libnvdimm/altmap: Track namespace boundaries in altmap
[linux-2.6-block.git] / drivers / mtd / mtdcore.c
CommitLineData
fd534e9b 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
1da177e4
LT
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
a1452a37
DW
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
1da177e4
LT
8 */
9
1da177e4
LT
10#include <linux/module.h>
11#include <linux/kernel.h>
1da177e4 12#include <linux/ptrace.h>
447d9bd8 13#include <linux/seq_file.h>
1da177e4
LT
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
7799308f 18#include <linux/err.h>
1da177e4
LT
19#include <linux/ioctl.h>
20#include <linux/init.h>
215a02fd 21#include <linux/of.h>
1da177e4 22#include <linux/proc_fs.h>
b520e412 23#include <linux/idr.h>
a33eb6b9 24#include <linux/backing-dev.h>
05d71b46 25#include <linux/gfp.h>
0d01ff25 26#include <linux/slab.h>
3efe41be 27#include <linux/reboot.h>
fea728c0 28#include <linux/leds.h>
e8e3edb9 29#include <linux/debugfs.h>
c4dfa25a 30#include <linux/nvmem-provider.h>
1da177e4
LT
31
32#include <linux/mtd/mtd.h>
f5671ab3 33#include <linux/mtd/partitions.h>
1da177e4 34
356d70f1 35#include "mtdcore.h"
660685d9 36
fa06052d 37struct backing_dev_info *mtd_bdi;
356d70f1 38
57b8045d
LPC
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
15bce40c
DW
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
57b8045d 66 .pm = MTD_CLS_PM_OPS,
15bce40c 67};
1f24b5a8 68
b520e412
BH
69static DEFINE_IDR(mtd_idr);
70
97894cda 71/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 72 should not use them for _anything_ else */
48b19268 73DEFINE_MUTEX(mtd_table_mutex);
1da177e4 74EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
81
82static LIST_HEAD(mtd_notifiers);
83
1f24b5a8 84
1f24b5a8 85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
5e472128 92 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 93 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 94
5e472128
BN
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
15bce40c
DW
97}
98
1f24b5a8
DB
99static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101{
d5de20a9 102 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
f4837246
HS
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
1f24b5a8
DB
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135}
694bb7fc
KC
136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140{
d5de20a9 141 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
694bb7fc
KC
144}
145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149{
d5de20a9 150 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
694bb7fc
KC
154}
155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159{
d5de20a9 160 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
694bb7fc
KC
163}
164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168{
d5de20a9 169 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
694bb7fc
KC
172}
173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
e7693548
AB
175static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
d5de20a9 178 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
e7693548
AB
182}
183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
694bb7fc
KC
185static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187{
d5de20a9 188 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
694bb7fc
KC
191}
192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
7cc9aa66
XL
194static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200}
201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
694bb7fc
KC
203static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
d5de20a9 206 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
694bb7fc
KC
209}
210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
d5de20a9 216 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
694bb7fc
KC
219}
220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 221
a9b672e8
MD
222static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228}
229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
d062d4ed
MD
231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238}
239
240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243{
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254}
255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
bf977e3f
HS
259static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261{
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266}
267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
990a3af0
EG
269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276}
277static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287}
288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297}
298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302{
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307}
308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
1f24b5a8 310static struct attribute *mtd_attrs[] = {
694bb7fc
KC
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
e7693548 316 &dev_attr_subpagesize.attr,
694bb7fc 317 &dev_attr_oobsize.attr,
7cc9aa66 318 &dev_attr_oobavail.attr,
694bb7fc
KC
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
a9b672e8 321 &dev_attr_ecc_strength.attr,
bf977e3f 322 &dev_attr_ecc_step_size.attr,
990a3af0
EG
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
d062d4ed 327 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
328 NULL,
329};
54c738f6 330ATTRIBUTE_GROUPS(mtd);
1f24b5a8 331
75864b30 332static const struct device_type mtd_devtype = {
1f24b5a8
DB
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336};
337
b4caecd4
CH
338#ifndef CONFIG_MMU
339unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
340{
341 switch (mtd->type) {
342 case MTD_RAM:
343 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
344 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
345 case MTD_ROM:
346 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
347 NOMMU_MAP_READ;
348 default:
349 return NOMMU_MAP_COPY;
350 }
351}
706a4e5a 352EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
353#endif
354
3efe41be
BN
355static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
356 void *cmd)
357{
358 struct mtd_info *mtd;
359
360 mtd = container_of(n, struct mtd_info, reboot_notifier);
361 mtd->_reboot(mtd);
362
363 return NOTIFY_DONE;
364}
365
477b0229
BB
366/**
367 * mtd_wunit_to_pairing_info - get pairing information of a wunit
368 * @mtd: pointer to new MTD device info structure
369 * @wunit: write unit we are interested in
370 * @info: returned pairing information
371 *
372 * Retrieve pairing information associated to the wunit.
373 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
374 * paired together, and where programming a page may influence the page it is
375 * paired with.
376 * The notion of page is replaced by the term wunit (write-unit) to stay
377 * consistent with the ->writesize field.
378 *
379 * The @wunit argument can be extracted from an absolute offset using
380 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
381 * to @wunit.
382 *
383 * From the pairing info the MTD user can find all the wunits paired with
384 * @wunit using the following loop:
385 *
386 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
387 * info.pair = i;
388 * mtd_pairing_info_to_wunit(mtd, &info);
389 * ...
390 * }
391 */
392int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
393 struct mtd_pairing_info *info)
394{
395 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
396
397 if (wunit < 0 || wunit >= npairs)
398 return -EINVAL;
399
400 if (mtd->pairing && mtd->pairing->get_info)
401 return mtd->pairing->get_info(mtd, wunit, info);
402
403 info->group = 0;
404 info->pair = wunit;
405
406 return 0;
407}
408EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
409
410/**
c77a9312 411 * mtd_pairing_info_to_wunit - get wunit from pairing information
477b0229
BB
412 * @mtd: pointer to new MTD device info structure
413 * @info: pairing information struct
414 *
415 * Returns a positive number representing the wunit associated to the info
416 * struct, or a negative error code.
417 *
418 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
419 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
420 * doc).
421 *
422 * It can also be used to only program the first page of each pair (i.e.
423 * page attached to group 0), which allows one to use an MLC NAND in
424 * software-emulated SLC mode:
425 *
426 * info.group = 0;
427 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
428 * for (info.pair = 0; info.pair < npairs; info.pair++) {
429 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
430 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
431 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
432 * }
433 */
434int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
435 const struct mtd_pairing_info *info)
436{
437 int ngroups = mtd_pairing_groups(mtd);
438 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
439
440 if (!info || info->pair < 0 || info->pair >= npairs ||
441 info->group < 0 || info->group >= ngroups)
442 return -EINVAL;
443
444 if (mtd->pairing && mtd->pairing->get_wunit)
445 return mtd->pairing->get_wunit(mtd, info);
446
447 return info->pair;
448}
449EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
450
451/**
452 * mtd_pairing_groups - get the number of pairing groups
453 * @mtd: pointer to new MTD device info structure
454 *
455 * Returns the number of pairing groups.
