a9473 390 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
391 return 0;
392 case 1: /* five or more errors detected */
f12a9473 393 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
394 return -EIO;
395 case 2: /* error addresses computed */
396 case 3:
397 num_errors = 1 + ((fsr >> 16) & 0x03);
398 goto correct;
399 default: /* still working on it */
400 cpu_relax();
401 continue;
402 }
403 }
404
405correct:
406 /* correct each error */
407 for (i = 0, corrected = 0; i < num_errors; i++) {
408 int error_address, error_value;
409
410 if (i > 1) {
411 error_address = davinci_nand_readl(info,
412 NAND_ERR_ADD2_OFFSET);
413 error_value = davinci_nand_readl(info,
414 NAND_ERR_ERRVAL2_OFFSET);
415 } else {
416 error_address = davinci_nand_readl(info,
417 NAND_ERR_ADD1_OFFSET);
418 error_value = davinci_nand_readl(info,
419 NAND_ERR_ERRVAL1_OFFSET);
420 }
421
422 if (i & 1) {
423 error_address >>= 16;
424 error_value >>= 16;
425 }
426 error_address &= 0x3ff;
427 error_address = (512 + 7) - error_address;
428
429 if (error_address < 512) {
430 data[error_address] ^= error_value;
431 corrected++;
432 }
433 }
434
435 return corrected;
436}
437
438/*----------------------------------------------------------------------*/
439
ff4569c7
DB
440/*
441 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
442 * how these chips are normally wired. This translates to both 8 and 16
443 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
444 *
445 * For now we assume that configuration, or any other one which ignores
446 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
447 * and have that transparently morphed into multiple NAND operations.
448 */
449static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
450{
4bd4ebcc 451 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
452
453 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
454 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
455 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
456 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
457 else
458 ioread8_rep(chip->IO_ADDR_R, buf, len);
459}
460
461static void nand_davinci_write_buf(struct mtd_info *mtd,
462 const uint8_t *buf, int len)
463{
4bd4ebcc 464 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
465
466 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
467 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
468 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
469 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
470 else
471 iowrite8_rep(chip->IO_ADDR_R, buf, len);
472}
473
474/*
475 * Check hardware register for wait status. Returns 1 if device is ready,
476 * 0 if it is still busy.
477 */
478static int nand_davinci_dev_ready(struct mtd_info *mtd)
479{
480 struct davinci_nand_info *info = to_davinci_nand(mtd);
481
482 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
483}
484
ff4569c7
DB
485/*----------------------------------------------------------------------*/
486
6a4123e5
DB
487/* An ECC layout for using 4-bit ECC with small-page flash, storing
488 * ten ECC bytes plus the manufacturer's bad block marker byte, and
489 * and not overlapping the default BBT markers.
490 */
eaaa4a9a 491static struct nand_ecclayout hwecc4_small = {
6a4123e5
DB
492 .eccbytes = 10,
493 .eccpos = { 0, 1, 2, 3, 4,
494 /* offset 5 holds the badblock marker */
495 6, 7,
496 13, 14, 15, },
497 .oobfree = {
498 {.offset = 8, .length = 5, },
499 {.offset = 16, },
500 },
501};
502
f12a9473
SN
503/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
504 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
505 * and not overlapping the default BBT markers.
506 */
eaaa4a9a 507static struct nand_ecclayout hwecc4_2048 = {
f12a9473
SN
508 .eccbytes = 40,
509 .eccpos = {
510 /* at the end of spare sector */
511 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
512 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
513 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
514 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
515 },
516 .oobfree = {
517 /* 2 bytes at offset 0 hold manufacturer badblock markers */
518 {.offset = 2, .length = 22, },
519 /* 5 bytes at offset 8 hold BBT markers */
520 /* 8 bytes at offset 16 hold JFFS2 clean markers */
521 },
522};
6a4123e5 523
a11244c0
SP
524/*
525 * An ECC layout for using 4-bit ECC with large-page (4096bytes) flash,
526 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
527 * and not overlapping the default BBT markers.
