mtd: Introduce an expert mode for forensics and debugging purposes
[linux-2.6-block.git] / drivers / mtd / mtdcore.c
CommitLineData
fd534e9b 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
1da177e4
LT
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
a1452a37
DW
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
1da177e4
LT
8 */
9
1da177e4
LT
10#include <linux/module.h>
11#include <linux/kernel.h>
1da177e4 12#include <linux/ptrace.h>
447d9bd8 13#include <linux/seq_file.h>
1da177e4
LT
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
7799308f 18#include <linux/err.h>
1da177e4
LT
19#include <linux/ioctl.h>
20#include <linux/init.h>
215a02fd 21#include <linux/of.h>
1da177e4 22#include <linux/proc_fs.h>
b520e412 23#include <linux/idr.h>
a33eb6b9 24#include <linux/backing-dev.h>
05d71b46 25#include <linux/gfp.h>
0d01ff25 26#include <linux/slab.h>
3efe41be 27#include <linux/reboot.h>
fea728c0 28#include <linux/leds.h>
e8e3edb9 29#include <linux/debugfs.h>
c4dfa25a 30#include <linux/nvmem-provider.h>
1da177e4
LT
31
32#include <linux/mtd/mtd.h>
f5671ab3 33#include <linux/mtd/partitions.h>
1da177e4 34
356d70f1 35#include "mtdcore.h"
660685d9 36
fa06052d 37struct backing_dev_info *mtd_bdi;
356d70f1 38
57b8045d
LPC
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
15bce40c
DW
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
57b8045d 66 .pm = MTD_CLS_PM_OPS,
15bce40c 67};
1f24b5a8 68
b520e412
BH
69static DEFINE_IDR(mtd_idr);
70
97894cda 71/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 72 should not use them for _anything_ else */
48b19268 73DEFINE_MUTEX(mtd_table_mutex);
1da177e4 74EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
81
82static LIST_HEAD(mtd_notifiers);
83
1f24b5a8 84
1f24b5a8 85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
5e472128 92 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 93 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 94
5e472128
BN
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
15bce40c
DW
97}
98
b4e24863
ZL
99#define MTD_DEVICE_ATTR_RO(name) \
100static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102#define MTD_DEVICE_ATTR_RW(name) \
103static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
1f24b5a8
DB
105static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107{
d5de20a9 108 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
f4837246
HS
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
1f24b5a8
DB
136 default:
137 type = "unknown";
138 }
139
5b2fbe0c 140 return sysfs_emit(buf, "%s\n", type);
1f24b5a8 141}
a17da115 142MTD_DEVICE_ATTR_RO(type);
694bb7fc
KC
143
144static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146{
d5de20a9 147 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 148
5b2fbe0c 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
694bb7fc 150}
a17da115 151MTD_DEVICE_ATTR_RO(flags);
694bb7fc
KC
152
153static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155{
d5de20a9 156 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 157
5b2fbe0c 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
694bb7fc 159}
a17da115 160MTD_DEVICE_ATTR_RO(size);
694bb7fc
KC
161
162static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164{
d5de20a9 165 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 166
5b2fbe0c 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
694bb7fc 168}
a17da115 169MTD_DEVICE_ATTR_RO(erasesize);
694bb7fc
KC
170
171static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173{
d5de20a9 174 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 175
5b2fbe0c 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
694bb7fc 177}
a17da115 178MTD_DEVICE_ATTR_RO(writesize);
694bb7fc 179
e7693548
AB
180static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182{
d5de20a9 183 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
5b2fbe0c 186 return sysfs_emit(buf, "%u\n", subpagesize);
e7693548 187}
a17da115 188MTD_DEVICE_ATTR_RO(subpagesize);
e7693548 189
694bb7fc
KC
190static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
d5de20a9 193 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 194
5b2fbe0c 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
694bb7fc 196}
a17da115 197MTD_DEVICE_ATTR_RO(oobsize);
694bb7fc 198
7cc9aa66
XL
199static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201{
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
5b2fbe0c 204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
7cc9aa66 205}
a17da115 206MTD_DEVICE_ATTR_RO(oobavail);
7cc9aa66 207
694bb7fc
KC
208static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210{
d5de20a9 211 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 212
5b2fbe0c 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
694bb7fc 214}
a17da115 215MTD_DEVICE_ATTR_RO(numeraseregions);
694bb7fc
KC
216
217static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219{
d5de20a9 220 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc 221
5b2fbe0c 222 return sysfs_emit(buf, "%s\n", mtd->name);
694bb7fc 223}
a17da115 224MTD_DEVICE_ATTR_RO(name);
1f24b5a8 225
a9b672e8
MD
226static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228{
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
5b2fbe0c 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
a9b672e8 232}
a17da115 233MTD_DEVICE_ATTR_RO(ecc_strength);
a9b672e8 234
d062d4ed
MD
235static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238{
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
5b2fbe0c 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
d062d4ed
MD
242}
243
244static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247{
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258}
a17da115 259MTD_DEVICE_ATTR_RW(bitflip_threshold);
d062d4ed 260
bf977e3f
HS
261static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263{
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
5b2fbe0c 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
bf977e3f
HS
267
268}
a17da115 269MTD_DEVICE_ATTR_RO(ecc_step_size);
bf977e3f 270
a17da115 271static ssize_t mtd_corrected_bits_show(struct device *dev,
990a3af0
EG
272 struct device_attribute *attr, char *buf)
273{
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
5b2fbe0c 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
990a3af0 278}
a17da115 279MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
990a3af0 280
a17da115 281static ssize_t mtd_ecc_failures_show(struct device *dev,
990a3af0
EG
282 struct device_attribute *attr, char *buf)
283{
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
5b2fbe0c 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
990a3af0 288}
a17da115 289MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
990a3af0 290
a17da115 291static ssize_t mtd_bad_blocks_show(struct device *dev,
990a3af0
EG
292 struct device_attribute *attr, char *buf)
293{
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
5b2fbe0c 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
990a3af0 298}
a17da115 299MTD_DEVICE_ATTR_RO(bad_blocks);
990a3af0 300
a17da115 301static ssize_t mtd_bbt_blocks_show(struct device *dev,
990a3af0
EG
302 struct device_attribute *attr, char *buf)
303{
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
5b2fbe0c 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
990a3af0 308}
a17da115 309MTD_DEVICE_ATTR_RO(bbt_blocks);
990a3af0 310
1f24b5a8 311static struct attribute *mtd_attrs[] = {
694bb7fc
KC
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
e7693548 317 &dev_attr_subpagesize.attr,
694bb7fc 318 &dev_attr_oobsize.attr,
7cc9aa66 319 &dev_attr_oobavail.attr,
694bb7fc
KC
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
a9b672e8 322 &dev_attr_ecc_strength.attr,
bf977e3f 323 &dev_attr_ecc_step_size.attr,
990a3af0
EG
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
d062d4ed 328 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
329 NULL,
330};
54c738f6 331ATTRIBUTE_GROUPS(mtd);
1f24b5a8 332
75864b30 333static const struct device_type mtd_devtype = {
1f24b5a8
DB
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337};
338
5610d1f4 339static int mtd_partid_debug_show(struct seq_file *s, void *p)
1018c94b
ZL
340{
341 struct mtd_info *mtd = s->private;
342
343 seq_printf(s, "%s\n", mtd->dbg.partid);
344
345 return 0;
346}
347
5610d1f4 348DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
1018c94b 349
5610d1f4 350static int mtd_partname_debug_show(struct seq_file *s, void *p)
1018c94b
ZL
351{
352 struct mtd_info *mtd = s->private;
353
354 seq_printf(s, "%s\n", mtd->dbg.partname);
355
356 return 0;
357}
358
5610d1f4 359DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
1018c94b
ZL
360
361static struct dentry *dfs_dir_mtd;
362
363static void mtd_debugfs_populate(struct mtd_info *mtd)
364{
feb05fae 365 struct mtd_info *master = mtd_get_master(mtd);
1018c94b 366 struct device *dev = &mtd->dev;
c2d73ba8 367 struct dentry *root;
1018c94b
ZL
368
369 if (IS_ERR_OR_NULL(dfs_dir_mtd))
370 return;
371
372 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
1018c94b
ZL
373 mtd->dbg.dfs_dir = root;
374
feb05fae
PM
375 if (master->dbg.partid)
376 debugfs_create_file("partid", 0400, root, master,
c2d73ba8 377 &mtd_partid_debug_fops);
1018c94b 378
feb05fae
PM
379 if (master->dbg.partname)
380 debugfs_create_file("partname", 0400, root, master,
c2d73ba8 381 &mtd_partname_debug_fops);
1018c94b
ZL
382}
383
b4caecd4
CH
384#ifndef CONFIG_MMU
385unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
386{
387 switch (mtd->type) {
388 case MTD_RAM:
389 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
390 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
391 case MTD_ROM:
392 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
393 NOMMU_MAP_READ;
394 default:
395 return NOMMU_MAP_COPY;
396 }
397}
706a4e5a 398EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
399#endif
400
3efe41be
BN
401static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
402 void *cmd)
403{
404 struct mtd_info *mtd;
405
406 mtd = container_of(n, struct mtd_info, reboot_notifier);
407 mtd->_reboot(mtd);
408
409 return NOTIFY_DONE;
410}
411
477b0229
BB
412/**
413 * mtd_wunit_to_pairing_info - get pairing information of a wunit
414 * @mtd: pointer to new MTD device info structure
415 * @wunit: write unit we are interested in
416 * @info: returned pairing information
417 *
418 * Retrieve pairing information associated to the wunit.