456 *
457 * This number is usually equal to the number of bits exposed by a single
458 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
459 * to iterate over all pages of a given pair.
460 */
461int mtd_pairing_groups(struct mtd_info *mtd)
462{
463 if (!mtd->pairing || !mtd->pairing->ngroups)
464 return 1;
465
466 return mtd->pairing->ngroups;
467}
468EXPORT_SYMBOL_GPL(mtd_pairing_groups);
469
c4dfa25a
AB
470static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
471 void *val, size_t bytes)
472{
473 struct mtd_info *mtd = priv;
474 size_t retlen;
475 int err;
476
477 err = mtd_read(mtd, offset, bytes, &retlen, val);
478 if (err && err != -EUCLEAN)
479 return err;
480
481 return retlen == bytes ? 0 : -EIO;
482}
483
484static int mtd_nvmem_add(struct mtd_info *mtd)
485{
486 struct nvmem_config config = {};
487
6e952685 488 config.id = -1;
c4dfa25a
AB
489 config.dev = &mtd->dev;
490 config.name = mtd->name;
491 config.owner = THIS_MODULE;
492 config.reg_read = mtd_nvmem_reg_read;
493 config.size = mtd->size;
494 config.word_size = 1;
495 config.stride = 1;
496 config.read_only = true;
497 config.root_only = true;
498 config.no_of_node = true;
499 config.priv = mtd;
500
501 mtd->nvmem = nvmem_register(&config);
502 if (IS_ERR(mtd->nvmem)) {
503 /* Just ignore if there is no NVMEM support in the kernel */
19e16fb4 504 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
c4dfa25a
AB
505 mtd->nvmem = NULL;
506 } else {
507 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
508 return PTR_ERR(mtd->nvmem);
509 }
510 }
511
512 return 0;
513}
514
e8e3edb9
MR
515static struct dentry *dfs_dir_mtd;
516
1da177e4
LT
517/**
518 * add_mtd_device - register an MTD device
519 * @mtd: pointer to new MTD device info structure
520 *
521 * Add a device to the list of MTD devices present in the system, and
522 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 523 * zero on success or non-zero on failure.
1da177e4
LT
524 */
525
526int add_mtd_device(struct mtd_info *mtd)
527{
b520e412
BH
528 struct mtd_notifier *not;
529 int i, error;
1da177e4 530
be0dbff8
BN
531 /*
532 * May occur, for instance, on buggy drivers which call
533 * mtd_device_parse_register() multiple times on the same master MTD,
534 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
535 */
fa06052d 536 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
be0dbff8
BN
537 return -EEXIST;
538
783ed81f 539 BUG_ON(mtd->writesize == 0);
33f45c44 540
2431c4f5
BB
541 /*
542 * MTD drivers should implement ->_{write,read}() or
543 * ->_{write,read}_oob(), but not both.
544 */
545 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
546 (mtd->_read && mtd->_read_oob)))
547 return -EINVAL;
548
33f45c44
BB
549 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
550 !(mtd->flags & MTD_NO_ERASE)))
551 return -EINVAL;
552
48b19268 553 mutex_lock(&mtd_table_mutex);
1da177e4 554
589e9c4d 555 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
556 if (i < 0) {
557 error = i;
b520e412 558 goto fail_locked;
57dd990c 559 }
1f24b5a8 560
b520e412
BH
561 mtd->index = i;
562 mtd->usecount = 0;
563
d062d4ed
MD
564 /* default value if not set by driver */
565 if (mtd->bitflip_threshold == 0)
566 mtd->bitflip_threshold = mtd->ecc_strength;
567
b520e412
BH
568 if (is_power_of_2(mtd->erasesize))
569 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
570 else
571 mtd->erasesize_shift = 0;
572
573 if (is_power_of_2(mtd->writesize))
574 mtd->writesize_shift = ffs(mtd->writesize) - 1;
575 else
576 mtd->writesize_shift = 0;
577
578 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
579 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
580
581 /* Some chips always power up locked. Unlock them now */
38134565
AB
582 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
583 error = mtd_unlock(mtd, 0, mtd->size);
584 if (error && error != -EOPNOTSUPP)
b520e412
BH
585 printk(KERN_WARNING
586 "%s: unlock failed, writes may not work\n",
587 mtd->name);
57dd990c
BN
588 /* Ignore unlock failures? */
589 error = 0;
b520e412
BH
590 }
591
592 /* Caller should have set dev.parent to match the
260e89a6 593 * physical device, if appropriate.
b520e412
BH
594 */
595 mtd->dev.type = &mtd_devtype;
596 mtd->dev.class = &mtd_class;
597 mtd->dev.devt = MTD_DEVT(i);
598 dev_set_name(&mtd->dev, "mtd%d", i);
599 dev_set_drvdata(&mtd->dev, mtd);
215a02fd 600 of_node_get(mtd_get_of_node(mtd));
57dd990c
BN
601 error = device_register(&mtd->dev);
602 if (error)
b520e412
BH
603 goto fail_added;
604
c4dfa25a
AB
605 /* Add the nvmem provider */
606 error = mtd_nvmem_add(mtd);
607 if (error)
608 goto fail_nvmem_add;
609
e8e3edb9
MR
610 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
611 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
612 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
613 pr_debug("mtd device %s won't show data in debugfs\n",
614 dev_name(&mtd->dev));
615 }
616 }
617
5e472128
BN
618 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
619 "mtd%dro", i);
b520e412 620
289c0522 621 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
622 /* No need to get a refcount on the module containing
623 the notifier, since we hold the mtd_table_mutex */
624 list_for_each_entry(not, &mtd_notifiers, list)
625 not->add(mtd);
626
627 mutex_unlock(&mtd_table_mutex);
628 /* We _know_ we aren't being removed, because
629 our caller is still holding us here. So none
630 of this try_ nonsense, and no bitching about it
631 either. :) */
632 __module_get(THIS_MODULE);
633 return 0;
97894cda 634
c4dfa25a
AB
635fail_nvmem_add:
636 device_unregister(&mtd->dev);
b520e412 637fail_added:
215a02fd 638 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
639 idr_remove(&mtd_idr, i);
640fail_locked:
48b19268 641 mutex_unlock(&mtd_table_mutex);
57dd990c 642 return error;
1da177e4
LT
643}
644
645/**
646 * del_mtd_device - unregister an MTD device
647 * @mtd: pointer to MTD device info structure
648 *
649 * Remove a device from the list of MTD devices present in the system,
650 * and notify each currently active MTD 'user' of its departure.
651 * Returns zero on success or 1 on failure, which currently will happen
652 * if the requested device does not appear to be present in the list.
