Merge tag 'x86-asm-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-block.git] / drivers / mtd / mtdcore.c
CommitLineData
fd534e9b 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
1da177e4
LT
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
a1452a37
DW
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
1da177e4
LT
8 */
9
1da177e4
LT
10#include <linux/module.h>
11#include <linux/kernel.h>
1da177e4 12#include <linux/ptrace.h>
447d9bd8 13#include <linux/seq_file.h>
1da177e4
LT
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
7799308f 18#include <linux/err.h>
1da177e4
LT
19#include <linux/ioctl.h>
20#include <linux/init.h>
215a02fd 21#include <linux/of.h>
1da177e4 22#include <linux/proc_fs.h>
b520e412 23#include <linux/idr.h>
a33eb6b9 24#include <linux/backing-dev.h>
05d71b46 25#include <linux/gfp.h>
3b270fac 26#include <linux/random.h>
0d01ff25 27#include <linux/slab.h>
3efe41be 28#include <linux/reboot.h>
fea728c0 29#include <linux/leds.h>
e8e3edb9 30#include <linux/debugfs.h>
c4dfa25a 31#include <linux/nvmem-provider.h>
26422ac7 32#include <linux/root_dev.h>
2fe48aaa 33#include <linux/error-injection.h>
1da177e4
LT
34
35#include <linux/mtd/mtd.h>
f5671ab3 36#include <linux/mtd/partitions.h>
1da177e4 37
356d70f1 38#include "mtdcore.h"
660685d9 39
fa06052d 40struct backing_dev_info *mtd_bdi;
356d70f1 41
57b8045d
LPC
42#ifdef CONFIG_PM_SLEEP
43
44static int mtd_cls_suspend(struct device *dev)
45{
46 struct mtd_info *mtd = dev_get_drvdata(dev);
47
48 return mtd ? mtd_suspend(mtd) : 0;
49}
50
51static int mtd_cls_resume(struct device *dev)
52{
53 struct mtd_info *mtd = dev_get_drvdata(dev);
54
55 if (mtd)
56 mtd_resume(mtd);
57 return 0;
58}
59
60static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62#else
63#define MTD_CLS_PM_OPS NULL
64#endif
15bce40c
DW
65
66static struct class mtd_class = {
67 .name = "mtd",
57b8045d 68 .pm = MTD_CLS_PM_OPS,
15bce40c 69};
1f24b5a8 70
b520e412
BH
71static DEFINE_IDR(mtd_idr);
72
97894cda 73/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 74 should not use them for _anything_ else */
48b19268 75DEFINE_MUTEX(mtd_table_mutex);
1da177e4 76EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
77
78struct mtd_info *__mtd_next_device(int i)
79{
80 return idr_get_next(&mtd_idr, &i);
81}
82EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
83
84static LIST_HEAD(mtd_notifiers);
85
1f24b5a8 86
1f24b5a8 87#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
88
89/* REVISIT once MTD uses the driver model better, whoever allocates
90 * the mtd_info will probably want to use the release() hook...
91 */
92static void mtd_release(struct device *dev)
93{
5e472128 94 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 95 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 96
e9714c22
AU
97 idr_remove(&mtd_idr, mtd->index);
98 of_node_put(mtd_get_of_node(mtd));
99
19bfa9eb
TW
100 if (mtd_is_partition(mtd))
101 release_mtd_partition(mtd);
102
5e472128
BN
103 /* remove /dev/mtdXro node */
104 device_destroy(&mtd_class, index + 1);
15bce40c
DW
105}
106
19bfa9eb
TW
107static void mtd_device_release(struct kref *kref)
108{
109 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
e9714c22 110 bool is_partition = mtd_is_partition(mtd);
19bfa9eb
TW
111
112 debugfs_remove_recursive(mtd->dbg.dfs_dir);
113
114 /* Try to remove the NVMEM provider */
115 nvmem_unregister(mtd->nvmem);
116
117 device_unregister(&mtd->dev);
118
e9714c22
AU
119 /*
120 * Clear dev so mtd can be safely re-registered later if desired.
121 * Should not be done for partition,
122 * as it was already destroyed in device_unregister().
123 */
124 if (!is_partition)
125 memset(&mtd->dev, 0, sizeof(mtd->dev));
19bfa9eb
TW
126
127 module_put(THIS_MODULE);
128}
129
b4e24863
ZL
130#define MTD_DEVICE_ATTR_RO(name) \
131static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
132
133#define MTD_DEVICE_ATTR_RW(name) \
134static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
135
1f24b5a8
DB
136static ssize_t mtd_type_show(struct device *dev,
137 struct device_attribute *attr, char *buf)
138{
d5de20a9 139 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
140 char *type;
141
142 switch (mtd->type) {
143 case MTD_ABSENT:
144 type = "absent";
145 break;
146 case MTD_RAM:
147 type = "ram";
148 break;
149 case MTD_ROM:
150 type = "rom";
151 break;
152 case MTD_NORFLASH:
153 type = "nor";
154 break;
155 case MTD_NANDFLASH:
156 type = "nand";
157 break;
158 case MTD_DATAFLASH:
159 type = "dataflash";
160 break;
161 case MTD_UBIVOLUME:
162 type = "ubi";
163 break;
f4837246
HS
164 case MTD_MLCNANDFLASH:
165 type = "mlc-nand";
166 break;
1f24b5a8
DB
167 default:
168 type = "unknown";
169 }
170
5b2fbe0c 171 return sysfs_emit(buf, "%s\n", type);
1f24b5a8 172}
a17da115 173MTD_DEVICE_ATTR_RO(type);
694bb7fc
KC
174
175static ssize_t mtd_flags_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
d5de20a9 178 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 179
5b2fbe0c 180 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
694bb7fc 181}
a17da115 182MTD_DEVICE_ATTR_RO(flags);
694bb7fc
KC
183
184static ssize_t mtd_size_show(struct device *dev,
185 struct device_attribute *attr, char *buf)
186{
d5de20a9 187 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 188
5b2fbe0c 189 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
694bb7fc 190}
a17da115 191MTD_DEVICE_ATTR_RO(size);
694bb7fc
KC
192
193static ssize_t mtd_erasesize_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195{
d5de20a9 196 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 197
5b2fbe0c 198 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
694bb7fc 199}
a17da115 200MTD_DEVICE_ATTR_RO(erasesize);
694bb7fc
KC
201
202static ssize_t mtd_writesize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204{
d5de20a9 205 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 206
5b2fbe0c 207 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
694bb7fc 208}
a17da115 209MTD_DEVICE_ATTR_RO(writesize);
694bb7fc 210
e7693548
AB
211static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
d5de20a9 214 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
5b2fbe0c 217 return sysfs_emit(buf, "%u\n", subpagesize);
e7693548 218}
a17da115 219MTD_DEVICE_ATTR_RO(subpagesize);
e7693548 220
694bb7fc
KC
221static ssize_t mtd_oobsize_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
d5de20a9 224 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 225
5b2fbe0c 226 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
694bb7fc 227}
a17da115 228MTD_DEVICE_ATTR_RO(oobsize);
694bb7fc 229
7cc9aa66
XL
230static ssize_t mtd_oobavail_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
232{
233 struct mtd_info *mtd = dev_get_drvdata(dev);
234
5b2fbe0c 235 return sysfs_emit(buf, "%u\n", mtd->oobavail);
7cc9aa66 236}
a17da115 237MTD_DEVICE_ATTR_RO(oobavail);
7cc9aa66 238
694bb7fc
KC
239static ssize_t mtd_numeraseregions_show(struct device *dev,
240 struct device_attribute *attr, char *buf)
241{
d5de20a9 242 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 243
5b2fbe0c 244 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
694bb7fc 245}
a17da115 246MTD_DEVICE_ATTR_RO(numeraseregions);
694bb7fc
KC
247
248static ssize_t mtd_name_show(struct device *dev,
249 struct device_attribute *attr, char *buf)
250{
d5de20a9 251 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 252
5b2fbe0c 253 return sysfs_emit(buf, "%s\n", mtd->name);
694bb7fc 254}
a17da115 255MTD_DEVICE_ATTR_RO(name);
1f24b5a8 256
a9b672e8
MD
257static ssize_t mtd_ecc_strength_show(struct device *dev,
258 struct device_attribute *attr, char *buf)
259{
260 struct mtd_info *mtd = dev_get_drvdata(dev);
261
5b2fbe0c 262 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
a9b672e8 263}
a17da115 264MTD_DEVICE_ATTR_RO(ecc_strength);
a9b672e8 265
d062d4ed
MD
266static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 struct device_attribute *attr,
268 char *buf)
269{
270 struct mtd_info *mtd = dev_get_drvdata(dev);
271
5b2fbe0c 272 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
d062d4ed
MD
273}
274
275static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 struct device_attribute *attr,
277 const char *buf, size_t count)
278{
279 struct mtd_info *mtd = dev_get_drvdata(dev);
280 unsigned int bitflip_threshold;
281 int retval;
282
283 retval = kstrtouint(buf, 0, &bitflip_threshold);
284 if (retval)
285 return retval;
286
287 mtd->bitflip_threshold = bitflip_threshold;
288 return count;
289}
a17da115 290MTD_DEVICE_ATTR_RW(bitflip_threshold);
d062d4ed 291
bf977e3f
HS
292static ssize_t mtd_ecc_step_size_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296
5b2fbe0c 297 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
bf977e3f
HS
298
299}
a17da115 300MTD_DEVICE_ATTR_RO(ecc_step_size);
bf977e3f 301
a17da115 302static ssize_t mtd_corrected_bits_show(struct device *dev,
990a3af0
EG
303 struct device_attribute *attr, char *buf)
304{
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
5b2fbe0c 308 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
990a3af0 309}
a17da115 310MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
990a3af0 311
a17da115 312static ssize_t mtd_ecc_failures_show(struct device *dev,
990a3af0
EG
313 struct device_attribute *attr, char *buf)
314{
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
5b2fbe0c 318 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
990a3af0 319}
a17da115 320MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
990a3af0 321
a17da115 322static ssize_t mtd_bad_blocks_show(struct device *dev,
990a3af0
EG
323 struct device_attribute *attr, char *buf)
324{
325 struct mtd_info *mtd = dev_get_drvdata(dev);
326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327
5b2fbe0c 328 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
990a3af0 329}
a17da115 330MTD_DEVICE_ATTR_RO(bad_blocks);
990a3af0 331
a17da115 332static ssize_t mtd_bbt_blocks_show(struct device *dev,
990a3af0
EG
333 struct device_attribute *attr, char *buf)
334{
