mtd: partitions: remove kmemdup()
[linux-2.6-block.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
215a02fd 35#include <linux/of.h>
1da177e4 36#include <linux/proc_fs.h>
b520e412 37#include <linux/idr.h>
a33eb6b9 38#include <linux/backing-dev.h>
05d71b46 39#include <linux/gfp.h>
0d01ff25 40#include <linux/slab.h>
3efe41be 41#include <linux/reboot.h>
727dc612 42#include <linux/kconfig.h>
1da177e4
LT
43
44#include <linux/mtd/mtd.h>
f5671ab3 45#include <linux/mtd/partitions.h>
1da177e4 46
356d70f1 47#include "mtdcore.h"
660685d9 48
b4caecd4 49static struct backing_dev_info mtd_bdi = {
a33eb6b9 50};
356d70f1 51
57b8045d
LPC
52#ifdef CONFIG_PM_SLEEP
53
54static int mtd_cls_suspend(struct device *dev)
55{
56 struct mtd_info *mtd = dev_get_drvdata(dev);
57
58 return mtd ? mtd_suspend(mtd) : 0;
59}
60
61static int mtd_cls_resume(struct device *dev)
62{
63 struct mtd_info *mtd = dev_get_drvdata(dev);
64
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
68}
69
70static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72#else
73#define MTD_CLS_PM_OPS NULL
74#endif
15bce40c
DW
75
76static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
57b8045d 79 .pm = MTD_CLS_PM_OPS,
15bce40c 80};
1f24b5a8 81
b520e412
BH
82static DEFINE_IDR(mtd_idr);
83
97894cda 84/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 85 should not use them for _anything_ else */
48b19268 86DEFINE_MUTEX(mtd_table_mutex);
1da177e4 87EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
88
89struct mtd_info *__mtd_next_device(int i)
90{
91 return idr_get_next(&mtd_idr, &i);
92}
93EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
94
95static LIST_HEAD(mtd_notifiers);
96
1f24b5a8 97
1f24b5a8 98#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
99
100/* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
102 */
103static void mtd_release(struct device *dev)
104{
5e472128 105 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 106 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 107
5e472128
BN
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
15bce40c
DW
110}
111
1f24b5a8
DB
112static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
d5de20a9 115 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
116 char *type;
117
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
f4837246
HS
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
1f24b5a8
DB
143 default:
144 type = "unknown";
145 }
146
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
148}
694bb7fc
KC
149static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150
151static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
153{
d5de20a9 154 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
155
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157
158}
159static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160
161static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163{
d5de20a9 164 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
165
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
168
169}
170static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171
172static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174{
d5de20a9 175 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
176
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178
179}
180static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181
182static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
184{
d5de20a9 185 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
186
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188
189}
190static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191
e7693548
AB
192static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194{
d5de20a9 195 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199
200}
201static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202
694bb7fc
KC
203static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
d5de20a9 206 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
207
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209
210}
211static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212
213static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
d5de20a9 216 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219
220}
221static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
223
224static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
d5de20a9 227 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
228
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230
231}
232static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 233
a9b672e8
MD
234static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236{
237 struct mtd_info *mtd = dev_get_drvdata(dev);
238
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240}
241static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242
d062d4ed
MD
243static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
246{
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250}
251
252static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
255{
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
259
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
263
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
266}
267static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
270
bf977e3f
HS
271static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273{
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277
278}
279static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280
990a3af0
EG
281static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288}
289static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
291
292static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299}
300static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301
302static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304{
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309}
310static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311
312static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314{
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319}
320static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321
1f24b5a8 322static struct attribute *mtd_attrs[] = {
694bb7fc
KC
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
e7693548 328 &dev_attr_subpagesize.attr,
694bb7fc
KC
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
a9b672e8 332 &dev_attr_ecc_strength.attr,
bf977e3f 333 &dev_attr_ecc_step_size.attr,
990a3af0
EG
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
d062d4ed 338 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
339 NULL,
340};
54c738f6 341ATTRIBUTE_GROUPS(mtd);
1f24b5a8
DB
342
343static struct device_type mtd_devtype = {
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
347};
348
b4caecd4
CH
349#ifndef CONFIG_MMU
350unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351{
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
361 }
362}
706a4e5a 363EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
364#endif
365
3efe41be
BN
366static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
368{
369 struct mtd_info *mtd;
370
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
373
374 return NOTIFY_DONE;
375}
376
1da177e4
LT
377/**
378 * add_mtd_device - register an MTD device
379 * @mtd: pointer to new MTD device info structure
380 *
381 * Add a device to the list of MTD devices present in the system, and
382 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 383 * zero on success or non-zero on failure.