653 */
654
eea72d5f 655int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
656{
657 int ret;
75c0b84d 658 struct mtd_notifier *not;
97894cda 659
48b19268 660 mutex_lock(&mtd_table_mutex);
1da177e4 661
e8e3edb9
MR
662 debugfs_remove_recursive(mtd->dbg.dfs_dir);
663
b520e412 664 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 665 ret = -ENODEV;
75c0b84d
ML
666 goto out_error;
667 }
668
669 /* No need to get a refcount on the module containing
670 the notifier, since we hold the mtd_table_mutex */
671 list_for_each_entry(not, &mtd_notifiers, list)
672 not->remove(mtd);
673
674 if (mtd->usecount) {
97894cda 675 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
676 mtd->index, mtd->name, mtd->usecount);
677 ret = -EBUSY;
678 } else {
c4dfa25a
AB
679 /* Try to remove the NVMEM provider */
680 if (mtd->nvmem)
681 nvmem_unregister(mtd->nvmem);
682
694bb7fc
KC
683 device_unregister(&mtd->dev);
684
b520e412 685 idr_remove(&mtd_idr, mtd->index);
215a02fd 686 of_node_put(mtd_get_of_node(mtd));
1da177e4
LT
687
688 module_put(THIS_MODULE);
689 ret = 0;
690 }
691
75c0b84d 692out_error:
48b19268 693 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
694 return ret;
695}
696
472b444e
BN
697/*
698 * Set a few defaults based on the parent devices, if not provided by the
699 * driver
700 */
701static void mtd_set_dev_defaults(struct mtd_info *mtd)
702{
703 if (mtd->dev.parent) {
704 if (!mtd->owner && mtd->dev.parent->driver)
705 mtd->owner = mtd->dev.parent->driver->owner;
706 if (!mtd->name)
707 mtd->name = dev_name(mtd->dev.parent);
708 } else {
709 pr_debug("mtd device won't show a device symlink in sysfs\n");
710 }
1186af45
RM
711
712 mtd->orig_flags = mtd->flags;
472b444e 713}
727dc612 714
1c4c215c
DES
715/**
716 * mtd_device_parse_register - parse partitions and register an MTD device.
717 *
718 * @mtd: the MTD device to register
719 * @types: the list of MTD partition probes to try, see
720 * 'parse_mtd_partitions()' for more information
c7975330 721 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
722 * @parts: fallback partition information to register, if parsing fails;
723 * only valid if %nr_parts > %0
724 * @nr_parts: the number of partitions in parts, if zero then the full
725 * MTD device is registered if no partition info is found
726 *
727 * This function aggregates MTD partitions parsing (done by
728 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
729 * basically follows the most common pattern found in many MTD drivers:
730 *
55a999a0
RM
731 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
732 * registered first.
733 * * Then It tries to probe partitions on MTD device @mtd using parsers
1c4c215c
DES
734 * specified in @types (if @types is %NULL, then the default list of parsers
735 * is used, see 'parse_mtd_partitions()' for more information). If none are
736 * found this functions tries to fallback to information specified in
737 * @parts/@nr_parts.
1c4c215c
DES
738 * * If no partitions were found this function just registers the MTD device
739 * @mtd and exits.
740 *
741 * Returns zero in case of success and a negative error code in case of failure.
742 */
26a47346 743int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 744 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
745 const struct mtd_partition *parts,
746 int nr_parts)
747{
727dc612 748 int ret;
1c4c215c 749
472b444e
BN
750 mtd_set_dev_defaults(mtd);
751
2c77c57d
RM
752 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
753 ret = add_mtd_device(mtd);
754 if (ret)
755 return ret;
756 }
757
0dbe4ea7 758 /* Prefer parsed partitions over driver-provided fallback */
5ac67ce3
RM
759 ret = parse_mtd_partitions(mtd, types, parser_data);
760 if (ret > 0)
761 ret = 0;
762 else if (nr_parts)
0dbe4ea7
RM
763 ret = add_mtd_partitions(mtd, parts, nr_parts);
764 else if (!device_is_registered(&mtd->dev))
765 ret = add_mtd_device(mtd);
766 else
767 ret = 0;
768
3e00ed0e
BN
769 if (ret)
770 goto out;
1c4c215c 771
e1dd8641
NC
772 /*
773 * FIXME: some drivers unfortunately call this function more than once.
774 * So we have to check if we've already assigned the reboot notifier.
775 *
776 * Generally, we can make multiple calls work for most cases, but it
777 * does cause problems with parse_mtd_partitions() above (e.g.,
778 * cmdlineparts will register partitions more than once).
779 */
f8479dd6
BN
780 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
781 "MTD already registered\n");
e1dd8641 782 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
783 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
784 register_reboot_notifier(&mtd->reboot_notifier);
785 }
786
3e00ed0e 787out:
2c77c57d
RM
788 if (ret && device_is_registered(&mtd->dev))
789 del_mtd_device(mtd);
790
727dc612 791 return ret;
1c4c215c
DES
792}
793EXPORT_SYMBOL_GPL(mtd_device_parse_register);
794
f5671ab3
JI
795/**
796 * mtd_device_unregister - unregister an existing MTD device.
797 *
798 * @master: the MTD device to unregister. This will unregister both the master
799 * and any partitions if registered.
800 */
801int mtd_device_unregister(struct mtd_info *master)
802{
803 int err;
804
3efe41be
BN
805 if (master->_reboot)
806 unregister_reboot_notifier(&master->reboot_notifier);
807
f5671ab3
JI
808 err = del_mtd_partitions(master);
809 if (err)
810 return err;
811
812 if (!device_is_registered(&master->dev))
813 return 0;
814
815 return del_mtd_device(master);
816}
817EXPORT_SYMBOL_GPL(mtd_device_unregister);
818
1da177e4
LT
819/**
820 * register_mtd_user - register a 'user' of MTD devices.
821 * @new: pointer to notifier info structure
822 *
823 * Registers a pair of callbacks function to be called upon addition
824 * or removal of MTD devices. Causes the 'add' callback to be immediately
825 * invoked for each MTD device currently present in the system.
826 */
1da177e4
LT
827void register_mtd_user (struct mtd_notifier *new)
828{
f1332ba2 829 struct mtd_info *mtd;
1da177e4 830
48b19268 831 mutex_lock(&mtd_table_mutex);
1da177e4
LT
832
833 list_add(&new->list, &mtd_notifiers);
834
d5ca5129 835 __module_get(THIS_MODULE);
97894cda 836
f1332ba2
BH
837 mtd_for_each_device(mtd)
838 new->add(mtd);
1da177e4 839
48b19268 840 mutex_unlock(&mtd_table_mutex);
1da177e4 841}
33c87b4a 842EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
843
844/**
49450795
AB
845 * unregister_mtd_user - unregister a 'user' of MTD devices.
846 * @old: pointer to notifier info structure
1da177e4
LT
847 *
848 * Removes a callback function pair from the list of 'users' to be
849 * notified upon addition or removal of MTD devices. Causes the
850 * 'remove' callback to be immediately invoked for each MTD device
851 * currently present in the system.
