mtd: partitions: pass around 'mtd_partitions' wrapper struct
[linux-2.6-block.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
215a02fd 35#include <linux/of.h>
1da177e4 36#include <linux/proc_fs.h>
b520e412 37#include <linux/idr.h>
a33eb6b9 38#include <linux/backing-dev.h>
05d71b46 39#include <linux/gfp.h>
0d01ff25 40#include <linux/slab.h>
3efe41be 41#include <linux/reboot.h>
727dc612 42#include <linux/kconfig.h>
1da177e4
LT
43
44#include <linux/mtd/mtd.h>
f5671ab3 45#include <linux/mtd/partitions.h>
1da177e4 46
356d70f1 47#include "mtdcore.h"
660685d9 48
b4caecd4 49static struct backing_dev_info mtd_bdi = {
a33eb6b9 50};
356d70f1 51
57b8045d
LPC
52#ifdef CONFIG_PM_SLEEP
53
54static int mtd_cls_suspend(struct device *dev)
55{
56 struct mtd_info *mtd = dev_get_drvdata(dev);
57
58 return mtd ? mtd_suspend(mtd) : 0;
59}
60
61static int mtd_cls_resume(struct device *dev)
62{
63 struct mtd_info *mtd = dev_get_drvdata(dev);
64
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
68}
69
70static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72#else
73#define MTD_CLS_PM_OPS NULL
74#endif
15bce40c
DW
75
76static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
57b8045d 79 .pm = MTD_CLS_PM_OPS,
15bce40c 80};
1f24b5a8 81
b520e412
BH
82static DEFINE_IDR(mtd_idr);
83
97894cda 84/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 85 should not use them for _anything_ else */
48b19268 86DEFINE_MUTEX(mtd_table_mutex);
1da177e4 87EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
88
89struct mtd_info *__mtd_next_device(int i)
90{
91 return idr_get_next(&mtd_idr, &i);
92}
93EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
94
95static LIST_HEAD(mtd_notifiers);
96
1f24b5a8 97
1f24b5a8 98#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
99
100/* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
102 */
103static void mtd_release(struct device *dev)
104{
5e472128 105 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 106 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 107
5e472128
BN
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
15bce40c
DW
110}
111
1f24b5a8
DB
112static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
d5de20a9 115 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
116 char *type;
117
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
f4837246
HS
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
1f24b5a8
DB
143 default:
144 type = "unknown";
145 }
146
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
148}
694bb7fc
KC
149static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150
151static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
153{
d5de20a9 154 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
155
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157
158}
159static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160
161static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163{
d5de20a9 164 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
165
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
168
169}
170static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171
172static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174{
d5de20a9 175 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
176
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178
179}
180static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181
182static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
184{
d5de20a9 185 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
186
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188
189}
190static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191
e7693548
AB
192static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194{
d5de20a9 195 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199
200}
201static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202
694bb7fc
KC
203static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
d5de20a9 206 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
207
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209
210}
211static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212
213static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
d5de20a9 216 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219
220}
221static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
223
224static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
d5de20a9 227 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
228
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230
231}
232static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 233
a9b672e8
MD
234static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236{
237 struct mtd_info *mtd = dev_get_drvdata(dev);
238
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240}
241static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242
d062d4ed
MD
243static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
246{
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250}
251
252static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
255{
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
259
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
263
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
266}
267static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
270
bf977e3f
HS
271static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273{
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277
278}
279static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280
990a3af0
EG
281static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288}
289static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
291
292static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299}
300static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301
302static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304{
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309}
310static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311
312static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314{
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319}
320static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321
1f24b5a8 322static struct attribute *mtd_attrs[] = {
694bb7fc
KC
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
e7693548 328 &dev_attr_subpagesize.attr,
694bb7fc
KC
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
a9b672e8 332 &dev_attr_ecc_strength.attr,
bf977e3f 333 &dev_attr_ecc_step_size.attr,
990a3af0
EG
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
d062d4ed 338 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
339 NULL,
340};
54c738f6 341ATTRIBUTE_GROUPS(mtd);
1f24b5a8
DB
342
343static struct device_type mtd_devtype = {
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
347};
348
b4caecd4
CH
349#ifndef CONFIG_MMU
350unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351{
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
361 }
362}
706a4e5a 363EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
364#endif
365
3efe41be
BN
366static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
368{
369 struct mtd_info *mtd;
370
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
373
374 return NOTIFY_DONE;
375}
376
1da177e4
LT
377/**
378 * add_mtd_device - register an MTD device
379 * @mtd: pointer to new MTD device info structure
380 *
381 * Add a device to the list of MTD devices present in the system, and
382 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 383 * zero on success or non-zero on failure.