1da177e4
LT
384 */
385
386int add_mtd_device(struct mtd_info *mtd)
387{
b520e412
BH
388 struct mtd_notifier *not;
389 int i, error;
1da177e4 390
be0dbff8
BN
391 /*
392 * May occur, for instance, on buggy drivers which call
393 * mtd_device_parse_register() multiple times on the same master MTD,
394 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
395 */
396 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
397 return -EEXIST;
398
b4caecd4 399 mtd->backing_dev_info = &mtd_bdi;
402d3265 400
783ed81f 401 BUG_ON(mtd->writesize == 0);
48b19268 402 mutex_lock(&mtd_table_mutex);
1da177e4 403
589e9c4d 404 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
405 if (i < 0) {
406 error = i;
b520e412 407 goto fail_locked;
57dd990c 408 }
1f24b5a8 409
b520e412
BH
410 mtd->index = i;
411 mtd->usecount = 0;
412
d062d4ed
MD
413 /* default value if not set by driver */
414 if (mtd->bitflip_threshold == 0)
415 mtd->bitflip_threshold = mtd->ecc_strength;
416
b520e412
BH
417 if (is_power_of_2(mtd->erasesize))
418 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
419 else
420 mtd->erasesize_shift = 0;
421
422 if (is_power_of_2(mtd->writesize))
423 mtd->writesize_shift = ffs(mtd->writesize) - 1;
424 else
425 mtd->writesize_shift = 0;
426
427 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
428 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
429
807f16d4
FK
430 if (mtd->dev.parent) {
431 if (!mtd->owner && mtd->dev.parent->driver)
432 mtd->owner = mtd->dev.parent->driver->owner;
433 if (!mtd->name)
434 mtd->name = dev_name(mtd->dev.parent);
435 } else {
436 pr_debug("mtd device won't show a device symlink in sysfs\n");
437 }
438
b520e412 439 /* Some chips always power up locked. Unlock them now */
38134565
AB
440 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
441 error = mtd_unlock(mtd, 0, mtd->size);
442 if (error && error != -EOPNOTSUPP)
b520e412
BH
443 printk(KERN_WARNING
444 "%s: unlock failed, writes may not work\n",
445 mtd->name);
57dd990c
BN
446 /* Ignore unlock failures? */
447 error = 0;
b520e412
BH
448 }
449
450 /* Caller should have set dev.parent to match the
260e89a6 451 * physical device, if appropriate.
b520e412
BH
452 */
453 mtd->dev.type = &mtd_devtype;
454 mtd->dev.class = &mtd_class;
455 mtd->dev.devt = MTD_DEVT(i);
456 dev_set_name(&mtd->dev, "mtd%d", i);
457 dev_set_drvdata(&mtd->dev, mtd);
215a02fd 458 of_node_get(mtd_get_of_node(mtd));
57dd990c
BN
459 error = device_register(&mtd->dev);
460 if (error)
b520e412
BH
461 goto fail_added;
462
5e472128
BN
463 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
464 "mtd%dro", i);
b520e412 465
289c0522 466 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
467 /* No need to get a refcount on the module containing
468 the notifier, since we hold the mtd_table_mutex */
469 list_for_each_entry(not, &mtd_notifiers, list)
470 not->add(mtd);
471
472 mutex_unlock(&mtd_table_mutex);
473 /* We _know_ we aren't being removed, because
474 our caller is still holding us here. So none
475 of this try_ nonsense, and no bitching about it
476 either. :) */
477 __module_get(THIS_MODULE);
478 return 0;
97894cda 479
b520e412 480fail_added:
215a02fd 481 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
482 idr_remove(&mtd_idr, i);
483fail_locked:
48b19268 484 mutex_unlock(&mtd_table_mutex);
57dd990c 485 return error;
1da177e4
LT
486}
487
488/**
489 * del_mtd_device - unregister an MTD device
490 * @mtd: pointer to MTD device info structure
491 *
492 * Remove a device from the list of MTD devices present in the system,
493 * and notify each currently active MTD 'user' of its departure.
494 * Returns zero on success or 1 on failure, which currently will happen
495 * if the requested device does not appear to be present in the list.