335 struct mtd_info *mtd = dev_get_drvdata(dev);
336 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337
5b2fbe0c 338 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
990a3af0 339}
a17da115 340MTD_DEVICE_ATTR_RO(bbt_blocks);
990a3af0 341
1f24b5a8 342static struct attribute *mtd_attrs[] = {
694bb7fc
KC
343 &dev_attr_type.attr,
344 &dev_attr_flags.attr,
345 &dev_attr_size.attr,
346 &dev_attr_erasesize.attr,
347 &dev_attr_writesize.attr,
e7693548 348 &dev_attr_subpagesize.attr,
694bb7fc 349 &dev_attr_oobsize.attr,
7cc9aa66 350 &dev_attr_oobavail.attr,
694bb7fc
KC
351 &dev_attr_numeraseregions.attr,
352 &dev_attr_name.attr,
a9b672e8 353 &dev_attr_ecc_strength.attr,
bf977e3f 354 &dev_attr_ecc_step_size.attr,
990a3af0
EG
355 &dev_attr_corrected_bits.attr,
356 &dev_attr_ecc_failures.attr,
357 &dev_attr_bad_blocks.attr,
358 &dev_attr_bbt_blocks.attr,
d062d4ed 359 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
360 NULL,
361};
54c738f6 362ATTRIBUTE_GROUPS(mtd);
1f24b5a8 363
75864b30 364static const struct device_type mtd_devtype = {
1f24b5a8
DB
365 .name = "mtd",
366 .groups = mtd_groups,
367 .release = mtd_release,
368};
369
ad5e35f5 370static bool mtd_expert_analysis_mode;
1018c94b 371
ad5e35f5
MR
372#ifdef CONFIG_DEBUG_FS
373bool mtd_check_expert_analysis_mode(void)
1018c94b 374{
ad5e35f5
MR
375 const char *mtd_expert_analysis_warning =
376 "Bad block checks have been entirely disabled.\n"
377 "This is only reserved for post-mortem forensics and debug purposes.\n"
378 "Never enable this mode if you do not know what you are doing!\n";
1018c94b 379
ad5e35f5 380 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
1018c94b 381}
ad5e35f5
MR
382EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
383#endif
1018c94b
ZL
384
385static struct dentry *dfs_dir_mtd;
386
387static void mtd_debugfs_populate(struct mtd_info *mtd)
388{
389 struct device *dev = &mtd->dev;
1018c94b
ZL
390
391 if (IS_ERR_OR_NULL(dfs_dir_mtd))
392 return;
393
ec090a03 394 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
1018c94b
ZL
395}
396
b4caecd4
CH
397#ifndef CONFIG_MMU
398unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
399{
400 switch (mtd->type) {
401 case MTD_RAM:
402 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
403 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
404 case MTD_ROM:
405 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
406 NOMMU_MAP_READ;
407 default:
408 return NOMMU_MAP_COPY;
409 }
410}
706a4e5a 411EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
412#endif
413
3efe41be
BN
414static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
415 void *cmd)
416{
417 struct mtd_info *mtd;
418
419 mtd = container_of(n, struct mtd_info, reboot_notifier);
420 mtd->_reboot(mtd);
421
422 return NOTIFY_DONE;
423}
424
477b0229
BB
425/**
426 * mtd_wunit_to_pairing_info - get pairing information of a wunit
427 * @mtd: pointer to new MTD device info structure
428 * @wunit: write unit we are interested in
429 * @info: returned pairing information
430 *
431 * Retrieve pairing information associated to the wunit.
432 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
433 * paired together, and where programming a page may influence the page it is
434 * paired with.
435 * The notion of page is replaced by the term wunit (write-unit) to stay
436 * consistent with the ->writesize field.
437 *
438 * The @wunit argument can be extracted from an absolute offset using
439 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
440 * to @wunit.
441 *
442 * From the pairing info the MTD user can find all the wunits paired with
443 * @wunit using the following loop:
444 *
445 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
446 * info.pair = i;
447 * mtd_pairing_info_to_wunit(mtd, &info);
448 * ...
449 * }
450 */
451int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
452 struct mtd_pairing_info *info)
453{
46b5889c
MR
454 struct mtd_info *master = mtd_get_master(mtd);
455 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
477b0229
BB
456
457 if (wunit < 0 || wunit >= npairs)
458 return -EINVAL;
459
46b5889c
MR
460 if (master->pairing && master->pairing->get_info)
461 return master->pairing->get_info(master, wunit, info);
477b0229
BB
462
463 info->group = 0;
464 info->pair = wunit;
465
466 return 0;
467}
468EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
469
470/**
c77a9312 471 * mtd_pairing_info_to_wunit - get wunit from pairing information
477b0229
BB
472 * @mtd: pointer to new MTD device info structure
473 * @info: pairing information struct
474 *
475 * Returns a positive number representing the wunit associated to the info
476 * struct, or a negative error code.
477 *
478 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
479 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
480 * doc).
481 *
482 * It can also be used to only program the first page of each pair (i.e.
483 * page attached to group 0), which allows one to use an MLC NAND in
484 * software-emulated SLC mode:
485 *
486 * info.group = 0;
487 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
488 * for (info.pair = 0; info.pair < npairs; info.pair++) {
489 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
490 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
491 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
492 * }
493 */
494int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
495 const struct mtd_pairing_info *info)
496{
46b5889c
MR
497 struct mtd_info *master = mtd_get_master(mtd);
498 int ngroups = mtd_pairing_groups(master);
499 int npairs = mtd_wunit_per_eb(master) / ngroups;
477b0229
BB
500
501 if (!info || info->pair < 0 || info->pair >= npairs ||
502 info->group < 0 || info->group >= ngroups)
503 return -EINVAL;
504
46b5889c
MR
505 if (master->pairing && master->pairing->get_wunit)
506 return mtd->pairing->get_wunit(master, info);
477b0229
BB
507
508 return info->pair;
509}
510EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
511
512/**
513 * mtd_pairing_groups - get the number of pairing groups
514 * @mtd: pointer to new MTD device info structure
515 *
516 * Returns the number of pairing groups.
517 *
518 * This number is usually equal to the number of bits exposed by a single
519 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
520 * to iterate over all pages of a given pair.
521 */
522int mtd_pairing_groups(struct mtd_info *mtd)
523{
46b5889c
MR
524 struct mtd_info *master = mtd_get_master(mtd);
525
526 if (!master->pairing || !master->pairing->ngroups)
477b0229
BB
527 return 1;
528
46b5889c 529 return master->pairing->ngroups;
477b0229
BB
530}
531EXPORT_SYMBOL_GPL(mtd_pairing_groups);
532
c4dfa25a
AB
533static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
534 void *val, size_t bytes)
535{
536 struct mtd_info *mtd = priv;
537 size_t retlen;
538 int err;
539
540 err = mtd_read(mtd, offset, bytes, &retlen, val);
541 if (err && err != -EUCLEAN)
542 return err;
543
544 return retlen == bytes ? 0 : -EIO;
545}
546
547static int mtd_nvmem_add(struct mtd_info *mtd)
548{
658c4448 549 struct device_node *node = mtd_get_of_node(mtd);
c4dfa25a
AB
550 struct nvmem_config config = {};
551
75f32f4b 552 config.id = NVMEM_DEVID_NONE;
c4dfa25a 553 config.dev = &mtd->dev;
7b01b723 554 config.name = dev_name(&mtd->dev);
c4dfa25a 555 config.owner = THIS_MODULE;
2cc3b37f 556 config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
c4dfa25a
AB
557 config.reg_read = mtd_nvmem_reg_read;
558 config.size = mtd->size;
559 config.word_size = 1;
560 config.stride = 1;
561 config.read_only = true;
562 config.root_only = true;
6c762189 563 config.ignore_wp = true;
c4dfa25a
AB
564 config.priv = mtd;
565
566 mtd->nvmem = nvmem_register(&config);
567 if (IS_ERR(mtd->nvmem)) {
568 /* Just ignore if there is no NVMEM support in the kernel */
5cab0615 569 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
c4dfa25a 570 mtd->nvmem = NULL;
5cab0615
MR
571 else
572 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573 "Failed to register NVMEM device\n");
c4dfa25a
AB
574 }
575
576 return 0;
577}
578
ad9b10d1
CM
579static void mtd_check_of_node(struct mtd_info *mtd)
580{
581 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582 const char *pname, *prefix = "partition-";
583 int plen, mtd_name_len, offset, prefix_len;
ad9b10d1
CM
584
585 /* Check if MTD already has a device node */
c5f5d0cd 586 if (mtd_get_of_node(mtd))
ad9b10d1
CM
587 return;
588
7ec4cdb3
TH
589 if (!mtd_is_partition(mtd))
590 return;
c5f5d0cd
RM
591
592 parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
ad9b10d1
CM
593 if (!parent_dn)
594 return;
595
2df11f00
RM
596 if (mtd_is_partition(mtd->parent))
597 partitions = of_node_get(parent_dn);
598 else
599 partitions = of_get_child_by_name(parent_dn, "partitions");
ad9b10d1
CM
600 if (!partitions)
601 goto exit_parent;
602
603 prefix_len = strlen(prefix);
604 mtd_name_len = strlen(mtd->name);
605
606 /* Search if a partition is defined with the same name */
607 for_each_child_of_node(partitions, mtd_dn) {
ad9b10d1 608 /* Skip partition with no/wrong prefix */
c5f5d0cd 609 if (!of_node_name_prefix(mtd_dn, prefix))
ad9b10d1
CM
610 continue;
611
612 /* Label have priority. Check that first */
c5f5d0cd
RM
613 if (!of_property_read_string(mtd_dn, "label", &pname)) {
614 offset = 0;
615 } else {
616 pname = mtd_dn->name;
ad9b10d1
CM
617 offset = prefix_len;
618 }
619
620 plen = strlen(pname) - offset;
621 if (plen == mtd_name_len &&
622 !strncmp(mtd->name, pname + offset, plen)) {
2df11f00 623 mtd_set_of_node(mtd, mtd_dn);
5ab9bbf6 624 of_node_put(mtd_dn);
ad9b10d1
CM
625 break;
626 }
627 }
628
ad9b10d1
CM
629 of_node_put(partitions);
630exit_parent:
631 of_node_put(parent_dn);
632}
633
1da177e4
LT
634/**
635 * add_mtd_device - register an MTD device
636 * @mtd: pointer to new MTD device info structure
637 *
638 * Add a device to the list of MTD devices present in the system, and
639 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 640 * zero on success or non-zero on failure.
