mtd: devices: docg3: Fix kernel-doc 'bad line' and 'excessive doc' issues
[linux-2.6-block.git] / drivers / mtd / mtdcore.c
CommitLineData
fd534e9b 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
1da177e4
LT
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
a1452a37
DW
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
1da177e4
LT
8 */
9
1da177e4
LT
10#include <linux/module.h>
11#include <linux/kernel.h>
1da177e4 12#include <linux/ptrace.h>
447d9bd8 13#include <linux/seq_file.h>
1da177e4
LT
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
7799308f 18#include <linux/err.h>
1da177e4
LT
19#include <linux/ioctl.h>
20#include <linux/init.h>
215a02fd 21#include <linux/of.h>
1da177e4 22#include <linux/proc_fs.h>
b520e412 23#include <linux/idr.h>
a33eb6b9 24#include <linux/backing-dev.h>
05d71b46 25#include <linux/gfp.h>
0d01ff25 26#include <linux/slab.h>
3efe41be 27#include <linux/reboot.h>
fea728c0 28#include <linux/leds.h>
e8e3edb9 29#include <linux/debugfs.h>
c4dfa25a 30#include <linux/nvmem-provider.h>
1da177e4
LT
31
32#include <linux/mtd/mtd.h>
f5671ab3 33#include <linux/mtd/partitions.h>
1da177e4 34
356d70f1 35#include "mtdcore.h"
660685d9 36
fa06052d 37struct backing_dev_info *mtd_bdi;
356d70f1 38
57b8045d
LPC
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
15bce40c
DW
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
57b8045d 66 .pm = MTD_CLS_PM_OPS,
15bce40c 67};
1f24b5a8 68
b520e412
BH
69static DEFINE_IDR(mtd_idr);
70
97894cda 71/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 72 should not use them for _anything_ else */
48b19268 73DEFINE_MUTEX(mtd_table_mutex);
1da177e4 74EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
81
82static LIST_HEAD(mtd_notifiers);
83
1f24b5a8 84
1f24b5a8 85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
5e472128 92 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 93 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 94
5e472128
BN
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
15bce40c
DW
97}
98
1f24b5a8
DB
99static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101{
d5de20a9 102 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
f4837246
HS
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
1f24b5a8
DB
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135}
694bb7fc
KC
136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140{
d5de20a9 141 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
694bb7fc
KC
144}
145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149{
d5de20a9 150 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
694bb7fc
KC
154}
155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159{
d5de20a9 160 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
694bb7fc
KC
163}
164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168{
d5de20a9 169 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
694bb7fc
KC
172}
173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
e7693548
AB
175static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
d5de20a9 178 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
e7693548
AB
182}
183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
694bb7fc
KC
185static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187{
d5de20a9 188 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
694bb7fc
KC
191}
192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
7cc9aa66
XL
194static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200}
201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
694bb7fc
KC
203static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
d5de20a9 206 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
694bb7fc
KC
209}
210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
d5de20a9 216 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
694bb7fc
KC
219}
220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 221
a9b672e8
MD
222static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228}
229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
d062d4ed
MD
231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238}
239
240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243{
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254}
255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
bf977e3f
HS
259static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261{
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266}
267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
990a3af0
EG
269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276}
277static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287}
288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297}
298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302{
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307}
308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
1f24b5a8 310static struct attribute *mtd_attrs[] = {
694bb7fc
KC
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
e7693548 316 &dev_attr_subpagesize.attr,
694bb7fc 317 &dev_attr_oobsize.attr,
7cc9aa66 318 &dev_attr_oobavail.attr,
694bb7fc
KC
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
a9b672e8 321 &dev_attr_ecc_strength.attr,
bf977e3f 322 &dev_attr_ecc_step_size.attr,
990a3af0
EG
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
d062d4ed 327 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
328 NULL,
329};
54c738f6 330ATTRIBUTE_GROUPS(mtd);
1f24b5a8 331
75864b30 332static const struct device_type mtd_devtype = {
1f24b5a8
DB
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336};
337
5610d1f4 338static int mtd_partid_debug_show(struct seq_file *s, void *p)
1018c94b
ZL
339{
340 struct mtd_info *mtd = s->private;
341
342 seq_printf(s, "%s\n", mtd->dbg.partid);
343
344 return 0;
345}
346
5610d1f4 347DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
1018c94b 348
5610d1f4 349static int mtd_partname_debug_show(struct seq_file *s, void *p)
1018c94b
ZL
350{
351 struct mtd_info *mtd = s->private;
352
353 seq_printf(s, "%s\n", mtd->dbg.partname);
354
355 return 0;
356}
357
5610d1f4 358DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
1018c94b
ZL
359
360static struct dentry *dfs_dir_mtd;
361
362static void mtd_debugfs_populate(struct mtd_info *mtd)
363{
364 struct device *dev = &mtd->dev;
c2d73ba8 365 struct dentry *root;
1018c94b
ZL
366
367 if (IS_ERR_OR_NULL(dfs_dir_mtd))
368 return;
369
370 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
1018c94b
ZL
371 mtd->dbg.dfs_dir = root;
372
c2d73ba8
GKH
373 if (mtd->dbg.partid)
374 debugfs_create_file("partid", 0400, root, mtd,
375 &mtd_partid_debug_fops);
1018c94b 376
c2d73ba8
GKH
377 if (mtd->dbg.partname)
378 debugfs_create_file("partname", 0400, root, mtd,
379 &mtd_partname_debug_fops);
1018c94b
ZL
380}
381
b4caecd4
CH
382#ifndef CONFIG_MMU
383unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
384{
385 switch (mtd->type) {
386 case MTD_RAM:
387 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
388 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
389 case MTD_ROM:
390 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
391 NOMMU_MAP_READ;
392 default:
393 return NOMMU_MAP_COPY;
394 }
395}
706a4e5a 396EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
397#endif
398
3efe41be
BN
399static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
400 void *cmd)
401{
402 struct mtd_info *mtd;
403
404 mtd = container_of(n, struct mtd_info, reboot_notifier);
405 mtd->_reboot(mtd);
406
407 return NOTIFY_DONE;
408}
409
477b0229
BB
410/**
411 * mtd_wunit_to_pairing_info - get pairing information of a wunit
412 * @mtd: pointer to new MTD device info structure
413 * @wunit: write unit we are interested in
414 * @info: returned pairing information
415 *
416 * Retrieve pairing information associated to the wunit.
417 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
418 * paired together, and where programming a page may influence the page it is
419 * paired with.
420 * The notion of page is replaced by the term wunit (write-unit) to stay
421 * consistent with the ->writesize field.
422 *
423 * The @wunit argument can be extracted from an absolute offset using
424 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
425 * to @wunit.
426 *
427 * From the pairing info the MTD user can find all the wunits paired with
428 * @wunit using the following loop:
429 *
430 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
431 * info.pair = i;
432 * mtd_pairing_info_to_wunit(mtd, &info);
433 * ...
434 * }
435 */
436int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
437 struct mtd_pairing_info *info)
438{
46b5889c
MR
439 struct mtd_info *master = mtd_get_master(mtd);
440 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
477b0229
BB
441
442 if (wunit < 0 || wunit >= npairs)
443 return -EINVAL;
444
46b5889c
MR
445 if (master->pairing && master->pairing->get_info)
446 return master->pairing->get_info(master, wunit, info);
477b0229
BB
447
448 info->group = 0;
449 info->pair = wunit;
450
451 return 0;
452}
453EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
454
455/**
c77a9312 456 * mtd_pairing_info_to_wunit - get wunit from pairing information
477b0229
BB
457 * @mtd: pointer to new MTD device info structure
458 * @info: pairing information struct
459 *
460 * Returns a positive number representing the wunit associated to the info
461 * struct, or a negative error code.
462 *
463 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
464 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
465 * doc).
466 *
467 * It can also be used to only program the first page of each pair (i.e.