496 */
497
eea72d5f 498int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
499{
500 int ret;
75c0b84d 501 struct mtd_notifier *not;
97894cda 502
48b19268 503 mutex_lock(&mtd_table_mutex);
1da177e4 504
b520e412 505 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 506 ret = -ENODEV;
75c0b84d
ML
507 goto out_error;
508 }
509
510 /* No need to get a refcount on the module containing
511 the notifier, since we hold the mtd_table_mutex */
512 list_for_each_entry(not, &mtd_notifiers, list)
513 not->remove(mtd);
514
515 if (mtd->usecount) {
97894cda 516 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
517 mtd->index, mtd->name, mtd->usecount);
518 ret = -EBUSY;
519 } else {
694bb7fc
KC
520 device_unregister(&mtd->dev);
521
b520e412 522 idr_remove(&mtd_idr, mtd->index);
215a02fd 523 of_node_put(mtd_get_of_node(mtd));
1da177e4
LT
524
525 module_put(THIS_MODULE);
526 ret = 0;
527 }
528
75c0b84d 529out_error:
48b19268 530 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
531 return ret;
532}
533
727dc612 534static int mtd_add_device_partitions(struct mtd_info *mtd,
c42c2710 535 const struct mtd_partition *real_parts,
727dc612
DE
536 int nbparts)
537{
538 int ret;
539
540 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
541 ret = add_mtd_device(mtd);
57dd990c
BN
542 if (ret)
543 return ret;
727dc612
DE
544 }
545
546 if (nbparts > 0) {
547 ret = add_mtd_partitions(mtd, real_parts, nbparts);
548 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
549 del_mtd_device(mtd);
550 return ret;
551 }
552
553 return 0;
554}
555
556
1c4c215c
DES
557/**
558 * mtd_device_parse_register - parse partitions and register an MTD device.
559 *
560 * @mtd: the MTD device to register
561 * @types: the list of MTD partition probes to try, see
562 * 'parse_mtd_partitions()' for more information
c7975330 563 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
564 * @parts: fallback partition information to register, if parsing fails;
565 * only valid if %nr_parts > %0
566 * @nr_parts: the number of partitions in parts, if zero then the full
567 * MTD device is registered if no partition info is found
568 *
569 * This function aggregates MTD partitions parsing (done by
570 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
571 * basically follows the most common pattern found in many MTD drivers:
572 *
573 * * It first tries to probe partitions on MTD device @mtd using parsers
574 * specified in @types (if @types is %NULL, then the default list of parsers
575 * is used, see 'parse_mtd_partitions()' for more information). If none are
576 * found this functions tries to fallback to information specified in
577 * @parts/@nr_parts.
92394b5c 578 * * If any partitioning info was found, this function registers the found
727dc612
DE
579 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
580 * as a whole is registered first.
1c4c215c
DES
581 * * If no partitions were found this function just registers the MTD device
582 * @mtd and exits.
583 *
584 * Returns zero in case of success and a negative error code in case of failure.
585 */
26a47346 586int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 587 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
588 const struct mtd_partition *parts,
589 int nr_parts)
590{
727dc612 591 int ret;
c42c2710 592 const struct mtd_partition *real_parts = NULL;
1c4c215c 593
727dc612
DE
594 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
595 if (ret <= 0 && nr_parts && parts) {
c42c2710
BN
596 real_parts = parts;
597 ret = nr_parts;
1c4c215c 598 }
3e00ed0e
BN
599 /* Didn't come up with either parsed OR fallback partitions */
600 if (ret < 0) {
5a2415b0
BN
601 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
602 ret);
603 /* Don't abort on errors; we can still use unpartitioned MTD */
604 ret = 0;
3e00ed0e 605 }
1c4c215c 606
3e00ed0e
BN
607 ret = mtd_add_device_partitions(mtd, real_parts, ret);
608 if (ret)
609 goto out;
1c4c215c 610
e1dd8641
NC
611 /*
612 * FIXME: some drivers unfortunately call this function more than once.
613 * So we have to check if we've already assigned the reboot notifier.
614 *
615 * Generally, we can make multiple calls work for most cases, but it
616 * does cause problems with parse_mtd_partitions() above (e.g.,
617 * cmdlineparts will register partitions more than once).
618 */
f8479dd6
BN
619 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
620 "MTD already registered\n");
e1dd8641 621 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
622 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
623 register_reboot_notifier(&mtd->reboot_notifier);
624 }
625
3e00ed0e 626out:
c42c2710
BN
627 /* Cleanup any parsed partitions */
628 if (real_parts != parts)
629 kfree(real_parts);
727dc612 630 return ret;
1c4c215c
DES
631}
632EXPORT_SYMBOL_GPL(mtd_device_parse_register);
633
f5671ab3
JI
634/**
635 * mtd_device_unregister - unregister an existing MTD device.
636 *
637 * @master: the MTD device to unregister. This will unregister both the master
638 * and any partitions if registered.