419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
420 * paired together, and where programming a page may influence the page it is
421 * paired with.
422 * The notion of page is replaced by the term wunit (write-unit) to stay
423 * consistent with the ->writesize field.
424 *
425 * The @wunit argument can be extracted from an absolute offset using
426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
427 * to @wunit.
428 *
429 * From the pairing info the MTD user can find all the wunits paired with
430 * @wunit using the following loop:
431 *
432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
433 * info.pair = i;
434 * mtd_pairing_info_to_wunit(mtd, &info);
435 * ...
436 * }
437 */
438int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
439 struct mtd_pairing_info *info)
440{
46b5889c
MR
441 struct mtd_info *master = mtd_get_master(mtd);
442 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
477b0229
BB
443
444 if (wunit < 0 || wunit >= npairs)
445 return -EINVAL;
446
46b5889c
MR
447 if (master->pairing && master->pairing->get_info)
448 return master->pairing->get_info(master, wunit, info);
477b0229
BB
449
450 info->group = 0;
451 info->pair = wunit;
452
453 return 0;
454}
455EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
456
457/**
c77a9312 458 * mtd_pairing_info_to_wunit - get wunit from pairing information
477b0229
BB
459 * @mtd: pointer to new MTD device info structure
460 * @info: pairing information struct
461 *
462 * Returns a positive number representing the wunit associated to the info
463 * struct, or a negative error code.
464 *
465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
467 * doc).
468 *
469 * It can also be used to only program the first page of each pair (i.e.
470 * page attached to group 0), which allows one to use an MLC NAND in
471 * software-emulated SLC mode:
472 *
473 * info.group = 0;
474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
475 * for (info.pair = 0; info.pair < npairs; info.pair++) {
476 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
477 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
478 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
479 * }
480 */
481int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
482 const struct mtd_pairing_info *info)
483{
46b5889c
MR
484 struct mtd_info *master = mtd_get_master(mtd);
485 int ngroups = mtd_pairing_groups(master);
486 int npairs = mtd_wunit_per_eb(master) / ngroups;
477b0229
BB
487
488 if (!info || info->pair < 0 || info->pair >= npairs ||
489 info->group < 0 || info->group >= ngroups)
490 return -EINVAL;
491
46b5889c
MR
492 if (master->pairing && master->pairing->get_wunit)
493 return mtd->pairing->get_wunit(master, info);
477b0229
BB
494
495 return info->pair;
496}
497EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
498
499/**
500 * mtd_pairing_groups - get the number of pairing groups
501 * @mtd: pointer to new MTD device info structure
502 *
503 * Returns the number of pairing groups.
504 *
505 * This number is usually equal to the number of bits exposed by a single
506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
507 * to iterate over all pages of a given pair.
508 */
509int mtd_pairing_groups(struct mtd_info *mtd)
510{
46b5889c
MR
511 struct mtd_info *master = mtd_get_master(mtd);
512
513 if (!master->pairing || !master->pairing->ngroups)
477b0229
BB
514 return 1;
515
46b5889c 516 return master->pairing->ngroups;
477b0229
BB
517}
518EXPORT_SYMBOL_GPL(mtd_pairing_groups);
519
c4dfa25a
AB
520static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
521 void *val, size_t bytes)
522{
523 struct mtd_info *mtd = priv;
524 size_t retlen;
525 int err;
526
527 err = mtd_read(mtd, offset, bytes, &retlen, val);
528 if (err && err != -EUCLEAN)
529 return err;
530
531 return retlen == bytes ? 0 : -EIO;
532}
533
534static int mtd_nvmem_add(struct mtd_info *mtd)
535{
658c4448 536 struct device_node *node = mtd_get_of_node(mtd);
c4dfa25a
AB
537 struct nvmem_config config = {};
538
6e952685 539 config.id = -1;
c4dfa25a 540 config.dev = &mtd->dev;
7b01b723 541 config.name = dev_name(&mtd->dev);
c4dfa25a
AB
542 config.owner = THIS_MODULE;
543 config.reg_read = mtd_nvmem_reg_read;
544 config.size = mtd->size;
545 config.word_size = 1;
546 config.stride = 1;
547 config.read_only = true;
548 config.root_only = true;
658c4448 549 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
c4dfa25a
AB
550 config.priv = mtd;
551
552 mtd->nvmem = nvmem_register(&config);
553 if (IS_ERR(mtd->nvmem)) {
554 /* Just ignore if there is no NVMEM support in the kernel */
19e16fb4 555 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
c4dfa25a
AB
556 mtd->nvmem = NULL;
557 } else {
558 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
559 return PTR_ERR(mtd->nvmem);
560 }
561 }
562
563 return 0;
564}
565
1da177e4
LT
566/**
567 * add_mtd_device - register an MTD device
568 * @mtd: pointer to new MTD device info structure
569 *
570 * Add a device to the list of MTD devices present in the system, and
571 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 572 * zero on success or non-zero on failure.
1da177e4
LT
573 */
574
575int add_mtd_device(struct mtd_info *mtd)
576{
46b5889c 577 struct mtd_info *master = mtd_get_master(mtd);
b520e412
BH
578 struct mtd_notifier *not;
579 int i, error;
1da177e4 580
be0dbff8
BN
581 /*
582 * May occur, for instance, on buggy drivers which call
583 * mtd_device_parse_register() multiple times on the same master MTD,
584 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
585 */
fa06052d 586 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
be0dbff8
BN
587 return -EEXIST;
588
783ed81f 589 BUG_ON(mtd->writesize == 0);
33f45c44 590
2431c4f5
BB
591 /*
592 * MTD drivers should implement ->_{write,read}() or
593 * ->_{write,read}_oob(), but not both.
594 */
595 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
596 (mtd->_read && mtd->_read_oob)))
597 return -EINVAL;
598
46b5889c 599 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
33f45c44
BB
600 !(mtd->flags & MTD_NO_ERASE)))
601 return -EINVAL;
602
9e3307a1
BB
603 /*
604 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
605 * master is an MLC NAND and has a proper pairing scheme defined.
606 * We also reject masters that implement ->_writev() for now, because
607 * NAND controller drivers don't implement this hook, and adding the
608 * SLC -> MLC address/length conversion to this path is useless if we
609 * don't have a user.
610 */
611 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
612 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
613 !master->pairing || master->_writev))
614 return -EINVAL;
615
48b19268 616 mutex_lock(&mtd_table_mutex);
1da177e4 617
589e9c4d 618 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
619 if (i < 0) {
620 error = i;
b520e412 621 goto fail_locked;
57dd990c 622 }
1f24b5a8 623
b520e412
BH
624 mtd->index = i;
625 mtd->usecount = 0;
626
d062d4ed
MD
627 /* default value if not set by driver */
628 if (mtd->bitflip_threshold == 0)
629 mtd->bitflip_threshold = mtd->ecc_strength;
630
9e3307a1
BB
631 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
632 int ngroups = mtd_pairing_groups(master);
633
634 mtd->erasesize /= ngroups;
635 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
636 mtd->erasesize;
637 }
638
b520e412
BH
639 if (is_power_of_2(mtd->erasesize))
640 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
641 else
642 mtd->erasesize_shift = 0;
643
644 if (is_power_of_2(mtd->writesize))
645 mtd->writesize_shift = ffs(mtd->writesize) - 1;
646 else
647 mtd->writesize_shift = 0;
648
649 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
650 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
651
652 /* Some chips always power up locked. Unlock them now */
38134565
AB
653 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
654 error = mtd_unlock(mtd, 0, mtd->size);
655 if (error && error != -EOPNOTSUPP)
b520e412
BH
656 printk(KERN_WARNING
657 "%s: unlock failed, writes may not work\n",
658 mtd->name);
57dd990c
BN
659 /* Ignore unlock failures? */
660 error = 0;
b520e412
BH
661 }
662
663 /* Caller should have set dev.parent to match the
260e89a6 664 * physical device, if appropriate.
b520e412
BH
665 */
666 mtd->dev.type = &mtd_devtype;
667 mtd->dev.class = &mtd_class;
668 mtd->dev.devt = MTD_DEVT(i);
669 dev_set_name(&mtd->dev, "mtd%d", i);
670 dev_set_drvdata(&mtd->dev, mtd);
215a02fd 671 of_node_get(mtd_get_of_node(mtd));
57dd990c
BN
672 error = device_register(&mtd->dev);
673 if (error)
b520e412
BH
674 goto fail_added;
675
c4dfa25a
AB
676 /* Add the nvmem provider */
677 error = mtd_nvmem_add(mtd);
678 if (error)
679 goto fail_nvmem_add;
680
1018c94b 681 mtd_debugfs_populate(mtd);
e8e3edb9 682
5e472128
BN
683 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
684 "mtd%dro", i);
b520e412 685
289c0522 686 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
687 /* No need to get a refcount on the module containing
688 the notifier, since we hold the mtd_table_mutex */
689 list_for_each_entry(not, &mtd_notifiers, list)
690 not->add(mtd);
691
692 mutex_unlock(&mtd_table_mutex);
693 /* We _know_ we aren't being removed, because
694 our caller is still holding us here. So none
695 of this try_ nonsense, and no bitching about it
696 either. :) */
697 __module_get(THIS_MODULE);
698 return 0;
97894cda 699
c4dfa25a
AB
700fail_nvmem_add:
701 device_unregister(&mtd->dev);
b520e412 702fail_added:
215a02fd 703 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
704 idr_remove(&mtd_idr, i);
705fail_locked:
48b19268 706 mutex_unlock(&mtd_table_mutex);
57dd990c 707 return error;
1da177e4
LT
708}
709
710/**
711 * del_mtd_device - unregister an MTD device
712 * @mtd: pointer to MTD device info structure
713 *
714 * Remove a device from the list of MTD devices present in the system,
715 * and notify each currently active MTD 'user' of its departure.