468 * page attached to group 0), which allows one to use an MLC NAND in
469 * software-emulated SLC mode:
470 *
471 * info.group = 0;
472 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
473 * for (info.pair = 0; info.pair < npairs; info.pair++) {
474 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
475 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
476 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
477 * }
478 */
479int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
480 const struct mtd_pairing_info *info)
481{
46b5889c
MR
482 struct mtd_info *master = mtd_get_master(mtd);
483 int ngroups = mtd_pairing_groups(master);
484 int npairs = mtd_wunit_per_eb(master) / ngroups;
477b0229
BB
485
486 if (!info || info->pair < 0 || info->pair >= npairs ||
487 info->group < 0 || info->group >= ngroups)
488 return -EINVAL;
489
46b5889c
MR
490 if (master->pairing && master->pairing->get_wunit)
491 return mtd->pairing->get_wunit(master, info);
477b0229
BB
492
493 return info->pair;
494}
495EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
496
497/**
498 * mtd_pairing_groups - get the number of pairing groups
499 * @mtd: pointer to new MTD device info structure
500 *
501 * Returns the number of pairing groups.
502 *
503 * This number is usually equal to the number of bits exposed by a single
504 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
505 * to iterate over all pages of a given pair.
506 */
507int mtd_pairing_groups(struct mtd_info *mtd)
508{
46b5889c
MR
509 struct mtd_info *master = mtd_get_master(mtd);
510
511 if (!master->pairing || !master->pairing->ngroups)
477b0229
BB
512 return 1;
513
46b5889c 514 return master->pairing->ngroups;
477b0229
BB
515}
516EXPORT_SYMBOL_GPL(mtd_pairing_groups);
517
c4dfa25a
AB
518static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
519 void *val, size_t bytes)
520{
521 struct mtd_info *mtd = priv;
522 size_t retlen;
523 int err;
524
525 err = mtd_read(mtd, offset, bytes, &retlen, val);
526 if (err && err != -EUCLEAN)
527 return err;
528
529 return retlen == bytes ? 0 : -EIO;
530}
531
532static int mtd_nvmem_add(struct mtd_info *mtd)
533{
534 struct nvmem_config config = {};
535
6e952685 536 config.id = -1;
c4dfa25a 537 config.dev = &mtd->dev;
7b01b723 538 config.name = dev_name(&mtd->dev);
c4dfa25a
AB
539 config.owner = THIS_MODULE;
540 config.reg_read = mtd_nvmem_reg_read;
541 config.size = mtd->size;
542 config.word_size = 1;
543 config.stride = 1;
544 config.read_only = true;
545 config.root_only = true;
546 config.no_of_node = true;
547 config.priv = mtd;
548
549 mtd->nvmem = nvmem_register(&config);
550 if (IS_ERR(mtd->nvmem)) {
551 /* Just ignore if there is no NVMEM support in the kernel */
19e16fb4 552 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
c4dfa25a
AB
553 mtd->nvmem = NULL;
554 } else {
555 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
556 return PTR_ERR(mtd->nvmem);
557 }
558 }
559
560 return 0;
561}
562
1da177e4
LT
563/**
564 * add_mtd_device - register an MTD device
565 * @mtd: pointer to new MTD device info structure
566 *
567 * Add a device to the list of MTD devices present in the system, and
568 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 569 * zero on success or non-zero on failure.
1da177e4
LT
570 */
571
572int add_mtd_device(struct mtd_info *mtd)
573{
46b5889c 574 struct mtd_info *master = mtd_get_master(mtd);
b520e412
BH
575 struct mtd_notifier *not;
576 int i, error;
1da177e4 577
be0dbff8
BN
578 /*
579 * May occur, for instance, on buggy drivers which call
580 * mtd_device_parse_register() multiple times on the same master MTD,
581 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
582 */
fa06052d 583 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
be0dbff8
BN
584 return -EEXIST;
585
783ed81f 586 BUG_ON(mtd->writesize == 0);
33f45c44 587
2431c4f5
BB
588 /*
589 * MTD drivers should implement ->_{write,read}() or
590 * ->_{write,read}_oob(), but not both.
591 */
592 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
593 (mtd->_read && mtd->_read_oob)))
594 return -EINVAL;
595
46b5889c 596 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
33f45c44
BB
597 !(mtd->flags & MTD_NO_ERASE)))
598 return -EINVAL;
599
9e3307a1
BB
600 /*
601 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
602 * master is an MLC NAND and has a proper pairing scheme defined.
603 * We also reject masters that implement ->_writev() for now, because
604 * NAND controller drivers don't implement this hook, and adding the
605 * SLC -> MLC address/length conversion to this path is useless if we
606 * don't have a user.
607 */
608 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
609 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
610 !master->pairing || master->_writev))
611 return -EINVAL;
612
48b19268 613 mutex_lock(&mtd_table_mutex);
1da177e4 614
589e9c4d 615 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
616 if (i < 0) {
617 error = i;
b520e412 618 goto fail_locked;
57dd990c 619 }
1f24b5a8 620
b520e412
BH
621 mtd->index = i;
622 mtd->usecount = 0;
623
d062d4ed
MD
624 /* default value if not set by driver */
625 if (mtd->bitflip_threshold == 0)
626 mtd->bitflip_threshold = mtd->ecc_strength;
627
9e3307a1
BB
628 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
629 int ngroups = mtd_pairing_groups(master);
630
631 mtd->erasesize /= ngroups;
632 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
633 mtd->erasesize;
634 }
635
b520e412
BH
636 if (is_power_of_2(mtd->erasesize))
637 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
638 else
639 mtd->erasesize_shift = 0;
640
641 if (is_power_of_2(mtd->writesize))
642 mtd->writesize_shift = ffs(mtd->writesize) - 1;
643 else
644 mtd->writesize_shift = 0;
645
646 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
647 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
648
649 /* Some chips always power up locked. Unlock them now */
38134565
AB
650 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
651 error = mtd_unlock(mtd, 0, mtd->size);
652 if (error && error != -EOPNOTSUPP)
b520e412
BH
653 printk(KERN_WARNING
654 "%s: unlock failed, writes may not work\n",
655 mtd->name);
57dd990c
BN
656 /* Ignore unlock failures? */
657 error = 0;
b520e412
BH
658 }
659
660 /* Caller should have set dev.parent to match the
260e89a6 661 * physical device, if appropriate.
b520e412
BH
662 */
663 mtd->dev.type = &mtd_devtype;
664 mtd->dev.class = &mtd_class;
665 mtd->dev.devt = MTD_DEVT(i);
666 dev_set_name(&mtd->dev, "mtd%d", i);
667 dev_set_drvdata(&mtd->dev, mtd);
215a02fd 668 of_node_get(mtd_get_of_node(mtd));
57dd990c
BN
669 error = device_register(&mtd->dev);
670 if (error)
b520e412
BH
671 goto fail_added;
672
c4dfa25a
AB
673 /* Add the nvmem provider */
674 error = mtd_nvmem_add(mtd);
675 if (error)
676 goto fail_nvmem_add;
677
1018c94b 678 mtd_debugfs_populate(mtd);
e8e3edb9 679
5e472128
BN
680 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
681 "mtd%dro", i);
b520e412 682
289c0522 683 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
684 /* No need to get a refcount on the module containing
685 the notifier, since we hold the mtd_table_mutex */
686 list_for_each_entry(not, &mtd_notifiers, list)
687 not->add(mtd);
688
689 mutex_unlock(&mtd_table_mutex);
690 /* We _know_ we aren't being removed, because
691 our caller is still holding us here. So none
692 of this try_ nonsense, and no bitching about it
693 either. :) */
694 __module_get(THIS_MODULE);
695 return 0;
97894cda 696
c4dfa25a
AB
697fail_nvmem_add:
698 device_unregister(&mtd->dev);
b520e412 699fail_added:
215a02fd 700 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
701 idr_remove(&mtd_idr, i);
702fail_locked:
48b19268 703 mutex_unlock(&mtd_table_mutex);
57dd990c 704 return error;
1da177e4
LT
705}
706
707/**
708 * del_mtd_device - unregister an MTD device
709 * @mtd: pointer to MTD device info structure
710 *
711 * Remove a device from the list of MTD devices present in the system,
712 * and notify each currently active MTD 'user' of its departure.
713 * Returns zero on success or 1 on failure, which currently will happen
714 * if the requested device does not appear to be present in the list.