639 */
640int mtd_device_unregister(struct mtd_info *master)
641{
642 int err;
643
3efe41be
BN
644 if (master->_reboot)
645 unregister_reboot_notifier(&master->reboot_notifier);
646
f5671ab3
JI
647 err = del_mtd_partitions(master);
648 if (err)
649 return err;
650
651 if (!device_is_registered(&master->dev))
652 return 0;
653
654 return del_mtd_device(master);
655}
656EXPORT_SYMBOL_GPL(mtd_device_unregister);
657
1da177e4
LT
658/**
659 * register_mtd_user - register a 'user' of MTD devices.
660 * @new: pointer to notifier info structure
661 *
662 * Registers a pair of callbacks function to be called upon addition
663 * or removal of MTD devices. Causes the 'add' callback to be immediately
664 * invoked for each MTD device currently present in the system.
665 */
1da177e4
LT
666void register_mtd_user (struct mtd_notifier *new)
667{
f1332ba2 668 struct mtd_info *mtd;
1da177e4 669
48b19268 670 mutex_lock(&mtd_table_mutex);
1da177e4
LT
671
672 list_add(&new->list, &mtd_notifiers);
673
d5ca5129 674 __module_get(THIS_MODULE);
97894cda 675
f1332ba2
BH
676 mtd_for_each_device(mtd)
677 new->add(mtd);
1da177e4 678
48b19268 679 mutex_unlock(&mtd_table_mutex);
1da177e4 680}
33c87b4a 681EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
682
683/**
49450795
AB
684 * unregister_mtd_user - unregister a 'user' of MTD devices.
685 * @old: pointer to notifier info structure
1da177e4
LT
686 *
687 * Removes a callback function pair from the list of 'users' to be
688 * notified upon addition or removal of MTD devices. Causes the
689 * 'remove' callback to be immediately invoked for each MTD device
690 * currently present in the system.
691 */
1da177e4
LT
692int unregister_mtd_user (struct mtd_notifier *old)
693{
f1332ba2 694 struct mtd_info *mtd;
1da177e4 695
48b19268 696 mutex_lock(&mtd_table_mutex);
1da177e4
LT
697
698 module_put(THIS_MODULE);
699
f1332ba2
BH
700 mtd_for_each_device(mtd)
701 old->remove(mtd);
97894cda 702
1da177e4 703 list_del(&old->list);
48b19268 704 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
705 return 0;
706}
33c87b4a 707EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
708
709/**
710 * get_mtd_device - obtain a validated handle for an MTD device
711 * @mtd: last known address of the required MTD device
712 * @num: internal device number of the required MTD device
713 *
714 * Given a number and NULL address, return the num'th entry in the device
715 * table, if any. Given an address and num == -1, search the device table
716 * for a device with that address and return if it's still present. Given
9c74034f
AB
717 * both, return the num'th driver only if its address matches. Return
718 * error code if not.
1da177e4 719 */
1da177e4
LT
720struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
721{
f1332ba2
BH
722 struct mtd_info *ret = NULL, *other;
723 int err = -ENODEV;
1da177e4 724
48b19268 725 mutex_lock(&mtd_table_mutex);
1da177e4
LT
726
727 if (num == -1) {
f1332ba2
BH
728 mtd_for_each_device(other) {
729 if (other == mtd) {
730 ret = mtd;
731 break;
732 }
733 }
b520e412
BH
734 } else if (num >= 0) {
735 ret = idr_find(&mtd_idr, num);
1da177e4
LT
736 if (mtd && mtd != ret)
737 ret = NULL;
738 }
739
3bd45657
ML
740 if (!ret) {
741 ret = ERR_PTR(err);
742 goto out;
9fe912ce 743 }
1da177e4 744
3bd45657
ML
745 err = __get_mtd_device(ret);
746 if (err)
747 ret = ERR_PTR(err);
748out:
9c74034f
AB
749 mutex_unlock(&mtd_table_mutex);
750 return ret;
3bd45657 751}
33c87b4a 752EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 753
3bd45657
ML
754
755int __get_mtd_device(struct mtd_info *mtd)
756{
757 int err;
758
759 if (!try_module_get(mtd->owner))
760 return -ENODEV;
761
3c3c10bb
AB
762 if (mtd->_get_device) {
763 err = mtd->_get_device(mtd);
3bd45657
ML
764
765 if (err) {
766 module_put(mtd->owner);
767 return err;
768 }
769 }
770 mtd->usecount++;
771 return 0;
1da177e4 772}
33c87b4a 773EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 774
7799308f
AB
775/**
776 * get_mtd_device_nm - obtain a validated handle for an MTD device by
777 * device name
778 * @name: MTD device name to open
779 *
780 * This function returns MTD device description structure in case of
781 * success and an error code in case of failure.