716 * Returns zero on success or 1 on failure, which currently will happen
717 * if the requested device does not appear to be present in the list.
718 */
719
eea72d5f 720int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
721{
722 int ret;
75c0b84d 723 struct mtd_notifier *not;
97894cda 724
48b19268 725 mutex_lock(&mtd_table_mutex);
1da177e4 726
b520e412 727 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 728 ret = -ENODEV;
75c0b84d
ML
729 goto out_error;
730 }
731
732 /* No need to get a refcount on the module containing
733 the notifier, since we hold the mtd_table_mutex */
734 list_for_each_entry(not, &mtd_notifiers, list)
735 not->remove(mtd);
736
737 if (mtd->usecount) {
97894cda 738 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
739 mtd->index, mtd->name, mtd->usecount);
740 ret = -EBUSY;
741 } else {
c13de238
ZW
742 debugfs_remove_recursive(mtd->dbg.dfs_dir);
743
c4dfa25a
AB
744 /* Try to remove the NVMEM provider */
745 if (mtd->nvmem)
746 nvmem_unregister(mtd->nvmem);
747
694bb7fc
KC
748 device_unregister(&mtd->dev);
749
00596576
ZW
750 /* Clear dev so mtd can be safely re-registered later if desired */
751 memset(&mtd->dev, 0, sizeof(mtd->dev));
752
b520e412 753 idr_remove(&mtd_idr, mtd->index);
215a02fd 754 of_node_put(mtd_get_of_node(mtd));
1da177e4
LT
755
756 module_put(THIS_MODULE);
757 ret = 0;
758 }
759
75c0b84d 760out_error:
48b19268 761 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
762 return ret;
763}
764
472b444e
BN
765/*
766 * Set a few defaults based on the parent devices, if not provided by the
767 * driver
768 */
769static void mtd_set_dev_defaults(struct mtd_info *mtd)
770{
771 if (mtd->dev.parent) {
772 if (!mtd->owner && mtd->dev.parent->driver)
773 mtd->owner = mtd->dev.parent->driver->owner;
774 if (!mtd->name)
775 mtd->name = dev_name(mtd->dev.parent);
776 } else {
777 pr_debug("mtd device won't show a device symlink in sysfs\n");
778 }
1186af45 779
46b5889c
MR
780 INIT_LIST_HEAD(&mtd->partitions);
781 mutex_init(&mtd->master.partitions_lock);
1ad55288 782 mutex_init(&mtd->master.chrdev_lock);
472b444e 783}
727dc612 784
4b361cfa
MW
785static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
786{
c3c8c051 787 struct otp_info *info;
4b361cfa
MW
788 ssize_t size = 0;
789 unsigned int i;
790 size_t retlen;
791 int ret;
792
c3c8c051
DC
793 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
794 if (!info)
795 return -ENOMEM;
796
4b361cfa
MW
797 if (is_user)
798 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
799 else
800 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
801 if (ret)
802 goto err;
803
bc8e157f
JH
804 for (i = 0; i < retlen / sizeof(*info); i++)
805 size += info[i].length;
4b361cfa
MW
806
807 kfree(info);
808 return size;
809
810err:
811 kfree(info);
45bb1faa
MW
812
813 /* ENODATA means there is no OTP region. */
814 return ret == -ENODATA ? 0 : ret;
4b361cfa
MW
815}
816
817static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
818 const char *compatible,
819 int size,
820 nvmem_reg_read_t reg_read)
821{
822 struct nvmem_device *nvmem = NULL;
823 struct nvmem_config config = {};
824 struct device_node *np;
825
826 /* DT binding is optional */
827 np = of_get_compatible_child(mtd->dev.of_node, compatible);
828
829 /* OTP nvmem will be registered on the physical device */
830 config.dev = mtd->dev.parent;
c048b60d 831 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
4b361cfa
MW
832 config.id = NVMEM_DEVID_NONE;
833 config.owner = THIS_MODULE;
834 config.type = NVMEM_TYPE_OTP;
835 config.root_only = true;
836 config.reg_read = reg_read;
837 config.size = size;
838 config.of_node = np;
839 config.priv = mtd;
840
841 nvmem = nvmem_register(&config);
842 /* Just ignore if there is no NVMEM support in the kernel */
843 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
844 nvmem = NULL;
845
846 of_node_put(np);
c048b60d 847 kfree(config.name);
4b361cfa
MW
848
849 return nvmem;
850}
851
852static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
853 void *val, size_t bytes)
854{
855 struct mtd_info *mtd = priv;
856 size_t retlen;
857 int ret;
858
859 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
860 if (ret)
861 return ret;
862
863 return retlen == bytes ? 0 : -EIO;
864}
865
866static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
867 void *val, size_t bytes)
868{
869 struct mtd_info *mtd = priv;
870 size_t retlen;
871 int ret;
872
873 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
874 if (ret)
875 return ret;
876
877 return retlen == bytes ? 0 : -EIO;
878}
879
880static int mtd_otp_nvmem_add(struct mtd_info *mtd)
881{
882 struct nvmem_device *nvmem;
883 ssize_t size;
884 int err;
885
886 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
887 size = mtd_otp_size(mtd, true);
888 if (size < 0)
889 return size;
890
891 if (size > 0) {
892 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
893 mtd_nvmem_user_otp_reg_read);
894 if (IS_ERR(nvmem)) {
895 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
896 return PTR_ERR(nvmem);
897 }
898 mtd->otp_user_nvmem = nvmem;
899 }
900 }
901
902 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
903 size = mtd_otp_size(mtd, false);
904 if (size < 0) {
905 err = size;
906 goto err;
907 }
908
909 if (size > 0) {
910 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
911 mtd_nvmem_fact_otp_reg_read);
912 if (IS_ERR(nvmem)) {
913 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
914 err = PTR_ERR(nvmem);
915 goto err;
916 }
917 mtd->otp_factory_nvmem = nvmem;
918 }
919 }
920
921 return 0;
922
923err:
924 if (mtd->otp_user_nvmem)
925 nvmem_unregister(mtd->otp_user_nvmem);
926 return err;
927}
928
1c4c215c
DES
929/**
930 * mtd_device_parse_register - parse partitions and register an MTD device.
931 *
932 * @mtd: the MTD device to register
933 * @types: the list of MTD partition probes to try, see
934 * 'parse_mtd_partitions()' for more information
c7975330 935 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
936 * @parts: fallback partition information to register, if parsing fails;
937 * only valid if %nr_parts > %0
938 * @nr_parts: the number of partitions in parts, if zero then the full
939 * MTD device is registered if no partition info is found
940 *
941 * This function aggregates MTD partitions parsing (done by
942 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
943 * basically follows the most common pattern found in many MTD drivers:
944 *
55a999a0
RM
945 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
946 * registered first.
947 * * Then It tries to probe partitions on MTD device @mtd using parsers
1c4c215c
DES
948 * specified in @types (if @types is %NULL, then the default list of parsers
949 * is used, see 'parse_mtd_partitions()' for more information). If none are
950 * found this functions tries to fallback to information specified in
951 * @parts/@nr_parts.
1c4c215c
DES
952 * * If no partitions were found this function just registers the MTD device
953 * @mtd and exits.
954 *
955 * Returns zero in case of success and a negative error code in case of failure.
956 */
26a47346 957int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 958 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
959 const struct mtd_partition *parts,
960 int nr_parts)
961{
727dc612 962 int ret;
1c4c215c 963
472b444e
BN
964 mtd_set_dev_defaults(mtd);
965
2c77c57d
RM
966 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
967 ret = add_mtd_device(mtd);
968 if (ret)
969 return ret;
970 }
971
0dbe4ea7 972 /* Prefer parsed partitions over driver-provided fallback */
5ac67ce3 973 ret = parse_mtd_partitions(mtd, types, parser_data);
08608adb
MS
974 if (ret == -EPROBE_DEFER)
975 goto out;
976
5ac67ce3
RM
977 if (ret > 0)
978 ret = 0;
979 else if (nr_parts)
0dbe4ea7
RM
980 ret = add_mtd_partitions(mtd, parts, nr_parts);
981 else if (!device_is_registered(&mtd->dev))
982 ret = add_mtd_device(mtd);
983 else
984 ret = 0;
985
3e00ed0e
BN
986 if (ret)
987 goto out;
1c4c215c 988
e1dd8641
NC
989 /*
990 * FIXME: some drivers unfortunately call this function more than once.
991 * So we have to check if we've already assigned the reboot notifier.
992 *
993 * Generally, we can make multiple calls work for most cases, but it
994 * does cause problems with parse_mtd_partitions() above (e.g.,
995 * cmdlineparts will register partitions more than once).
996 */
f8479dd6
BN
997 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
998 "MTD already registered\n");
e1dd8641 999 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
1000 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1001 register_reboot_notifier(&mtd->reboot_notifier);
1002 }
1003
4b361cfa
MW
1004 ret = mtd_otp_nvmem_add(mtd);
1005
3e00ed0e 1006out:
2c77c57d
RM
1007 if (ret && device_is_registered(&mtd->dev))
1008 del_mtd_device(mtd);
1009
727dc612 1010 return ret;
1c4c215c
DES
1011}
1012EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1013
f5671ab3
JI
1014/**
1015 * mtd_device_unregister - unregister an existing MTD device.