715 */
716
eea72d5f 717int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
718{
719 int ret;
75c0b84d 720 struct mtd_notifier *not;
97894cda 721
48b19268 722 mutex_lock(&mtd_table_mutex);
1da177e4 723
e8e3edb9
MR
724 debugfs_remove_recursive(mtd->dbg.dfs_dir);
725
b520e412 726 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 727 ret = -ENODEV;
75c0b84d
ML
728 goto out_error;
729 }
730
731 /* No need to get a refcount on the module containing
732 the notifier, since we hold the mtd_table_mutex */
733 list_for_each_entry(not, &mtd_notifiers, list)
734 not->remove(mtd);
735
736 if (mtd->usecount) {
97894cda 737 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
738 mtd->index, mtd->name, mtd->usecount);
739 ret = -EBUSY;
740 } else {
c4dfa25a
AB
741 /* Try to remove the NVMEM provider */
742 if (mtd->nvmem)
743 nvmem_unregister(mtd->nvmem);
744
694bb7fc
KC
745 device_unregister(&mtd->dev);
746
b520e412 747 idr_remove(&mtd_idr, mtd->index);
215a02fd 748 of_node_put(mtd_get_of_node(mtd));
1da177e4
LT
749
750 module_put(THIS_MODULE);
751 ret = 0;
752 }
753
75c0b84d 754out_error:
48b19268 755 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
756 return ret;
757}
758
472b444e
BN
759/*
760 * Set a few defaults based on the parent devices, if not provided by the
761 * driver
762 */
763static void mtd_set_dev_defaults(struct mtd_info *mtd)
764{
765 if (mtd->dev.parent) {
766 if (!mtd->owner && mtd->dev.parent->driver)
767 mtd->owner = mtd->dev.parent->driver->owner;
768 if (!mtd->name)
769 mtd->name = dev_name(mtd->dev.parent);
770 } else {
771 pr_debug("mtd device won't show a device symlink in sysfs\n");
772 }
1186af45 773
46b5889c
MR
774 INIT_LIST_HEAD(&mtd->partitions);
775 mutex_init(&mtd->master.partitions_lock);
472b444e 776}
727dc612 777
1c4c215c
DES
778/**
779 * mtd_device_parse_register - parse partitions and register an MTD device.
780 *
781 * @mtd: the MTD device to register
782 * @types: the list of MTD partition probes to try, see
783 * 'parse_mtd_partitions()' for more information
c7975330 784 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
785 * @parts: fallback partition information to register, if parsing fails;
786 * only valid if %nr_parts > %0
787 * @nr_parts: the number of partitions in parts, if zero then the full
788 * MTD device is registered if no partition info is found
789 *
790 * This function aggregates MTD partitions parsing (done by
791 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
792 * basically follows the most common pattern found in many MTD drivers:
793 *
55a999a0
RM
794 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
795 * registered first.
796 * * Then It tries to probe partitions on MTD device @mtd using parsers
1c4c215c
DES
797 * specified in @types (if @types is %NULL, then the default list of parsers
798 * is used, see 'parse_mtd_partitions()' for more information). If none are
799 * found this functions tries to fallback to information specified in
800 * @parts/@nr_parts.
1c4c215c
DES
801 * * If no partitions were found this function just registers the MTD device
802 * @mtd and exits.
803 *
804 * Returns zero in case of success and a negative error code in case of failure.
805 */
26a47346 806int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 807 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
808 const struct mtd_partition *parts,
809 int nr_parts)
810{
727dc612 811 int ret;
1c4c215c 812
472b444e
BN
813 mtd_set_dev_defaults(mtd);
814
2c77c57d
RM
815 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
816 ret = add_mtd_device(mtd);
817 if (ret)
818 return ret;
819 }
820
0dbe4ea7 821 /* Prefer parsed partitions over driver-provided fallback */
5ac67ce3
RM
822 ret = parse_mtd_partitions(mtd, types, parser_data);
823 if (ret > 0)
824 ret = 0;
825 else if (nr_parts)
0dbe4ea7
RM
826 ret = add_mtd_partitions(mtd, parts, nr_parts);
827 else if (!device_is_registered(&mtd->dev))
828 ret = add_mtd_device(mtd);
829 else
830 ret = 0;
831
3e00ed0e
BN
832 if (ret)
833 goto out;
1c4c215c 834
e1dd8641
NC
835 /*
836 * FIXME: some drivers unfortunately call this function more than once.
837 * So we have to check if we've already assigned the reboot notifier.
838 *
839 * Generally, we can make multiple calls work for most cases, but it
840 * does cause problems with parse_mtd_partitions() above (e.g.,
841 * cmdlineparts will register partitions more than once).
842 */
f8479dd6
BN
843 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
844 "MTD already registered\n");
e1dd8641 845 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
846 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
847 register_reboot_notifier(&mtd->reboot_notifier);
848 }
849
3e00ed0e 850out:
2c77c57d
RM
851 if (ret && device_is_registered(&mtd->dev))
852 del_mtd_device(mtd);
853
727dc612 854 return ret;
1c4c215c
DES
855}
856EXPORT_SYMBOL_GPL(mtd_device_parse_register);
857
f5671ab3
JI
858/**
859 * mtd_device_unregister - unregister an existing MTD device.
860 *
861 * @master: the MTD device to unregister. This will unregister both the master
862 * and any partitions if registered.
863 */
864int mtd_device_unregister(struct mtd_info *master)
865{
866 int err;
867
3efe41be
BN
868 if (master->_reboot)
869 unregister_reboot_notifier(&master->reboot_notifier);
870
f5671ab3
JI
871 err = del_mtd_partitions(master);
872 if (err)
873 return err;
874
875 if (!device_is_registered(&master->dev))
876 return 0;
877
878 return del_mtd_device(master);
879}
880EXPORT_SYMBOL_GPL(mtd_device_unregister);
881
1da177e4
LT
882/**
883 * register_mtd_user - register a 'user' of MTD devices.
884 * @new: pointer to notifier info structure
885 *
886 * Registers a pair of callbacks function to be called upon addition
887 * or removal of MTD devices. Causes the 'add' callback to be immediately
888 * invoked for each MTD device currently present in the system.
889 */
1da177e4
LT
890void register_mtd_user (struct mtd_notifier *new)
891{
f1332ba2 892 struct mtd_info *mtd;
1da177e4 893
48b19268 894 mutex_lock(&mtd_table_mutex);
1da177e4
LT
895
896 list_add(&new->list, &mtd_notifiers);
897
d5ca5129 898 __module_get(THIS_MODULE);
97894cda 899
f1332ba2
BH
900 mtd_for_each_device(mtd)
901 new->add(mtd);
1da177e4 902
48b19268 903 mutex_unlock(&mtd_table_mutex);
1da177e4 904}
33c87b4a 905EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
906
907/**
49450795
AB
908 * unregister_mtd_user - unregister a 'user' of MTD devices.
909 * @old: pointer to notifier info structure
1da177e4
LT
910 *
911 * Removes a callback function pair from the list of 'users' to be
912 * notified upon addition or removal of MTD devices. Causes the
913 * 'remove' callback to be immediately invoked for each MTD device
914 * currently present in the system.
915 */
1da177e4
LT
916int unregister_mtd_user (struct mtd_notifier *old)
917{
f1332ba2 918 struct mtd_info *mtd;
1da177e4 919
48b19268 920 mutex_lock(&mtd_table_mutex);
1da177e4
LT
921
922 module_put(THIS_MODULE);
923
f1332ba2
BH
924 mtd_for_each_device(mtd)
925 old->remove(mtd);
97894cda 926
1da177e4 927 list_del(&old->list);
48b19268 928 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
929 return 0;
930}
33c87b4a 931EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
932
933/**
934 * get_mtd_device - obtain a validated handle for an MTD device
935 * @mtd: last known address of the required MTD device
936 * @num: internal device number of the required MTD device
937 *
938 * Given a number and NULL address, return the num'th entry in the device
939 * table, if any. Given an address and num == -1, search the device table
940 * for a device with that address and return if it's still present. Given
9c74034f
AB
941 * both, return the num'th driver only if its address matches. Return
942 * error code if not.