528 */
529static struct nand_ecclayout hwecc4_4096 = {
530 .eccbytes = 80,
531 .eccpos = {
532 /* at the end of spare sector */
533 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
534 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
535 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
536 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
537 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
538 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
539 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
540 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
541 },
542 .oobfree = {
543 /* 2 bytes at offset 0 hold manufacturer badblock markers */
544 {.offset = 2, .length = 46, },
545 /* 5 bytes at offset 8 hold BBT markers */
546 /* 8 bytes at offset 16 hold JFFS2 clean markers */
547 },
548};
549
cdeadd71
HS
550#if defined(CONFIG_OF)
551static const struct of_device_id davinci_nand_of_match[] = {
552 {.compatible = "ti,davinci-nand", },
28c015a9 553 {.compatible = "ti,keystone-nand", },
cdeadd71 554 {},
13daa22f 555};
cdeadd71
HS
556MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
557
558static struct davinci_nand_pdata
559 *nand_davinci_get_pdata(struct platform_device *pdev)
560{
453810b7 561 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
cdeadd71
HS
562 struct davinci_nand_pdata *pdata;
563 const char *mode;
564 u32 prop;
cdeadd71
HS
565
566 pdata = devm_kzalloc(&pdev->dev,
567 sizeof(struct davinci_nand_pdata),
568 GFP_KERNEL);
569 pdev->dev.platform_data = pdata;
570 if (!pdata)
f735a4d0 571 return ERR_PTR(-ENOMEM);
cdeadd71
HS
572 if (!of_property_read_u32(pdev->dev.of_node,
573 "ti,davinci-chipselect", &prop))
574 pdev->id = prop;
05103825
IK
575 else
576 return ERR_PTR(-EINVAL);
577
cdeadd71
HS
578 if (!of_property_read_u32(pdev->dev.of_node,
579 "ti,davinci-mask-ale", &prop))
580 pdata->mask_ale = prop;
581 if (!of_property_read_u32(pdev->dev.of_node,
582 "ti,davinci-mask-cle", &prop))
583 pdata->mask_cle = prop;
584 if (!of_property_read_u32(pdev->dev.of_node,
585 "ti,davinci-mask-chipsel", &prop))
586 pdata->mask_chipsel = prop;
587 if (!of_property_read_string(pdev->dev.of_node,
75be1ea2
IK
588 "nand-ecc-mode", &mode) ||
589 !of_property_read_string(pdev->dev.of_node,
cdeadd71
HS
590 "ti,davinci-ecc-mode", &mode)) {
591 if (!strncmp("none", mode, 4))
592 pdata->ecc_mode = NAND_ECC_NONE;
593 if (!strncmp("soft", mode, 4))
594 pdata->ecc_mode = NAND_ECC_SOFT;
595 if (!strncmp("hw", mode, 2))
596 pdata->ecc_mode = NAND_ECC_HW;
597 }
598 if (!of_property_read_u32(pdev->dev.of_node,
599 "ti,davinci-ecc-bits", &prop))
600 pdata->ecc_bits = prop;
75be1ea2
IK
601
602 prop = of_get_nand_bus_width(pdev->dev.of_node);
603 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
cdeadd71
HS
604 "ti,davinci-nand-buswidth", &prop))
605 if (prop == 16)
606 pdata->options |= NAND_BUSWIDTH_16;
75be1ea2
IK
607 if (of_property_read_bool(pdev->dev.of_node,
608 "nand-on-flash-bbt") ||
609 of_property_read_bool(pdev->dev.of_node,
610 "ti,davinci-nand-use-bbt"))
cdeadd71 611 pdata->bbt_options = NAND_BBT_USE_FLASH;
28c015a9
MK
612
613 if (of_device_is_compatible(pdev->dev.of_node,
614 "ti,keystone-nand")) {
615 pdata->options |= NAND_NO_SUBPAGE_WRITE;
616 }
cdeadd71
HS
617 }
618
453810b7 619 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
620}
621#else
cdeadd71
HS
622static struct davinci_nand_pdata
623 *nand_davinci_get_pdata(struct platform_device *pdev)
624{
453810b7 625 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
626}
627#endif
628
eaaa4a9a 629static int nand_davinci_probe(struct platform_device *pdev)
ff4569c7 630{
cdeadd71 631 struct davinci_nand_pdata *pdata;
ff4569c7
DB
632 struct davinci_nand_info *info;
633 struct resource *res1;
634 struct resource *res2;
635 void __iomem *vaddr;
636 void __iomem *base;
637 int ret;
638 uint32_t val;
639 nand_ecc_modes_t ecc_mode;
a5cfb4db 640 struct mtd_info *mtd;
ff4569c7 641
cdeadd71 642 pdata = nand_davinci_get_pdata(pdev);
f735a4d0
IK
643 if (IS_ERR(pdata))
644 return PTR_ERR(pdata);
645
533a0149
DB
646 /* insist on board-specific configuration */
647 if (!pdata)
648 return -ENODEV;
649
ff4569c7
DB
650 /* which external chipselect will we be managing? */
651 if (pdev->id < 0 || pdev->id > 3)
652 return -ENODEV;
653
ef4e0c21 654 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
00669231 655 if (!info)
30a3970c 656 return -ENOMEM;
ff4569c7
DB
657
658 platform_set_drvdata(pdev, info);
659
660 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
661 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
662 if (!res1 || !res2) {
663 dev_err(&pdev->dev, "resource missing\n");
30a3970c 664 return -EINVAL;
ff4569c7
DB
665 }
666
59bff7fb 667 vaddr = devm_ioremap_resource(&pdev->dev, res1);
30a3970c
IK
668 if (IS_ERR(vaddr))
669 return PTR_ERR(vaddr);
670
0966a416
IK
671 /*
672 * This registers range is used to setup NAND settings. In case with
673 * TI AEMIF driver, the same memory address range is requested already
674 * by AEMIF, so we cannot request it twice, just ioremap.