1016 *
1017 * @master: the MTD device to unregister. This will unregister both the master
1018 * and any partitions if registered.
1019 */
1020int mtd_device_unregister(struct mtd_info *master)
1021{
1022 int err;
1023
00596576 1024 if (master->_reboot) {
3efe41be 1025 unregister_reboot_notifier(&master->reboot_notifier);
00596576
ZW
1026 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1027 }
3efe41be 1028
4b361cfa
MW
1029 if (master->otp_user_nvmem)
1030 nvmem_unregister(master->otp_user_nvmem);
1031
1032 if (master->otp_factory_nvmem)
1033 nvmem_unregister(master->otp_factory_nvmem);
1034
f5671ab3
JI
1035 err = del_mtd_partitions(master);
1036 if (err)
1037 return err;
1038
1039 if (!device_is_registered(&master->dev))
1040 return 0;
1041
1042 return del_mtd_device(master);
1043}
1044EXPORT_SYMBOL_GPL(mtd_device_unregister);
1045
1da177e4
LT
1046/**
1047 * register_mtd_user - register a 'user' of MTD devices.
1048 * @new: pointer to notifier info structure
1049 *
1050 * Registers a pair of callbacks function to be called upon addition
1051 * or removal of MTD devices. Causes the 'add' callback to be immediately
1052 * invoked for each MTD device currently present in the system.
1053 */
1da177e4
LT
1054void register_mtd_user (struct mtd_notifier *new)
1055{
f1332ba2 1056 struct mtd_info *mtd;
1da177e4 1057
48b19268 1058 mutex_lock(&mtd_table_mutex);
1da177e4
LT
1059
1060 list_add(&new->list, &mtd_notifiers);
1061
d5ca5129 1062 __module_get(THIS_MODULE);
97894cda 1063
f1332ba2
BH
1064 mtd_for_each_device(mtd)
1065 new->add(mtd);
1da177e4 1066
48b19268 1067 mutex_unlock(&mtd_table_mutex);
1da177e4 1068}
33c87b4a 1069EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
1070
1071/**
49450795
AB
1072 * unregister_mtd_user - unregister a 'user' of MTD devices.
1073 * @old: pointer to notifier info structure
1da177e4
LT
1074 *
1075 * Removes a callback function pair from the list of 'users' to be
1076 * notified upon addition or removal of MTD devices. Causes the
1077 * 'remove' callback to be immediately invoked for each MTD device
1078 * currently present in the system.
1079 */
1da177e4
LT
1080int unregister_mtd_user (struct mtd_notifier *old)
1081{
f1332ba2 1082 struct mtd_info *mtd;
1da177e4 1083
48b19268 1084 mutex_lock(&mtd_table_mutex);
1da177e4
LT
1085
1086 module_put(THIS_MODULE);
1087
f1332ba2
BH
1088 mtd_for_each_device(mtd)
1089 old->remove(mtd);
97894cda 1090
1da177e4 1091 list_del(&old->list);
48b19268 1092 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
1093 return 0;
1094}
33c87b4a 1095EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
1096
1097/**
1098 * get_mtd_device - obtain a validated handle for an MTD device
1099 * @mtd: last known address of the required MTD device
1100 * @num: internal device number of the required MTD device
1101 *
1102 * Given a number and NULL address, return the num'th entry in the device
1103 * table, if any. Given an address and num == -1, search the device table
1104 * for a device with that address and return if it's still present. Given
9c74034f
AB
1105 * both, return the num'th driver only if its address matches. Return
1106 * error code if not.
1da177e4 1107 */
1da177e4
LT
1108struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1109{
f1332ba2
BH
1110 struct mtd_info *ret = NULL, *other;
1111 int err = -ENODEV;
1da177e4 1112
48b19268 1113 mutex_lock(&mtd_table_mutex);
1da177e4
LT
1114
1115 if (num == -1) {
f1332ba2
BH
1116 mtd_for_each_device(other) {
1117 if (other == mtd) {
1118 ret = mtd;
1119 break;
1120 }
1121 }
b520e412
BH
1122 } else if (num >= 0) {
1123 ret = idr_find(&mtd_idr, num);
1da177e4
LT
1124 if (mtd && mtd != ret)
1125 ret = NULL;
1126 }
1127
3bd45657
ML
1128 if (!ret) {
1129 ret = ERR_PTR(err);
1130 goto out;
9fe912ce 1131 }
1da177e4 1132
3bd45657
ML
1133 err = __get_mtd_device(ret);
1134 if (err)
1135 ret = ERR_PTR(err);
1136out:
9c74034f
AB
1137 mutex_unlock(&mtd_table_mutex);
1138 return ret;
3bd45657 1139}
33c87b4a 1140EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 1141
3bd45657
ML
1142
1143int __get_mtd_device(struct mtd_info *mtd)
1144{
46b5889c 1145 struct mtd_info *master = mtd_get_master(mtd);
3bd45657
ML
1146 int err;
1147
46b5889c 1148 if (!try_module_get(master->owner))
3bd45657
ML
1149 return -ENODEV;
1150
46b5889c
MR
1151 if (master->_get_device) {
1152 err = master->_get_device(mtd);
3bd45657
ML
1153
1154 if (err) {
46b5889c 1155 module_put(master->owner);
3bd45657
ML
1156 return err;
1157 }
1158 }
46b5889c 1159
1ca71415
RW
1160 master->usecount++;
1161
46b5889c
MR
1162 while (mtd->parent) {
1163 mtd->usecount++;
1164 mtd = mtd->parent;
1165 }
1166
3bd45657 1167 return 0;
1da177e4 1168}
33c87b4a 1169EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 1170
7799308f
AB
1171/**
1172 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1173 * device name
1174 * @name: MTD device name to open
1175 *
1176 * This function returns MTD device description structure in case of
1177 * success and an error code in case of failure.
1178 */
7799308f
AB
1179struct mtd_info *get_mtd_device_nm(const char *name)
1180{
f1332ba2
BH
1181 int err = -ENODEV;
1182 struct mtd_info *mtd = NULL, *other;
7799308f
AB
1183
1184 mutex_lock(&mtd_table_mutex);
1185
f1332ba2
BH
1186 mtd_for_each_device(other) {
1187 if (!strcmp(name, other->name)) {
1188 mtd = other;
7799308f
AB
1189 break;
1190 }
1191 }
1192
9fe912ce 1193 if (!mtd)
7799308f
AB
1194 goto out_unlock;
1195
52534f2d
WG
1196 err = __get_mtd_device(mtd);
1197 if (err)
7799308f
AB
1198 goto out_unlock;
1199
9fe912ce
AB
1200 mutex_unlock(&mtd_table_mutex);
1201 return mtd;
7799308f
AB
1202
1203out_unlock:
1204 mutex_unlock(&mtd_table_mutex);
9fe912ce 1205 return ERR_PTR(err);
7799308f 1206}
33c87b4a 1207EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 1208
1da177e4
LT
1209void put_mtd_device(struct mtd_info *mtd)
1210{
48b19268 1211 mutex_lock(&mtd_table_mutex);
3bd45657
ML
1212 __put_mtd_device(mtd);
1213 mutex_unlock(&mtd_table_mutex);
1214
1215}
33c87b4a 1216EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
1217
1218void __put_mtd_device(struct mtd_info *mtd)
1219{
46b5889c 1220 struct mtd_info *master = mtd_get_master(mtd);
3bd45657 1221
46b5889c
MR
1222 while (mtd->parent) {
1223 --mtd->usecount;
1224 BUG_ON(mtd->usecount < 0);
1225 mtd = mtd->parent;
1226 }
1227
1ca71415
RW
1228 master->usecount--;
1229
46b5889c
MR
1230 if (master->_put_device)
1231 master->_put_device(master);
1da177e4 1232
46b5889c 1233 module_put(master->owner);
1da177e4 1234}
33c87b4a 1235EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 1236
8273a0c9 1237/*
884cfd90
BB
1238 * Erase is an synchronous operation. Device drivers are epected to return a
1239 * negative error code if the operation failed and update instr->fail_addr
1240 * to point the portion that was not properly erased.