1da177e4 943 */
1da177e4
LT
944struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
945{
f1332ba2
BH
946 struct mtd_info *ret = NULL, *other;
947 int err = -ENODEV;
1da177e4 948
48b19268 949 mutex_lock(&mtd_table_mutex);
1da177e4
LT
950
951 if (num == -1) {
f1332ba2
BH
952 mtd_for_each_device(other) {
953 if (other == mtd) {
954 ret = mtd;
955 break;
956 }
957 }
b520e412
BH
958 } else if (num >= 0) {
959 ret = idr_find(&mtd_idr, num);
1da177e4
LT
960 if (mtd && mtd != ret)
961 ret = NULL;
962 }
963
3bd45657
ML
964 if (!ret) {
965 ret = ERR_PTR(err);
966 goto out;
9fe912ce 967 }
1da177e4 968
3bd45657
ML
969 err = __get_mtd_device(ret);
970 if (err)
971 ret = ERR_PTR(err);
972out:
9c74034f
AB
973 mutex_unlock(&mtd_table_mutex);
974 return ret;
3bd45657 975}
33c87b4a 976EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 977
3bd45657
ML
978
979int __get_mtd_device(struct mtd_info *mtd)
980{
46b5889c 981 struct mtd_info *master = mtd_get_master(mtd);
3bd45657
ML
982 int err;
983
46b5889c 984 if (!try_module_get(master->owner))
3bd45657
ML
985 return -ENODEV;
986
46b5889c
MR
987 if (master->_get_device) {
988 err = master->_get_device(mtd);
3bd45657
ML
989
990 if (err) {
46b5889c 991 module_put(master->owner);
3bd45657
ML
992 return err;
993 }
994 }
46b5889c
MR
995
996 while (mtd->parent) {
997 mtd->usecount++;
998 mtd = mtd->parent;
999 }
1000
3bd45657 1001 return 0;
1da177e4 1002}
33c87b4a 1003EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 1004
7799308f
AB
1005/**
1006 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1007 * device name
1008 * @name: MTD device name to open
1009 *
1010 * This function returns MTD device description structure in case of
1011 * success and an error code in case of failure.
1012 */
7799308f
AB
1013struct mtd_info *get_mtd_device_nm(const char *name)
1014{
f1332ba2
BH
1015 int err = -ENODEV;
1016 struct mtd_info *mtd = NULL, *other;
7799308f
AB
1017
1018 mutex_lock(&mtd_table_mutex);
1019
f1332ba2
BH
1020 mtd_for_each_device(other) {
1021 if (!strcmp(name, other->name)) {
1022 mtd = other;
7799308f
AB
1023 break;
1024 }
1025 }
1026
9fe912ce 1027 if (!mtd)
7799308f
AB
1028 goto out_unlock;
1029
52534f2d
WG
1030 err = __get_mtd_device(mtd);
1031 if (err)
7799308f
AB
1032 goto out_unlock;
1033
9fe912ce
AB
1034 mutex_unlock(&mtd_table_mutex);
1035 return mtd;
7799308f
AB
1036
1037out_unlock:
1038 mutex_unlock(&mtd_table_mutex);
9fe912ce 1039 return ERR_PTR(err);
7799308f 1040}
33c87b4a 1041EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 1042
1da177e4
LT
1043void put_mtd_device(struct mtd_info *mtd)
1044{
48b19268 1045 mutex_lock(&mtd_table_mutex);
3bd45657
ML
1046 __put_mtd_device(mtd);
1047 mutex_unlock(&mtd_table_mutex);
1048
1049}
33c87b4a 1050EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
1051
1052void __put_mtd_device(struct mtd_info *mtd)
1053{
46b5889c 1054 struct mtd_info *master = mtd_get_master(mtd);
3bd45657 1055
46b5889c
MR
1056 while (mtd->parent) {
1057 --mtd->usecount;
1058 BUG_ON(mtd->usecount < 0);
1059 mtd = mtd->parent;
1060 }
1061
1062 if (master->_put_device)
1063 master->_put_device(master);
1da177e4 1064
46b5889c 1065 module_put(master->owner);
1da177e4 1066}
33c87b4a 1067EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 1068
8273a0c9 1069/*
884cfd90
BB
1070 * Erase is an synchronous operation. Device drivers are epected to return a
1071 * negative error code if the operation failed and update instr->fail_addr
1072 * to point the portion that was not properly erased.
8273a0c9
AB
1073 */
1074int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1075{
46b5889c
MR
1076 struct mtd_info *master = mtd_get_master(mtd);
1077 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
9e3307a1 1078 struct erase_info adjinstr;
46b5889c
MR
1079 int ret;
1080
c585da9f 1081 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
9e3307a1 1082 adjinstr = *instr;
c585da9f 1083
46b5889c 1084 if (!mtd->erasesize || !master->_erase)
e6e620f0
BB
1085 return -ENOTSUPP;
1086
0c2b4e21 1087 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 1088 return -EINVAL;
664addc2
AB
1089 if (!(mtd->flags & MTD_WRITEABLE))
1090 return -EROFS;
e6e620f0 1091
e7bfb3fd 1092 if (!instr->len)
bcb1d238 1093 return 0;
e7bfb3fd 1094
fea728c0 1095 ledtrig_mtd_activity();
46b5889c 1096
9e3307a1
BB
1097 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1098 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1099 master->erasesize;
1100 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1101 master->erasesize) -
1102 adjinstr.addr;
1103 }
1104
1105 adjinstr.addr += mst_ofs;
1106
1107 ret = master->_erase(master, &adjinstr);
1108
1109 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1110 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1111 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1112 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1113 master);
1114 instr->fail_addr *= mtd->erasesize;
1115 }
1116 }
46b5889c 1117
46b5889c 1118 return ret;
8273a0c9
AB
1119}
1120EXPORT_SYMBOL_GPL(mtd_erase);
1121
1122/*
1123 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1124 */
1125int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1126 void **virt, resource_size_t *phys)
1127{
46b5889c
MR
1128 struct mtd_info *master = mtd_get_master(mtd);
1129
8273a0c9 1130 *retlen = 0;
0dd5235f
AB
1131 *virt = NULL;
1132 if (phys)
1133 *phys = 0;
46b5889c 1134 if (!master->_point)
8273a0c9 1135 return -EOPNOTSUPP;
0c2b4e21 1136 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1137 return -EINVAL;
bcb1d238
AB
1138 if (!len)
1139 return 0;
46b5889c
MR
1140
1141 from = mtd_get_master_ofs(mtd, from);
1142 return master->_point(master, from, len, retlen, virt, phys);
8273a0c9
AB
1143}
1144EXPORT_SYMBOL_GPL(mtd_point);
1145
1146/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1147int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1148{
46b5889c
MR
1149 struct mtd_info *master = mtd_get_master(mtd);
1150
1151 if (!master->_unpoint)
8273a0c9 1152 return -EOPNOTSUPP;
0c2b4e21 1153 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1154 return -EINVAL;
bcb1d238
AB
1155 if (!len)
1156 return 0;
46b5889c 1157 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
8273a0c9
AB
1158}
1159EXPORT_SYMBOL_GPL(mtd_unpoint);
1160
1161/*
1162 * Allow NOMMU mmap() to directly map the device (if not NULL)
1163 * - return the address to which the offset maps
1164 * - return -ENOSYS to indicate refusal to do the mapping
1165 */
1166unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1167 unsigned long offset, unsigned long flags)
1168{
9eaa903c
NP
1169 size_t retlen;
1170 void *virt;
1171 int ret;
1172
1173 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1174 if (ret)
1175 return ret;
1176 if (retlen != len) {
1177 mtd_unpoint(mtd, offset, retlen);
1178 return -ENOSYS;
1179 }
1180 return (unsigned long)virt;
8273a0c9
AB
1181}
1182EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1183
46b5889c
MR
1184static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1185 const struct mtd_ecc_stats *old_stats)
1186{
1187 struct mtd_ecc_stats diff;
1188
1189 if (master == mtd)
1190 return;
1191
1192 diff = master->ecc_stats;
1193 diff.failed -= old_stats->failed;
1194 diff.corrected -= old_stats->corrected;
1195
1196 while (mtd->parent) {
1197 mtd->ecc_stats.failed += diff.failed;
1198 mtd->ecc_stats.corrected += diff.corrected;
1199 mtd = mtd->parent;
1200 }
1201}
1202
8273a0c9
AB
1203int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1204 u_char *buf)
1205{
2431c4f5
BB
1206 struct mtd_oob_ops ops = {
1207 .len = len,
1208 .datbuf = buf,
1209 };
1210 int ret;
edbc4540 1211
2431c4f5
BB
1212 ret = mtd_read_oob(mtd, from, &ops);
1213 *retlen = ops.retlen;
24ff1292 1214
2431c4f5 1215 return ret;
8273a0c9
AB
1216}
1217EXPORT_SYMBOL_GPL(mtd_read);
1218
1219int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1220 const u_char *buf)
1221{
2431c4f5
BB
1222 struct mtd_oob_ops ops = {
1223 .len = len,
1224 .datbuf = (u8 *)buf,
1225 };
1226 int ret;
24ff1292 1227
2431c4f5
BB
1228 ret = mtd_write_oob(mtd, to, &ops);
1229 *retlen = ops.retlen;
24ff1292 1230
2431c4f5 1231 return ret;
8273a0c9
AB
1232}
1233EXPORT_SYMBOL_GPL(mtd_write);
1234
1235/*
1236 * In blackbox flight recorder like scenarios we want to make successful writes
1237 * in interrupt context. panic_write() is only intended to be called when its
1238 * known the kernel is about to panic and we need the write to succeed. Since
1239 * the kernel is not going to be running for much longer, this function can
1240 * break locks and delay to ensure the write succeeds (but not sleep).