1da177e4
LT
384 */
385
386int add_mtd_device(struct mtd_info *mtd)
387{
b520e412
BH
388 struct mtd_notifier *not;
389 int i, error;
1da177e4 390
be0dbff8
BN
391 /*
392 * May occur, for instance, on buggy drivers which call
393 * mtd_device_parse_register() multiple times on the same master MTD,
394 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
395 */
396 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
397 return -EEXIST;
398
b4caecd4 399 mtd->backing_dev_info = &mtd_bdi;
402d3265 400
783ed81f 401 BUG_ON(mtd->writesize == 0);
48b19268 402 mutex_lock(&mtd_table_mutex);
1da177e4 403
589e9c4d 404 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
405 if (i < 0) {
406 error = i;
b520e412 407 goto fail_locked;
57dd990c 408 }
1f24b5a8 409
b520e412
BH
410 mtd->index = i;
411 mtd->usecount = 0;
412
d062d4ed
MD
413 /* default value if not set by driver */
414 if (mtd->bitflip_threshold == 0)
415 mtd->bitflip_threshold = mtd->ecc_strength;
416
b520e412
BH
417 if (is_power_of_2(mtd->erasesize))
418 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
419 else
420 mtd->erasesize_shift = 0;
421
422 if (is_power_of_2(mtd->writesize))
423 mtd->writesize_shift = ffs(mtd->writesize) - 1;
424 else
425 mtd->writesize_shift = 0;
426
427 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
428 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
429
807f16d4
FK
430 if (mtd->dev.parent) {
431 if (!mtd->owner && mtd->dev.parent->driver)
432 mtd->owner = mtd->dev.parent->driver->owner;
433 if (!mtd->name)
434 mtd->name = dev_name(mtd->dev.parent);
435 } else {
436 pr_debug("mtd device won't show a device symlink in sysfs\n");
437 }
438
b520e412 439 /* Some chips always power up locked. Unlock them now */
38134565
AB
440 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
441 error = mtd_unlock(mtd, 0, mtd->size);
442 if (error && error != -EOPNOTSUPP)
b520e412
BH
443 printk(KERN_WARNING
444 "%s: unlock failed, writes may not work\n",
445 mtd->name);
57dd990c
BN
446 /* Ignore unlock failures? */
447 error = 0;
b520e412
BH
448 }
449
450 /* Caller should have set dev.parent to match the
260e89a6 451 * physical device, if appropriate.
b520e412
BH
452 */
453 mtd->dev.type = &mtd_devtype;
454 mtd->dev.class = &mtd_class;
455 mtd->dev.devt = MTD_DEVT(i);
456 dev_set_name(&mtd->dev, "mtd%d", i);
457 dev_set_drvdata(&mtd->dev, mtd);
215a02fd 458 of_node_get(mtd_get_of_node(mtd));
57dd990c
BN
459 error = device_register(&mtd->dev);
460 if (error)
b520e412
BH
461 goto fail_added;
462
5e472128
BN
463 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
464 "mtd%dro", i);
b520e412 465
289c0522 466 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
467 /* No need to get a refcount on the module containing
468 the notifier, since we hold the mtd_table_mutex */
469 list_for_each_entry(not, &mtd_notifiers, list)
470 not->add(mtd);
471
472 mutex_unlock(&mtd_table_mutex);
473 /* We _know_ we aren't being removed, because
474 our caller is still holding us here. So none
475 of this try_ nonsense, and no bitching about it
476 either. :) */
477 __module_get(THIS_MODULE);
478 return 0;
97894cda 479
b520e412 480fail_added:
215a02fd 481 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
482 idr_remove(&mtd_idr, i);
483fail_locked:
48b19268 484 mutex_unlock(&mtd_table_mutex);
57dd990c 485 return error;
1da177e4
LT
486}
487
488/**
489 * del_mtd_device - unregister an MTD device
490 * @mtd: pointer to MTD device info structure
491 *
492 * Remove a device from the list of MTD devices present in the system,
493 * and notify each currently active MTD 'user' of its departure.
494 * Returns zero on success or 1 on failure, which currently will happen
495 * if the requested device does not appear to be present in the list.