852 */
1da177e4
LT
853int unregister_mtd_user (struct mtd_notifier *old)
854{
f1332ba2 855 struct mtd_info *mtd;
1da177e4 856
48b19268 857 mutex_lock(&mtd_table_mutex);
1da177e4
LT
858
859 module_put(THIS_MODULE);
860
f1332ba2
BH
861 mtd_for_each_device(mtd)
862 old->remove(mtd);
97894cda 863
1da177e4 864 list_del(&old->list);
48b19268 865 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
866 return 0;
867}
33c87b4a 868EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
869
870/**
871 * get_mtd_device - obtain a validated handle for an MTD device
872 * @mtd: last known address of the required MTD device
873 * @num: internal device number of the required MTD device
874 *
875 * Given a number and NULL address, return the num'th entry in the device
876 * table, if any. Given an address and num == -1, search the device table
877 * for a device with that address and return if it's still present. Given
9c74034f
AB
878 * both, return the num'th driver only if its address matches. Return
879 * error code if not.
1da177e4 880 */
1da177e4
LT
881struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
882{
f1332ba2
BH
883 struct mtd_info *ret = NULL, *other;
884 int err = -ENODEV;
1da177e4 885
48b19268 886 mutex_lock(&mtd_table_mutex);
1da177e4
LT
887
888 if (num == -1) {
f1332ba2
BH
889 mtd_for_each_device(other) {
890 if (other == mtd) {
891 ret = mtd;
892 break;
893 }
894 }
b520e412
BH
895 } else if (num >= 0) {
896 ret = idr_find(&mtd_idr, num);
1da177e4
LT
897 if (mtd && mtd != ret)
898 ret = NULL;
899 }
900
3bd45657
ML
901 if (!ret) {
902 ret = ERR_PTR(err);
903 goto out;
9fe912ce 904 }
1da177e4 905
3bd45657
ML
906 err = __get_mtd_device(ret);
907 if (err)
908 ret = ERR_PTR(err);
909out:
9c74034f
AB
910 mutex_unlock(&mtd_table_mutex);
911 return ret;
3bd45657 912}
33c87b4a 913EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 914
3bd45657
ML
915
916int __get_mtd_device(struct mtd_info *mtd)
917{
918 int err;
919
920 if (!try_module_get(mtd->owner))
921 return -ENODEV;
922
3c3c10bb
AB
923 if (mtd->_get_device) {
924 err = mtd->_get_device(mtd);
3bd45657
ML
925
926 if (err) {
927 module_put(mtd->owner);
928 return err;
929 }
930 }
931 mtd->usecount++;
932 return 0;
1da177e4 933}
33c87b4a 934EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 935
7799308f
AB
936/**
937 * get_mtd_device_nm - obtain a validated handle for an MTD device by
938 * device name
939 * @name: MTD device name to open
940 *
941 * This function returns MTD device description structure in case of
942 * success and an error code in case of failure.
943 */
7799308f
AB
944struct mtd_info *get_mtd_device_nm(const char *name)
945{
f1332ba2
BH
946 int err = -ENODEV;
947 struct mtd_info *mtd = NULL, *other;
7799308f
AB
948
949 mutex_lock(&mtd_table_mutex);
950
f1332ba2
BH
951 mtd_for_each_device(other) {
952 if (!strcmp(name, other->name)) {
953 mtd = other;
7799308f
AB
954 break;
955 }
956 }
957
9fe912ce 958 if (!mtd)
7799308f
AB
959 goto out_unlock;
960
52534f2d
WG
961 err = __get_mtd_device(mtd);
962 if (err)
7799308f
AB
963 goto out_unlock;
964
9fe912ce
AB
965 mutex_unlock(&mtd_table_mutex);
966 return mtd;
7799308f
AB
967
968out_unlock:
969 mutex_unlock(&mtd_table_mutex);
9fe912ce 970 return ERR_PTR(err);
7799308f 971}
33c87b4a 972EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 973
1da177e4
LT
974void put_mtd_device(struct mtd_info *mtd)
975{
48b19268 976 mutex_lock(&mtd_table_mutex);
3bd45657
ML
977 __put_mtd_device(mtd);
978 mutex_unlock(&mtd_table_mutex);
979
980}
33c87b4a 981EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
982
983void __put_mtd_device(struct mtd_info *mtd)
984{
985 --mtd->usecount;
986 BUG_ON(mtd->usecount < 0);
987
3c3c10bb
AB
988 if (mtd->_put_device)
989 mtd->_put_device(mtd);
1da177e4
LT
990
991 module_put(mtd->owner);
992}
33c87b4a 993EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 994
8273a0c9 995/*
884cfd90
BB
996 * Erase is an synchronous operation. Device drivers are epected to return a
997 * negative error code if the operation failed and update instr->fail_addr
998 * to point the portion that was not properly erased.
8273a0c9
AB
999 */
1000int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1001{
c585da9f
BB
1002 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1003
e6e620f0
BB
1004 if (!mtd->erasesize || !mtd->_erase)
1005 return -ENOTSUPP;
1006
0c2b4e21 1007 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 1008 return -EINVAL;
664addc2
AB
1009 if (!(mtd->flags & MTD_WRITEABLE))
1010 return -EROFS;
e6e620f0 1011
e7bfb3fd 1012 if (!instr->len)
bcb1d238 1013 return 0;
e7bfb3fd 1014
fea728c0 1015 ledtrig_mtd_activity();
8273a0c9
AB
1016 return mtd->_erase(mtd, instr);
1017}
1018EXPORT_SYMBOL_GPL(mtd_erase);
1019
1020/*
1021 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1022 */
1023int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1024 void **virt, resource_size_t *phys)
1025{
1026 *retlen = 0;
0dd5235f
AB
1027 *virt = NULL;
1028 if (phys)
1029 *phys = 0;
8273a0c9
AB
1030 if (!mtd->_point)
1031 return -EOPNOTSUPP;
0c2b4e21 1032 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1033 return -EINVAL;
bcb1d238
AB
1034 if (!len)
1035 return 0;
8273a0c9
AB
1036 return mtd->_point(mtd, from, len, retlen, virt, phys);
1037}
1038EXPORT_SYMBOL_GPL(mtd_point);
1039
1040/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1041int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1042{
b9504247 1043 if (!mtd->_unpoint)
8273a0c9 1044 return -EOPNOTSUPP;
0c2b4e21 1045 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1046 return -EINVAL;
bcb1d238
AB
1047 if (!len)
1048 return 0;
8273a0c9
AB
1049 return mtd->_unpoint(mtd, from, len);
1050}
1051EXPORT_SYMBOL_GPL(mtd_unpoint);
1052
1053/*
1054 * Allow NOMMU mmap() to directly map the device (if not NULL)
1055 * - return the address to which the offset maps
1056 * - return -ENOSYS to indicate refusal to do the mapping
1057 */
1058unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1059 unsigned long offset, unsigned long flags)
1060{
9eaa903c
NP
1061 size_t retlen;
1062 void *virt;
1063 int ret;
1064
1065 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1066 if (ret)
1067 return ret;
1068 if (retlen != len) {
1069 mtd_unpoint(mtd, offset, retlen);
1070 return -ENOSYS;
1071 }
1072 return (unsigned long)virt;
8273a0c9
AB
1073}
1074EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1075
1076int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1077 u_char *buf)
1078{
2431c4f5
BB
1079 struct mtd_oob_ops ops = {
1080 .len = len,
1081 .datbuf = buf,
1082 };
1083 int ret;
edbc4540 1084
2431c4f5
BB
1085 ret = mtd_read_oob(mtd, from, &ops);
1086 *retlen = ops.retlen;
24ff1292 1087
2431c4f5 1088 return ret;
8273a0c9
AB
1089}
1090EXPORT_SYMBOL_GPL(mtd_read);
1091
1092int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1093 const u_char *buf)
1094{
2431c4f5
BB
1095 struct mtd_oob_ops ops = {
1096 .len = len,
1097 .datbuf = (u8 *)buf,
1098 };
1099 int ret;
24ff1292 1100
2431c4f5
BB
1101 ret = mtd_write_oob(mtd, to, &ops);
1102 *retlen = ops.retlen;
24ff1292 1103
2431c4f5 1104 return ret;
8273a0c9
AB
1105}
1106EXPORT_SYMBOL_GPL(mtd_write);
1107
1108/*
1109 * In blackbox flight recorder like scenarios we want to make successful writes
1110 * in interrupt context. panic_write() is only intended to be called when its
1111 * known the kernel is about to panic and we need the write to succeed. Since
1112 * the kernel is not going to be running for much longer, this function can
1113 * break locks and delay to ensure the write succeeds (but not sleep).