8273a0c9
AB
1241 */
1242int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1243{
46b5889c
MR
1244 struct mtd_info *master = mtd_get_master(mtd);
1245 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
9e3307a1 1246 struct erase_info adjinstr;
46b5889c
MR
1247 int ret;
1248
c585da9f 1249 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
9e3307a1 1250 adjinstr = *instr;
c585da9f 1251
46b5889c 1252 if (!mtd->erasesize || !master->_erase)
e6e620f0
BB
1253 return -ENOTSUPP;
1254
0c2b4e21 1255 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 1256 return -EINVAL;
664addc2
AB
1257 if (!(mtd->flags & MTD_WRITEABLE))
1258 return -EROFS;
e6e620f0 1259
e7bfb3fd 1260 if (!instr->len)
bcb1d238 1261 return 0;
e7bfb3fd 1262
fea728c0 1263 ledtrig_mtd_activity();
46b5889c 1264
9e3307a1
BB
1265 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1266 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1267 master->erasesize;
1268 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1269 master->erasesize) -
1270 adjinstr.addr;
1271 }
1272
1273 adjinstr.addr += mst_ofs;
1274
1275 ret = master->_erase(master, &adjinstr);
1276
1277 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1278 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1279 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1280 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1281 master);
1282 instr->fail_addr *= mtd->erasesize;
1283 }
1284 }
46b5889c 1285
46b5889c 1286 return ret;
8273a0c9
AB
1287}
1288EXPORT_SYMBOL_GPL(mtd_erase);
1289
1290/*
1291 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1292 */
1293int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1294 void **virt, resource_size_t *phys)
1295{
46b5889c
MR
1296 struct mtd_info *master = mtd_get_master(mtd);
1297
8273a0c9 1298 *retlen = 0;
0dd5235f
AB
1299 *virt = NULL;
1300 if (phys)
1301 *phys = 0;
46b5889c 1302 if (!master->_point)
8273a0c9 1303 return -EOPNOTSUPP;
0c2b4e21 1304 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1305 return -EINVAL;
bcb1d238
AB
1306 if (!len)
1307 return 0;
46b5889c
MR
1308
1309 from = mtd_get_master_ofs(mtd, from);
1310 return master->_point(master, from, len, retlen, virt, phys);
8273a0c9
AB
1311}
1312EXPORT_SYMBOL_GPL(mtd_point);
1313
1314/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1315int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1316{
46b5889c
MR
1317 struct mtd_info *master = mtd_get_master(mtd);
1318
1319 if (!master->_unpoint)
8273a0c9 1320 return -EOPNOTSUPP;
0c2b4e21 1321 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1322 return -EINVAL;
bcb1d238
AB
1323 if (!len)
1324 return 0;
46b5889c 1325 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
8273a0c9
AB
1326}
1327EXPORT_SYMBOL_GPL(mtd_unpoint);
1328
1329/*
1330 * Allow NOMMU mmap() to directly map the device (if not NULL)
1331 * - return the address to which the offset maps
1332 * - return -ENOSYS to indicate refusal to do the mapping
1333 */
1334unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1335 unsigned long offset, unsigned long flags)
1336{
9eaa903c
NP
1337 size_t retlen;
1338 void *virt;
1339 int ret;
1340
1341 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1342 if (ret)
1343 return ret;
1344 if (retlen != len) {
1345 mtd_unpoint(mtd, offset, retlen);
1346 return -ENOSYS;
1347 }
1348 return (unsigned long)virt;
8273a0c9
AB
1349}
1350EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1351
46b5889c
MR
1352static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1353 const struct mtd_ecc_stats *old_stats)
1354{
1355 struct mtd_ecc_stats diff;
1356
1357 if (master == mtd)
1358 return;
1359
1360 diff = master->ecc_stats;
1361 diff.failed -= old_stats->failed;
1362 diff.corrected -= old_stats->corrected;
1363
1364 while (mtd->parent) {
1365 mtd->ecc_stats.failed += diff.failed;
1366 mtd->ecc_stats.corrected += diff.corrected;
1367 mtd = mtd->parent;
1368 }
1369}
1370
8273a0c9
AB
1371int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1372 u_char *buf)
1373{
2431c4f5
BB
1374 struct mtd_oob_ops ops = {
1375 .len = len,
1376 .datbuf = buf,
1377 };
1378 int ret;
edbc4540 1379
2431c4f5
BB
1380 ret = mtd_read_oob(mtd, from, &ops);
1381 *retlen = ops.retlen;
24ff1292 1382
2431c4f5 1383 return ret;
8273a0c9
AB
1384}
1385EXPORT_SYMBOL_GPL(mtd_read);
1386
1387int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1388 const u_char *buf)
1389{
2431c4f5
BB
1390 struct mtd_oob_ops ops = {
1391 .len = len,
1392 .datbuf = (u8 *)buf,
1393 };
1394 int ret;
24ff1292 1395
2431c4f5
BB
1396 ret = mtd_write_oob(mtd, to, &ops);
1397 *retlen = ops.retlen;
24ff1292 1398
2431c4f5 1399 return ret;
8273a0c9
AB
1400}
1401EXPORT_SYMBOL_GPL(mtd_write);
1402
1403/*
1404 * In blackbox flight recorder like scenarios we want to make successful writes
1405 * in interrupt context. panic_write() is only intended to be called when its
1406 * known the kernel is about to panic and we need the write to succeed. Since
1407 * the kernel is not going to be running for much longer, this function can
1408 * break locks and delay to ensure the write succeeds (but not sleep).
1409 */
1410int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1411 const u_char *buf)
1412{
46b5889c
MR
1413 struct mtd_info *master = mtd_get_master(mtd);
1414
8273a0c9 1415 *retlen = 0;
46b5889c 1416 if (!master->_panic_write)
8273a0c9 1417 return -EOPNOTSUPP;
0c2b4e21 1418 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1419 return -EINVAL;
664addc2
AB
1420 if (!(mtd->flags & MTD_WRITEABLE))
1421 return -EROFS;
bcb1d238
AB
1422 if (!len)
1423 return 0;
630e8d55
KD
1424 if (!master->oops_panic_write)
1425 master->oops_panic_write = true;
9f897bfd 1426
46b5889c
MR
1427 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1428 retlen, buf);
8273a0c9
AB
1429}
1430EXPORT_SYMBOL_GPL(mtd_panic_write);
1431
5cdd929d
BB
1432static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1433 struct mtd_oob_ops *ops)
1434{
1435 /*
1436 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1437 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1438 * this case.
1439 */
1440 if (!ops->datbuf)
1441 ops->len = 0;
1442
1443 if (!ops->oobbuf)
1444 ops->ooblen = 0;
1445
d82c3682 1446 if (offs < 0 || offs + ops->len > mtd->size)
5cdd929d
BB
1447 return -EINVAL;
1448
1449 if (ops->ooblen) {
89f706db 1450 size_t maxooblen;
5cdd929d
BB
1451
1452 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1453 return -EINVAL;
1454
89f706db
MR
1455 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1456 mtd_div_by_ws(offs, mtd)) *
5cdd929d
BB
1457 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1458 if (ops->ooblen > maxooblen)
1459 return -EINVAL;
1460 }
1461
1462 return 0;
1463}
1464
9e3307a1
BB
1465static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1466 struct mtd_oob_ops *ops)
1467{
1468 struct mtd_info *master = mtd_get_master(mtd);
1469 int ret;
1470
1471 from = mtd_get_master_ofs(mtd, from);
1472 if (master->_read_oob)
1473 ret = master->_read_oob(master, from, ops);
1474 else
1475 ret = master->_read(master, from, ops->len, &ops->retlen,
1476 ops->datbuf);
1477
1478 return ret;
1479}
1480
1481static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1482 struct mtd_oob_ops *ops)
1483{
1484 struct mtd_info *master = mtd_get_master(mtd);
1485 int ret;
1486
1487 to = mtd_get_master_ofs(mtd, to);
1488 if (master->_write_oob)
1489 ret = master->_write_oob(master, to, ops);
1490 else
1491 ret = master->_write(master, to, ops->len, &ops->retlen,
1492 ops->datbuf);
1493
1494 return ret;
1495}
1496
1497static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1498 struct mtd_oob_ops *ops)
1499{
1500 struct mtd_info *master = mtd_get_master(mtd);
1501 int ngroups = mtd_pairing_groups(master);
1502 int npairs = mtd_wunit_per_eb(master) / ngroups;
1503 struct mtd_oob_ops adjops = *ops;
1504 unsigned int wunit, oobavail;
1505 struct mtd_pairing_info info;
1506 int max_bitflips = 0;
1507 u32 ebofs, pageofs;
1508 loff_t base, pos;
1509
1510 ebofs = mtd_mod_by_eb(start, mtd);
1511 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1512 info.group = 0;
1513 info.pair = mtd_div_by_ws(ebofs, mtd);
1514 pageofs = mtd_mod_by_ws(ebofs, mtd);
1515 oobavail = mtd_oobavail(mtd, ops);
1516
1517 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1518 int ret;
1519
1520 if (info.pair >= npairs) {
1521 info.pair = 0;
1522 base += master->erasesize;
1523 }
1524
1525 wunit = mtd_pairing_info_to_wunit(master, &info);
1526 pos = mtd_wunit_to_offset(mtd, base, wunit);
1527
1528 adjops.len = ops->len - ops->retlen;
1529 if (adjops.len > mtd->writesize - pageofs)
1530 adjops.len = mtd->writesize - pageofs;
1531
1532 adjops.ooblen = ops->ooblen - ops->oobretlen;
1533 if (adjops.ooblen > oobavail - adjops.ooboffs)
1534 adjops.ooblen = oobavail - adjops.ooboffs;
1535
1536 if (read) {
1537 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1538 if (ret > 0)
1539 max_bitflips = max(max_bitflips, ret);
1540 } else {
1541 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1542 }
1543
1544 if (ret < 0)
1545 return ret;
1546
1547 max_bitflips = max(max_bitflips, ret);
1548 ops->retlen += adjops.retlen;
1549 ops->oobretlen += adjops.oobretlen;
1550 adjops.datbuf += adjops.retlen;
1551 adjops.oobbuf += adjops.oobretlen;
1552 adjops.ooboffs = 0;
1553 pageofs = 0;
1554 info.pair++;
1555 }
1556
1557 return max_bitflips;
1558}
1559
d2d48480
BN
1560int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1561{
46b5889c
MR
1562 struct mtd_info *master = mtd_get_master(mtd);
1563 struct mtd_ecc_stats old_stats = master->ecc_stats;
e47f6858 1564 int ret_code;
46b5889c 1565