675 * The AEMIF and NAND drivers not use the same registers in this range.
676 */
677 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
678 if (!base) {
679 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
680 return -EADDRNOTAVAIL;
681 }
ff4569c7
DB
682
683 info->dev = &pdev->dev;
684 info->base = base;
685 info->vaddr = vaddr;
686
a5cfb4db 687 mtd = nand_to_mtd(&info->chip);
a5cfb4db 688 mtd->dev.parent = &pdev->dev;
a61ae81a 689 nand_set_flash_node(&info->chip, pdev->dev.of_node);
87f39f04 690
ff4569c7
DB
691 info->chip.IO_ADDR_R = vaddr;
692 info->chip.IO_ADDR_W = vaddr;
693 info->chip.chip_delay = 0;
694 info->chip.select_chip = nand_davinci_select_chip;
695
bb9ebd4e 696 /* options such as NAND_BBT_USE_FLASH */
a40f7341
BN
697 info->chip.bbt_options = pdata->bbt_options;
698 /* options such as 16-bit widths */
533a0149 699 info->chip.options = pdata->options;
f611a79f
MG
700 info->chip.bbt_td = pdata->bbt_td;
701 info->chip.bbt_md = pdata->bbt_md;
a88dbc5b 702 info->timing = pdata->timing;
ff4569c7
DB
703
704 info->ioaddr = (uint32_t __force) vaddr;
705
706 info->current_cs = info->ioaddr;
707 info->core_chipsel = pdev->id;
708 info->mask_chipsel = pdata->mask_chipsel;
709
710 /* use nandboot-capable ALE/CLE masks by default */
5cd0be8e 711 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
533a0149 712 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
ff4569c7
DB
713
714 /* Set address of hardware control function */
715 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
716 info->chip.dev_ready = nand_davinci_dev_ready;
717
718 /* Speed up buffer I/O */
719 info->chip.read_buf = nand_davinci_read_buf;
720 info->chip.write_buf = nand_davinci_write_buf;
721
533a0149
DB
722 /* Use board-specific ECC config */
723 ecc_mode = pdata->ecc_mode;
ff4569c7 724
6a4123e5 725 ret = -EINVAL;
ff4569c7
DB
726 switch (ecc_mode) {
727 case NAND_ECC_NONE:
728 case NAND_ECC_SOFT:
6a4123e5 729 pdata->ecc_bits = 0;
ff4569c7
DB
730 break;
731 case NAND_ECC_HW:
6a4123e5
DB
732 if (pdata->ecc_bits == 4) {
733 /* No sanity checks: CPUs must support this,
734 * and the chips may not use NAND_BUSWIDTH_16.
735 */
736
737 /* No sharing 4-bit hardware between chipselects yet */
738 spin_lock_irq(&davinci_nand_lock);
739 if (ecc4_busy)
740 ret = -EBUSY;
741 else
742 ecc4_busy = true;
743 spin_unlock_irq(&davinci_nand_lock);
744
745 if (ret == -EBUSY)
30a3970c 746 return ret;
6a4123e5
DB
747
748 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
749 info->chip.ecc.correct = nand_davinci_correct_4bit;
750 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
751 info->chip.ecc.bytes = 10;
752 } else {
753 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
754 info->chip.ecc.correct = nand_davinci_correct_1bit;
755 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
756 info->chip.ecc.bytes = 3;
757 }
ff4569c7 758 info->chip.ecc.size = 512;
6a918bad 759 info->chip.ecc.strength = pdata->ecc_bits;
ff4569c7 760 break;
ff4569c7 761 default:
30a3970c 762 return -EINVAL;
ff4569c7
DB
763 }
764 info->chip.ecc.mode = ecc_mode;
765
ef4e0c21 766 info->clk = devm_clk_get(&pdev->dev, "aemif");
ff4569c7
DB
767 if (IS_ERR(info->clk)) {
768 ret = PTR_ERR(info->clk);
cd24f8c1 769 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
30a3970c 770 return ret;
ff4569c7
DB
771 }
772
ea73fe7f 773 ret = clk_prepare_enable(info->clk);
ff4569c7 774 if (ret < 0) {
cd24f8c1
KH
775 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
776 ret);
ff4569c7
DB
777 goto err_clk_enable;
778 }
779
ff4569c7
DB
780 spin_lock_irq(&davinci_nand_lock);
781
782 /* put CSxNAND into NAND mode */
783 val = davinci_nand_readl(info, NANDFCR_OFFSET);
784 val |= BIT(info->core_chipsel);
785 davinci_nand_writel(info, NANDFCR_OFFSET, val);
786
787 spin_unlock_irq(&davinci_nand_lock);
788
789 /* Scan to find existence of the device(s) */
a5cfb4db 790 ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL);
ff4569c7
DB
791 if (ret < 0) {
792 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
30a3970c 793 goto err;
ff4569c7
DB
794 }
795
6a4123e5
DB
796 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
797 * is OK, but it allocates 6 bytes when only 3 are needed (for
798 * each 512 bytes). For the 4-bit HW ECC, that default is not
799 * usable: 10 bytes are needed, not 6.