1da177e4
LT
641 */
642
643int add_mtd_device(struct mtd_info *mtd)
644{
82e214f6 645 struct device_node *np = mtd_get_of_node(mtd);
46b5889c 646 struct mtd_info *master = mtd_get_master(mtd);
b520e412 647 struct mtd_notifier *not;
82e214f6 648 int i, error, ofidx;
1da177e4 649
be0dbff8
BN
650 /*
651 * May occur, for instance, on buggy drivers which call
652 * mtd_device_parse_register() multiple times on the same master MTD,
653 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
654 */
fa06052d 655 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
be0dbff8
BN
656 return -EEXIST;
657
783ed81f 658 BUG_ON(mtd->writesize == 0);
33f45c44 659
2431c4f5
BB
660 /*
661 * MTD drivers should implement ->_{write,read}() or
662 * ->_{write,read}_oob(), but not both.
663 */
664 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
665 (mtd->_read && mtd->_read_oob)))
666 return -EINVAL;
667
46b5889c 668 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
33f45c44
BB
669 !(mtd->flags & MTD_NO_ERASE)))
670 return -EINVAL;
671
9e3307a1
BB
672 /*
673 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
674 * master is an MLC NAND and has a proper pairing scheme defined.
675 * We also reject masters that implement ->_writev() for now, because
676 * NAND controller drivers don't implement this hook, and adding the
677 * SLC -> MLC address/length conversion to this path is useless if we
678 * don't have a user.
679 */
680 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
681 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
682 !master->pairing || master->_writev))
683 return -EINVAL;
684
48b19268 685 mutex_lock(&mtd_table_mutex);
1da177e4 686
82e214f6
VW
687 ofidx = -1;
688 if (np)
689 ofidx = of_alias_get_id(np, "mtd");
690 if (ofidx >= 0)
691 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
692 else
693 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
694 if (i < 0) {
695 error = i;
b520e412 696 goto fail_locked;
57dd990c 697 }
1f24b5a8 698
b520e412 699 mtd->index = i;
19bfa9eb 700 kref_init(&mtd->refcnt);
b520e412 701
d062d4ed
MD
702 /* default value if not set by driver */
703 if (mtd->bitflip_threshold == 0)
704 mtd->bitflip_threshold = mtd->ecc_strength;
705
9e3307a1
BB
706 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
707 int ngroups = mtd_pairing_groups(master);
708
709 mtd->erasesize /= ngroups;
710 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
711 mtd->erasesize;
712 }
713
b520e412
BH
714 if (is_power_of_2(mtd->erasesize))
715 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
716 else
717 mtd->erasesize_shift = 0;
718
719 if (is_power_of_2(mtd->writesize))
720 mtd->writesize_shift = ffs(mtd->writesize) - 1;
721 else
722 mtd->writesize_shift = 0;
723
724 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
725 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
726
727 /* Some chips always power up locked. Unlock them now */
38134565
AB
728 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
729 error = mtd_unlock(mtd, 0, mtd->size);
730 if (error && error != -EOPNOTSUPP)
b520e412
BH
731 printk(KERN_WARNING
732 "%s: unlock failed, writes may not work\n",
733 mtd->name);
57dd990c
BN
734 /* Ignore unlock failures? */
735 error = 0;
b520e412
BH
736 }
737
738 /* Caller should have set dev.parent to match the
260e89a6 739 * physical device, if appropriate.
b520e412
BH
740 */
741 mtd->dev.type = &mtd_devtype;
742 mtd->dev.class = &mtd_class;
743 mtd->dev.devt = MTD_DEVT(i);
744 dev_set_name(&mtd->dev, "mtd%d", i);
745 dev_set_drvdata(&mtd->dev, mtd);
ad9b10d1 746 mtd_check_of_node(mtd);
215a02fd 747 of_node_get(mtd_get_of_node(mtd));
57dd990c 748 error = device_register(&mtd->dev);
895d68a3
ZX
749 if (error) {
750 put_device(&mtd->dev);
b520e412 751 goto fail_added;
895d68a3 752 }
b520e412 753
c4dfa25a
AB
754 /* Add the nvmem provider */
755 error = mtd_nvmem_add(mtd);
756 if (error)
757 goto fail_nvmem_add;
758
1018c94b 759 mtd_debugfs_populate(mtd);
e8e3edb9 760
5e472128
BN
761 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
762 "mtd%dro", i);
b520e412 763
289c0522 764 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
765 /* No need to get a refcount on the module containing
766 the notifier, since we hold the mtd_table_mutex */
767 list_for_each_entry(not, &mtd_notifiers, list)
768 not->add(mtd);
769
770 mutex_unlock(&mtd_table_mutex);
26422ac7 771
57150c40 772 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
26422ac7
RM
773 if (IS_BUILTIN(CONFIG_MTD)) {
774 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
775 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
776 } else {
777 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
778 mtd->index, mtd->name);
779 }
780 }
781
b520e412
BH
782 /* We _know_ we aren't being removed, because
783 our caller is still holding us here. So none
784 of this try_ nonsense, and no bitching about it
785 either. :) */
786 __module_get(THIS_MODULE);
787 return 0;
97894cda 788
c4dfa25a
AB
789fail_nvmem_add:
790 device_unregister(&mtd->dev);
b520e412 791fail_added:
215a02fd 792 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
793 idr_remove(&mtd_idr, i);
794fail_locked:
48b19268 795 mutex_unlock(&mtd_table_mutex);
57dd990c 796 return error;
1da177e4
LT
797}
798
799/**
800 * del_mtd_device - unregister an MTD device
801 * @mtd: pointer to MTD device info structure
802 *
803 * Remove a device from the list of MTD devices present in the system,
804 * and notify each currently active MTD 'user' of its departure.
805 * Returns zero on success or 1 on failure, which currently will happen
806 * if the requested device does not appear to be present in the list.
807 */
808
eea72d5f 809int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
810{
811 int ret;
75c0b84d 812 struct mtd_notifier *not;
97894cda 813
48b19268 814 mutex_lock(&mtd_table_mutex);
1da177e4 815
b520e412 816 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 817 ret = -ENODEV;
75c0b84d
ML
818 goto out_error;
819 }
820
821 /* No need to get a refcount on the module containing
822 the notifier, since we hold the mtd_table_mutex */
823 list_for_each_entry(not, &mtd_notifiers, list)
824 not->remove(mtd);
825
19bfa9eb
TW
826 kref_put(&mtd->refcnt, mtd_device_release);
827 ret = 0;
1da177e4 828
75c0b84d 829out_error:
48b19268 830 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
831 return ret;
832}
833
472b444e
BN
834/*
835 * Set a few defaults based on the parent devices, if not provided by the
836 * driver
837 */
838static void mtd_set_dev_defaults(struct mtd_info *mtd)
839{
840 if (mtd->dev.parent) {
841 if (!mtd->owner && mtd->dev.parent->driver)
842 mtd->owner = mtd->dev.parent->driver->owner;
843 if (!mtd->name)
844 mtd->name = dev_name(mtd->dev.parent);
845 } else {
846 pr_debug("mtd device won't show a device symlink in sysfs\n");
847 }
1186af45 848
46b5889c
MR
849 INIT_LIST_HEAD(&mtd->partitions);
850 mutex_init(&mtd->master.partitions_lock);
1ad55288 851 mutex_init(&mtd->master.chrdev_lock);
472b444e 852}
727dc612 853
4b361cfa
MW
854static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
855{
c3c8c051 856 struct otp_info *info;
4b361cfa
MW
857 ssize_t size = 0;
858 unsigned int i;
859 size_t retlen;
860 int ret;
861
c3c8c051
DC
862 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
863 if (!info)
864 return -ENOMEM;
865
4b361cfa
MW
866 if (is_user)
867 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
868 else
869 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
870 if (ret)
871 goto err;
872
bc8e157f
JH
873 for (i = 0; i < retlen / sizeof(*info); i++)
874 size += info[i].length;
4b361cfa
MW
875
876 kfree(info);
877 return size;
878
879err:
880 kfree(info);
45bb1faa
MW
881
882 /* ENODATA means there is no OTP region. */
883 return ret == -ENODATA ? 0 : ret;
4b361cfa
MW
884}
885
886static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
887 const char *compatible,
888 int size,
889 nvmem_reg_read_t reg_read)
890{
891 struct nvmem_device *nvmem = NULL;
892 struct nvmem_config config = {};
893 struct device_node *np;
894
895 /* DT binding is optional */
896 np = of_get_compatible_child(mtd->dev.of_node, compatible);
897
898 /* OTP nvmem will be registered on the physical device */
899 config.dev = mtd->dev.parent;
1cd9ceaa
MW
900 config.name = compatible;
901 config.id = NVMEM_DEVID_AUTO;
4b361cfa 902 config.owner = THIS_MODULE;
2cc3b37f 903 config.add_legacy_fixed_of_cells = true;
4b361cfa
MW
904 config.type = NVMEM_TYPE_OTP;
905 config.root_only = true;
6c762189 906 config.ignore_wp = true;
4b361cfa
MW
907 config.reg_read = reg_read;
908 config.size = size;
909 config.of_node = np;
910 config.priv = mtd;
911
912 nvmem = nvmem_register(&config);
913 /* Just ignore if there is no NVMEM support in the kernel */
914 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
915 nvmem = NULL;
916
917 of_node_put(np);
918
919 return nvmem;
920}
921
922static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
923 void *val, size_t bytes)
924{
925 struct mtd_info *mtd = priv;
926 size_t retlen;
927 int ret;
928
929 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
930 if (ret)
931 return ret;
932
933 return retlen == bytes ? 0 : -EIO;
934}
935
936static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
937 void *val, size_t bytes)
938{
939 struct mtd_info *mtd = priv;
940 size_t retlen;
941 int ret;
942
943 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
944 if (ret)
945 return ret;
946
947 return retlen == bytes ? 0 : -EIO;
948}
949
950static int mtd_otp_nvmem_add(struct mtd_info *mtd)
951{
8bd1d24e 952 struct device *dev = mtd->dev.parent;
4b361cfa
MW
953 struct nvmem_device *nvmem;
954 ssize_t size;
955 int err;
956
957 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
958 size = mtd_otp_size(mtd, true);
959 if (size < 0)
960 return size;
961
962 if (size > 0) {
963 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
964 mtd_nvmem_user_otp_reg_read);
965 if (IS_ERR(nvmem)) {
281f7a6c
MW
966 err = PTR_ERR(nvmem);
967 goto err;
4b361cfa
MW
968 }
969 mtd->otp_user_nvmem = nvmem;
970 }
971 }
972
973 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
974 size = mtd_otp_size(mtd, false);
975 if (size < 0) {
976 err = size;
977 goto err;
978 }
979
980 if (size > 0) {
3b270fac
LW
981 /*
982 * The factory OTP contains thing such as a unique serial
983 * number and is small, so let's read it out and put it
984 * into the entropy pool.