d2d48480 1566 ops->retlen = ops->oobretlen = 0;
fea728c0 1567
5cdd929d
BB
1568 ret_code = mtd_check_oob_ops(mtd, from, ops);
1569 if (ret_code)
1570 return ret_code;
1571
fea728c0 1572 ledtrig_mtd_activity();
89fd23ef
MR
1573
1574 /* Check the validity of a potential fallback on mtd->_read */
46b5889c 1575 if (!master->_read_oob && (!master->_read || ops->oobbuf))
89fd23ef
MR
1576 return -EOPNOTSUPP;
1577
9e3307a1
BB
1578 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1579 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
89fd23ef 1580 else
9e3307a1 1581 ret_code = mtd_read_oob_std(mtd, from, ops);
46b5889c
MR
1582
1583 mtd_update_ecc_stats(mtd, master, &old_stats);
89fd23ef 1584
e47f6858
BN
1585 /*
1586 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1587 * similar to mtd->_read(), returning a non-negative integer
1588 * representing max bitflips. In other cases, mtd->_read_oob() may
1589 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1590 */
e47f6858
BN
1591 if (unlikely(ret_code < 0))
1592 return ret_code;
1593 if (mtd->ecc_strength == 0)
1594 return 0; /* device lacks ecc */
1595 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
1596}
1597EXPORT_SYMBOL_GPL(mtd_read_oob);
1598
0c034fe3
EG
1599int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1600 struct mtd_oob_ops *ops)
1601{
46b5889c 1602 struct mtd_info *master = mtd_get_master(mtd);
5cdd929d
BB
1603 int ret;
1604
0c034fe3 1605 ops->retlen = ops->oobretlen = 0;
89fd23ef 1606
0c034fe3
EG
1607 if (!(mtd->flags & MTD_WRITEABLE))
1608 return -EROFS;
5cdd929d
BB
1609
1610 ret = mtd_check_oob_ops(mtd, to, ops);
1611 if (ret)
1612 return ret;
1613
fea728c0 1614 ledtrig_mtd_activity();
89fd23ef
MR
1615
1616 /* Check the validity of a potential fallback on mtd->_write */
46b5889c 1617 if (!master->_write_oob && (!master->_write || ops->oobbuf))
89fd23ef
MR
1618 return -EOPNOTSUPP;
1619
9e3307a1
BB
1620 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1621 return mtd_io_emulated_slc(mtd, to, false, ops);
46b5889c 1622
9e3307a1 1623 return mtd_write_oob_std(mtd, to, ops);
0c034fe3
EG
1624}
1625EXPORT_SYMBOL_GPL(mtd_write_oob);
1626
75eb2cec
BB
1627/**
1628 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1629 * @mtd: MTD device structure
1630 * @section: ECC section. Depending on the layout you may have all the ECC
1631 * bytes stored in a single contiguous section, or one section
1632 * per ECC chunk (and sometime several sections for a single ECC
1633 * ECC chunk)
1634 * @oobecc: OOB region struct filled with the appropriate ECC position
1635 * information
1636 *
7da0fffb 1637 * This function returns ECC section information in the OOB area. If you want
75eb2cec
BB
1638 * to get all the ECC bytes information, then you should call
1639 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1640 *
1641 * Returns zero on success, a negative error code otherwise.
1642 */
1643int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1644 struct mtd_oob_region *oobecc)
1645{
46b5889c
MR
1646 struct mtd_info *master = mtd_get_master(mtd);
1647
75eb2cec
BB
1648 memset(oobecc, 0, sizeof(*oobecc));
1649
46b5889c 1650 if (!master || section < 0)
75eb2cec
BB
1651 return -EINVAL;
1652
46b5889c 1653 if (!master->ooblayout || !master->ooblayout->ecc)
75eb2cec
BB
1654 return -ENOTSUPP;
1655
46b5889c 1656 return master->ooblayout->ecc(master, section, oobecc);
75eb2cec
BB
1657}
1658EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1659
1660/**
1661 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1662 * section
1663 * @mtd: MTD device structure
1664 * @section: Free section you are interested in. Depending on the layout
1665 * you may have all the free bytes stored in a single contiguous
1666 * section, or one section per ECC chunk plus an extra section
1667 * for the remaining bytes (or other funky layout).
1668 * @oobfree: OOB region struct filled with the appropriate free position
1669 * information
1670 *
7da0fffb 1671 * This function returns free bytes position in the OOB area. If you want
75eb2cec
BB
1672 * to get all the free bytes information, then you should call
1673 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1674 *
1675 * Returns zero on success, a negative error code otherwise.
1676 */
1677int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1678 struct mtd_oob_region *oobfree)
1679{
46b5889c
MR
1680 struct mtd_info *master = mtd_get_master(mtd);
1681
75eb2cec
BB
1682 memset(oobfree, 0, sizeof(*oobfree));
1683
46b5889c 1684 if (!master || section < 0)
75eb2cec
BB
1685 return -EINVAL;
1686
46b5889c 1687 if (!master->ooblayout || !master->ooblayout->free)
75eb2cec
BB
1688 return -ENOTSUPP;
1689
46b5889c 1690 return master->ooblayout->free(master, section, oobfree);
75eb2cec
BB
1691}
1692EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1693
1694/**
1695 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1696 * @mtd: mtd info structure
1697 * @byte: the byte we are searching for
1698 * @sectionp: pointer where the section id will be stored
1699 * @oobregion: used to retrieve the ECC position
1700 * @iter: iterator function. Should be either mtd_ooblayout_free or
1701 * mtd_ooblayout_ecc depending on the region type you're searching for
1702 *
7da0fffb 1703 * This function returns the section id and oobregion information of a
75eb2cec
BB
1704 * specific byte. For example, say you want to know where the 4th ECC byte is
1705 * stored, you'll use:
1706 *
1707 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1708 *
1709 * Returns zero on success, a negative error code otherwise.
1710 */
1711static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1712 int *sectionp, struct mtd_oob_region *oobregion,
1713 int (*iter)(struct mtd_info *,
1714 int section,
1715 struct mtd_oob_region *oobregion))
1716{
1717 int pos = 0, ret, section = 0;
1718
1719 memset(oobregion, 0, sizeof(*oobregion));
1720
1721 while (1) {
1722 ret = iter(mtd, section, oobregion);
1723 if (ret)
1724 return ret;
1725
1726 if (pos + oobregion->length > byte)
1727 break;
1728
1729 pos += oobregion->length;
1730 section++;
1731 }
1732
1733 /*
1734 * Adjust region info to make it start at the beginning at the
1735 * 'start' ECC byte.
1736 */
1737 oobregion->offset += byte - pos;
1738 oobregion->length -= byte - pos;
1739 *sectionp = section;
1740
1741 return 0;
1742}
1743
1744/**
1745 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1746 * ECC byte
1747 * @mtd: mtd info structure
1748 * @eccbyte: the byte we are searching for
6361f536 1749 * @section: pointer where the section id will be stored
75eb2cec
BB
1750 * @oobregion: OOB region information
1751 *
1752 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1753 * byte.
1754 *
1755 * Returns zero on success, a negative error code otherwise.
1756 */
1757int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1758 int *section,
1759 struct mtd_oob_region *oobregion)
1760{
1761 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1762 mtd_ooblayout_ecc);
1763}
1764EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1765
1766/**
1767 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1768 * @mtd: mtd info structure
1769 * @buf: destination buffer to store OOB bytes
1770 * @oobbuf: OOB buffer
1771 * @start: first byte to retrieve
1772 * @nbytes: number of bytes to retrieve
1773 * @iter: section iterator
1774 *
1775 * Extract bytes attached to a specific category (ECC or free)
1776 * from the OOB buffer and copy them into buf.
1777 *
1778 * Returns zero on success, a negative error code otherwise.
1779 */
1780static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1781 const u8 *oobbuf, int start, int nbytes,
1782 int (*iter)(struct mtd_info *,
1783 int section,
1784 struct mtd_oob_region *oobregion))
1785{
8e8fd4d1
MY
1786 struct mtd_oob_region oobregion;
1787 int section, ret;
75eb2cec
BB
1788
1789 ret = mtd_ooblayout_find_region(mtd, start, &section,
1790 &oobregion, iter);
1791
1792 while (!ret) {
1793 int cnt;
1794
7c295ef9 1795 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1796 memcpy(buf, oobbuf + oobregion.offset, cnt);
1797 buf += cnt;
1798 nbytes -= cnt;
1799
1800 if (!nbytes)
1801 break;
1802
1803 ret = iter(mtd, ++section, &oobregion);
1804 }
1805
1806 return ret;
1807}
1808
1809/**
1810 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1811 * @mtd: mtd info structure
1812 * @buf: source buffer to get OOB bytes from
1813 * @oobbuf: OOB buffer
1814 * @start: first OOB byte to set
1815 * @nbytes: number of OOB bytes to set
1816 * @iter: section iterator
1817 *
1818 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1819 * is selected by passing the appropriate iterator.
1820 *
1821 * Returns zero on success, a negative error code otherwise.
1822 */
1823static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1824 u8 *oobbuf, int start, int nbytes,
1825 int (*iter)(struct mtd_info *,
1826 int section,
1827 struct mtd_oob_region *oobregion))
1828{
8e8fd4d1
MY
1829 struct mtd_oob_region oobregion;
1830 int section, ret;
75eb2cec
BB
1831
1832 ret = mtd_ooblayout_find_region(mtd, start, &section,
1833 &oobregion, iter);
1834
1835 while (!ret) {
1836 int cnt;
1837
7c295ef9 1838 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1839 memcpy(oobbuf + oobregion.offset, buf, cnt);
1840 buf += cnt;
1841 nbytes -= cnt;
1842
1843 if (!nbytes)
1844 break;
1845
1846 ret = iter(mtd, ++section, &oobregion);
1847 }
1848
1849 return ret;
1850}
1851
1852/**
1853 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1854 * @mtd: mtd info structure
1855 * @iter: category iterator
1856 *
1857 * Count the number of bytes in a given category.