496 */
497
eea72d5f 498int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
499{
500 int ret;
75c0b84d 501 struct mtd_notifier *not;
97894cda 502
48b19268 503 mutex_lock(&mtd_table_mutex);
1da177e4 504
b520e412 505 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 506 ret = -ENODEV;
75c0b84d
ML
507 goto out_error;
508 }
509
510 /* No need to get a refcount on the module containing
511 the notifier, since we hold the mtd_table_mutex */
512 list_for_each_entry(not, &mtd_notifiers, list)
513 not->remove(mtd);
514
515 if (mtd->usecount) {
97894cda 516 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
517 mtd->index, mtd->name, mtd->usecount);
518 ret = -EBUSY;
519 } else {
694bb7fc
KC
520 device_unregister(&mtd->dev);
521
b520e412 522 idr_remove(&mtd_idr, mtd->index);
215a02fd 523 of_node_put(mtd_get_of_node(mtd));
1da177e4
LT
524
525 module_put(THIS_MODULE);
526 ret = 0;
527 }
528
75c0b84d 529out_error:
48b19268 530 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
531 return ret;
532}
533
727dc612 534static int mtd_add_device_partitions(struct mtd_info *mtd,
07fd2f87 535 struct mtd_partitions *parts)
727dc612 536{
07fd2f87
BN
537 const struct mtd_partition *real_parts = parts->parts;
538 int nbparts = parts->nr_parts;
727dc612
DE
539 int ret;
540
541 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
542 ret = add_mtd_device(mtd);
57dd990c
BN
543 if (ret)
544 return ret;
727dc612
DE
545 }
546
547 if (nbparts > 0) {
548 ret = add_mtd_partitions(mtd, real_parts, nbparts);
549 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
550 del_mtd_device(mtd);
551 return ret;
552 }
553
554 return 0;
555}
556
557
1c4c215c
DES
558/**
559 * mtd_device_parse_register - parse partitions and register an MTD device.
560 *
561 * @mtd: the MTD device to register
562 * @types: the list of MTD partition probes to try, see
563 * 'parse_mtd_partitions()' for more information
c7975330 564 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
565 * @parts: fallback partition information to register, if parsing fails;
566 * only valid if %nr_parts > %0
567 * @nr_parts: the number of partitions in parts, if zero then the full
568 * MTD device is registered if no partition info is found
569 *
570 * This function aggregates MTD partitions parsing (done by
571 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
572 * basically follows the most common pattern found in many MTD drivers:
573 *
574 * * It first tries to probe partitions on MTD device @mtd using parsers
575 * specified in @types (if @types is %NULL, then the default list of parsers
576 * is used, see 'parse_mtd_partitions()' for more information). If none are
577 * found this functions tries to fallback to information specified in
578 * @parts/@nr_parts.
92394b5c 579 * * If any partitioning info was found, this function registers the found
727dc612
DE
580 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
581 * as a whole is registered first.
1c4c215c
DES
582 * * If no partitions were found this function just registers the MTD device
583 * @mtd and exits.
584 *
585 * Returns zero in case of success and a negative error code in case of failure.
586 */
26a47346 587int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 588 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
589 const struct mtd_partition *parts,
590 int nr_parts)
591{
07fd2f87 592 struct mtd_partitions parsed;
727dc612 593 int ret;
1c4c215c 594
07fd2f87
BN
595 memset(&parsed, 0, sizeof(parsed));
596
597 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
598 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
599 /* Fall back to driver-provided partitions */
600 parsed = (struct mtd_partitions){
601 .parts = parts,
602 .nr_parts = nr_parts,
603 };
604 } else if (ret < 0) {
605 /* Didn't come up with parsed OR fallback partitions */
5a2415b0
BN
606 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
607 ret);
608 /* Don't abort on errors; we can still use unpartitioned MTD */
07fd2f87 609 memset(&parsed, 0, sizeof(parsed));
3e00ed0e 610 }
1c4c215c 611
07fd2f87 612 ret = mtd_add_device_partitions(mtd, &parsed);
3e00ed0e
BN
613 if (ret)
614 goto out;
1c4c215c 615
e1dd8641
NC
616 /*
617 * FIXME: some drivers unfortunately call this function more than once.
618 * So we have to check if we've already assigned the reboot notifier.
619 *
620 * Generally, we can make multiple calls work for most cases, but it
621 * does cause problems with parse_mtd_partitions() above (e.g.,
622 * cmdlineparts will register partitions more than once).
623 */
f8479dd6
BN
624 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
625 "MTD already registered\n");
e1dd8641 626 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
627 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
628 register_reboot_notifier(&mtd->reboot_notifier);
629 }
630
3e00ed0e 631out:
c42c2710 632 /* Cleanup any parsed partitions */
07fd2f87
BN
633 if (parsed.parser)
634 kfree(parsed.parts);
727dc612 635 return ret;
1c4c215c
DES
636}
637EXPORT_SYMBOL_GPL(mtd_device_parse_register);
638
f5671ab3
JI
639/**
640 * mtd_device_unregister - unregister an existing MTD device.
641 *
642 * @master: the MTD device to unregister. This will unregister both the master
643 * and any partitions if registered.