782 */
7799308f
AB
783struct mtd_info *get_mtd_device_nm(const char *name)
784{
f1332ba2
BH
785 int err = -ENODEV;
786 struct mtd_info *mtd = NULL, *other;
7799308f
AB
787
788 mutex_lock(&mtd_table_mutex);
789
f1332ba2
BH
790 mtd_for_each_device(other) {
791 if (!strcmp(name, other->name)) {
792 mtd = other;
7799308f
AB
793 break;
794 }
795 }
796
9fe912ce 797 if (!mtd)
7799308f
AB
798 goto out_unlock;
799
52534f2d
WG
800 err = __get_mtd_device(mtd);
801 if (err)
7799308f
AB
802 goto out_unlock;
803
9fe912ce
AB
804 mutex_unlock(&mtd_table_mutex);
805 return mtd;
7799308f
AB
806
807out_unlock:
808 mutex_unlock(&mtd_table_mutex);
9fe912ce 809 return ERR_PTR(err);
7799308f 810}
33c87b4a 811EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 812
1da177e4
LT
813void put_mtd_device(struct mtd_info *mtd)
814{
48b19268 815 mutex_lock(&mtd_table_mutex);
3bd45657
ML
816 __put_mtd_device(mtd);
817 mutex_unlock(&mtd_table_mutex);
818
819}
33c87b4a 820EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
821
822void __put_mtd_device(struct mtd_info *mtd)
823{
824 --mtd->usecount;
825 BUG_ON(mtd->usecount < 0);
826
3c3c10bb
AB
827 if (mtd->_put_device)
828 mtd->_put_device(mtd);
1da177e4
LT
829
830 module_put(mtd->owner);
831}
33c87b4a 832EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 833
8273a0c9
AB
834/*
835 * Erase is an asynchronous operation. Device drivers are supposed
836 * to call instr->callback() whenever the operation completes, even
837 * if it completes with a failure.
838 * Callers are supposed to pass a callback function and wait for it
839 * to be called before writing to the block.
840 */
841int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
842{
0c2b4e21 843 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 844 return -EINVAL;
664addc2
AB
845 if (!(mtd->flags & MTD_WRITEABLE))
846 return -EROFS;
3b27dac0 847 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
bcb1d238
AB
848 if (!instr->len) {
849 instr->state = MTD_ERASE_DONE;
850 mtd_erase_callback(instr);
851 return 0;
852 }
8273a0c9
AB
853 return mtd->_erase(mtd, instr);
854}
855EXPORT_SYMBOL_GPL(mtd_erase);
856
857/*
858 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
859 */
860int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
861 void **virt, resource_size_t *phys)
862{
863 *retlen = 0;
0dd5235f
AB
864 *virt = NULL;
865 if (phys)
866 *phys = 0;
8273a0c9
AB
867 if (!mtd->_point)
868 return -EOPNOTSUPP;
0c2b4e21 869 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 870 return -EINVAL;
bcb1d238
AB
871 if (!len)
872 return 0;
8273a0c9
AB
873 return mtd->_point(mtd, from, len, retlen, virt, phys);
874}
875EXPORT_SYMBOL_GPL(mtd_point);
876
877/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
878int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
879{
880 if (!mtd->_point)
881 return -EOPNOTSUPP;
0c2b4e21 882 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 883 return -EINVAL;
bcb1d238
AB
884 if (!len)
885 return 0;
8273a0c9
AB
886 return mtd->_unpoint(mtd, from, len);
887}
888EXPORT_SYMBOL_GPL(mtd_unpoint);
889
890/*
891 * Allow NOMMU mmap() to directly map the device (if not NULL)
892 * - return the address to which the offset maps
893 * - return -ENOSYS to indicate refusal to do the mapping
894 */
895unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
896 unsigned long offset, unsigned long flags)
897{
898 if (!mtd->_get_unmapped_area)
899 return -EOPNOTSUPP;
0c2b4e21 900 if (offset >= mtd->size || len > mtd->size - offset)
8273a0c9
AB
901 return -EINVAL;
902 return mtd->_get_unmapped_area(mtd, len, offset, flags);
903}
904EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
905
906int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
907 u_char *buf)
908{
edbc4540 909 int ret_code;
834247ec 910 *retlen = 0;
0c2b4e21 911 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 912 return -EINVAL;
bcb1d238
AB
913 if (!len)
914 return 0;
edbc4540
MD
915
916 /*
917 * In the absence of an error, drivers return a non-negative integer
918 * representing the maximum number of bitflips that were corrected on
919 * any one ecc region (if applicable; zero otherwise).