985 */
986 void *otp;
987
988 otp = kmalloc(size, GFP_KERNEL);
cefa1aaa
DC
989 if (!otp) {
990 err = -ENOMEM;
991 goto err;
992 }
3b270fac
LW
993 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
994 if (err < 0) {
995 kfree(otp);
cefa1aaa 996 goto err;
3b270fac
LW
997 }
998 add_device_randomness(otp, err);
999 kfree(otp);
1000
4b361cfa
MW
1001 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1002 mtd_nvmem_fact_otp_reg_read);
1003 if (IS_ERR(nvmem)) {
4b361cfa
MW
1004 err = PTR_ERR(nvmem);
1005 goto err;
1006 }
1007 mtd->otp_factory_nvmem = nvmem;
1008 }
1009 }
1010
1011 return 0;
1012
1013err:
bcf4ef28 1014 nvmem_unregister(mtd->otp_user_nvmem);
281f7a6c 1015 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
4b361cfa
MW
1016}
1017
1c4c215c
DES
1018/**
1019 * mtd_device_parse_register - parse partitions and register an MTD device.
1020 *
1021 * @mtd: the MTD device to register
1022 * @types: the list of MTD partition probes to try, see
1023 * 'parse_mtd_partitions()' for more information
c7975330 1024 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
1025 * @parts: fallback partition information to register, if parsing fails;
1026 * only valid if %nr_parts > %0
1027 * @nr_parts: the number of partitions in parts, if zero then the full
1028 * MTD device is registered if no partition info is found
1029 *
1030 * This function aggregates MTD partitions parsing (done by
1031 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1032 * basically follows the most common pattern found in many MTD drivers:
1033 *
55a999a0
RM
1034 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1035 * registered first.
1036 * * Then It tries to probe partitions on MTD device @mtd using parsers
1c4c215c
DES
1037 * specified in @types (if @types is %NULL, then the default list of parsers
1038 * is used, see 'parse_mtd_partitions()' for more information). If none are
1039 * found this functions tries to fallback to information specified in
1040 * @parts/@nr_parts.
1c4c215c
DES
1041 * * If no partitions were found this function just registers the MTD device
1042 * @mtd and exits.
1043 *
1044 * Returns zero in case of success and a negative error code in case of failure.
1045 */
26a47346 1046int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 1047 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
1048 const struct mtd_partition *parts,
1049 int nr_parts)
1050{
727dc612 1051 int ret;
1c4c215c 1052
472b444e
BN
1053 mtd_set_dev_defaults(mtd);
1054
e0489f6e
MW
1055 ret = mtd_otp_nvmem_add(mtd);
1056 if (ret)
1057 goto out;
1058
2c77c57d
RM
1059 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1060 ret = add_mtd_device(mtd);
1061 if (ret)
e0489f6e 1062 goto out;
2c77c57d
RM
1063 }
1064
0dbe4ea7 1065 /* Prefer parsed partitions over driver-provided fallback */
5ac67ce3 1066 ret = parse_mtd_partitions(mtd, types, parser_data);
08608adb
MS
1067 if (ret == -EPROBE_DEFER)
1068 goto out;
1069
5ac67ce3
RM
1070 if (ret > 0)
1071 ret = 0;
1072 else if (nr_parts)
0dbe4ea7
RM
1073 ret = add_mtd_partitions(mtd, parts, nr_parts);
1074 else if (!device_is_registered(&mtd->dev))
1075 ret = add_mtd_device(mtd);
1076 else
1077 ret = 0;
1078
3e00ed0e
BN
1079 if (ret)
1080 goto out;
1c4c215c 1081
e1dd8641
NC
1082 /*
1083 * FIXME: some drivers unfortunately call this function more than once.
1084 * So we have to check if we've already assigned the reboot notifier.
1085 *
1086 * Generally, we can make multiple calls work for most cases, but it
1087 * does cause problems with parse_mtd_partitions() above (e.g.,
1088 * cmdlineparts will register partitions more than once).
1089 */
f8479dd6
BN
1090 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1091 "MTD already registered\n");
e1dd8641 1092 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
1093 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1094 register_reboot_notifier(&mtd->reboot_notifier);
1095 }
1096
3e00ed0e 1097out:
e0489f6e
MW
1098 if (ret) {
1099 nvmem_unregister(mtd->otp_user_nvmem);
1100 nvmem_unregister(mtd->otp_factory_nvmem);
1101 }
1102
2c77c57d
RM
1103 if (ret && device_is_registered(&mtd->dev))
1104 del_mtd_device(mtd);
1105
727dc612 1106 return ret;
1c4c215c
DES
1107}
1108EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1109
f5671ab3
JI
1110/**
1111 * mtd_device_unregister - unregister an existing MTD device.
1112 *
1113 * @master: the MTD device to unregister. This will unregister both the master
1114 * and any partitions if registered.
1115 */
1116int mtd_device_unregister(struct mtd_info *master)
1117{
1118 int err;
1119
00596576 1120 if (master->_reboot) {
3efe41be 1121 unregister_reboot_notifier(&master->reboot_notifier);
00596576
ZW
1122 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1123 }
3efe41be 1124
bcf4ef28
AS
1125 nvmem_unregister(master->otp_user_nvmem);
1126 nvmem_unregister(master->otp_factory_nvmem);
4b361cfa 1127
f5671ab3
JI
1128 err = del_mtd_partitions(master);
1129 if (err)
1130 return err;
1131
1132 if (!device_is_registered(&master->dev))
1133 return 0;
1134
1135 return del_mtd_device(master);
1136}
1137EXPORT_SYMBOL_GPL(mtd_device_unregister);
1138
1da177e4
LT
1139/**
1140 * register_mtd_user - register a 'user' of MTD devices.
1141 * @new: pointer to notifier info structure
1142 *
1143 * Registers a pair of callbacks function to be called upon addition
1144 * or removal of MTD devices. Causes the 'add' callback to be immediately
1145 * invoked for each MTD device currently present in the system.
1146 */
1da177e4
LT
1147void register_mtd_user (struct mtd_notifier *new)
1148{
f1332ba2 1149 struct mtd_info *mtd;
1da177e4 1150
48b19268 1151 mutex_lock(&mtd_table_mutex);
1da177e4
LT
1152
1153 list_add(&new->list, &mtd_notifiers);
1154
d5ca5129 1155 __module_get(THIS_MODULE);
97894cda 1156
f1332ba2
BH
1157 mtd_for_each_device(mtd)
1158 new->add(mtd);
1da177e4 1159
48b19268 1160 mutex_unlock(&mtd_table_mutex);
1da177e4 1161}
33c87b4a 1162EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
1163
1164/**
49450795
AB
1165 * unregister_mtd_user - unregister a 'user' of MTD devices.
1166 * @old: pointer to notifier info structure
1da177e4
LT
1167 *
1168 * Removes a callback function pair from the list of 'users' to be
1169 * notified upon addition or removal of MTD devices. Causes the
1170 * 'remove' callback to be immediately invoked for each MTD device
1171 * currently present in the system.
1172 */
1da177e4
LT
1173int unregister_mtd_user (struct mtd_notifier *old)
1174{
f1332ba2 1175 struct mtd_info *mtd;
1da177e4 1176
48b19268 1177 mutex_lock(&mtd_table_mutex);
1da177e4
LT
1178
1179 module_put(THIS_MODULE);
1180
f1332ba2
BH
1181 mtd_for_each_device(mtd)
1182 old->remove(mtd);
97894cda 1183
1da177e4 1184 list_del(&old->list);
48b19268 1185 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
1186 return 0;
1187}
33c87b4a 1188EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
1189
1190/**
1191 * get_mtd_device - obtain a validated handle for an MTD device
1192 * @mtd: last known address of the required MTD device
1193 * @num: internal device number of the required MTD device
1194 *
1195 * Given a number and NULL address, return the num'th entry in the device
1196 * table, if any. Given an address and num == -1, search the device table
1197 * for a device with that address and return if it's still present. Given
9c74034f
AB
1198 * both, return the num'th driver only if its address matches. Return
1199 * error code if not.
1da177e4 1200 */
1da177e4
LT
1201struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1202{
f1332ba2
BH
1203 struct mtd_info *ret = NULL, *other;
1204 int err = -ENODEV;
1da177e4 1205
48b19268 1206 mutex_lock(&mtd_table_mutex);
1da177e4
LT
1207
1208 if (num == -1) {
f1332ba2
BH
1209 mtd_for_each_device(other) {
1210 if (other == mtd) {
1211 ret = mtd;
1212 break;
1213 }
1214 }
b520e412
BH
1215 } else if (num >= 0) {
1216 ret = idr_find(&mtd_idr, num);
1da177e4
LT
1217 if (mtd && mtd != ret)
1218 ret = NULL;
1219 }
1220
3bd45657
ML
1221 if (!ret) {
1222 ret = ERR_PTR(err);
1223 goto out;
9fe912ce 1224 }
1da177e4 1225
3bd45657
ML
1226 err = __get_mtd_device(ret);
1227 if (err)
1228 ret = ERR_PTR(err);
1229out:
9c74034f
AB
1230 mutex_unlock(&mtd_table_mutex);
1231 return ret;
3bd45657 1232}
33c87b4a 1233EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 1234
3bd45657
ML
1235
1236int __get_mtd_device(struct mtd_info *mtd)
1237{
46b5889c 1238 struct mtd_info *master = mtd_get_master(mtd);
3bd45657
ML
1239 int err;
1240
46b5889c
MR
1241 if (master->_get_device) {
1242 err = master->_get_device(mtd);
79c4a562 1243 if (err)
3bd45657 1244 return err;
3bd45657 1245 }
46b5889c 1246
79c4a562
AU
1247 if (!try_module_get(master->owner)) {
1248 if (master->_put_device)
1249 master->_put_device(master);
1250 return -ENODEV;
1251 }
1252
264725e3
MR
1253 while (mtd) {
1254 if (mtd != master)
1255 kref_get(&mtd->refcnt);
46b5889c
MR
1256 mtd = mtd->parent;
1257 }
1258
264725e3
MR
1259 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1260 kref_get(&master->refcnt);
1261
3bd45657 1262 return 0;
1da177e4 1263}
33c87b4a 1264EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 1265
4a575865
RM
1266/**
1267 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1268 *
1269 * @np: device tree node
1270 */
1271struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1272{
1273 struct mtd_info *mtd = NULL;
1274 struct mtd_info *tmp;
1275 int err;
1276
1277 mutex_lock(&mtd_table_mutex);
1278
1279 err = -EPROBE_DEFER;
1280 mtd_for_each_device(tmp) {
1281 if (mtd_get_of_node(tmp) == np) {
1282 mtd = tmp;
1283 err = __get_mtd_device(mtd);
1284 break;
1285 }
1286 }
1287
1288 mutex_unlock(&mtd_table_mutex);
1289
1290 return err ? ERR_PTR(err) : mtd;
1291}
1292EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1293
7799308f
AB
1294/**
1295 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1296 * device name
1297 * @name: MTD device name to open
1298 *
1299 * This function returns MTD device description structure in case of
1300 * success and an error code in case of failure.