1114 */
1115int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1116 const u_char *buf)
1117{
1118 *retlen = 0;
1119 if (!mtd->_panic_write)
1120 return -EOPNOTSUPP;
0c2b4e21 1121 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1122 return -EINVAL;
664addc2
AB
1123 if (!(mtd->flags & MTD_WRITEABLE))
1124 return -EROFS;
bcb1d238
AB
1125 if (!len)
1126 return 0;
9f897bfd
KD
1127 if (!mtd->oops_panic_write)
1128 mtd->oops_panic_write = true;
1129
8273a0c9
AB
1130 return mtd->_panic_write(mtd, to, len, retlen, buf);
1131}
1132EXPORT_SYMBOL_GPL(mtd_panic_write);
1133
5cdd929d
BB
1134static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1135 struct mtd_oob_ops *ops)
1136{
1137 /*
1138 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1139 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1140 * this case.
1141 */
1142 if (!ops->datbuf)
1143 ops->len = 0;
1144
1145 if (!ops->oobbuf)
1146 ops->ooblen = 0;
1147
d82c3682 1148 if (offs < 0 || offs + ops->len > mtd->size)
5cdd929d
BB
1149 return -EINVAL;
1150
1151 if (ops->ooblen) {
89f706db 1152 size_t maxooblen;
5cdd929d
BB
1153
1154 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1155 return -EINVAL;
1156
89f706db
MR
1157 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1158 mtd_div_by_ws(offs, mtd)) *
5cdd929d
BB
1159 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1160 if (ops->ooblen > maxooblen)
1161 return -EINVAL;
1162 }
1163
1164 return 0;
1165}
1166
d2d48480
BN
1167int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1168{
e47f6858 1169 int ret_code;
d2d48480 1170 ops->retlen = ops->oobretlen = 0;
fea728c0 1171
5cdd929d
BB
1172 ret_code = mtd_check_oob_ops(mtd, from, ops);
1173 if (ret_code)
1174 return ret_code;
1175
fea728c0 1176 ledtrig_mtd_activity();
89fd23ef
MR
1177
1178 /* Check the validity of a potential fallback on mtd->_read */
1179 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1180 return -EOPNOTSUPP;
1181
1182 if (mtd->_read_oob)
1183 ret_code = mtd->_read_oob(mtd, from, ops);
1184 else
1185 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1186 ops->datbuf);
1187
e47f6858
BN
1188 /*
1189 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1190 * similar to mtd->_read(), returning a non-negative integer
1191 * representing max bitflips. In other cases, mtd->_read_oob() may
1192 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1193 */
e47f6858
BN
1194 if (unlikely(ret_code < 0))
1195 return ret_code;
1196 if (mtd->ecc_strength == 0)
1197 return 0; /* device lacks ecc */
1198 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
1199}
1200EXPORT_SYMBOL_GPL(mtd_read_oob);
1201
0c034fe3
EG
1202int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1203 struct mtd_oob_ops *ops)
1204{
5cdd929d
BB
1205 int ret;
1206
0c034fe3 1207 ops->retlen = ops->oobretlen = 0;
89fd23ef 1208
0c034fe3
EG
1209 if (!(mtd->flags & MTD_WRITEABLE))
1210 return -EROFS;
5cdd929d
BB
1211
1212 ret = mtd_check_oob_ops(mtd, to, ops);
1213 if (ret)
1214 return ret;
1215
fea728c0 1216 ledtrig_mtd_activity();
89fd23ef
MR
1217
1218 /* Check the validity of a potential fallback on mtd->_write */
1219 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1220 return -EOPNOTSUPP;
1221
1222 if (mtd->_write_oob)
1223 return mtd->_write_oob(mtd, to, ops);
1224 else
1225 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1226 ops->datbuf);
0c034fe3
EG
1227}
1228EXPORT_SYMBOL_GPL(mtd_write_oob);
1229
75eb2cec
BB
1230/**
1231 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1232 * @mtd: MTD device structure
1233 * @section: ECC section. Depending on the layout you may have all the ECC
1234 * bytes stored in a single contiguous section, or one section
1235 * per ECC chunk (and sometime several sections for a single ECC
1236 * ECC chunk)
1237 * @oobecc: OOB region struct filled with the appropriate ECC position
1238 * information
1239 *
7da0fffb 1240 * This function returns ECC section information in the OOB area. If you want
75eb2cec
BB
1241 * to get all the ECC bytes information, then you should call
1242 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1243 *
1244 * Returns zero on success, a negative error code otherwise.
1245 */
1246int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1247 struct mtd_oob_region *oobecc)
1248{
75eb2cec
BB
1249 memset(oobecc, 0, sizeof(*oobecc));
1250
1251 if (!mtd || section < 0)
1252 return -EINVAL;
1253
adbbc3bc 1254 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
75eb2cec
BB
1255 return -ENOTSUPP;
1256
adbbc3bc 1257 return mtd->ooblayout->ecc(mtd, section, oobecc);
75eb2cec
BB
1258}
1259EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1260
1261/**
1262 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1263 * section
1264 * @mtd: MTD device structure
1265 * @section: Free section you are interested in. Depending on the layout
1266 * you may have all the free bytes stored in a single contiguous
1267 * section, or one section per ECC chunk plus an extra section
1268 * for the remaining bytes (or other funky layout).