920 */
921 ret_code = mtd->_read(mtd, from, len, retlen, buf);
922 if (unlikely(ret_code < 0))
923 return ret_code;
924 if (mtd->ecc_strength == 0)
925 return 0; /* device lacks ecc */
926 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
8273a0c9
AB
927}
928EXPORT_SYMBOL_GPL(mtd_read);
929
930int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
931 const u_char *buf)
932{
933 *retlen = 0;
0c2b4e21 934 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 935 return -EINVAL;
664addc2
AB
936 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
937 return -EROFS;
bcb1d238
AB
938 if (!len)
939 return 0;
8273a0c9
AB
940 return mtd->_write(mtd, to, len, retlen, buf);
941}
942EXPORT_SYMBOL_GPL(mtd_write);
943
944/*
945 * In blackbox flight recorder like scenarios we want to make successful writes
946 * in interrupt context. panic_write() is only intended to be called when its
947 * known the kernel is about to panic and we need the write to succeed. Since
948 * the kernel is not going to be running for much longer, this function can
949 * break locks and delay to ensure the write succeeds (but not sleep).
950 */
951int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
952 const u_char *buf)
953{
954 *retlen = 0;
955 if (!mtd->_panic_write)
956 return -EOPNOTSUPP;
0c2b4e21 957 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 958 return -EINVAL;
664addc2
AB
959 if (!(mtd->flags & MTD_WRITEABLE))
960 return -EROFS;
bcb1d238
AB
961 if (!len)
962 return 0;
8273a0c9
AB
963 return mtd->_panic_write(mtd, to, len, retlen, buf);
964}
965EXPORT_SYMBOL_GPL(mtd_panic_write);
966
d2d48480
BN
967int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
968{
e47f6858 969 int ret_code;
d2d48480
BN
970 ops->retlen = ops->oobretlen = 0;
971 if (!mtd->_read_oob)
972 return -EOPNOTSUPP;
e47f6858
BN
973 /*
974 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
975 * similar to mtd->_read(), returning a non-negative integer
976 * representing max bitflips. In other cases, mtd->_read_oob() may
977 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
978 */
979 ret_code = mtd->_read_oob(mtd, from, ops);
980 if (unlikely(ret_code < 0))
981 return ret_code;
982 if (mtd->ecc_strength == 0)
983 return 0; /* device lacks ecc */
984 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
985}
986EXPORT_SYMBOL_GPL(mtd_read_oob);
987
de3cac93
AB
988/*
989 * Method to access the protection register area, present in some flash
990 * devices. The user data is one time programmable but the factory data is read
991 * only.
992 */
4b78fc42
CR
993int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
994 struct otp_info *buf)
de3cac93
AB
995{
996 if (!mtd->_get_fact_prot_info)
997 return -EOPNOTSUPP;
998 if (!len)
999 return 0;
4b78fc42 1000 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1001}
1002EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1003
1004int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1005 size_t *retlen, u_char *buf)
1006{
1007 *retlen = 0;
1008 if (!mtd->_read_fact_prot_reg)
1009 return -EOPNOTSUPP;
1010 if (!len)
1011 return 0;
1012 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1013}
1014EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1015
4b78fc42
CR
1016int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1017 struct otp_info *buf)
de3cac93
AB
1018{
1019 if (!mtd->_get_user_prot_info)
1020 return -EOPNOTSUPP;
1021 if (!len)
1022 return 0;
4b78fc42 1023 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1024}
1025EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1026
1027int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1028 size_t *retlen, u_char *buf)
1029{
1030 *retlen = 0;
1031 if (!mtd->_read_user_prot_reg)
1032 return -EOPNOTSUPP;
1033 if (!len)
1034 return 0;
1035 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1036}
1037EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1038
1039int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1040 size_t *retlen, u_char *buf)
1041{
9a78bc83
CR
1042 int ret;
1043
de3cac93
AB
1044 *retlen = 0;
1045 if (!mtd->_write_user_prot_reg)
1046 return -EOPNOTSUPP;
1047 if (!len)
1048 return 0;
9a78bc83
CR
1049 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1050 if (ret)
1051 return ret;
1052
1053 /*
1054 * If no data could be written at all, we are out of memory and
1055 * must return -ENOSPC.