1301 */
7799308f
AB
1302struct mtd_info *get_mtd_device_nm(const char *name)
1303{
f1332ba2
BH
1304 int err = -ENODEV;
1305 struct mtd_info *mtd = NULL, *other;
7799308f
AB
1306
1307 mutex_lock(&mtd_table_mutex);
1308
f1332ba2
BH
1309 mtd_for_each_device(other) {
1310 if (!strcmp(name, other->name)) {
1311 mtd = other;
7799308f
AB
1312 break;
1313 }
1314 }
1315
9fe912ce 1316 if (!mtd)
7799308f
AB
1317 goto out_unlock;
1318
52534f2d
WG
1319 err = __get_mtd_device(mtd);
1320 if (err)
7799308f
AB
1321 goto out_unlock;
1322
9fe912ce
AB
1323 mutex_unlock(&mtd_table_mutex);
1324 return mtd;
7799308f
AB
1325
1326out_unlock:
1327 mutex_unlock(&mtd_table_mutex);
9fe912ce 1328 return ERR_PTR(err);
7799308f 1329}
33c87b4a 1330EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 1331
1da177e4
LT
1332void put_mtd_device(struct mtd_info *mtd)
1333{
48b19268 1334 mutex_lock(&mtd_table_mutex);
3bd45657
ML
1335 __put_mtd_device(mtd);
1336 mutex_unlock(&mtd_table_mutex);
1337
1338}
33c87b4a 1339EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
1340
1341void __put_mtd_device(struct mtd_info *mtd)
1342{
46b5889c 1343 struct mtd_info *master = mtd_get_master(mtd);
3bd45657 1344
264725e3
MR
1345 while (mtd) {
1346 /* kref_put() can relese mtd, so keep a reference mtd->parent */
19bfa9eb 1347 struct mtd_info *parent = mtd->parent;
46b5889c 1348
264725e3
MR
1349 if (mtd != master)
1350 kref_put(&mtd->refcnt, mtd_device_release);
19bfa9eb
TW
1351 mtd = parent;
1352 }
1ca71415 1353
79c4a562
AU
1354 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1355 kref_put(&master->refcnt, mtd_device_release);
1da177e4 1356
46b5889c 1357 module_put(master->owner);
19bfa9eb 1358
79c4a562
AU
1359 /* must be the last as master can be freed in the _put_device */
1360 if (master->_put_device)
1361 master->_put_device(master);
1da177e4 1362}
33c87b4a 1363EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 1364
8273a0c9 1365/*
884cfd90
BB
1366 * Erase is an synchronous operation. Device drivers are epected to return a
1367 * negative error code if the operation failed and update instr->fail_addr
1368 * to point the portion that was not properly erased.
8273a0c9
AB
1369 */
1370int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1371{
46b5889c
MR
1372 struct mtd_info *master = mtd_get_master(mtd);
1373 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
9e3307a1 1374 struct erase_info adjinstr;
46b5889c
MR
1375 int ret;
1376
c585da9f 1377 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
9e3307a1 1378 adjinstr = *instr;
c585da9f 1379
46b5889c 1380 if (!mtd->erasesize || !master->_erase)
e6e620f0
BB
1381 return -ENOTSUPP;
1382
0c2b4e21 1383 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 1384 return -EINVAL;
664addc2
AB
1385 if (!(mtd->flags & MTD_WRITEABLE))
1386 return -EROFS;
e6e620f0 1387
e7bfb3fd 1388 if (!instr->len)
bcb1d238 1389 return 0;
e7bfb3fd 1390
fea728c0 1391 ledtrig_mtd_activity();
46b5889c 1392
9e3307a1
BB
1393 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1394 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1395 master->erasesize;
1396 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1397 master->erasesize) -
1398 adjinstr.addr;
1399 }
1400
1401 adjinstr.addr += mst_ofs;
1402
1403 ret = master->_erase(master, &adjinstr);
1404
1405 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1406 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1407 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1408 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1409 master);
1410 instr->fail_addr *= mtd->erasesize;
1411 }
1412 }
46b5889c 1413
46b5889c 1414 return ret;
8273a0c9
AB
1415}
1416EXPORT_SYMBOL_GPL(mtd_erase);
2fe48aaa 1417ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
8273a0c9
AB
1418
1419/*
1420 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1421 */
1422int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1423 void **virt, resource_size_t *phys)
1424{
46b5889c
MR
1425 struct mtd_info *master = mtd_get_master(mtd);
1426
8273a0c9 1427 *retlen = 0;
0dd5235f
AB
1428 *virt = NULL;
1429 if (phys)
1430 *phys = 0;
46b5889c 1431 if (!master->_point)
8273a0c9 1432 return -EOPNOTSUPP;
0c2b4e21 1433 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1434 return -EINVAL;
bcb1d238
AB
1435 if (!len)
1436 return 0;
46b5889c
MR
1437
1438 from = mtd_get_master_ofs(mtd, from);
1439 return master->_point(master, from, len, retlen, virt, phys);
8273a0c9
AB
1440}
1441EXPORT_SYMBOL_GPL(mtd_point);
1442
1443/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1444int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1445{
46b5889c
MR
1446 struct mtd_info *master = mtd_get_master(mtd);
1447
1448 if (!master->_unpoint)
8273a0c9 1449 return -EOPNOTSUPP;
0c2b4e21 1450 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1451 return -EINVAL;
bcb1d238
AB
1452 if (!len)
1453 return 0;
46b5889c 1454 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
8273a0c9
AB
1455}
1456EXPORT_SYMBOL_GPL(mtd_unpoint);
1457
1458/*
1459 * Allow NOMMU mmap() to directly map the device (if not NULL)
1460 * - return the address to which the offset maps
1461 * - return -ENOSYS to indicate refusal to do the mapping
1462 */
1463unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1464 unsigned long offset, unsigned long flags)
1465{
9eaa903c
NP
1466 size_t retlen;
1467 void *virt;
1468 int ret;
1469
1470 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1471 if (ret)
1472 return ret;
1473 if (retlen != len) {
1474 mtd_unpoint(mtd, offset, retlen);
1475 return -ENOSYS;
1476 }
1477 return (unsigned long)virt;
8273a0c9
AB
1478}
1479EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1480
46b5889c
MR
1481static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1482 const struct mtd_ecc_stats *old_stats)
1483{
1484 struct mtd_ecc_stats diff;
1485
1486 if (master == mtd)
1487 return;
1488
1489 diff = master->ecc_stats;
1490 diff.failed -= old_stats->failed;
1491 diff.corrected -= old_stats->corrected;
1492
1493 while (mtd->parent) {
1494 mtd->ecc_stats.failed += diff.failed;
1495 mtd->ecc_stats.corrected += diff.corrected;
1496 mtd = mtd->parent;
1497 }
1498}
1499
8273a0c9
AB
1500int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1501 u_char *buf)
1502{
2431c4f5
BB
1503 struct mtd_oob_ops ops = {
1504 .len = len,
1505 .datbuf = buf,
1506 };
1507 int ret;
edbc4540 1508
2431c4f5
BB
1509 ret = mtd_read_oob(mtd, from, &ops);
1510 *retlen = ops.retlen;
24ff1292 1511
0339f62a
ZW
1512 WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1513
2431c4f5 1514 return ret;
8273a0c9
AB
1515}
1516EXPORT_SYMBOL_GPL(mtd_read);
2fe48aaa 1517ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
8273a0c9
AB
1518
1519int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1520 const u_char *buf)
1521{
2431c4f5
BB
1522 struct mtd_oob_ops ops = {
1523 .len = len,
1524 .datbuf = (u8 *)buf,
1525 };
1526 int ret;
24ff1292 1527
2431c4f5
BB
1528 ret = mtd_write_oob(mtd, to, &ops);
1529 *retlen = ops.retlen;
24ff1292 1530
2431c4f5 1531 return ret;
8273a0c9
AB
1532}
1533EXPORT_SYMBOL_GPL(mtd_write);
2fe48aaa 1534ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
8273a0c9
AB
1535
1536/*
1537 * In blackbox flight recorder like scenarios we want to make successful writes
1538 * in interrupt context. panic_write() is only intended to be called when its
1539 * known the kernel is about to panic and we need the write to succeed. Since
1540 * the kernel is not going to be running for much longer, this function can
1541 * break locks and delay to ensure the write succeeds (but not sleep).
1542 */
1543int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1544 const u_char *buf)
1545{
46b5889c
MR
1546 struct mtd_info *master = mtd_get_master(mtd);
1547
8273a0c9 1548 *retlen = 0;
46b5889c 1549 if (!master->_panic_write)
8273a0c9 1550 return -EOPNOTSUPP;
0c2b4e21 1551 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1552 return -EINVAL;
664addc2
AB
1553 if (!(mtd->flags & MTD_WRITEABLE))
1554 return -EROFS;
bcb1d238
AB
1555 if (!len)
1556 return 0;
630e8d55
KD
1557 if (!master->oops_panic_write)
1558 master->oops_panic_write = true;
9f897bfd 1559
46b5889c
MR
1560 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1561 retlen, buf);
8273a0c9
AB
1562}
1563EXPORT_SYMBOL_GPL(mtd_panic_write);
1564
5cdd929d
BB
1565static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1566 struct mtd_oob_ops *ops)
1567{
1568 /*
1569 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1570 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1571 * this case.