1241 */
1242int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1243 const u_char *buf)
1244{
46b5889c
MR
1245 struct mtd_info *master = mtd_get_master(mtd);
1246
8273a0c9 1247 *retlen = 0;
46b5889c 1248 if (!master->_panic_write)
8273a0c9 1249 return -EOPNOTSUPP;
0c2b4e21 1250 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1251 return -EINVAL;
664addc2
AB
1252 if (!(mtd->flags & MTD_WRITEABLE))
1253 return -EROFS;
bcb1d238
AB
1254 if (!len)
1255 return 0;
630e8d55
KD
1256 if (!master->oops_panic_write)
1257 master->oops_panic_write = true;
9f897bfd 1258
46b5889c
MR
1259 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1260 retlen, buf);
8273a0c9
AB
1261}
1262EXPORT_SYMBOL_GPL(mtd_panic_write);
1263
5cdd929d
BB
1264static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1265 struct mtd_oob_ops *ops)
1266{
1267 /*
1268 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1269 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1270 * this case.
1271 */
1272 if (!ops->datbuf)
1273 ops->len = 0;
1274
1275 if (!ops->oobbuf)
1276 ops->ooblen = 0;
1277
d82c3682 1278 if (offs < 0 || offs + ops->len > mtd->size)
5cdd929d
BB
1279 return -EINVAL;
1280
1281 if (ops->ooblen) {
89f706db 1282 size_t maxooblen;
5cdd929d
BB
1283
1284 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1285 return -EINVAL;
1286
89f706db
MR
1287 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1288 mtd_div_by_ws(offs, mtd)) *
5cdd929d
BB
1289 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1290 if (ops->ooblen > maxooblen)
1291 return -EINVAL;
1292 }
1293
1294 return 0;
1295}
1296
9e3307a1
BB
1297static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1298 struct mtd_oob_ops *ops)
1299{
1300 struct mtd_info *master = mtd_get_master(mtd);
1301 int ret;
1302
1303 from = mtd_get_master_ofs(mtd, from);
1304 if (master->_read_oob)
1305 ret = master->_read_oob(master, from, ops);
1306 else
1307 ret = master->_read(master, from, ops->len, &ops->retlen,
1308 ops->datbuf);
1309
1310 return ret;
1311}
1312
1313static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1314 struct mtd_oob_ops *ops)
1315{
1316 struct mtd_info *master = mtd_get_master(mtd);
1317 int ret;
1318
1319 to = mtd_get_master_ofs(mtd, to);
1320 if (master->_write_oob)
1321 ret = master->_write_oob(master, to, ops);
1322 else
1323 ret = master->_write(master, to, ops->len, &ops->retlen,
1324 ops->datbuf);
1325
1326 return ret;
1327}
1328
1329static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1330 struct mtd_oob_ops *ops)
1331{
1332 struct mtd_info *master = mtd_get_master(mtd);
1333 int ngroups = mtd_pairing_groups(master);
1334 int npairs = mtd_wunit_per_eb(master) / ngroups;
1335 struct mtd_oob_ops adjops = *ops;
1336 unsigned int wunit, oobavail;
1337 struct mtd_pairing_info info;
1338 int max_bitflips = 0;
1339 u32 ebofs, pageofs;
1340 loff_t base, pos;
1341
1342 ebofs = mtd_mod_by_eb(start, mtd);
1343 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1344 info.group = 0;
1345 info.pair = mtd_div_by_ws(ebofs, mtd);
1346 pageofs = mtd_mod_by_ws(ebofs, mtd);
1347 oobavail = mtd_oobavail(mtd, ops);
1348
1349 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1350 int ret;
1351
1352 if (info.pair >= npairs) {
1353 info.pair = 0;
1354 base += master->erasesize;
1355 }
1356
1357 wunit = mtd_pairing_info_to_wunit(master, &info);
1358 pos = mtd_wunit_to_offset(mtd, base, wunit);
1359
1360 adjops.len = ops->len - ops->retlen;
1361 if (adjops.len > mtd->writesize - pageofs)
1362 adjops.len = mtd->writesize - pageofs;
1363
1364 adjops.ooblen = ops->ooblen - ops->oobretlen;
1365 if (adjops.ooblen > oobavail - adjops.ooboffs)
1366 adjops.ooblen = oobavail - adjops.ooboffs;
1367
1368 if (read) {
1369 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1370 if (ret > 0)
1371 max_bitflips = max(max_bitflips, ret);
1372 } else {
1373 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1374 }
1375
1376 if (ret < 0)
1377 return ret;
1378
1379 max_bitflips = max(max_bitflips, ret);
1380 ops->retlen += adjops.retlen;
1381 ops->oobretlen += adjops.oobretlen;
1382 adjops.datbuf += adjops.retlen;
1383 adjops.oobbuf += adjops.oobretlen;
1384 adjops.ooboffs = 0;
1385 pageofs = 0;
1386 info.pair++;
1387 }
1388
1389 return max_bitflips;
1390}
1391
d2d48480
BN
1392int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1393{
46b5889c
MR
1394 struct mtd_info *master = mtd_get_master(mtd);
1395 struct mtd_ecc_stats old_stats = master->ecc_stats;
e47f6858 1396 int ret_code;
46b5889c 1397
d2d48480 1398 ops->retlen = ops->oobretlen = 0;
fea728c0 1399
5cdd929d
BB
1400 ret_code = mtd_check_oob_ops(mtd, from, ops);
1401 if (ret_code)
1402 return ret_code;
1403
fea728c0 1404 ledtrig_mtd_activity();
89fd23ef
MR
1405
1406 /* Check the validity of a potential fallback on mtd->_read */
46b5889c 1407 if (!master->_read_oob && (!master->_read || ops->oobbuf))
89fd23ef
MR
1408 return -EOPNOTSUPP;
1409
9e3307a1
BB
1410 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1411 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
89fd23ef 1412 else
9e3307a1 1413 ret_code = mtd_read_oob_std(mtd, from, ops);
46b5889c
MR
1414
1415 mtd_update_ecc_stats(mtd, master, &old_stats);
89fd23ef 1416
e47f6858
BN
1417 /*
1418 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1419 * similar to mtd->_read(), returning a non-negative integer
1420 * representing max bitflips. In other cases, mtd->_read_oob() may
1421 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1422 */
e47f6858
BN
1423 if (unlikely(ret_code < 0))
1424 return ret_code;
1425 if (mtd->ecc_strength == 0)
1426 return 0; /* device lacks ecc */
1427 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
1428}
1429EXPORT_SYMBOL_GPL(mtd_read_oob);
1430
0c034fe3
EG
1431int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1432 struct mtd_oob_ops *ops)
1433{
46b5889c 1434 struct mtd_info *master = mtd_get_master(mtd);
5cdd929d
BB
1435 int ret;
1436
0c034fe3 1437 ops->retlen = ops->oobretlen = 0;
89fd23ef 1438
0c034fe3
EG
1439 if (!(mtd->flags & MTD_WRITEABLE))
1440 return -EROFS;
5cdd929d
BB
1441
1442 ret = mtd_check_oob_ops(mtd, to, ops);
1443 if (ret)
1444 return ret;
1445
fea728c0 1446 ledtrig_mtd_activity();
89fd23ef
MR
1447
1448 /* Check the validity of a potential fallback on mtd->_write */
46b5889c 1449 if (!master->_write_oob && (!master->_write || ops->oobbuf))
89fd23ef
MR
1450 return -EOPNOTSUPP;
1451
9e3307a1
BB
1452 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1453 return mtd_io_emulated_slc(mtd, to, false, ops);
46b5889c 1454
9e3307a1 1455 return mtd_write_oob_std(mtd, to, ops);
0c034fe3
EG
1456}
1457EXPORT_SYMBOL_GPL(mtd_write_oob);
1458
75eb2cec
BB
1459/**
1460 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1461 * @mtd: MTD device structure
1462 * @section: ECC section. Depending on the layout you may have all the ECC
1463 * bytes stored in a single contiguous section, or one section
1464 * per ECC chunk (and sometime several sections for a single ECC
1465 * ECC chunk)
1466 * @oobecc: OOB region struct filled with the appropriate ECC position
1467 * information
1468 *
7da0fffb 1469 * This function returns ECC section information in the OOB area. If you want
75eb2cec
BB
1470 * to get all the ECC bytes information, then you should call
1471 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1472 *
1473 * Returns zero on success, a negative error code otherwise.