1269 * @oobfree: OOB region struct filled with the appropriate free position
1270 * information
1271 *
7da0fffb 1272 * This function returns free bytes position in the OOB area. If you want
75eb2cec
BB
1273 * to get all the free bytes information, then you should call
1274 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1275 *
1276 * Returns zero on success, a negative error code otherwise.
1277 */
1278int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1279 struct mtd_oob_region *oobfree)
1280{
1281 memset(oobfree, 0, sizeof(*oobfree));
1282
1283 if (!mtd || section < 0)
1284 return -EINVAL;
1285
adbbc3bc 1286 if (!mtd->ooblayout || !mtd->ooblayout->free)
75eb2cec
BB
1287 return -ENOTSUPP;
1288
adbbc3bc 1289 return mtd->ooblayout->free(mtd, section, oobfree);
75eb2cec
BB
1290}
1291EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1292
1293/**
1294 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1295 * @mtd: mtd info structure
1296 * @byte: the byte we are searching for
1297 * @sectionp: pointer where the section id will be stored
1298 * @oobregion: used to retrieve the ECC position
1299 * @iter: iterator function. Should be either mtd_ooblayout_free or
1300 * mtd_ooblayout_ecc depending on the region type you're searching for
1301 *
7da0fffb 1302 * This function returns the section id and oobregion information of a
75eb2cec
BB
1303 * specific byte. For example, say you want to know where the 4th ECC byte is
1304 * stored, you'll use:
1305 *
1306 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1307 *
1308 * Returns zero on success, a negative error code otherwise.
1309 */
1310static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1311 int *sectionp, struct mtd_oob_region *oobregion,
1312 int (*iter)(struct mtd_info *,
1313 int section,
1314 struct mtd_oob_region *oobregion))
1315{
1316 int pos = 0, ret, section = 0;
1317
1318 memset(oobregion, 0, sizeof(*oobregion));
1319
1320 while (1) {
1321 ret = iter(mtd, section, oobregion);
1322 if (ret)
1323 return ret;
1324
1325 if (pos + oobregion->length > byte)
1326 break;
1327
1328 pos += oobregion->length;
1329 section++;
1330 }
1331
1332 /*
1333 * Adjust region info to make it start at the beginning at the
1334 * 'start' ECC byte.
1335 */
1336 oobregion->offset += byte - pos;
1337 oobregion->length -= byte - pos;
1338 *sectionp = section;
1339
1340 return 0;
1341}
1342
1343/**
1344 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1345 * ECC byte
1346 * @mtd: mtd info structure
1347 * @eccbyte: the byte we are searching for
1348 * @sectionp: pointer where the section id will be stored
1349 * @oobregion: OOB region information
1350 *
1351 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1352 * byte.
1353 *
1354 * Returns zero on success, a negative error code otherwise.
1355 */
1356int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1357 int *section,
1358 struct mtd_oob_region *oobregion)
1359{
1360 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1361 mtd_ooblayout_ecc);
1362}
1363EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1364
1365/**
1366 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1367 * @mtd: mtd info structure
1368 * @buf: destination buffer to store OOB bytes
1369 * @oobbuf: OOB buffer
1370 * @start: first byte to retrieve
1371 * @nbytes: number of bytes to retrieve
1372 * @iter: section iterator
1373 *
1374 * Extract bytes attached to a specific category (ECC or free)
1375 * from the OOB buffer and copy them into buf.
1376 *
1377 * Returns zero on success, a negative error code otherwise.
1378 */
1379static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1380 const u8 *oobbuf, int start, int nbytes,
1381 int (*iter)(struct mtd_info *,
1382 int section,
1383 struct mtd_oob_region *oobregion))
1384{
8e8fd4d1
MY
1385 struct mtd_oob_region oobregion;
1386 int section, ret;
75eb2cec
BB
1387
1388 ret = mtd_ooblayout_find_region(mtd, start, &section,
1389 &oobregion, iter);
1390
1391 while (!ret) {
1392 int cnt;
1393
7c295ef9 1394 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1395 memcpy(buf, oobbuf + oobregion.offset, cnt);
1396 buf += cnt;
1397 nbytes -= cnt;
1398
1399 if (!nbytes)
1400 break;
1401
1402 ret = iter(mtd, ++section, &oobregion);
1403 }
1404
1405 return ret;
1406}
1407
1408/**
1409 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1410 * @mtd: mtd info structure
1411 * @buf: source buffer to get OOB bytes from
1412 * @oobbuf: OOB buffer
1413 * @start: first OOB byte to set
1414 * @nbytes: number of OOB bytes to set
1415 * @iter: section iterator
1416 *
1417 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1418 * is selected by passing the appropriate iterator.
1419 *
1420 * Returns zero on success, a negative error code otherwise.
1421 */
1422static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1423 u8 *oobbuf, int start, int nbytes,
1424 int (*iter)(struct mtd_info *,
1425 int section,
1426 struct mtd_oob_region *oobregion))
1427{
8e8fd4d1
MY
1428 struct mtd_oob_region oobregion;
1429 int section, ret;
75eb2cec
BB
1430
1431 ret = mtd_ooblayout_find_region(mtd, start, &section,
1432 &oobregion, iter);
1433
1434 while (!ret) {
1435 int cnt;
1436
7c295ef9 1437 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1438 memcpy(oobbuf + oobregion.offset, buf, cnt);
1439 buf += cnt;
1440 nbytes -= cnt;
1441
1442 if (!nbytes)
1443 break;
1444
1445 ret = iter(mtd, ++section, &oobregion);
1446 }
1447
1448 return ret;
1449}
1450
1451/**
1452 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1453 * @mtd: mtd info structure
1454 * @iter: category iterator
1455 *
1456 * Count the number of bytes in a given category.
1457 *
1458 * Returns a positive value on success, a negative error code otherwise.
1459 */
1460static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1461 int (*iter)(struct mtd_info *,
1462 int section,
1463 struct mtd_oob_region *oobregion))
1464{
4d6aecfb 1465 struct mtd_oob_region oobregion;
75eb2cec
BB
1466 int section = 0, ret, nbytes = 0;
1467
1468 while (1) {
1469 ret = iter(mtd, section++, &oobregion);
1470 if (ret) {
1471 if (ret == -ERANGE)
1472 ret = nbytes;
1473 break;
1474 }
1475
1476 nbytes += oobregion.length;
1477 }
1478
1479 return ret;
1480}
1481
1482/**
1483 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1484 * @mtd: mtd info structure
1485 * @eccbuf: destination buffer to store ECC bytes
1486 * @oobbuf: OOB buffer
1487 * @start: first ECC byte to retrieve
1488 * @nbytes: number of ECC bytes to retrieve
1489 *
1490 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1491 *
1492 * Returns zero on success, a negative error code otherwise.
1493 */
1494int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1495 const u8 *oobbuf, int start, int nbytes)
1496{
1497 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1498 mtd_ooblayout_ecc);
1499}
1500EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1501
1502/**
1503 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1504 * @mtd: mtd info structure
1505 * @eccbuf: source buffer to get ECC bytes from
1506 * @oobbuf: OOB buffer
1507 * @start: first ECC byte to set
1508 * @nbytes: number of ECC bytes to set
1509 *
1510 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1511 *
1512 * Returns zero on success, a negative error code otherwise.