1572 */
1573 if (!ops->datbuf)
1574 ops->len = 0;
1575
1576 if (!ops->oobbuf)
1577 ops->ooblen = 0;
1578
d82c3682 1579 if (offs < 0 || offs + ops->len > mtd->size)
5cdd929d
BB
1580 return -EINVAL;
1581
1582 if (ops->ooblen) {
89f706db 1583 size_t maxooblen;
5cdd929d
BB
1584
1585 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1586 return -EINVAL;
1587
89f706db
MR
1588 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1589 mtd_div_by_ws(offs, mtd)) *
5cdd929d
BB
1590 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1591 if (ops->ooblen > maxooblen)
1592 return -EINVAL;
1593 }
1594
1595 return 0;
1596}
1597
9e3307a1
BB
1598static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1599 struct mtd_oob_ops *ops)
1600{
1601 struct mtd_info *master = mtd_get_master(mtd);
1602 int ret;
1603
1604 from = mtd_get_master_ofs(mtd, from);
1605 if (master->_read_oob)
1606 ret = master->_read_oob(master, from, ops);
1607 else
1608 ret = master->_read(master, from, ops->len, &ops->retlen,
1609 ops->datbuf);
1610
1611 return ret;
1612}
1613
1614static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1615 struct mtd_oob_ops *ops)
1616{
1617 struct mtd_info *master = mtd_get_master(mtd);
1618 int ret;
1619
1620 to = mtd_get_master_ofs(mtd, to);
1621 if (master->_write_oob)
1622 ret = master->_write_oob(master, to, ops);
1623 else
1624 ret = master->_write(master, to, ops->len, &ops->retlen,
1625 ops->datbuf);
1626
1627 return ret;
1628}
1629
1630static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1631 struct mtd_oob_ops *ops)
1632{
1633 struct mtd_info *master = mtd_get_master(mtd);
1634 int ngroups = mtd_pairing_groups(master);
1635 int npairs = mtd_wunit_per_eb(master) / ngroups;
1636 struct mtd_oob_ops adjops = *ops;
1637 unsigned int wunit, oobavail;
1638 struct mtd_pairing_info info;
1639 int max_bitflips = 0;
1640 u32 ebofs, pageofs;
1641 loff_t base, pos;
1642
1643 ebofs = mtd_mod_by_eb(start, mtd);
1644 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1645 info.group = 0;
1646 info.pair = mtd_div_by_ws(ebofs, mtd);
1647 pageofs = mtd_mod_by_ws(ebofs, mtd);
1648 oobavail = mtd_oobavail(mtd, ops);
1649
1650 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1651 int ret;
1652
1653 if (info.pair >= npairs) {
1654 info.pair = 0;
1655 base += master->erasesize;
1656 }
1657
1658 wunit = mtd_pairing_info_to_wunit(master, &info);
1659 pos = mtd_wunit_to_offset(mtd, base, wunit);
1660
1661 adjops.len = ops->len - ops->retlen;
1662 if (adjops.len > mtd->writesize - pageofs)
1663 adjops.len = mtd->writesize - pageofs;
1664
1665 adjops.ooblen = ops->ooblen - ops->oobretlen;
1666 if (adjops.ooblen > oobavail - adjops.ooboffs)
1667 adjops.ooblen = oobavail - adjops.ooboffs;
1668
1669 if (read) {
1670 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1671 if (ret > 0)
1672 max_bitflips = max(max_bitflips, ret);
1673 } else {
1674 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1675 }
1676
1677 if (ret < 0)
1678 return ret;
1679
1680 max_bitflips = max(max_bitflips, ret);
1681 ops->retlen += adjops.retlen;
1682 ops->oobretlen += adjops.oobretlen;
1683 adjops.datbuf += adjops.retlen;
1684 adjops.oobbuf += adjops.oobretlen;
1685 adjops.ooboffs = 0;
1686 pageofs = 0;
1687 info.pair++;
1688 }
1689
1690 return max_bitflips;
1691}
1692
d2d48480
BN
1693int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1694{
46b5889c
MR
1695 struct mtd_info *master = mtd_get_master(mtd);
1696 struct mtd_ecc_stats old_stats = master->ecc_stats;
e47f6858 1697 int ret_code;
46b5889c 1698
d2d48480 1699 ops->retlen = ops->oobretlen = 0;
fea728c0 1700
5cdd929d
BB
1701 ret_code = mtd_check_oob_ops(mtd, from, ops);
1702 if (ret_code)
1703 return ret_code;
1704
fea728c0 1705 ledtrig_mtd_activity();
89fd23ef
MR
1706
1707 /* Check the validity of a potential fallback on mtd->_read */
46b5889c 1708 if (!master->_read_oob && (!master->_read || ops->oobbuf))
89fd23ef
MR
1709 return -EOPNOTSUPP;
1710
65394169
MK
1711 if (ops->stats)
1712 memset(ops->stats, 0, sizeof(*ops->stats));
1713
9e3307a1
BB
1714 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1715 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
89fd23ef 1716 else
9e3307a1 1717 ret_code = mtd_read_oob_std(mtd, from, ops);
46b5889c
MR
1718
1719 mtd_update_ecc_stats(mtd, master, &old_stats);
89fd23ef 1720
e47f6858
BN
1721 /*
1722 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1723 * similar to mtd->_read(), returning a non-negative integer
1724 * representing max bitflips. In other cases, mtd->_read_oob() may
1725 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1726 */
e47f6858
BN
1727 if (unlikely(ret_code < 0))
1728 return ret_code;
1729 if (mtd->ecc_strength == 0)
1730 return 0; /* device lacks ecc */
65394169
MK
1731 if (ops->stats)
1732 ops->stats->max_bitflips = ret_code;
e47f6858 1733 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
1734}
1735EXPORT_SYMBOL_GPL(mtd_read_oob);
1736
0c034fe3
EG
1737int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1738 struct mtd_oob_ops *ops)
1739{
46b5889c 1740 struct mtd_info *master = mtd_get_master(mtd);
5cdd929d
BB
1741 int ret;
1742
0c034fe3 1743 ops->retlen = ops->oobretlen = 0;
89fd23ef 1744
0c034fe3
EG
1745 if (!(mtd->flags & MTD_WRITEABLE))
1746 return -EROFS;
5cdd929d
BB
1747
1748 ret = mtd_check_oob_ops(mtd, to, ops);
1749 if (ret)
1750 return ret;
1751
fea728c0 1752 ledtrig_mtd_activity();
89fd23ef
MR
1753
1754 /* Check the validity of a potential fallback on mtd->_write */
46b5889c 1755 if (!master->_write_oob && (!master->_write || ops->oobbuf))
89fd23ef
MR
1756 return -EOPNOTSUPP;
1757
9e3307a1
BB
1758 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1759 return mtd_io_emulated_slc(mtd, to, false, ops);
46b5889c 1760
9e3307a1 1761 return mtd_write_oob_std(mtd, to, ops);
0c034fe3
EG
1762}
1763EXPORT_SYMBOL_GPL(mtd_write_oob);
1764
75eb2cec
BB
1765/**
1766 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1767 * @mtd: MTD device structure
1768 * @section: ECC section. Depending on the layout you may have all the ECC
1769 * bytes stored in a single contiguous section, or one section
1770 * per ECC chunk (and sometime several sections for a single ECC
1771 * ECC chunk)
1772 * @oobecc: OOB region struct filled with the appropriate ECC position
1773 * information
1774 *
7da0fffb 1775 * This function returns ECC section information in the OOB area. If you want
75eb2cec
BB
1776 * to get all the ECC bytes information, then you should call
1777 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1778 *
1779 * Returns zero on success, a negative error code otherwise.
1780 */
1781int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1782 struct mtd_oob_region *oobecc)
1783{
46b5889c
MR
1784 struct mtd_info *master = mtd_get_master(mtd);
1785
75eb2cec
BB
1786 memset(oobecc, 0, sizeof(*oobecc));
1787
46b5889c 1788 if (!master || section < 0)
75eb2cec
BB
1789 return -EINVAL;
1790
46b5889c 1791 if (!master->ooblayout || !master->ooblayout->ecc)
75eb2cec
BB
1792 return -ENOTSUPP;
1793
46b5889c 1794 return master->ooblayout->ecc(master, section, oobecc);
75eb2cec
BB
1795}
1796EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1797
1798/**
1799 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1800 * section
1801 * @mtd: MTD device structure
1802 * @section: Free section you are interested in. Depending on the layout
1803 * you may have all the free bytes stored in a single contiguous
1804 * section, or one section per ECC chunk plus an extra section
1805 * for the remaining bytes (or other funky layout).
1806 * @oobfree: OOB region struct filled with the appropriate free position
1807 * information
1808 *
7da0fffb 1809 * This function returns free bytes position in the OOB area. If you want
75eb2cec
BB
1810 * to get all the free bytes information, then you should call
1811 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1812 *
1813 * Returns zero on success, a negative error code otherwise.
1814 */
1815int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1816 struct mtd_oob_region *oobfree)
1817{
46b5889c
MR
1818 struct mtd_info *master = mtd_get_master(mtd);
1819
75eb2cec
BB
1820 memset(oobfree, 0, sizeof(*oobfree));
1821
46b5889c 1822 if (!master || section < 0)
75eb2cec
BB
1823 return -EINVAL;
1824
46b5889c 1825 if (!master->ooblayout || !master->ooblayout->free)
75eb2cec
BB
1826 return -ENOTSUPP;
1827
46b5889c 1828 return master->ooblayout->free(master, section, oobfree);
75eb2cec
BB
1829}
1830EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1831
1832/**
1833 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1834 * @mtd: mtd info structure
1835 * @byte: the byte we are searching for
1836 * @sectionp: pointer where the section id will be stored
1837 * @oobregion: used to retrieve the ECC position
1838 * @iter: iterator function. Should be either mtd_ooblayout_free or
1839 * mtd_ooblayout_ecc depending on the region type you're searching for
1840 *
7da0fffb 1841 * This function returns the section id and oobregion information of a
75eb2cec
BB
1842 * specific byte. For example, say you want to know where the 4th ECC byte is
1843 * stored, you'll use:
1844 *
1845 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1846 *
1847 * Returns zero on success, a negative error code otherwise.
1848 */
1849static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1850 int *sectionp, struct mtd_oob_region *oobregion,
1851 int (*iter)(struct mtd_info *,
1852 int section,
1853 struct mtd_oob_region *oobregion))
1854{
1855 int pos = 0, ret, section = 0;
1856
1857 memset(oobregion, 0, sizeof(*oobregion));
1858
1859 while (1) {
1860 ret = iter(mtd, section, oobregion);
1861 if (ret)
1862 return ret;
1863
1864 if (pos + oobregion->length > byte)
1865 break;
1866
1867 pos += oobregion->length;
1868 section++;
1869 }
1870
1871 /*
1872 * Adjust region info to make it start at the beginning at the
1873 * 'start' ECC byte.
1874 */
1875 oobregion->offset += byte - pos;
1876 oobregion->length -= byte - pos;
1877 *sectionp = section;
1878
1879 return 0;
1880}
1881
1882/**
1883 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1884 * ECC byte
1885 * @mtd: mtd info structure
1886 * @eccbyte: the byte we are searching for
6361f536 1887 * @section: pointer where the section id will be stored
75eb2cec
BB
1888 * @oobregion: OOB region information
1889 *
1890 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1891 * byte.
1892 *
1893 * Returns zero on success, a negative error code otherwise.