1056 */
1057 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
1058}
1059EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1060
1061int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1062{
1063 if (!mtd->_lock_user_prot_reg)
1064 return -EOPNOTSUPP;
1065 if (!len)
1066 return 0;
1067 return mtd->_lock_user_prot_reg(mtd, from, len);
1068}
1069EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1070
8273a0c9
AB
1071/* Chip-supported device locking */
1072int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1073{
1074 if (!mtd->_lock)
1075 return -EOPNOTSUPP;
0c2b4e21 1076 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1077 return -EINVAL;
bcb1d238
AB
1078 if (!len)
1079 return 0;
8273a0c9
AB
1080 return mtd->_lock(mtd, ofs, len);
1081}
1082EXPORT_SYMBOL_GPL(mtd_lock);
1083
1084int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1085{
1086 if (!mtd->_unlock)
1087 return -EOPNOTSUPP;
0c2b4e21 1088 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1089 return -EINVAL;
bcb1d238
AB
1090 if (!len)
1091 return 0;
8273a0c9
AB
1092 return mtd->_unlock(mtd, ofs, len);
1093}
1094EXPORT_SYMBOL_GPL(mtd_unlock);
1095
1096int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1097{
1098 if (!mtd->_is_locked)
1099 return -EOPNOTSUPP;
0c2b4e21 1100 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1101 return -EINVAL;
bcb1d238
AB
1102 if (!len)
1103 return 0;
8273a0c9
AB
1104 return mtd->_is_locked(mtd, ofs, len);
1105}
1106EXPORT_SYMBOL_GPL(mtd_is_locked);
1107
8471bb73 1108int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 1109{
0c2b4e21 1110 if (ofs < 0 || ofs >= mtd->size)
8471bb73
EG
1111 return -EINVAL;
1112 if (!mtd->_block_isreserved)
8273a0c9 1113 return 0;
8471bb73
EG
1114 return mtd->_block_isreserved(mtd, ofs);
1115}
1116EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1117
1118int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1119{
0c2b4e21 1120 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1121 return -EINVAL;
8471bb73
EG
1122 if (!mtd->_block_isbad)
1123 return 0;
8273a0c9
AB
1124 return mtd->_block_isbad(mtd, ofs);
1125}
1126EXPORT_SYMBOL_GPL(mtd_block_isbad);
1127
1128int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1129{
1130 if (!mtd->_block_markbad)
1131 return -EOPNOTSUPP;
0c2b4e21 1132 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1133 return -EINVAL;
664addc2
AB
1134 if (!(mtd->flags & MTD_WRITEABLE))
1135 return -EROFS;
8273a0c9
AB
1136 return mtd->_block_markbad(mtd, ofs);
1137}
1138EXPORT_SYMBOL_GPL(mtd_block_markbad);
1139
52b02031
AB
1140/*
1141 * default_mtd_writev - the default writev method
1142 * @mtd: mtd device description object pointer
1143 * @vecs: the vectors to write
1144 * @count: count of vectors in @vecs
1145 * @to: the MTD device offset to write to
1146 * @retlen: on exit contains the count of bytes written to the MTD device.
1147 *
1148 * This function returns zero in case of success and a negative error code in
1149 * case of failure.
1da177e4 1150 */
1dbebd32
AB
1151static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1152 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1153{
1154 unsigned long i;
1155 size_t totlen = 0, thislen;
1156 int ret = 0;
1157
52b02031
AB
1158 for (i = 0; i < count; i++) {
1159 if (!vecs[i].iov_len)
1160 continue;
1161 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1162 vecs[i].iov_base);
1163 totlen += thislen;
1164 if (ret || thislen != vecs[i].iov_len)
1165 break;
1166 to += vecs[i].iov_len;
1da177e4 1167 }
52b02031 1168 *retlen = totlen;
1da177e4
LT
1169 return ret;
1170}
1dbebd32
AB
1171
1172/*
1173 * mtd_writev - the vector-based MTD write method
1174 * @mtd: mtd device description object pointer
1175 * @vecs: the vectors to write
1176 * @count: count of vectors in @vecs
1177 * @to: the MTD device offset to write to
1178 * @retlen: on exit contains the count of bytes written to the MTD device.
1179 *
1180 * This function returns zero in case of success and a negative error code in
1181 * case of failure.
1182 */
1183int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1184 unsigned long count, loff_t to, size_t *retlen)
1185{
1186 *retlen = 0;
664addc2
AB
1187 if (!(mtd->flags & MTD_WRITEABLE))
1188 return -EROFS;
3c3c10bb 1189 if (!mtd->_writev)
1dbebd32 1190 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1191 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1192}
1193EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1194
33b53716
GE
1195/**
1196 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1197 * @mtd: mtd device description object pointer
1198 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1199 * to the actual allocation size on success.
1200 *
1201 * This routine attempts to allocate a contiguous kernel buffer up to
1202 * the specified size, backing off the size of the request exponentially
1203 * until the request succeeds or until the allocation size falls below
1204 * the system page size. This attempts to make sure it does not adversely
1205 * impact system performance, so when allocating more than one page, we
caf49191
LT
1206 * ask the memory allocator to avoid re-trying, swapping, writing back
1207 * or performing I/O.