644 */
645int mtd_device_unregister(struct mtd_info *master)
646{
647 int err;
648
3efe41be
BN
649 if (master->_reboot)
650 unregister_reboot_notifier(&master->reboot_notifier);
651
f5671ab3
JI
652 err = del_mtd_partitions(master);
653 if (err)
654 return err;
655
656 if (!device_is_registered(&master->dev))
657 return 0;
658
659 return del_mtd_device(master);
660}
661EXPORT_SYMBOL_GPL(mtd_device_unregister);
662
1da177e4
LT
663/**
664 * register_mtd_user - register a 'user' of MTD devices.
665 * @new: pointer to notifier info structure
666 *
667 * Registers a pair of callbacks function to be called upon addition
668 * or removal of MTD devices. Causes the 'add' callback to be immediately
669 * invoked for each MTD device currently present in the system.
670 */
1da177e4
LT
671void register_mtd_user (struct mtd_notifier *new)
672{
f1332ba2 673 struct mtd_info *mtd;
1da177e4 674
48b19268 675 mutex_lock(&mtd_table_mutex);
1da177e4
LT
676
677 list_add(&new->list, &mtd_notifiers);
678
d5ca5129 679 __module_get(THIS_MODULE);
97894cda 680
f1332ba2
BH
681 mtd_for_each_device(mtd)
682 new->add(mtd);
1da177e4 683
48b19268 684 mutex_unlock(&mtd_table_mutex);
1da177e4 685}
33c87b4a 686EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
687
688/**
49450795
AB
689 * unregister_mtd_user - unregister a 'user' of MTD devices.
690 * @old: pointer to notifier info structure
1da177e4
LT
691 *
692 * Removes a callback function pair from the list of 'users' to be
693 * notified upon addition or removal of MTD devices. Causes the
694 * 'remove' callback to be immediately invoked for each MTD device
695 * currently present in the system.
696 */
1da177e4
LT
697int unregister_mtd_user (struct mtd_notifier *old)
698{
f1332ba2 699 struct mtd_info *mtd;
1da177e4 700
48b19268 701 mutex_lock(&mtd_table_mutex);
1da177e4
LT
702
703 module_put(THIS_MODULE);
704
f1332ba2
BH
705 mtd_for_each_device(mtd)
706 old->remove(mtd);
97894cda 707
1da177e4 708 list_del(&old->list);
48b19268 709 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
710 return 0;
711}
33c87b4a 712EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
713
714/**
715 * get_mtd_device - obtain a validated handle for an MTD device
716 * @mtd: last known address of the required MTD device
717 * @num: internal device number of the required MTD device
718 *
719 * Given a number and NULL address, return the num'th entry in the device
720 * table, if any. Given an address and num == -1, search the device table
721 * for a device with that address and return if it's still present. Given
9c74034f
AB
722 * both, return the num'th driver only if its address matches. Return
723 * error code if not.
1da177e4 724 */
1da177e4
LT
725struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
726{
f1332ba2
BH
727 struct mtd_info *ret = NULL, *other;
728 int err = -ENODEV;
1da177e4 729
48b19268 730 mutex_lock(&mtd_table_mutex);
1da177e4
LT
731
732 if (num == -1) {
f1332ba2
BH
733 mtd_for_each_device(other) {
734 if (other == mtd) {
735 ret = mtd;
736 break;
737 }
738 }
b520e412
BH
739 } else if (num >= 0) {
740 ret = idr_find(&mtd_idr, num);
1da177e4
LT
741 if (mtd && mtd != ret)
742 ret = NULL;
743 }
744
3bd45657
ML
745 if (!ret) {
746 ret = ERR_PTR(err);
747 goto out;
9fe912ce 748 }
1da177e4 749
3bd45657
ML
750 err = __get_mtd_device(ret);
751 if (err)
752 ret = ERR_PTR(err);
753out:
9c74034f
AB
754 mutex_unlock(&mtd_table_mutex);
755 return ret;
3bd45657 756}
33c87b4a 757EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 758
3bd45657
ML
759
760int __get_mtd_device(struct mtd_info *mtd)
761{
762 int err;
763
764 if (!try_module_get(mtd->owner))
765 return -ENODEV;
766
3c3c10bb
AB
767 if (mtd->_get_device) {
768 err = mtd->_get_device(mtd);
3bd45657
ML
769
770 if (err) {
771 module_put(mtd->owner);
772 return err;
773 }
774 }
775 mtd->usecount++;
776 return 0;
1da177e4 777}
33c87b4a 778EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 779
7799308f
AB
780/**
781 * get_mtd_device_nm - obtain a validated handle for an MTD device by
782 * device name
783 * @name: MTD device name to open
784 *
785 * This function returns MTD device description structure in case of
786 * success and an error code in case of failure.