1894 */
1895int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1896 int *section,
1897 struct mtd_oob_region *oobregion)
1898{
1899 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1900 mtd_ooblayout_ecc);
1901}
1902EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1903
1904/**
1905 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1906 * @mtd: mtd info structure
1907 * @buf: destination buffer to store OOB bytes
1908 * @oobbuf: OOB buffer
1909 * @start: first byte to retrieve
1910 * @nbytes: number of bytes to retrieve
1911 * @iter: section iterator
1912 *
1913 * Extract bytes attached to a specific category (ECC or free)
1914 * from the OOB buffer and copy them into buf.
1915 *
1916 * Returns zero on success, a negative error code otherwise.
1917 */
1918static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1919 const u8 *oobbuf, int start, int nbytes,
1920 int (*iter)(struct mtd_info *,
1921 int section,
1922 struct mtd_oob_region *oobregion))
1923{
8e8fd4d1
MY
1924 struct mtd_oob_region oobregion;
1925 int section, ret;
75eb2cec
BB
1926
1927 ret = mtd_ooblayout_find_region(mtd, start, &section,
1928 &oobregion, iter);
1929
1930 while (!ret) {
1931 int cnt;
1932
7c295ef9 1933 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1934 memcpy(buf, oobbuf + oobregion.offset, cnt);
1935 buf += cnt;
1936 nbytes -= cnt;
1937
1938 if (!nbytes)
1939 break;
1940
1941 ret = iter(mtd, ++section, &oobregion);
1942 }
1943
1944 return ret;
1945}
1946
1947/**
1948 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1949 * @mtd: mtd info structure
1950 * @buf: source buffer to get OOB bytes from
1951 * @oobbuf: OOB buffer
1952 * @start: first OOB byte to set
1953 * @nbytes: number of OOB bytes to set
1954 * @iter: section iterator
1955 *
1956 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1957 * is selected by passing the appropriate iterator.
1958 *
1959 * Returns zero on success, a negative error code otherwise.
1960 */
1961static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1962 u8 *oobbuf, int start, int nbytes,
1963 int (*iter)(struct mtd_info *,
1964 int section,
1965 struct mtd_oob_region *oobregion))
1966{
8e8fd4d1
MY
1967 struct mtd_oob_region oobregion;
1968 int section, ret;
75eb2cec
BB
1969
1970 ret = mtd_ooblayout_find_region(mtd, start, &section,
1971 &oobregion, iter);
1972
1973 while (!ret) {
1974 int cnt;
1975
7c295ef9 1976 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1977 memcpy(oobbuf + oobregion.offset, buf, cnt);
1978 buf += cnt;
1979 nbytes -= cnt;
1980
1981 if (!nbytes)
1982 break;
1983
1984 ret = iter(mtd, ++section, &oobregion);
1985 }
1986
1987 return ret;
1988}
1989
1990/**
1991 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1992 * @mtd: mtd info structure
1993 * @iter: category iterator
1994 *
1995 * Count the number of bytes in a given category.
1996 *
1997 * Returns a positive value on success, a negative error code otherwise.
1998 */
1999static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2000 int (*iter)(struct mtd_info *,
2001 int section,
2002 struct mtd_oob_region *oobregion))
2003{
4d6aecfb 2004 struct mtd_oob_region oobregion;
75eb2cec
BB
2005 int section = 0, ret, nbytes = 0;
2006
2007 while (1) {
2008 ret = iter(mtd, section++, &oobregion);
2009 if (ret) {
2010 if (ret == -ERANGE)
2011 ret = nbytes;
2012 break;
2013 }
2014
2015 nbytes += oobregion.length;
2016 }
2017
2018 return ret;
2019}
2020
2021/**
2022 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2023 * @mtd: mtd info structure
2024 * @eccbuf: destination buffer to store ECC bytes
2025 * @oobbuf: OOB buffer
2026 * @start: first ECC byte to retrieve
2027 * @nbytes: number of ECC bytes to retrieve
2028 *
2029 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2030 *
2031 * Returns zero on success, a negative error code otherwise.
2032 */
2033int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2034 const u8 *oobbuf, int start, int nbytes)
2035{
2036 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2037 mtd_ooblayout_ecc);
2038}
2039EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2040
2041/**
2042 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2043 * @mtd: mtd info structure
2044 * @eccbuf: source buffer to get ECC bytes from
2045 * @oobbuf: OOB buffer
2046 * @start: first ECC byte to set
2047 * @nbytes: number of ECC bytes to set
2048 *
2049 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2050 *
2051 * Returns zero on success, a negative error code otherwise.
2052 */
2053int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2054 u8 *oobbuf, int start, int nbytes)
2055{
2056 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2057 mtd_ooblayout_ecc);
2058}
2059EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2060
2061/**
2062 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2063 * @mtd: mtd info structure
2064 * @databuf: destination buffer to store ECC bytes
2065 * @oobbuf: OOB buffer
2066 * @start: first ECC byte to retrieve
2067 * @nbytes: number of ECC bytes to retrieve
2068 *
2069 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2070 *
2071 * Returns zero on success, a negative error code otherwise.
2072 */
2073int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2074 const u8 *oobbuf, int start, int nbytes)
2075{
2076 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2077 mtd_ooblayout_free);
2078}
2079EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2080
2081/**
c77a9312 2082 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
75eb2cec 2083 * @mtd: mtd info structure
c77a9312 2084 * @databuf: source buffer to get data bytes from
75eb2cec
BB
2085 * @oobbuf: OOB buffer
2086 * @start: first ECC byte to set
2087 * @nbytes: number of ECC bytes to set
2088 *
519494a9 2089 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
75eb2cec
BB
2090 *
2091 * Returns zero on success, a negative error code otherwise.
2092 */
2093int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2094 u8 *oobbuf, int start, int nbytes)
2095{
2096 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2097 mtd_ooblayout_free);
2098}
2099EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2100
2101/**
2102 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2103 * @mtd: mtd info structure
2104 *
2105 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2106 *
2107 * Returns zero on success, a negative error code otherwise.
2108 */
2109int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2110{
2111 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2112}
2113EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2114
2115/**
c77a9312 2116 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
75eb2cec
BB
2117 * @mtd: mtd info structure
2118 *
2119 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2120 *
2121 * Returns zero on success, a negative error code otherwise.
2122 */
2123int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2124{
2125 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2126}
2127EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2128
de3cac93
AB
2129/*
2130 * Method to access the protection register area, present in some flash
2131 * devices. The user data is one time programmable but the factory data is read
2132 * only.
2133 */
4b78fc42
CR
2134int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2135 struct otp_info *buf)
de3cac93 2136{
46b5889c
MR
2137 struct mtd_info *master = mtd_get_master(mtd);
2138
2139 if (!master->_get_fact_prot_info)
de3cac93
AB
2140 return -EOPNOTSUPP;
2141 if (!len)
2142 return 0;
46b5889c 2143 return master->_get_fact_prot_info(master, len, retlen, buf);
de3cac93
AB
2144}
2145EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2146
2147int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2148 size_t *retlen, u_char *buf)
2149{
46b5889c
MR
2150 struct mtd_info *master = mtd_get_master(mtd);
2151
de3cac93 2152 *retlen = 0;
46b5889c 2153 if (!master->_read_fact_prot_reg)
de3cac93
AB
2154 return -EOPNOTSUPP;
2155 if (!len)
2156 return 0;
46b5889c 2157 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
de3cac93
AB
2158}
2159EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2160
4b78fc42
CR
2161int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2162 struct otp_info *buf)
de3cac93 2163{
46b5889c
MR
2164 struct mtd_info *master = mtd_get_master(mtd);
2165
2166 if (!master->_get_user_prot_info)
de3cac93
AB
2167 return -EOPNOTSUPP;
2168 if (!len)
2169 return 0;
46b5889c 2170 return master->_get_user_prot_info(master, len, retlen, buf);
de3cac93
AB
2171}
2172EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2173
2174int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2175 size_t *retlen, u_char *buf)
2176{
46b5889c
MR
2177 struct mtd_info *master = mtd_get_master(mtd);
2178
de3cac93 2179 *retlen = 0;
46b5889c 2180 if (!master->_read_user_prot_reg)
de3cac93
AB
2181 return -EOPNOTSUPP;
2182 if (!len)
2183 return 0;
46b5889c 2184 return master->_read_user_prot_reg(master, from, len, retlen, buf);
de3cac93
AB
2185}
2186EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2187
2188int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1df1fc8c 2189 size_t *retlen, const u_char *buf)
de3cac93 2190{
46b5889c 2191 struct mtd_info *master = mtd_get_master(mtd);
9a78bc83
CR
2192 int ret;
2193
de3cac93 2194 *retlen = 0;
46b5889c 2195 if (!master->_write_user_prot_reg)
de3cac93
AB
2196 return -EOPNOTSUPP;
2197 if (!len)
2198 return 0;
46b5889c 2199 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
9a78bc83
CR
2200 if (ret)
2201 return ret;
2202
2203 /*
2204 * If no data could be written at all, we are out of memory and
2205 * must return -ENOSPC.