1474 */
1475int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1476 struct mtd_oob_region *oobecc)
1477{
46b5889c
MR
1478 struct mtd_info *master = mtd_get_master(mtd);
1479
75eb2cec
BB
1480 memset(oobecc, 0, sizeof(*oobecc));
1481
46b5889c 1482 if (!master || section < 0)
75eb2cec
BB
1483 return -EINVAL;
1484
46b5889c 1485 if (!master->ooblayout || !master->ooblayout->ecc)
75eb2cec
BB
1486 return -ENOTSUPP;
1487
46b5889c 1488 return master->ooblayout->ecc(master, section, oobecc);
75eb2cec
BB
1489}
1490EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1491
1492/**
1493 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1494 * section
1495 * @mtd: MTD device structure
1496 * @section: Free section you are interested in. Depending on the layout
1497 * you may have all the free bytes stored in a single contiguous
1498 * section, or one section per ECC chunk plus an extra section
1499 * for the remaining bytes (or other funky layout).
1500 * @oobfree: OOB region struct filled with the appropriate free position
1501 * information
1502 *
7da0fffb 1503 * This function returns free bytes position in the OOB area. If you want
75eb2cec
BB
1504 * to get all the free bytes information, then you should call
1505 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1506 *
1507 * Returns zero on success, a negative error code otherwise.
1508 */
1509int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1510 struct mtd_oob_region *oobfree)
1511{
46b5889c
MR
1512 struct mtd_info *master = mtd_get_master(mtd);
1513
75eb2cec
BB
1514 memset(oobfree, 0, sizeof(*oobfree));
1515
46b5889c 1516 if (!master || section < 0)
75eb2cec
BB
1517 return -EINVAL;
1518
46b5889c 1519 if (!master->ooblayout || !master->ooblayout->free)
75eb2cec
BB
1520 return -ENOTSUPP;
1521
46b5889c 1522 return master->ooblayout->free(master, section, oobfree);
75eb2cec
BB
1523}
1524EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1525
1526/**
1527 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1528 * @mtd: mtd info structure
1529 * @byte: the byte we are searching for
1530 * @sectionp: pointer where the section id will be stored
1531 * @oobregion: used to retrieve the ECC position
1532 * @iter: iterator function. Should be either mtd_ooblayout_free or
1533 * mtd_ooblayout_ecc depending on the region type you're searching for
1534 *
7da0fffb 1535 * This function returns the section id and oobregion information of a
75eb2cec
BB
1536 * specific byte. For example, say you want to know where the 4th ECC byte is
1537 * stored, you'll use:
1538 *
1539 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1540 *
1541 * Returns zero on success, a negative error code otherwise.
1542 */
1543static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1544 int *sectionp, struct mtd_oob_region *oobregion,
1545 int (*iter)(struct mtd_info *,
1546 int section,
1547 struct mtd_oob_region *oobregion))
1548{
1549 int pos = 0, ret, section = 0;
1550
1551 memset(oobregion, 0, sizeof(*oobregion));
1552
1553 while (1) {
1554 ret = iter(mtd, section, oobregion);
1555 if (ret)
1556 return ret;
1557
1558 if (pos + oobregion->length > byte)
1559 break;
1560
1561 pos += oobregion->length;
1562 section++;
1563 }
1564
1565 /*
1566 * Adjust region info to make it start at the beginning at the
1567 * 'start' ECC byte.
1568 */
1569 oobregion->offset += byte - pos;
1570 oobregion->length -= byte - pos;
1571 *sectionp = section;
1572
1573 return 0;
1574}
1575
1576/**
1577 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1578 * ECC byte
1579 * @mtd: mtd info structure
1580 * @eccbyte: the byte we are searching for
1581 * @sectionp: pointer where the section id will be stored
1582 * @oobregion: OOB region information
1583 *
1584 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1585 * byte.
1586 *
1587 * Returns zero on success, a negative error code otherwise.
1588 */
1589int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1590 int *section,
1591 struct mtd_oob_region *oobregion)
1592{
1593 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1594 mtd_ooblayout_ecc);
1595}
1596EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1597
1598/**
1599 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1600 * @mtd: mtd info structure
1601 * @buf: destination buffer to store OOB bytes
1602 * @oobbuf: OOB buffer
1603 * @start: first byte to retrieve
1604 * @nbytes: number of bytes to retrieve
1605 * @iter: section iterator
1606 *
1607 * Extract bytes attached to a specific category (ECC or free)
1608 * from the OOB buffer and copy them into buf.
1609 *
1610 * Returns zero on success, a negative error code otherwise.
1611 */
1612static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1613 const u8 *oobbuf, int start, int nbytes,
1614 int (*iter)(struct mtd_info *,
1615 int section,
1616 struct mtd_oob_region *oobregion))
1617{
8e8fd4d1
MY
1618 struct mtd_oob_region oobregion;
1619 int section, ret;
75eb2cec
BB
1620
1621 ret = mtd_ooblayout_find_region(mtd, start, &section,
1622 &oobregion, iter);
1623
1624 while (!ret) {
1625 int cnt;
1626
7c295ef9 1627 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1628 memcpy(buf, oobbuf + oobregion.offset, cnt);
1629 buf += cnt;
1630 nbytes -= cnt;
1631
1632 if (!nbytes)
1633 break;
1634
1635 ret = iter(mtd, ++section, &oobregion);
1636 }
1637
1638 return ret;
1639}
1640
1641/**
1642 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1643 * @mtd: mtd info structure
1644 * @buf: source buffer to get OOB bytes from
1645 * @oobbuf: OOB buffer
1646 * @start: first OOB byte to set
1647 * @nbytes: number of OOB bytes to set
1648 * @iter: section iterator
1649 *
1650 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1651 * is selected by passing the appropriate iterator.
1652 *
1653 * Returns zero on success, a negative error code otherwise.
1654 */
1655static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1656 u8 *oobbuf, int start, int nbytes,
1657 int (*iter)(struct mtd_info *,
1658 int section,
1659 struct mtd_oob_region *oobregion))
1660{
8e8fd4d1
MY
1661 struct mtd_oob_region oobregion;
1662 int section, ret;
75eb2cec
BB
1663
1664 ret = mtd_ooblayout_find_region(mtd, start, &section,
1665 &oobregion, iter);
1666
1667 while (!ret) {
1668 int cnt;
1669
7c295ef9 1670 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1671 memcpy(oobbuf + oobregion.offset, buf, cnt);
1672 buf += cnt;
1673 nbytes -= cnt;
1674
1675 if (!nbytes)
1676 break;
1677
1678 ret = iter(mtd, ++section, &oobregion);
1679 }
1680
1681 return ret;
1682}
1683
1684/**
1685 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1686 * @mtd: mtd info structure
1687 * @iter: category iterator
1688 *
1689 * Count the number of bytes in a given category.
1690 *
1691 * Returns a positive value on success, a negative error code otherwise.
1692 */
1693static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1694 int (*iter)(struct mtd_info *,
1695 int section,
1696 struct mtd_oob_region *oobregion))
1697{
4d6aecfb 1698 struct mtd_oob_region oobregion;
75eb2cec
BB
1699 int section = 0, ret, nbytes = 0;
1700
1701 while (1) {
1702 ret = iter(mtd, section++, &oobregion);
1703 if (ret) {
1704 if (ret == -ERANGE)
1705 ret = nbytes;
1706 break;
1707 }
1708
1709 nbytes += oobregion.length;
1710 }
1711
1712 return ret;
1713}
1714
1715/**
1716 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1717 * @mtd: mtd info structure
1718 * @eccbuf: destination buffer to store ECC bytes
1719 * @oobbuf: OOB buffer
1720 * @start: first ECC byte to retrieve
1721 * @nbytes: number of ECC bytes to retrieve
1722 *
1723 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1724 *
1725 * Returns zero on success, a negative error code otherwise.