787 */
7799308f
AB
788struct mtd_info *get_mtd_device_nm(const char *name)
789{
f1332ba2
BH
790 int err = -ENODEV;
791 struct mtd_info *mtd = NULL, *other;
7799308f
AB
792
793 mutex_lock(&mtd_table_mutex);
794
f1332ba2
BH
795 mtd_for_each_device(other) {
796 if (!strcmp(name, other->name)) {
797 mtd = other;
7799308f
AB
798 break;
799 }
800 }
801
9fe912ce 802 if (!mtd)
7799308f
AB
803 goto out_unlock;
804
52534f2d
WG
805 err = __get_mtd_device(mtd);
806 if (err)
7799308f
AB
807 goto out_unlock;
808
9fe912ce
AB
809 mutex_unlock(&mtd_table_mutex);
810 return mtd;
7799308f
AB
811
812out_unlock:
813 mutex_unlock(&mtd_table_mutex);
9fe912ce 814 return ERR_PTR(err);
7799308f 815}
33c87b4a 816EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 817
1da177e4
LT
818void put_mtd_device(struct mtd_info *mtd)
819{
48b19268 820 mutex_lock(&mtd_table_mutex);
3bd45657
ML
821 __put_mtd_device(mtd);
822 mutex_unlock(&mtd_table_mutex);
823
824}
33c87b4a 825EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
826
827void __put_mtd_device(struct mtd_info *mtd)
828{
829 --mtd->usecount;
830 BUG_ON(mtd->usecount < 0);
831
3c3c10bb
AB
832 if (mtd->_put_device)
833 mtd->_put_device(mtd);
1da177e4
LT
834
835 module_put(mtd->owner);
836}
33c87b4a 837EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 838
8273a0c9
AB
839/*
840 * Erase is an asynchronous operation. Device drivers are supposed
841 * to call instr->callback() whenever the operation completes, even
842 * if it completes with a failure.
843 * Callers are supposed to pass a callback function and wait for it
844 * to be called before writing to the block.
845 */
846int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
847{
0c2b4e21 848 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 849 return -EINVAL;
664addc2
AB
850 if (!(mtd->flags & MTD_WRITEABLE))
851 return -EROFS;
3b27dac0 852 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
bcb1d238
AB
853 if (!instr->len) {
854 instr->state = MTD_ERASE_DONE;
855 mtd_erase_callback(instr);
856 return 0;
857 }
8273a0c9
AB
858 return mtd->_erase(mtd, instr);
859}
860EXPORT_SYMBOL_GPL(mtd_erase);
861
862/*
863 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
864 */
865int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
866 void **virt, resource_size_t *phys)
867{
868 *retlen = 0;
0dd5235f
AB
869 *virt = NULL;
870 if (phys)
871 *phys = 0;
8273a0c9
AB
872 if (!mtd->_point)
873 return -EOPNOTSUPP;
0c2b4e21 874 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 875 return -EINVAL;
bcb1d238
AB
876 if (!len)
877 return 0;
8273a0c9
AB
878 return mtd->_point(mtd, from, len, retlen, virt, phys);
879}
880EXPORT_SYMBOL_GPL(mtd_point);
881
882/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
883int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
884{
885 if (!mtd->_point)
886 return -EOPNOTSUPP;
0c2b4e21 887 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 888 return -EINVAL;
bcb1d238
AB
889 if (!len)
890 return 0;
8273a0c9
AB
891 return mtd->_unpoint(mtd, from, len);
892}
893EXPORT_SYMBOL_GPL(mtd_unpoint);
894
895/*
896 * Allow NOMMU mmap() to directly map the device (if not NULL)
897 * - return the address to which the offset maps
898 * - return -ENOSYS to indicate refusal to do the mapping
899 */
900unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
901 unsigned long offset, unsigned long flags)
902{
903 if (!mtd->_get_unmapped_area)
904 return -EOPNOTSUPP;
0c2b4e21 905 if (offset >= mtd->size || len > mtd->size - offset)
8273a0c9
AB
906 return -EINVAL;
907 return mtd->_get_unmapped_area(mtd, len, offset, flags);
908}
909EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
910
911int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
912 u_char *buf)
913{
edbc4540 914 int ret_code;
834247ec 915 *retlen = 0;
0c2b4e21 916 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 917 return -EINVAL;
bcb1d238
AB
918 if (!len)
919 return 0;
edbc4540
MD
920
921 /*
922 * In the absence of an error, drivers return a non-negative integer
923 * representing the maximum number of bitflips that were corrected on
924 * any one ecc region (if applicable; zero otherwise).