33b53716
GE
1208 *
1209 * Note, this function also makes sure that the allocated buffer is aligned to
1210 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1211 *
1212 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1213 * to handle smaller (i.e. degraded) buffer allocations under low- or
1214 * fragmented-memory situations where such reduced allocations, from a
1215 * requested ideal, are allowed.
1216 *
1217 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1218 */
1219void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1220{
d0164adc 1221 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
1222 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1223 void *kbuf;
1224
1225 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1226
1227 while (*size > min_alloc) {
1228 kbuf = kmalloc(*size, flags);
1229 if (kbuf)
1230 return kbuf;
1231
1232 *size >>= 1;
1233 *size = ALIGN(*size, mtd->writesize);
1234 }
1235
1236 /*
1237 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1238 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1239 */
1240 return kmalloc(*size, GFP_KERNEL);
1241}
33b53716 1242EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1243
2d2dce0e
PM
1244#ifdef CONFIG_PROC_FS
1245
1da177e4
LT
1246/*====================================================================*/
1247/* Support for /proc/mtd */
1248
447d9bd8 1249static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1250{
f1332ba2 1251 struct mtd_info *mtd;
1da177e4 1252
447d9bd8 1253 seq_puts(m, "dev: size erasesize name\n");
48b19268 1254 mutex_lock(&mtd_table_mutex);
f1332ba2 1255 mtd_for_each_device(mtd) {
447d9bd8
AD
1256 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1257 mtd->index, (unsigned long long)mtd->size,
1258 mtd->erasesize, mtd->name);
d5ca5129 1259 }
48b19268 1260 mutex_unlock(&mtd_table_mutex);
d5ca5129 1261 return 0;
1da177e4
LT
1262}
1263
447d9bd8
AD
1264static int mtd_proc_open(struct inode *inode, struct file *file)
1265{
1266 return single_open(file, mtd_proc_show, NULL);
1267}
1268
1269static const struct file_operations mtd_proc_ops = {
1270 .open = mtd_proc_open,
1271 .read = seq_read,
1272 .llseek = seq_lseek,
1273 .release = single_release,
1274};
45b09076
KC
1275#endif /* CONFIG_PROC_FS */
1276
1da177e4
LT
1277/*====================================================================*/
1278/* Init code */
1279
0661b1ac
JA
1280static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1281{
1282 int ret;
1283
1284 ret = bdi_init(bdi);
1285 if (!ret)
02aa2a37 1286 ret = bdi_register(bdi, NULL, "%s", name);
0661b1ac
JA
1287
1288 if (ret)
1289 bdi_destroy(bdi);
1290
1291 return ret;
1292}
1293
93e56214
AB
1294static struct proc_dir_entry *proc_mtd;
1295
1da177e4
LT
1296static int __init init_mtd(void)
1297{
15bce40c 1298 int ret;
0661b1ac 1299
15bce40c 1300 ret = class_register(&mtd_class);
0661b1ac
JA
1301 if (ret)
1302 goto err_reg;
1303
b4caecd4 1304 ret = mtd_bdi_init(&mtd_bdi, "mtd");
0661b1ac 1305 if (ret)
b4caecd4 1306 goto err_bdi;
694bb7fc 1307
447d9bd8 1308 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
93e56214 1309
660685d9
AB
1310 ret = init_mtdchar();
1311 if (ret)
1312 goto out_procfs;
1313
1da177e4 1314 return 0;
0661b1ac 1315
660685d9
AB
1316out_procfs:
1317 if (proc_mtd)
1318 remove_proc_entry("mtd", NULL);
b4caecd4 1319err_bdi:
0661b1ac
JA
1320 class_unregister(&mtd_class);
1321err_reg:
1322 pr_err("Error registering mtd class or bdi: %d\n", ret);
1323 return ret;
1da177e4
LT
1324}
1325
1326static void __exit cleanup_mtd(void)
1327{
660685d9 1328 cleanup_mtdchar();
d5ca5129 1329 if (proc_mtd)
93e56214 1330 remove_proc_entry("mtd", NULL);
15bce40c 1331 class_unregister(&mtd_class);
b4caecd4 1332 bdi_destroy(&mtd_bdi);
35667b99 1333 idr_destroy(&mtd_idr);
1da177e4
LT
1334}
1335
1336module_init(init_mtd);
1337module_exit(cleanup_mtd);
1338
1da177e4
LT
1339MODULE_LICENSE("GPL");
1340MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1341MODULE_DESCRIPTION("Core MTD registration and access routines");