1513 */
1514int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1515 u8 *oobbuf, int start, int nbytes)
1516{
1517 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1518 mtd_ooblayout_ecc);
1519}
1520EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1521
1522/**
1523 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1524 * @mtd: mtd info structure
1525 * @databuf: destination buffer to store ECC bytes
1526 * @oobbuf: OOB buffer
1527 * @start: first ECC byte to retrieve
1528 * @nbytes: number of ECC bytes to retrieve
1529 *
1530 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1531 *
1532 * Returns zero on success, a negative error code otherwise.
1533 */
1534int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1535 const u8 *oobbuf, int start, int nbytes)
1536{
1537 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1538 mtd_ooblayout_free);
1539}
1540EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1541
1542/**
c77a9312 1543 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
75eb2cec 1544 * @mtd: mtd info structure
c77a9312 1545 * @databuf: source buffer to get data bytes from
75eb2cec
BB
1546 * @oobbuf: OOB buffer
1547 * @start: first ECC byte to set
1548 * @nbytes: number of ECC bytes to set
1549 *
1550 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1551 *
1552 * Returns zero on success, a negative error code otherwise.
1553 */
1554int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1555 u8 *oobbuf, int start, int nbytes)
1556{
1557 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1558 mtd_ooblayout_free);
1559}
1560EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1561
1562/**
1563 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1564 * @mtd: mtd info structure
1565 *
1566 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1567 *
1568 * Returns zero on success, a negative error code otherwise.
1569 */
1570int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1571{
1572 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1573}
1574EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1575
1576/**
c77a9312 1577 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
75eb2cec
BB
1578 * @mtd: mtd info structure
1579 *
1580 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1581 *
1582 * Returns zero on success, a negative error code otherwise.
1583 */
1584int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1585{
1586 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1587}
1588EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1589
de3cac93
AB
1590/*
1591 * Method to access the protection register area, present in some flash
1592 * devices. The user data is one time programmable but the factory data is read
1593 * only.
1594 */
4b78fc42
CR
1595int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1596 struct otp_info *buf)
de3cac93
AB
1597{
1598 if (!mtd->_get_fact_prot_info)
1599 return -EOPNOTSUPP;
1600 if (!len)
1601 return 0;
4b78fc42 1602 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1603}
1604EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1605
1606int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1607 size_t *retlen, u_char *buf)
1608{
1609 *retlen = 0;
1610 if (!mtd->_read_fact_prot_reg)
1611 return -EOPNOTSUPP;
1612 if (!len)
1613 return 0;
1614 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1615}
1616EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1617
4b78fc42
CR
1618int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1619 struct otp_info *buf)
de3cac93
AB
1620{
1621 if (!mtd->_get_user_prot_info)
1622 return -EOPNOTSUPP;
1623 if (!len)
1624 return 0;
4b78fc42 1625 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1626}
1627EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1628
1629int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1630 size_t *retlen, u_char *buf)
1631{
1632 *retlen = 0;
1633 if (!mtd->_read_user_prot_reg)
1634 return -EOPNOTSUPP;
1635 if (!len)
1636 return 0;
1637 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1638}
1639EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1640
1641int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1642 size_t *retlen, u_char *buf)
1643{
9a78bc83
CR
1644 int ret;
1645
de3cac93
AB
1646 *retlen = 0;
1647 if (!mtd->_write_user_prot_reg)
1648 return -EOPNOTSUPP;
1649 if (!len)
1650 return 0;
9a78bc83
CR
1651 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1652 if (ret)
1653 return ret;
1654
1655 /*
1656 * If no data could be written at all, we are out of memory and
1657 * must return -ENOSPC.
1658 */
1659 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
1660}
1661EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1662
1663int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1664{
1665 if (!mtd->_lock_user_prot_reg)
1666 return -EOPNOTSUPP;
1667 if (!len)
1668 return 0;
1669 return mtd->_lock_user_prot_reg(mtd, from, len);
1670}
1671EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1672
8273a0c9
AB
1673/* Chip-supported device locking */
1674int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1675{
1676 if (!mtd->_lock)
1677 return -EOPNOTSUPP;
0c2b4e21 1678 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1679 return -EINVAL;
bcb1d238
AB
1680 if (!len)
1681 return 0;
8273a0c9
AB
1682 return mtd->_lock(mtd, ofs, len);
1683}
1684EXPORT_SYMBOL_GPL(mtd_lock);
1685
1686int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1687{
1688 if (!mtd->_unlock)
1689 return -EOPNOTSUPP;
0c2b4e21 1690 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1691 return -EINVAL;
bcb1d238
AB
1692 if (!len)
1693 return 0;
8273a0c9
AB
1694 return mtd->_unlock(mtd, ofs, len);
1695}
1696EXPORT_SYMBOL_GPL(mtd_unlock);
1697
1698int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1699{
1700 if (!mtd->_is_locked)
1701 return -EOPNOTSUPP;
0c2b4e21 1702 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1703 return -EINVAL;
bcb1d238
AB
1704 if (!len)
1705 return 0;
8273a0c9
AB
1706 return mtd->_is_locked(mtd, ofs, len);
1707}
1708EXPORT_SYMBOL_GPL(mtd_is_locked);
1709
8471bb73 1710int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 1711{
0c2b4e21 1712 if (ofs < 0 || ofs >= mtd->size)
8471bb73
EG
1713 return -EINVAL;
1714 if (!mtd->_block_isreserved)
8273a0c9 1715 return 0;
8471bb73
EG
1716 return mtd->_block_isreserved(mtd, ofs);
1717}
1718EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1719
1720int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1721{
0c2b4e21 1722 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1723 return -EINVAL;
8471bb73
EG
1724 if (!mtd->_block_isbad)
1725 return 0;
8273a0c9
AB
1726 return mtd->_block_isbad(mtd, ofs);
1727}
1728EXPORT_SYMBOL_GPL(mtd_block_isbad);
1729
1730int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1731{
1732 if (!mtd->_block_markbad)
1733 return -EOPNOTSUPP;
0c2b4e21 1734 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1735 return -EINVAL;
664addc2
AB
1736 if (!(mtd->flags & MTD_WRITEABLE))
1737 return -EROFS;
8273a0c9
AB
1738 return mtd->_block_markbad(mtd, ofs);
1739}
1740EXPORT_SYMBOL_GPL(mtd_block_markbad);
1741
52b02031
AB
1742/*
1743 * default_mtd_writev - the default writev method
1744 * @mtd: mtd device description object pointer
1745 * @vecs: the vectors to write
1746 * @count: count of vectors in @vecs
1747 * @to: the MTD device offset to write to
1748 * @retlen: on exit contains the count of bytes written to the MTD device.