925 */
926 ret_code = mtd->_read(mtd, from, len, retlen, buf);
927 if (unlikely(ret_code < 0))
928 return ret_code;
929 if (mtd->ecc_strength == 0)
930 return 0; /* device lacks ecc */
931 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
8273a0c9
AB
932}
933EXPORT_SYMBOL_GPL(mtd_read);
934
935int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
936 const u_char *buf)
937{
938 *retlen = 0;
0c2b4e21 939 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 940 return -EINVAL;
664addc2
AB
941 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
942 return -EROFS;
bcb1d238
AB
943 if (!len)
944 return 0;
8273a0c9
AB
945 return mtd->_write(mtd, to, len, retlen, buf);
946}
947EXPORT_SYMBOL_GPL(mtd_write);
948
949/*
950 * In blackbox flight recorder like scenarios we want to make successful writes
951 * in interrupt context. panic_write() is only intended to be called when its
952 * known the kernel is about to panic and we need the write to succeed. Since
953 * the kernel is not going to be running for much longer, this function can
954 * break locks and delay to ensure the write succeeds (but not sleep).
955 */
956int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
957 const u_char *buf)
958{
959 *retlen = 0;
960 if (!mtd->_panic_write)
961 return -EOPNOTSUPP;
0c2b4e21 962 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 963 return -EINVAL;
664addc2
AB
964 if (!(mtd->flags & MTD_WRITEABLE))
965 return -EROFS;
bcb1d238
AB
966 if (!len)
967 return 0;
8273a0c9
AB
968 return mtd->_panic_write(mtd, to, len, retlen, buf);
969}
970EXPORT_SYMBOL_GPL(mtd_panic_write);
971
d2d48480
BN
972int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
973{
e47f6858 974 int ret_code;
d2d48480
BN
975 ops->retlen = ops->oobretlen = 0;
976 if (!mtd->_read_oob)
977 return -EOPNOTSUPP;
e47f6858
BN
978 /*
979 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
980 * similar to mtd->_read(), returning a non-negative integer
981 * representing max bitflips. In other cases, mtd->_read_oob() may
982 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
983 */
984 ret_code = mtd->_read_oob(mtd, from, ops);
985 if (unlikely(ret_code < 0))
986 return ret_code;
987 if (mtd->ecc_strength == 0)
988 return 0; /* device lacks ecc */
989 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
990}
991EXPORT_SYMBOL_GPL(mtd_read_oob);
992
de3cac93
AB
993/*
994 * Method to access the protection register area, present in some flash
995 * devices. The user data is one time programmable but the factory data is read
996 * only.
997 */
4b78fc42
CR
998int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
999 struct otp_info *buf)
de3cac93
AB
1000{
1001 if (!mtd->_get_fact_prot_info)
1002 return -EOPNOTSUPP;
1003 if (!len)
1004 return 0;
4b78fc42 1005 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1006}
1007EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1008
1009int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1010 size_t *retlen, u_char *buf)
1011{
1012 *retlen = 0;
1013 if (!mtd->_read_fact_prot_reg)
1014 return -EOPNOTSUPP;
1015 if (!len)
1016 return 0;
1017 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1018}
1019EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1020
4b78fc42
CR
1021int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1022 struct otp_info *buf)
de3cac93
AB
1023{
1024 if (!mtd->_get_user_prot_info)
1025 return -EOPNOTSUPP;
1026 if (!len)
1027 return 0;
4b78fc42 1028 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1029}
1030EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1031
1032int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1033 size_t *retlen, u_char *buf)
1034{
1035 *retlen = 0;
1036 if (!mtd->_read_user_prot_reg)
1037 return -EOPNOTSUPP;
1038 if (!len)
1039 return 0;
1040 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1041}
1042EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1043
1044int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1045 size_t *retlen, u_char *buf)
1046{
9a78bc83
CR
1047 int ret;
1048
de3cac93
AB
1049 *retlen = 0;
1050 if (!mtd->_write_user_prot_reg)
1051 return -EOPNOTSUPP;
1052 if (!len)
1053 return 0;
9a78bc83
CR
1054 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1055 if (ret)
1056 return ret;
1057
1058 /*
1059 * If no data could be written at all, we are out of memory and
1060 * must return -ENOSPC.