1858 *
1859 * Returns a positive value on success, a negative error code otherwise.
1860 */
1861static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1862 int (*iter)(struct mtd_info *,
1863 int section,
1864 struct mtd_oob_region *oobregion))
1865{
4d6aecfb 1866 struct mtd_oob_region oobregion;
75eb2cec
BB
1867 int section = 0, ret, nbytes = 0;
1868
1869 while (1) {
1870 ret = iter(mtd, section++, &oobregion);
1871 if (ret) {
1872 if (ret == -ERANGE)
1873 ret = nbytes;
1874 break;
1875 }
1876
1877 nbytes += oobregion.length;
1878 }
1879
1880 return ret;
1881}
1882
1883/**
1884 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1885 * @mtd: mtd info structure
1886 * @eccbuf: destination buffer to store ECC bytes
1887 * @oobbuf: OOB buffer
1888 * @start: first ECC byte to retrieve
1889 * @nbytes: number of ECC bytes to retrieve
1890 *
1891 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1892 *
1893 * Returns zero on success, a negative error code otherwise.
1894 */
1895int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1896 const u8 *oobbuf, int start, int nbytes)
1897{
1898 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1899 mtd_ooblayout_ecc);
1900}
1901EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1902
1903/**
1904 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1905 * @mtd: mtd info structure
1906 * @eccbuf: source buffer to get ECC bytes from
1907 * @oobbuf: OOB buffer
1908 * @start: first ECC byte to set
1909 * @nbytes: number of ECC bytes to set
1910 *
1911 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1912 *
1913 * Returns zero on success, a negative error code otherwise.
1914 */
1915int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1916 u8 *oobbuf, int start, int nbytes)
1917{
1918 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1919 mtd_ooblayout_ecc);
1920}
1921EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1922
1923/**
1924 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1925 * @mtd: mtd info structure
1926 * @databuf: destination buffer to store ECC bytes
1927 * @oobbuf: OOB buffer
1928 * @start: first ECC byte to retrieve
1929 * @nbytes: number of ECC bytes to retrieve
1930 *
1931 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1932 *
1933 * Returns zero on success, a negative error code otherwise.
1934 */
1935int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1936 const u8 *oobbuf, int start, int nbytes)
1937{
1938 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1939 mtd_ooblayout_free);
1940}
1941EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1942
1943/**
c77a9312 1944 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
75eb2cec 1945 * @mtd: mtd info structure
c77a9312 1946 * @databuf: source buffer to get data bytes from
75eb2cec
BB
1947 * @oobbuf: OOB buffer
1948 * @start: first ECC byte to set
1949 * @nbytes: number of ECC bytes to set
1950 *
519494a9 1951 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
75eb2cec
BB
1952 *
1953 * Returns zero on success, a negative error code otherwise.
1954 */
1955int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1956 u8 *oobbuf, int start, int nbytes)
1957{
1958 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1959 mtd_ooblayout_free);
1960}
1961EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1962
1963/**
1964 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1965 * @mtd: mtd info structure
1966 *
1967 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1968 *
1969 * Returns zero on success, a negative error code otherwise.
1970 */
1971int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1972{
1973 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1974}
1975EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1976
1977/**
c77a9312 1978 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
75eb2cec
BB
1979 * @mtd: mtd info structure
1980 *
1981 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1982 *
1983 * Returns zero on success, a negative error code otherwise.
1984 */
1985int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1986{
1987 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1988}
1989EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1990
de3cac93
AB
1991/*
1992 * Method to access the protection register area, present in some flash
1993 * devices. The user data is one time programmable but the factory data is read
1994 * only.
1995 */
4b78fc42
CR
1996int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1997 struct otp_info *buf)
de3cac93 1998{
46b5889c
MR
1999 struct mtd_info *master = mtd_get_master(mtd);
2000
2001 if (!master->_get_fact_prot_info)
de3cac93
AB
2002 return -EOPNOTSUPP;
2003 if (!len)
2004 return 0;
46b5889c 2005 return master->_get_fact_prot_info(master, len, retlen, buf);
de3cac93
AB
2006}
2007EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2008
2009int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2010 size_t *retlen, u_char *buf)
2011{
46b5889c
MR
2012 struct mtd_info *master = mtd_get_master(mtd);
2013
de3cac93 2014 *retlen = 0;
46b5889c 2015 if (!master->_read_fact_prot_reg)
de3cac93
AB
2016 return -EOPNOTSUPP;
2017 if (!len)
2018 return 0;
46b5889c 2019 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
de3cac93
AB
2020}
2021EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2022
4b78fc42
CR
2023int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2024 struct otp_info *buf)
de3cac93 2025{
46b5889c
MR
2026 struct mtd_info *master = mtd_get_master(mtd);
2027
2028 if (!master->_get_user_prot_info)
de3cac93
AB
2029 return -EOPNOTSUPP;
2030 if (!len)
2031 return 0;
46b5889c 2032 return master->_get_user_prot_info(master, len, retlen, buf);
de3cac93
AB
2033}
2034EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2035
2036int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2037 size_t *retlen, u_char *buf)
2038{
46b5889c
MR
2039 struct mtd_info *master = mtd_get_master(mtd);
2040
de3cac93 2041 *retlen = 0;
46b5889c 2042 if (!master->_read_user_prot_reg)
de3cac93
AB
2043 return -EOPNOTSUPP;
2044 if (!len)
2045 return 0;
46b5889c 2046 return master->_read_user_prot_reg(master, from, len, retlen, buf);
de3cac93
AB
2047}
2048EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2049
2050int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1df1fc8c 2051 size_t *retlen, const u_char *buf)
de3cac93 2052{
46b5889c 2053 struct mtd_info *master = mtd_get_master(mtd);
9a78bc83
CR
2054 int ret;
2055
de3cac93 2056 *retlen = 0;
46b5889c 2057 if (!master->_write_user_prot_reg)
de3cac93
AB
2058 return -EOPNOTSUPP;
2059 if (!len)
2060 return 0;
46b5889c 2061 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
9a78bc83
CR
2062 if (ret)
2063 return ret;
2064
2065 /*
2066 * If no data could be written at all, we are out of memory and
2067 * must return -ENOSPC.
2068 */
2069 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
2070}
2071EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2072
2073int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2074{
46b5889c
MR
2075 struct mtd_info *master = mtd_get_master(mtd);
2076
2077 if (!master->_lock_user_prot_reg)
de3cac93
AB
2078 return -EOPNOTSUPP;
2079 if (!len)
2080 return 0;
46b5889c 2081 return master->_lock_user_prot_reg(master, from, len);
de3cac93
AB
2082}
2083EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2084
e3c1f1c9
MW
2085int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2086{
2087 struct mtd_info *master = mtd_get_master(mtd);
2088
2089 if (!master->_erase_user_prot_reg)
2090 return -EOPNOTSUPP;
2091 if (!len)
2092 return 0;
2093 return master->_erase_user_prot_reg(master, from, len);
2094}
2095EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2096
8273a0c9
AB
2097/* Chip-supported device locking */
2098int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2099{
46b5889c
MR
2100 struct mtd_info *master = mtd_get_master(mtd);
2101
2102 if (!master->_lock)
8273a0c9 2103 return -EOPNOTSUPP;
0c2b4e21 2104 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 2105 return -EINVAL;
bcb1d238
AB
2106 if (!len)
2107 return 0;
9e3307a1
BB
2108
2109 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2110 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2111 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2112 }
2113
46b5889c 2114 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
2115}
2116EXPORT_SYMBOL_GPL(mtd_lock);
2117
2118int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2119{
46b5889c
MR
2120 struct mtd_info *master = mtd_get_master(mtd);
2121
2122 if (!master->_unlock)
8273a0c9 2123 return -EOPNOTSUPP;
0c2b4e21 2124 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 2125 return -EINVAL;
bcb1d238
AB
2126 if (!len)
2127 return 0;
9e3307a1
BB
2128
2129 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2130 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2131 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2132 }
2133
46b5889c 2134 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
2135}
2136EXPORT_SYMBOL_GPL(mtd_unlock);
2137
2138int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2139{
46b5889c
MR
2140 struct mtd_info *master = mtd_get_master(mtd);
2141
2142 if (!master->_is_locked)
8273a0c9 2143 return -EOPNOTSUPP;
0c2b4e21 2144 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 2145 return -EINVAL;
bcb1d238
AB
2146 if (!len)
2147 return 0;
9e3307a1
BB
2148
2149 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2150 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2151 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2152 }
2153
46b5889c 2154 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
8273a0c9
AB
2155}
2156EXPORT_SYMBOL_GPL(mtd_is_locked);
2157
8471bb73 2158int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 2159{
46b5889c
MR
2160 struct mtd_info *master = mtd_get_master(mtd);
2161
0c2b4e21 2162 if (ofs < 0 || ofs >= mtd->size)
8471bb73 2163 return -EINVAL;
46b5889c 2164 if (!master->_block_isreserved)
8273a0c9 2165 return 0;
9e3307a1
BB
2166
2167 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2168 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2169
46b5889c 2170 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
8471bb73
EG
2171}
2172EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2173
2174int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2175{
46b5889c
MR
2176 struct mtd_info *master = mtd_get_master(mtd);
2177
0c2b4e21 2178 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 2179 return -EINVAL;
46b5889c 2180 if (!master->_block_isbad)
8471bb73 2181 return 0;
9e3307a1
BB
2182
2183 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2184 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2185
46b5889c 2186 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
8273a0c9
AB
2187}
2188EXPORT_SYMBOL_GPL(mtd_block_isbad);
2189
2190int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2191{
46b5889c
MR
2192 struct mtd_info *master = mtd_get_master(mtd);
2193 int ret;
2194
2195 if (!master->_block_markbad)
8273a0c9 2196 return -EOPNOTSUPP;
0c2b4e21 2197 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 2198 return -EINVAL;
664addc2
AB
2199 if (!(mtd->flags & MTD_WRITEABLE))
2200 return -EROFS;
46b5889c 2201
9e3307a1
BB
2202 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2203 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2204
46b5889c
MR
2205 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2206 if (ret)
2207 return ret;
2208
2209 while (mtd->parent) {
2210 mtd->ecc_stats.badblocks++;
2211 mtd = mtd->parent;
2212 }
2213
2214 return 0;
8273a0c9
AB
2215}
2216EXPORT_SYMBOL_GPL(mtd_block_markbad);
2217
52b02031
AB
2218/*
2219 * default_mtd_writev - the default writev method
2220 * @mtd: mtd device description object pointer
2221 * @vecs: the vectors to write
2222 * @count: count of vectors in @vecs
2223 * @to: the MTD device offset to write to
2224 * @retlen: on exit contains the count of bytes written to the MTD device.