1726 */
1727int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1728 const u8 *oobbuf, int start, int nbytes)
1729{
1730 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1731 mtd_ooblayout_ecc);
1732}
1733EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1734
1735/**
1736 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1737 * @mtd: mtd info structure
1738 * @eccbuf: source buffer to get ECC bytes from
1739 * @oobbuf: OOB buffer
1740 * @start: first ECC byte to set
1741 * @nbytes: number of ECC bytes to set
1742 *
1743 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1744 *
1745 * Returns zero on success, a negative error code otherwise.
1746 */
1747int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1748 u8 *oobbuf, int start, int nbytes)
1749{
1750 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751 mtd_ooblayout_ecc);
1752}
1753EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1754
1755/**
1756 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1757 * @mtd: mtd info structure
1758 * @databuf: destination buffer to store ECC bytes
1759 * @oobbuf: OOB buffer
1760 * @start: first ECC byte to retrieve
1761 * @nbytes: number of ECC bytes to retrieve
1762 *
1763 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1768 const u8 *oobbuf, int start, int nbytes)
1769{
1770 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1771 mtd_ooblayout_free);
1772}
1773EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1774
1775/**
c77a9312 1776 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
75eb2cec 1777 * @mtd: mtd info structure
c77a9312 1778 * @databuf: source buffer to get data bytes from
75eb2cec
BB
1779 * @oobbuf: OOB buffer
1780 * @start: first ECC byte to set
1781 * @nbytes: number of ECC bytes to set
1782 *
519494a9 1783 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
75eb2cec
BB
1784 *
1785 * Returns zero on success, a negative error code otherwise.
1786 */
1787int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1788 u8 *oobbuf, int start, int nbytes)
1789{
1790 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1791 mtd_ooblayout_free);
1792}
1793EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1794
1795/**
1796 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1797 * @mtd: mtd info structure
1798 *
1799 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1800 *
1801 * Returns zero on success, a negative error code otherwise.
1802 */
1803int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1804{
1805 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1806}
1807EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1808
1809/**
c77a9312 1810 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
75eb2cec
BB
1811 * @mtd: mtd info structure
1812 *
1813 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1814 *
1815 * Returns zero on success, a negative error code otherwise.
1816 */
1817int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1818{
1819 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1820}
1821EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1822
de3cac93
AB
1823/*
1824 * Method to access the protection register area, present in some flash
1825 * devices. The user data is one time programmable but the factory data is read
1826 * only.
1827 */
4b78fc42
CR
1828int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1829 struct otp_info *buf)
de3cac93 1830{
46b5889c
MR
1831 struct mtd_info *master = mtd_get_master(mtd);
1832
1833 if (!master->_get_fact_prot_info)
de3cac93
AB
1834 return -EOPNOTSUPP;
1835 if (!len)
1836 return 0;
46b5889c 1837 return master->_get_fact_prot_info(master, len, retlen, buf);
de3cac93
AB
1838}
1839EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1840
1841int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1842 size_t *retlen, u_char *buf)
1843{
46b5889c
MR
1844 struct mtd_info *master = mtd_get_master(mtd);
1845
de3cac93 1846 *retlen = 0;
46b5889c 1847 if (!master->_read_fact_prot_reg)
de3cac93
AB
1848 return -EOPNOTSUPP;
1849 if (!len)
1850 return 0;
46b5889c 1851 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
de3cac93
AB
1852}
1853EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1854
4b78fc42
CR
1855int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1856 struct otp_info *buf)
de3cac93 1857{
46b5889c
MR
1858 struct mtd_info *master = mtd_get_master(mtd);
1859
1860 if (!master->_get_user_prot_info)
de3cac93
AB
1861 return -EOPNOTSUPP;
1862 if (!len)
1863 return 0;
46b5889c 1864 return master->_get_user_prot_info(master, len, retlen, buf);
de3cac93
AB
1865}
1866EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1867
1868int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1869 size_t *retlen, u_char *buf)
1870{
46b5889c
MR
1871 struct mtd_info *master = mtd_get_master(mtd);
1872
de3cac93 1873 *retlen = 0;
46b5889c 1874 if (!master->_read_user_prot_reg)
de3cac93
AB
1875 return -EOPNOTSUPP;
1876 if (!len)
1877 return 0;
46b5889c 1878 return master->_read_user_prot_reg(master, from, len, retlen, buf);
de3cac93
AB
1879}
1880EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1881
1882int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1883 size_t *retlen, u_char *buf)
1884{
46b5889c 1885 struct mtd_info *master = mtd_get_master(mtd);
9a78bc83
CR
1886 int ret;
1887
de3cac93 1888 *retlen = 0;
46b5889c 1889 if (!master->_write_user_prot_reg)
de3cac93
AB
1890 return -EOPNOTSUPP;
1891 if (!len)
1892 return 0;
46b5889c 1893 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
9a78bc83
CR
1894 if (ret)
1895 return ret;
1896
1897 /*
1898 * If no data could be written at all, we are out of memory and
1899 * must return -ENOSPC.
1900 */
1901 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
1902}
1903EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1904
1905int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1906{
46b5889c
MR
1907 struct mtd_info *master = mtd_get_master(mtd);
1908
1909 if (!master->_lock_user_prot_reg)
de3cac93
AB
1910 return -EOPNOTSUPP;
1911 if (!len)
1912 return 0;
46b5889c 1913 return master->_lock_user_prot_reg(master, from, len);
de3cac93
AB
1914}
1915EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1916
8273a0c9
AB
1917/* Chip-supported device locking */
1918int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1919{
46b5889c
MR
1920 struct mtd_info *master = mtd_get_master(mtd);
1921
1922 if (!master->_lock)
8273a0c9 1923 return -EOPNOTSUPP;
0c2b4e21 1924 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1925 return -EINVAL;
bcb1d238
AB
1926 if (!len)
1927 return 0;
9e3307a1
BB
1928
1929 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1930 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1931 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1932 }
1933
46b5889c 1934 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
1935}
1936EXPORT_SYMBOL_GPL(mtd_lock);
1937
1938int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939{
46b5889c
MR
1940 struct mtd_info *master = mtd_get_master(mtd);
1941
1942 if (!master->_unlock)
8273a0c9 1943 return -EOPNOTSUPP;
0c2b4e21 1944 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1945 return -EINVAL;
bcb1d238
AB
1946 if (!len)
1947 return 0;
9e3307a1
BB
1948
1949 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952 }
1953
46b5889c 1954 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
1955}
1956EXPORT_SYMBOL_GPL(mtd_unlock);
1957
1958int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959{
46b5889c
MR
1960 struct mtd_info *master = mtd_get_master(mtd);
1961
1962 if (!master->_is_locked)
8273a0c9 1963 return -EOPNOTSUPP;
0c2b4e21 1964 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1965 return -EINVAL;
bcb1d238
AB
1966 if (!len)
1967 return 0;
9e3307a1
BB
1968
1969 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972 }
1973
46b5889c 1974 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
1975}
1976EXPORT_SYMBOL_GPL(mtd_is_locked);
1977
8471bb73 1978int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 1979{
46b5889c
MR
1980 struct mtd_info *master = mtd_get_master(mtd);
1981
0c2b4e21 1982 if (ofs < 0 || ofs >= mtd->size)
8471bb73 1983 return -EINVAL;
46b5889c 1984 if (!master->_block_isreserved)
8273a0c9 1985 return 0;
9e3307a1
BB
1986
1987 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1988 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1989
46b5889c 1990 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
8471bb73
EG
1991}
1992EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1993
1994int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1995{
46b5889c
MR
1996 struct mtd_info *master = mtd_get_master(mtd);
1997
0c2b4e21 1998 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1999 return -EINVAL;
46b5889c 2000 if (!master->_block_isbad)
8471bb73 2001 return 0;
9e3307a1
BB
2002
2003 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2004 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2005
46b5889c 2006 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
8273a0c9
AB
2007}
2008EXPORT_SYMBOL_GPL(mtd_block_isbad);
2009
2010int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2011{
46b5889c
MR
2012 struct mtd_info *master = mtd_get_master(mtd);
2013 int ret;
2014
2015 if (!master->_block_markbad)
8273a0c9 2016 return -EOPNOTSUPP;
0c2b4e21 2017 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 2018 return -EINVAL;
664addc2
AB
2019 if (!(mtd->flags & MTD_WRITEABLE))
2020 return -EROFS;
46b5889c 2021
9e3307a1
BB
2022 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2023 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2024
46b5889c
MR
2025 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2026 if (ret)
2027 return ret;
2028
2029 while (mtd->parent) {
2030 mtd->ecc_stats.badblocks++;
2031 mtd = mtd->parent;
2032 }
2033
2034 return 0;
8273a0c9
AB
2035}
2036EXPORT_SYMBOL_GPL(mtd_block_markbad);
2037
52b02031
AB
2038/*
2039 * default_mtd_writev - the default writev method
2040 * @mtd: mtd device description object pointer
2041 * @vecs: the vectors to write
2042 * @count: count of vectors in @vecs
2043 * @to: the MTD device offset to write to
2044 * @retlen: on exit contains the count of bytes written to the MTD device.