1061 */
1062 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
1063}
1064EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1065
1066int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1067{
1068 if (!mtd->_lock_user_prot_reg)
1069 return -EOPNOTSUPP;
1070 if (!len)
1071 return 0;
1072 return mtd->_lock_user_prot_reg(mtd, from, len);
1073}
1074EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1075
8273a0c9
AB
1076/* Chip-supported device locking */
1077int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1078{
1079 if (!mtd->_lock)
1080 return -EOPNOTSUPP;
0c2b4e21 1081 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1082 return -EINVAL;
bcb1d238
AB
1083 if (!len)
1084 return 0;
8273a0c9
AB
1085 return mtd->_lock(mtd, ofs, len);
1086}
1087EXPORT_SYMBOL_GPL(mtd_lock);
1088
1089int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1090{
1091 if (!mtd->_unlock)
1092 return -EOPNOTSUPP;
0c2b4e21 1093 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1094 return -EINVAL;
bcb1d238
AB
1095 if (!len)
1096 return 0;
8273a0c9
AB
1097 return mtd->_unlock(mtd, ofs, len);
1098}
1099EXPORT_SYMBOL_GPL(mtd_unlock);
1100
1101int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1102{
1103 if (!mtd->_is_locked)
1104 return -EOPNOTSUPP;
0c2b4e21 1105 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1106 return -EINVAL;
bcb1d238
AB
1107 if (!len)
1108 return 0;
8273a0c9
AB
1109 return mtd->_is_locked(mtd, ofs, len);
1110}
1111EXPORT_SYMBOL_GPL(mtd_is_locked);
1112
8471bb73 1113int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 1114{
0c2b4e21 1115 if (ofs < 0 || ofs >= mtd->size)
8471bb73
EG
1116 return -EINVAL;
1117 if (!mtd->_block_isreserved)
8273a0c9 1118 return 0;
8471bb73
EG
1119 return mtd->_block_isreserved(mtd, ofs);
1120}
1121EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1122
1123int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1124{
0c2b4e21 1125 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1126 return -EINVAL;
8471bb73
EG
1127 if (!mtd->_block_isbad)
1128 return 0;
8273a0c9
AB
1129 return mtd->_block_isbad(mtd, ofs);
1130}
1131EXPORT_SYMBOL_GPL(mtd_block_isbad);
1132
1133int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1134{
1135 if (!mtd->_block_markbad)
1136 return -EOPNOTSUPP;
0c2b4e21 1137 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1138 return -EINVAL;
664addc2
AB
1139 if (!(mtd->flags & MTD_WRITEABLE))
1140 return -EROFS;
8273a0c9
AB
1141 return mtd->_block_markbad(mtd, ofs);
1142}
1143EXPORT_SYMBOL_GPL(mtd_block_markbad);
1144
52b02031
AB
1145/*
1146 * default_mtd_writev - the default writev method
1147 * @mtd: mtd device description object pointer
1148 * @vecs: the vectors to write
1149 * @count: count of vectors in @vecs
1150 * @to: the MTD device offset to write to
1151 * @retlen: on exit contains the count of bytes written to the MTD device.
1152 *
1153 * This function returns zero in case of success and a negative error code in
1154 * case of failure.
1da177e4 1155 */
1dbebd32
AB
1156static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1157 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1158{
1159 unsigned long i;
1160 size_t totlen = 0, thislen;
1161 int ret = 0;
1162
52b02031
AB
1163 for (i = 0; i < count; i++) {
1164 if (!vecs[i].iov_len)
1165 continue;
1166 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1167 vecs[i].iov_base);
1168 totlen += thislen;
1169 if (ret || thislen != vecs[i].iov_len)
1170 break;
1171 to += vecs[i].iov_len;
1da177e4 1172 }
52b02031 1173 *retlen = totlen;
1da177e4
LT
1174 return ret;
1175}
1dbebd32
AB
1176
1177/*
1178 * mtd_writev - the vector-based MTD write method
1179 * @mtd: mtd device description object pointer
1180 * @vecs: the vectors to write
1181 * @count: count of vectors in @vecs
1182 * @to: the MTD device offset to write to
1183 * @retlen: on exit contains the count of bytes written to the MTD device.
1184 *
1185 * This function returns zero in case of success and a negative error code in
1186 * case of failure.
1187 */
1188int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1189 unsigned long count, loff_t to, size_t *retlen)
1190{
1191 *retlen = 0;
664addc2
AB
1192 if (!(mtd->flags & MTD_WRITEABLE))
1193 return -EROFS;
3c3c10bb 1194 if (!mtd->_writev)
1dbebd32 1195 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1196 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1197}
1198EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1199
33b53716
GE
1200/**
1201 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1202 * @mtd: mtd device description object pointer
1203 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1204 * to the actual allocation size on success.
1205 *
1206 * This routine attempts to allocate a contiguous kernel buffer up to
1207 * the specified size, backing off the size of the request exponentially
1208 * until the request succeeds or until the allocation size falls below
1209 * the system page size. This attempts to make sure it does not adversely
1210 * impact system performance, so when allocating more than one page, we
caf49191
LT
1211 * ask the memory allocator to avoid re-trying, swapping, writing back
1212 * or performing I/O.