2225 *
2226 * This function returns zero in case of success and a negative error code in
2227 * case of failure.
1da177e4 2228 */
1dbebd32
AB
2229static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2230 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
2231{
2232 unsigned long i;
2233 size_t totlen = 0, thislen;
2234 int ret = 0;
2235
52b02031
AB
2236 for (i = 0; i < count; i++) {
2237 if (!vecs[i].iov_len)
2238 continue;
2239 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2240 vecs[i].iov_base);
2241 totlen += thislen;
2242 if (ret || thislen != vecs[i].iov_len)
2243 break;
2244 to += vecs[i].iov_len;
1da177e4 2245 }
52b02031 2246 *retlen = totlen;
1da177e4
LT
2247 return ret;
2248}
1dbebd32
AB
2249
2250/*
2251 * mtd_writev - the vector-based MTD write method
2252 * @mtd: mtd device description object pointer
2253 * @vecs: the vectors to write
2254 * @count: count of vectors in @vecs
2255 * @to: the MTD device offset to write to
2256 * @retlen: on exit contains the count of bytes written to the MTD device.
2257 *
2258 * This function returns zero in case of success and a negative error code in
2259 * case of failure.
2260 */
2261int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2262 unsigned long count, loff_t to, size_t *retlen)
2263{
46b5889c
MR
2264 struct mtd_info *master = mtd_get_master(mtd);
2265
1dbebd32 2266 *retlen = 0;
664addc2
AB
2267 if (!(mtd->flags & MTD_WRITEABLE))
2268 return -EROFS;
46b5889c
MR
2269
2270 if (!master->_writev)
1dbebd32 2271 return default_mtd_writev(mtd, vecs, count, to, retlen);
46b5889c
MR
2272
2273 return master->_writev(master, vecs, count,
2274 mtd_get_master_ofs(mtd, to), retlen);
1dbebd32
AB
2275}
2276EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 2277
33b53716
GE
2278/**
2279 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
2280 * @mtd: mtd device description object pointer
2281 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
2282 * to the actual allocation size on success.
2283 *
2284 * This routine attempts to allocate a contiguous kernel buffer up to
2285 * the specified size, backing off the size of the request exponentially
2286 * until the request succeeds or until the allocation size falls below
2287 * the system page size. This attempts to make sure it does not adversely
2288 * impact system performance, so when allocating more than one page, we
caf49191
LT
2289 * ask the memory allocator to avoid re-trying, swapping, writing back
2290 * or performing I/O.
33b53716
GE
2291 *
2292 * Note, this function also makes sure that the allocated buffer is aligned to
2293 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2294 *
2295 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2296 * to handle smaller (i.e. degraded) buffer allocations under low- or
2297 * fragmented-memory situations where such reduced allocations, from a
2298 * requested ideal, are allowed.
2299 *
2300 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2301 */
2302void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2303{
d0164adc 2304 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
2305 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2306 void *kbuf;
2307
2308 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2309
2310 while (*size > min_alloc) {
2311 kbuf = kmalloc(*size, flags);
2312 if (kbuf)
2313 return kbuf;
2314
2315 *size >>= 1;
2316 *size = ALIGN(*size, mtd->writesize);
2317 }
2318
2319 /*
2320 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2321 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2322 */
2323 return kmalloc(*size, GFP_KERNEL);
2324}
33b53716 2325EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 2326
2d2dce0e
PM
2327#ifdef CONFIG_PROC_FS
2328
1da177e4
LT
2329/*====================================================================*/
2330/* Support for /proc/mtd */
2331
447d9bd8 2332static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 2333{
f1332ba2 2334 struct mtd_info *mtd;
1da177e4 2335
447d9bd8 2336 seq_puts(m, "dev: size erasesize name\n");
48b19268 2337 mutex_lock(&mtd_table_mutex);
f1332ba2 2338 mtd_for_each_device(mtd) {
447d9bd8
AD
2339 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2340 mtd->index, (unsigned long long)mtd->size,
2341 mtd->erasesize, mtd->name);
d5ca5129 2342 }
48b19268 2343 mutex_unlock(&mtd_table_mutex);
d5ca5129 2344 return 0;
1da177e4 2345}
45b09076
KC
2346#endif /* CONFIG_PROC_FS */
2347
1da177e4
LT
2348/*====================================================================*/
2349/* Init code */
2350
462d69a2 2351static struct backing_dev_info * __init mtd_bdi_init(const char *name)
0661b1ac 2352{
445caaa2 2353 struct backing_dev_info *bdi;
0661b1ac
JA
2354 int ret;
2355
aef33c2f 2356 bdi = bdi_alloc(NUMA_NO_NODE);
445caaa2
SL
2357 if (!bdi)
2358 return ERR_PTR(-ENOMEM);
55b2598e
CH
2359 bdi->ra_pages = 0;
2360 bdi->io_pages = 0;
0661b1ac 2361
fa06052d
JK
2362 /*
2363 * We put '-0' suffix to the name to get the same name format as we
2364 * used to get. Since this is called only once, we get a unique name.
2365 */
7c4cc300 2366 ret = bdi_register(bdi, "%.28s-0", name);
0661b1ac 2367 if (ret)
fa06052d 2368 bdi_put(bdi);
0661b1ac 2369
445caaa2 2370 return ret ? ERR_PTR(ret) : bdi;
0661b1ac
JA
2371}
2372
67b967dd
MR
2373char *mtd_expert_analysis_warning =
2374 "Bad block checks have been entirely disabled.\n"
2375 "This is only reserved for post-mortem forensics and debug purposes.\n"
2376 "Never enable this mode if you do not know what you are doing!\n";
2377EXPORT_SYMBOL_GPL(mtd_expert_analysis_warning);
2378bool mtd_expert_analysis_mode;
2379EXPORT_SYMBOL_GPL(mtd_expert_analysis_mode);
2380
93e56214
AB
2381static struct proc_dir_entry *proc_mtd;
2382
1da177e4
LT
2383static int __init init_mtd(void)
2384{
15bce40c 2385 int ret;
0661b1ac 2386
15bce40c 2387 ret = class_register(&mtd_class);
0661b1ac
JA
2388 if (ret)
2389 goto err_reg;
2390
445caaa2
SL
2391 mtd_bdi = mtd_bdi_init("mtd");
2392 if (IS_ERR(mtd_bdi)) {
2393 ret = PTR_ERR(mtd_bdi);
b4caecd4 2394 goto err_bdi;
445caaa2 2395 }
694bb7fc 2396
3f3942ac 2397 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
93e56214 2398
660685d9
AB
2399 ret = init_mtdchar();
2400 if (ret)
2401 goto out_procfs;
2402
e8e3edb9 2403 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
67b967dd
MR
2404 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2405 &mtd_expert_analysis_mode);
e8e3edb9 2406
1da177e4 2407 return 0;
0661b1ac 2408
660685d9
AB
2409out_procfs:
2410 if (proc_mtd)
2411 remove_proc_entry("mtd", NULL);
fa06052d 2412 bdi_put(mtd_bdi);
b4caecd4 2413err_bdi:
0661b1ac
JA
2414 class_unregister(&mtd_class);
2415err_reg:
2416 pr_err("Error registering mtd class or bdi: %d\n", ret);
2417 return ret;
1da177e4
LT
2418}
2419
2420static void __exit cleanup_mtd(void)
2421{
e8e3edb9 2422 debugfs_remove_recursive(dfs_dir_mtd);
660685d9 2423 cleanup_mtdchar();
d5ca5129 2424 if (proc_mtd)
93e56214 2425 remove_proc_entry("mtd", NULL);
15bce40c 2426 class_unregister(&mtd_class);
9718c59c 2427 bdi_unregister(mtd_bdi);
fa06052d 2428 bdi_put(mtd_bdi);
35667b99 2429 idr_destroy(&mtd_idr);
1da177e4
LT
2430}
2431
2432module_init(init_mtd);
2433module_exit(cleanup_mtd);
2434
1da177e4
LT
2435MODULE_LICENSE("GPL");
2436MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2437MODULE_DESCRIPTION("Core MTD registration and access routines");