2045 *
2046 * This function returns zero in case of success and a negative error code in
2047 * case of failure.
1da177e4 2048 */
1dbebd32
AB
2049static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2050 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
2051{
2052 unsigned long i;
2053 size_t totlen = 0, thislen;
2054 int ret = 0;
2055
52b02031
AB
2056 for (i = 0; i < count; i++) {
2057 if (!vecs[i].iov_len)
2058 continue;
2059 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2060 vecs[i].iov_base);
2061 totlen += thislen;
2062 if (ret || thislen != vecs[i].iov_len)
2063 break;
2064 to += vecs[i].iov_len;
1da177e4 2065 }
52b02031 2066 *retlen = totlen;
1da177e4
LT
2067 return ret;
2068}
1dbebd32
AB
2069
2070/*
2071 * mtd_writev - the vector-based MTD write method
2072 * @mtd: mtd device description object pointer
2073 * @vecs: the vectors to write
2074 * @count: count of vectors in @vecs
2075 * @to: the MTD device offset to write to
2076 * @retlen: on exit contains the count of bytes written to the MTD device.
2077 *
2078 * This function returns zero in case of success and a negative error code in
2079 * case of failure.
2080 */
2081int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2082 unsigned long count, loff_t to, size_t *retlen)
2083{
46b5889c
MR
2084 struct mtd_info *master = mtd_get_master(mtd);
2085
1dbebd32 2086 *retlen = 0;
664addc2
AB
2087 if (!(mtd->flags & MTD_WRITEABLE))
2088 return -EROFS;
46b5889c
MR
2089
2090 if (!master->_writev)
1dbebd32 2091 return default_mtd_writev(mtd, vecs, count, to, retlen);
46b5889c
MR
2092
2093 return master->_writev(master, vecs, count,
2094 mtd_get_master_ofs(mtd, to), retlen);
1dbebd32
AB
2095}
2096EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 2097
33b53716
GE
2098/**
2099 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
2100 * @mtd: mtd device description object pointer
2101 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
2102 * to the actual allocation size on success.
2103 *
2104 * This routine attempts to allocate a contiguous kernel buffer up to
2105 * the specified size, backing off the size of the request exponentially
2106 * until the request succeeds or until the allocation size falls below
2107 * the system page size. This attempts to make sure it does not adversely
2108 * impact system performance, so when allocating more than one page, we
caf49191
LT
2109 * ask the memory allocator to avoid re-trying, swapping, writing back
2110 * or performing I/O.
33b53716
GE
2111 *
2112 * Note, this function also makes sure that the allocated buffer is aligned to
2113 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2114 *
2115 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2116 * to handle smaller (i.e. degraded) buffer allocations under low- or
2117 * fragmented-memory situations where such reduced allocations, from a
2118 * requested ideal, are allowed.
2119 *
2120 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2121 */
2122void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2123{
d0164adc 2124 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
2125 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2126 void *kbuf;
2127
2128 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2129
2130 while (*size > min_alloc) {
2131 kbuf = kmalloc(*size, flags);
2132 if (kbuf)
2133 return kbuf;
2134
2135 *size >>= 1;
2136 *size = ALIGN(*size, mtd->writesize);
2137 }
2138
2139 /*
2140 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2141 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2142 */
2143 return kmalloc(*size, GFP_KERNEL);
2144}
33b53716 2145EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 2146
2d2dce0e
PM
2147#ifdef CONFIG_PROC_FS
2148
1da177e4
LT
2149/*====================================================================*/
2150/* Support for /proc/mtd */
2151
447d9bd8 2152static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 2153{
f1332ba2 2154 struct mtd_info *mtd;
1da177e4 2155
447d9bd8 2156 seq_puts(m, "dev: size erasesize name\n");
48b19268 2157 mutex_lock(&mtd_table_mutex);
f1332ba2 2158 mtd_for_each_device(mtd) {
447d9bd8
AD
2159 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2160 mtd->index, (unsigned long long)mtd->size,
2161 mtd->erasesize, mtd->name);
d5ca5129 2162 }
48b19268 2163 mutex_unlock(&mtd_table_mutex);
d5ca5129 2164 return 0;
1da177e4 2165}
45b09076
KC
2166#endif /* CONFIG_PROC_FS */
2167
1da177e4
LT
2168/*====================================================================*/
2169/* Init code */
2170
445caaa2 2171static struct backing_dev_info * __init mtd_bdi_init(char *name)
0661b1ac 2172{
445caaa2 2173 struct backing_dev_info *bdi;
0661b1ac
JA
2174 int ret;
2175
aef33c2f 2176 bdi = bdi_alloc(NUMA_NO_NODE);
445caaa2
SL
2177 if (!bdi)
2178 return ERR_PTR(-ENOMEM);
55b2598e
CH
2179 bdi->ra_pages = 0;
2180 bdi->io_pages = 0;
0661b1ac 2181
fa06052d
JK
2182 /*
2183 * We put '-0' suffix to the name to get the same name format as we
2184 * used to get. Since this is called only once, we get a unique name.
2185 */
7c4cc300 2186 ret = bdi_register(bdi, "%.28s-0", name);
0661b1ac 2187 if (ret)
fa06052d 2188 bdi_put(bdi);
0661b1ac 2189
445caaa2 2190 return ret ? ERR_PTR(ret) : bdi;
0661b1ac
JA
2191}
2192
93e56214
AB
2193static struct proc_dir_entry *proc_mtd;
2194
1da177e4
LT
2195static int __init init_mtd(void)
2196{
15bce40c 2197 int ret;
0661b1ac 2198
15bce40c 2199 ret = class_register(&mtd_class);
0661b1ac
JA
2200 if (ret)
2201 goto err_reg;
2202
445caaa2
SL
2203 mtd_bdi = mtd_bdi_init("mtd");
2204 if (IS_ERR(mtd_bdi)) {
2205 ret = PTR_ERR(mtd_bdi);
b4caecd4 2206 goto err_bdi;
445caaa2 2207 }
694bb7fc 2208
3f3942ac 2209 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
93e56214 2210
660685d9
AB
2211 ret = init_mtdchar();
2212 if (ret)
2213 goto out_procfs;
2214
e8e3edb9
MR
2215 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2216
1da177e4 2217 return 0;
0661b1ac 2218
660685d9
AB
2219out_procfs:
2220 if (proc_mtd)
2221 remove_proc_entry("mtd", NULL);
fa06052d 2222 bdi_put(mtd_bdi);
b4caecd4 2223err_bdi:
0661b1ac
JA
2224 class_unregister(&mtd_class);
2225err_reg:
2226 pr_err("Error registering mtd class or bdi: %d\n", ret);
2227 return ret;
1da177e4
LT
2228}
2229
2230static void __exit cleanup_mtd(void)
2231{
e8e3edb9 2232 debugfs_remove_recursive(dfs_dir_mtd);
660685d9 2233 cleanup_mtdchar();
d5ca5129 2234 if (proc_mtd)
93e56214 2235 remove_proc_entry("mtd", NULL);
15bce40c 2236 class_unregister(&mtd_class);
fa06052d 2237 bdi_put(mtd_bdi);
35667b99 2238 idr_destroy(&mtd_idr);
1da177e4
LT
2239}
2240
2241module_init(init_mtd);
2242module_exit(cleanup_mtd);
2243
1da177e4
LT
2244MODULE_LICENSE("GPL");
2245MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2246MODULE_DESCRIPTION("Core MTD registration and access routines");