2206 */
2207 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
2208}
2209EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2210
2211int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2212{
46b5889c
MR
2213 struct mtd_info *master = mtd_get_master(mtd);
2214
2215 if (!master->_lock_user_prot_reg)
de3cac93
AB
2216 return -EOPNOTSUPP;
2217 if (!len)
2218 return 0;
46b5889c 2219 return master->_lock_user_prot_reg(master, from, len);
de3cac93
AB
2220}
2221EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2222
e3c1f1c9
MW
2223int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2224{
2225 struct mtd_info *master = mtd_get_master(mtd);
2226
2227 if (!master->_erase_user_prot_reg)
2228 return -EOPNOTSUPP;
2229 if (!len)
2230 return 0;
2231 return master->_erase_user_prot_reg(master, from, len);
2232}
2233EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2234
8273a0c9
AB
2235/* Chip-supported device locking */
2236int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2237{
46b5889c
MR
2238 struct mtd_info *master = mtd_get_master(mtd);
2239
2240 if (!master->_lock)
8273a0c9 2241 return -EOPNOTSUPP;
0c2b4e21 2242 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 2243 return -EINVAL;
bcb1d238
AB
2244 if (!len)
2245 return 0;
9e3307a1
BB
2246
2247 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2248 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2249 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2250 }
2251
46b5889c 2252 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
2253}
2254EXPORT_SYMBOL_GPL(mtd_lock);
2255
2256int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2257{
46b5889c
MR
2258 struct mtd_info *master = mtd_get_master(mtd);
2259
2260 if (!master->_unlock)
8273a0c9 2261 return -EOPNOTSUPP;
0c2b4e21 2262 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 2263 return -EINVAL;
bcb1d238
AB
2264 if (!len)
2265 return 0;
9e3307a1
BB
2266
2267 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2268 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2269 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2270 }
2271
46b5889c 2272 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
2273}
2274EXPORT_SYMBOL_GPL(mtd_unlock);
2275
2276int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2277{
46b5889c
MR
2278 struct mtd_info *master = mtd_get_master(mtd);
2279
2280 if (!master->_is_locked)
8273a0c9 2281 return -EOPNOTSUPP;
0c2b4e21 2282 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 2283 return -EINVAL;
bcb1d238
AB
2284 if (!len)
2285 return 0;
9e3307a1
BB
2286
2287 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2288 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2289 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2290 }
2291
46b5889c 2292 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
2293}
2294EXPORT_SYMBOL_GPL(mtd_is_locked);
2295
8471bb73 2296int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 2297{
46b5889c
MR
2298 struct mtd_info *master = mtd_get_master(mtd);
2299
0c2b4e21 2300 if (ofs < 0 || ofs >= mtd->size)
8471bb73 2301 return -EINVAL;
46b5889c 2302 if (!master->_block_isreserved)
8273a0c9 2303 return 0;
9e3307a1
BB
2304
2305 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2306 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2307
46b5889c 2308 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
8471bb73
EG
2309}
2310EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2311
2312int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2313{
46b5889c
MR
2314 struct mtd_info *master = mtd_get_master(mtd);
2315
0c2b4e21 2316 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 2317 return -EINVAL;
46b5889c 2318 if (!master->_block_isbad)
8471bb73 2319 return 0;
9e3307a1
BB
2320
2321 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2322 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2323
46b5889c 2324 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
8273a0c9
AB
2325}
2326EXPORT_SYMBOL_GPL(mtd_block_isbad);
2327
2328int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2329{
46b5889c
MR
2330 struct mtd_info *master = mtd_get_master(mtd);
2331 int ret;
2332
2333 if (!master->_block_markbad)
8273a0c9 2334 return -EOPNOTSUPP;
0c2b4e21 2335 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 2336 return -EINVAL;
664addc2
AB
2337 if (!(mtd->flags & MTD_WRITEABLE))
2338 return -EROFS;
46b5889c 2339
9e3307a1
BB
2340 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2341 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2342
46b5889c
MR
2343 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2344 if (ret)
2345 return ret;
2346
2347 while (mtd->parent) {
2348 mtd->ecc_stats.badblocks++;
2349 mtd = mtd->parent;
2350 }
2351
2352 return 0;
8273a0c9
AB
2353}
2354EXPORT_SYMBOL_GPL(mtd_block_markbad);
2fe48aaa 2355ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
8273a0c9 2356
52b02031
AB
2357/*
2358 * default_mtd_writev - the default writev method
2359 * @mtd: mtd device description object pointer
2360 * @vecs: the vectors to write
2361 * @count: count of vectors in @vecs
2362 * @to: the MTD device offset to write to
2363 * @retlen: on exit contains the count of bytes written to the MTD device.
2364 *
2365 * This function returns zero in case of success and a negative error code in
2366 * case of failure.
1da177e4 2367 */
1dbebd32
AB
2368static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2369 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
2370{
2371 unsigned long i;
2372 size_t totlen = 0, thislen;
2373 int ret = 0;
2374
52b02031
AB
2375 for (i = 0; i < count; i++) {
2376 if (!vecs[i].iov_len)
2377 continue;
2378 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2379 vecs[i].iov_base);
2380 totlen += thislen;
2381 if (ret || thislen != vecs[i].iov_len)
2382 break;
2383 to += vecs[i].iov_len;
1da177e4 2384 }
52b02031 2385 *retlen = totlen;
1da177e4
LT
2386 return ret;
2387}
1dbebd32
AB
2388
2389/*
2390 * mtd_writev - the vector-based MTD write method
2391 * @mtd: mtd device description object pointer
2392 * @vecs: the vectors to write
2393 * @count: count of vectors in @vecs
2394 * @to: the MTD device offset to write to
2395 * @retlen: on exit contains the count of bytes written to the MTD device.
2396 *
2397 * This function returns zero in case of success and a negative error code in
2398 * case of failure.
2399 */
2400int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2401 unsigned long count, loff_t to, size_t *retlen)
2402{
46b5889c
MR
2403 struct mtd_info *master = mtd_get_master(mtd);
2404
1dbebd32 2405 *retlen = 0;
664addc2
AB
2406 if (!(mtd->flags & MTD_WRITEABLE))
2407 return -EROFS;
46b5889c
MR
2408
2409 if (!master->_writev)
1dbebd32 2410 return default_mtd_writev(mtd, vecs, count, to, retlen);
46b5889c
MR
2411
2412 return master->_writev(master, vecs, count,
2413 mtd_get_master_ofs(mtd, to), retlen);
1dbebd32
AB
2414}
2415EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 2416
33b53716
GE
2417/**
2418 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
2419 * @mtd: mtd device description object pointer
2420 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
2421 * to the actual allocation size on success.
2422 *
2423 * This routine attempts to allocate a contiguous kernel buffer up to
2424 * the specified size, backing off the size of the request exponentially
2425 * until the request succeeds or until the allocation size falls below
2426 * the system page size. This attempts to make sure it does not adversely
2427 * impact system performance, so when allocating more than one page, we
caf49191
LT
2428 * ask the memory allocator to avoid re-trying, swapping, writing back
2429 * or performing I/O.
33b53716
GE
2430 *
2431 * Note, this function also makes sure that the allocated buffer is aligned to
2432 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2433 *
2434 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2435 * to handle smaller (i.e. degraded) buffer allocations under low- or
2436 * fragmented-memory situations where such reduced allocations, from a
2437 * requested ideal, are allowed.
2438 *
2439 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2440 */
2441void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2442{
d0164adc 2443 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
2444 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2445 void *kbuf;
2446
2447 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2448
2449 while (*size > min_alloc) {
2450 kbuf = kmalloc(*size, flags);
2451 if (kbuf)
2452 return kbuf;
2453
2454 *size >>= 1;
2455 *size = ALIGN(*size, mtd->writesize);
2456 }
2457
2458 /*
2459 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2460 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2461 */
2462 return kmalloc(*size, GFP_KERNEL);
2463}
33b53716 2464EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 2465
2d2dce0e
PM
2466#ifdef CONFIG_PROC_FS
2467
1da177e4
LT
2468/*====================================================================*/
2469/* Support for /proc/mtd */
2470
447d9bd8 2471static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 2472{
f1332ba2 2473 struct mtd_info *mtd;
1da177e4 2474
447d9bd8 2475 seq_puts(m, "dev: size erasesize name\n");
48b19268 2476 mutex_lock(&mtd_table_mutex);
f1332ba2 2477 mtd_for_each_device(mtd) {
447d9bd8
AD
2478 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2479 mtd->index, (unsigned long long)mtd->size,
2480 mtd->erasesize, mtd->name);
d5ca5129 2481 }
48b19268 2482 mutex_unlock(&mtd_table_mutex);
d5ca5129 2483 return 0;
1da177e4 2484}
45b09076
KC
2485#endif /* CONFIG_PROC_FS */
2486
1da177e4
LT
2487/*====================================================================*/
2488/* Init code */
2489
462d69a2 2490static struct backing_dev_info * __init mtd_bdi_init(const char *name)
0661b1ac 2491{
445caaa2 2492 struct backing_dev_info *bdi;
0661b1ac
JA
2493 int ret;
2494
aef33c2f 2495 bdi = bdi_alloc(NUMA_NO_NODE);
445caaa2
SL
2496 if (!bdi)
2497 return ERR_PTR(-ENOMEM);
55b2598e
CH
2498 bdi->ra_pages = 0;
2499 bdi->io_pages = 0;
0661b1ac 2500
fa06052d
JK
2501 /*
2502 * We put '-0' suffix to the name to get the same name format as we
2503 * used to get. Since this is called only once, we get a unique name.
2504 */
7c4cc300 2505 ret = bdi_register(bdi, "%.28s-0", name);
0661b1ac 2506 if (ret)
fa06052d 2507 bdi_put(bdi);
0661b1ac 2508
445caaa2 2509 return ret ? ERR_PTR(ret) : bdi;
0661b1ac
JA
2510}
2511
93e56214
AB
2512static struct proc_dir_entry *proc_mtd;
2513
1da177e4
LT
2514static int __init init_mtd(void)
2515{
15bce40c 2516 int ret;
0661b1ac 2517
15bce40c 2518 ret = class_register(&mtd_class);
0661b1ac
JA
2519 if (ret)
2520 goto err_reg;
2521
445caaa2
SL
2522 mtd_bdi = mtd_bdi_init("mtd");
2523 if (IS_ERR(mtd_bdi)) {
2524 ret = PTR_ERR(mtd_bdi);
b4caecd4 2525 goto err_bdi;
445caaa2 2526 }
694bb7fc 2527
3f3942ac 2528 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
93e56214 2529
660685d9
AB
2530 ret = init_mtdchar();
2531 if (ret)
2532 goto out_procfs;
2533
e8e3edb9 2534 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
67b967dd
MR
2535 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2536 &mtd_expert_analysis_mode);
e8e3edb9 2537
1da177e4 2538 return 0;
0661b1ac 2539
660685d9
AB
2540out_procfs:
2541 if (proc_mtd)
2542 remove_proc_entry("mtd", NULL);
1aadf01e 2543 bdi_unregister(mtd_bdi);
fa06052d 2544 bdi_put(mtd_bdi);
b4caecd4 2545err_bdi:
0661b1ac
JA
2546 class_unregister(&mtd_class);
2547err_reg:
2548 pr_err("Error registering mtd class or bdi: %d\n", ret);
2549 return ret;
1da177e4
LT
2550}
2551
2552static void __exit cleanup_mtd(void)
2553{
e8e3edb9 2554 debugfs_remove_recursive(dfs_dir_mtd);
660685d9 2555 cleanup_mtdchar();
d5ca5129 2556 if (proc_mtd)
93e56214 2557 remove_proc_entry("mtd", NULL);
15bce40c 2558 class_unregister(&mtd_class);
9718c59c 2559 bdi_unregister(mtd_bdi);
fa06052d 2560 bdi_put(mtd_bdi);
35667b99 2561 idr_destroy(&mtd_idr);
1da177e4
LT
2562}
2563
2564module_init(init_mtd);
2565module_exit(cleanup_mtd);
2566
1da177e4
LT
2567MODULE_LICENSE("GPL");
2568MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2569MODULE_DESCRIPTION("Core MTD registration and access routines");