1749 *
1750 * This function returns zero in case of success and a negative error code in
1751 * case of failure.
1da177e4 1752 */
1dbebd32
AB
1753static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1754 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1755{
1756 unsigned long i;
1757 size_t totlen = 0, thislen;
1758 int ret = 0;
1759
52b02031
AB
1760 for (i = 0; i < count; i++) {
1761 if (!vecs[i].iov_len)
1762 continue;
1763 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1764 vecs[i].iov_base);
1765 totlen += thislen;
1766 if (ret || thislen != vecs[i].iov_len)
1767 break;
1768 to += vecs[i].iov_len;
1da177e4 1769 }
52b02031 1770 *retlen = totlen;
1da177e4
LT
1771 return ret;
1772}
1dbebd32
AB
1773
1774/*
1775 * mtd_writev - the vector-based MTD write method
1776 * @mtd: mtd device description object pointer
1777 * @vecs: the vectors to write
1778 * @count: count of vectors in @vecs
1779 * @to: the MTD device offset to write to
1780 * @retlen: on exit contains the count of bytes written to the MTD device.
1781 *
1782 * This function returns zero in case of success and a negative error code in
1783 * case of failure.
1784 */
1785int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1786 unsigned long count, loff_t to, size_t *retlen)
1787{
1788 *retlen = 0;
664addc2
AB
1789 if (!(mtd->flags & MTD_WRITEABLE))
1790 return -EROFS;
3c3c10bb 1791 if (!mtd->_writev)
1dbebd32 1792 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1793 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1794}
1795EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1796
33b53716
GE
1797/**
1798 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1799 * @mtd: mtd device description object pointer
1800 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1801 * to the actual allocation size on success.
1802 *
1803 * This routine attempts to allocate a contiguous kernel buffer up to
1804 * the specified size, backing off the size of the request exponentially
1805 * until the request succeeds or until the allocation size falls below
1806 * the system page size. This attempts to make sure it does not adversely
1807 * impact system performance, so when allocating more than one page, we
caf49191
LT
1808 * ask the memory allocator to avoid re-trying, swapping, writing back
1809 * or performing I/O.
33b53716
GE
1810 *
1811 * Note, this function also makes sure that the allocated buffer is aligned to
1812 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1813 *
1814 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1815 * to handle smaller (i.e. degraded) buffer allocations under low- or
1816 * fragmented-memory situations where such reduced allocations, from a
1817 * requested ideal, are allowed.
1818 *
1819 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1820 */
1821void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1822{
d0164adc 1823 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
1824 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1825 void *kbuf;
1826
1827 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1828
1829 while (*size > min_alloc) {
1830 kbuf = kmalloc(*size, flags);
1831 if (kbuf)
1832 return kbuf;
1833
1834 *size >>= 1;
1835 *size = ALIGN(*size, mtd->writesize);
1836 }
1837
1838 /*
1839 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1840 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1841 */
1842 return kmalloc(*size, GFP_KERNEL);
1843}
33b53716 1844EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1845
2d2dce0e
PM
1846#ifdef CONFIG_PROC_FS
1847
1da177e4
LT
1848/*====================================================================*/
1849/* Support for /proc/mtd */
1850
447d9bd8 1851static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1852{
f1332ba2 1853 struct mtd_info *mtd;
1da177e4 1854
447d9bd8 1855 seq_puts(m, "dev: size erasesize name\n");
48b19268 1856 mutex_lock(&mtd_table_mutex);
f1332ba2 1857 mtd_for_each_device(mtd) {
447d9bd8
AD
1858 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1859 mtd->index, (unsigned long long)mtd->size,
1860 mtd->erasesize, mtd->name);
d5ca5129 1861 }
48b19268 1862 mutex_unlock(&mtd_table_mutex);
d5ca5129 1863 return 0;
1da177e4 1864}
45b09076
KC
1865#endif /* CONFIG_PROC_FS */
1866
1da177e4
LT
1867/*====================================================================*/
1868/* Init code */
1869
445caaa2 1870static struct backing_dev_info * __init mtd_bdi_init(char *name)
0661b1ac 1871{
445caaa2 1872 struct backing_dev_info *bdi;
0661b1ac
JA
1873 int ret;
1874
fa06052d 1875 bdi = bdi_alloc(GFP_KERNEL);
445caaa2
SL
1876 if (!bdi)
1877 return ERR_PTR(-ENOMEM);
0661b1ac 1878
fa06052d
JK
1879 bdi->name = name;
1880 /*
1881 * We put '-0' suffix to the name to get the same name format as we
1882 * used to get. Since this is called only once, we get a unique name.
1883 */
7c4cc300 1884 ret = bdi_register(bdi, "%.28s-0", name);
0661b1ac 1885 if (ret)
fa06052d 1886 bdi_put(bdi);
0661b1ac 1887
445caaa2 1888 return ret ? ERR_PTR(ret) : bdi;
0661b1ac
JA
1889}
1890
93e56214
AB
1891static struct proc_dir_entry *proc_mtd;
1892
1da177e4
LT
1893static int __init init_mtd(void)
1894{
15bce40c 1895 int ret;
0661b1ac 1896
15bce40c 1897 ret = class_register(&mtd_class);
0661b1ac
JA
1898 if (ret)
1899 goto err_reg;
1900
445caaa2
SL
1901 mtd_bdi = mtd_bdi_init("mtd");
1902 if (IS_ERR(mtd_bdi)) {
1903 ret = PTR_ERR(mtd_bdi);
b4caecd4 1904 goto err_bdi;
445caaa2 1905 }
694bb7fc 1906
3f3942ac 1907 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
93e56214 1908
660685d9
AB
1909 ret = init_mtdchar();
1910 if (ret)
1911 goto out_procfs;
1912
e8e3edb9
MR
1913 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1914
1da177e4 1915 return 0;
0661b1ac 1916
660685d9
AB
1917out_procfs:
1918 if (proc_mtd)
1919 remove_proc_entry("mtd", NULL);
fa06052d 1920 bdi_put(mtd_bdi);
b4caecd4 1921err_bdi:
0661b1ac
JA
1922 class_unregister(&mtd_class);
1923err_reg:
1924 pr_err("Error registering mtd class or bdi: %d\n", ret);
1925 return ret;
1da177e4
LT
1926}
1927
1928static void __exit cleanup_mtd(void)
1929{
e8e3edb9 1930 debugfs_remove_recursive(dfs_dir_mtd);
660685d9 1931 cleanup_mtdchar();
d5ca5129 1932 if (proc_mtd)
93e56214 1933 remove_proc_entry("mtd", NULL);
15bce40c 1934 class_unregister(&mtd_class);
fa06052d 1935 bdi_put(mtd_bdi);
35667b99 1936 idr_destroy(&mtd_idr);
1da177e4
LT
1937}
1938
1939module_init(init_mtd);
1940module_exit(cleanup_mtd);
1941
1da177e4
LT
1942MODULE_LICENSE("GPL");
1943MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1944MODULE_DESCRIPTION("Core MTD registration and access routines");