33b53716
GE
1213 *
1214 * Note, this function also makes sure that the allocated buffer is aligned to
1215 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1216 *
1217 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1218 * to handle smaller (i.e. degraded) buffer allocations under low- or
1219 * fragmented-memory situations where such reduced allocations, from a
1220 * requested ideal, are allowed.
1221 *
1222 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1223 */
1224void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1225{
d0164adc 1226 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
1227 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1228 void *kbuf;
1229
1230 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1231
1232 while (*size > min_alloc) {
1233 kbuf = kmalloc(*size, flags);
1234 if (kbuf)
1235 return kbuf;
1236
1237 *size >>= 1;
1238 *size = ALIGN(*size, mtd->writesize);
1239 }
1240
1241 /*
1242 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1243 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1244 */
1245 return kmalloc(*size, GFP_KERNEL);
1246}
33b53716 1247EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1248
2d2dce0e
PM
1249#ifdef CONFIG_PROC_FS
1250
1da177e4
LT
1251/*====================================================================*/
1252/* Support for /proc/mtd */
1253
447d9bd8 1254static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1255{
f1332ba2 1256 struct mtd_info *mtd;
1da177e4 1257
447d9bd8 1258 seq_puts(m, "dev: size erasesize name\n");
48b19268 1259 mutex_lock(&mtd_table_mutex);
f1332ba2 1260 mtd_for_each_device(mtd) {
447d9bd8
AD
1261 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1262 mtd->index, (unsigned long long)mtd->size,
1263 mtd->erasesize, mtd->name);
d5ca5129 1264 }
48b19268 1265 mutex_unlock(&mtd_table_mutex);
d5ca5129 1266 return 0;
1da177e4
LT
1267}
1268
447d9bd8
AD
1269static int mtd_proc_open(struct inode *inode, struct file *file)
1270{
1271 return single_open(file, mtd_proc_show, NULL);
1272}
1273
1274static const struct file_operations mtd_proc_ops = {
1275 .open = mtd_proc_open,
1276 .read = seq_read,
1277 .llseek = seq_lseek,
1278 .release = single_release,
1279};
45b09076
KC
1280#endif /* CONFIG_PROC_FS */
1281
1da177e4
LT
1282/*====================================================================*/
1283/* Init code */
1284
0661b1ac
JA
1285static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1286{
1287 int ret;
1288
1289 ret = bdi_init(bdi);
1290 if (!ret)
02aa2a37 1291 ret = bdi_register(bdi, NULL, "%s", name);
0661b1ac
JA
1292
1293 if (ret)
1294 bdi_destroy(bdi);
1295
1296 return ret;
1297}
1298
93e56214
AB
1299static struct proc_dir_entry *proc_mtd;
1300
1da177e4
LT
1301static int __init init_mtd(void)
1302{
15bce40c 1303 int ret;
0661b1ac 1304
15bce40c 1305 ret = class_register(&mtd_class);
0661b1ac
JA
1306 if (ret)
1307 goto err_reg;
1308
b4caecd4 1309 ret = mtd_bdi_init(&mtd_bdi, "mtd");
0661b1ac 1310 if (ret)
b4caecd4 1311 goto err_bdi;
694bb7fc 1312
447d9bd8 1313 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
93e56214 1314
660685d9
AB
1315 ret = init_mtdchar();
1316 if (ret)
1317 goto out_procfs;
1318
1da177e4 1319 return 0;
0661b1ac 1320
660685d9
AB
1321out_procfs:
1322 if (proc_mtd)
1323 remove_proc_entry("mtd", NULL);
b4caecd4 1324err_bdi:
0661b1ac
JA
1325 class_unregister(&mtd_class);
1326err_reg:
1327 pr_err("Error registering mtd class or bdi: %d\n", ret);
1328 return ret;
1da177e4
LT
1329}
1330
1331static void __exit cleanup_mtd(void)
1332{
660685d9 1333 cleanup_mtdchar();
d5ca5129 1334 if (proc_mtd)
93e56214 1335 remove_proc_entry("mtd", NULL);
15bce40c 1336 class_unregister(&mtd_class);
b4caecd4 1337 bdi_destroy(&mtd_bdi);
35667b99 1338 idr_destroy(&mtd_idr);
1da177e4
LT
1339}
1340
1341module_init(init_mtd);
1342module_exit(cleanup_mtd);
1343
1da177e4
LT
1344MODULE_LICENSE("GPL");
1345MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1346MODULE_DESCRIPTION("Core MTD registration and access routines");