800 */
801 if (pdata->ecc_bits == 4) {
a5cfb4db 802 int chunks = mtd->writesize / 512;
6a4123e5 803
a5cfb4db 804 if (!chunks || mtd->oobsize < 16) {
6a4123e5
DB
805 dev_dbg(&pdev->dev, "too small\n");
806 ret = -EINVAL;
30a3970c 807 goto err;
6a4123e5
DB
808 }
809
810 /* For small page chips, preserve the manufacturer's
811 * badblock marking data ... and make sure a flash BBT
812 * table marker fits in the free bytes.
813 */
814 if (chunks == 1) {
815 info->ecclayout = hwecc4_small;
a5cfb4db 816 info->ecclayout.oobfree[1].length = mtd->oobsize - 16;
6a4123e5
DB
817 goto syndrome_done;
818 }
f12a9473
SN
819 if (chunks == 4) {
820 info->ecclayout = hwecc4_2048;
821 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
822 goto syndrome_done;
823 }
a11244c0
SP
824 if (chunks == 8) {
825 info->ecclayout = hwecc4_4096;
826 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
827 goto syndrome_done;
828 }
6a4123e5 829
6a4123e5 830 ret = -EIO;
30a3970c 831 goto err;
6a4123e5
DB
832
833syndrome_done:
834 info->chip.ecc.layout = &info->ecclayout;
835 }
836
a5cfb4db 837 ret = nand_scan_tail(mtd);
6a4123e5 838 if (ret < 0)
30a3970c 839 goto err;
6a4123e5 840
192afdbf 841 if (pdata->parts)
a5cfb4db 842 ret = mtd_device_parse_register(mtd, NULL, NULL,
192afdbf 843 pdata->parts, pdata->nr_parts);
a61ae81a 844 else
a5cfb4db 845 ret = mtd_device_register(mtd, NULL, 0);
ff4569c7 846 if (ret < 0)
30a3970c 847 goto err;
ff4569c7
DB
848
849 val = davinci_nand_readl(info, NRCSR_OFFSET);
850 dev_info(&pdev->dev, "controller rev. %d.%d\n",
851 (val >> 8) & 0xff, val & 0xff);
852
853 return 0;
854
30a3970c 855err:
ea73fe7f 856 clk_disable_unprepare(info->clk);
ff4569c7
DB
857
858err_clk_enable:
6a4123e5
DB
859 spin_lock_irq(&davinci_nand_lock);
860 if (ecc_mode == NAND_ECC_HW_SYNDROME)
861 ecc4_busy = false;
862 spin_unlock_irq(&davinci_nand_lock);
ff4569c7
DB
863 return ret;
864}
865
eaaa4a9a 866static int nand_davinci_remove(struct platform_device *pdev)
ff4569c7
DB
867{
868 struct davinci_nand_info *info = platform_get_drvdata(pdev);
ff4569c7 869
6a4123e5
DB
870 spin_lock_irq(&davinci_nand_lock);
871 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
872 ecc4_busy = false;
873 spin_unlock_irq(&davinci_nand_lock);
874
a5cfb4db 875 nand_release(nand_to_mtd(&info->chip));
ff4569c7 876
ea73fe7f 877 clk_disable_unprepare(info->clk);
ff4569c7
DB
878
879 return 0;
880}
881
882static struct platform_driver nand_davinci_driver = {
eaaa4a9a
IK
883 .probe = nand_davinci_probe,
884 .remove = nand_davinci_remove,
ff4569c7
DB
885 .driver = {
886 .name = "davinci_nand",
c4f8cde8 887 .of_match_table = of_match_ptr(davinci_nand_of_match),
ff4569c7
DB
888 },
889};
890MODULE_ALIAS("platform:davinci_nand");
891
eaaa4a9a 892module_platform_driver(nand_davinci_driver);
ff4569c7
DB
893
894MODULE_LICENSE("GPL");
895MODULE_AUTHOR("Texas Instruments");
896MODULE_DESCRIPTION("Davinci NAND flash driver");
897