mmc: dw_mmc: fix more const pointer warnings
[linux-block.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
35eb6db1 26#include <linux/suspend.h>
1b676f70
PF
27#include <linux/fault-inject.h>
28#include <linux/random.h>
950d56ac 29#include <linux/slab.h>
1da177e4
LT
30
31#include <linux/mmc/card.h>
32#include <linux/mmc/host.h>
da7fbe58
PO
33#include <linux/mmc/mmc.h>
34#include <linux/mmc/sd.h>
1da177e4 35
aaac1b47 36#include "core.h"
ffce2e7e
PO
37#include "bus.h"
38#include "host.h"
e29a7d73 39#include "sdio_bus.h"
da7fbe58
PO
40
41#include "mmc_ops.h"
42#include "sd_ops.h"
5c4e6f13 43#include "sdio_ops.h"
1da177e4 44
950d56ac
JC
45/*
46 * Background operations can take a long time, depending on the housekeeping
47 * operations the card has to perform.
48 */
49#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
50
ffce2e7e 51static struct workqueue_struct *workqueue;
fa550189 52static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 53
af517150
DB
54/*
55 * Enabling software CRCs on the data blocks can be a significant (30%)
56 * performance cost, and for other reasons may not always be desired.
57 * So we allow it it to be disabled.
58 */
90ab5ee9 59bool use_spi_crc = 1;
af517150
DB
60module_param(use_spi_crc, bool, 0);
61
bd68e083
BH
62/*
63 * We normally treat cards as removed during suspend if they are not
64 * known to be on a non-removable bus, to avoid the risk of writing
65 * back data to a different card after resume. Allow this to be
66 * overridden if necessary.
67 */
68#ifdef CONFIG_MMC_UNSAFE_RESUME
90ab5ee9 69bool mmc_assume_removable;
bd68e083 70#else
90ab5ee9 71bool mmc_assume_removable = 1;
bd68e083 72#endif
71d7d3d1 73EXPORT_SYMBOL(mmc_assume_removable);
bd68e083
BH
74module_param_named(removable, mmc_assume_removable, bool, 0644);
75MODULE_PARM_DESC(
76 removable,
77 "MMC/SD cards are removable and may be removed during suspend");
78
ffce2e7e
PO
79/*
80 * Internal function. Schedule delayed work in the MMC work queue.
81 */
82static int mmc_schedule_delayed_work(struct delayed_work *work,
83 unsigned long delay)
84{
85 return queue_delayed_work(workqueue, work, delay);
86}
87
88/*
89 * Internal function. Flush all scheduled work from the MMC work queue.
90 */
91static void mmc_flush_scheduled_work(void)
92{
93 flush_workqueue(workqueue);
94}
95
1b676f70
PF
96#ifdef CONFIG_FAIL_MMC_REQUEST
97
98/*
99 * Internal function. Inject random data errors.
100 * If mmc_data is NULL no errors are injected.
101 */
102static void mmc_should_fail_request(struct mmc_host *host,
103 struct mmc_request *mrq)
104{
105 struct mmc_command *cmd = mrq->cmd;
106 struct mmc_data *data = mrq->data;
107 static const int data_errors[] = {
108 -ETIMEDOUT,
109 -EILSEQ,
110 -EIO,
111 };
112
113 if (!data)
114 return;
115
116 if (cmd->error || data->error ||
117 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
118 return;
119
120 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
121 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
122}
123
124#else /* CONFIG_FAIL_MMC_REQUEST */
125
126static inline void mmc_should_fail_request(struct mmc_host *host,
127 struct mmc_request *mrq)
128{
129}
130
131#endif /* CONFIG_FAIL_MMC_REQUEST */
132
1da177e4 133/**
fe10c6ab
RK
134 * mmc_request_done - finish processing an MMC request
135 * @host: MMC host which completed request
136 * @mrq: MMC request which request
1da177e4
LT
137 *
138 * MMC drivers should call this function when they have completed
fe10c6ab 139 * their processing of a request.
1da177e4
LT
140 */
141void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
142{
143 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
144 int err = cmd->error;
145
af517150
DB
146 if (err && cmd->retries && mmc_host_is_spi(host)) {
147 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
148 cmd->retries = 0;
149 }
150
d3049504 151 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
152 /*
153 * Request starter must handle retries - see
154 * mmc_wait_for_req_done().
155 */
156 if (mrq->done)
157 mrq->done(mrq);
e4d21708 158 } else {
1b676f70
PF
159 mmc_should_fail_request(host, mrq);
160
af8350c7
PO
161 led_trigger_event(host->led, LED_OFF);
162
e4d21708
PO
163 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
164 mmc_hostname(host), cmd->opcode, err,
165 cmd->resp[0], cmd->resp[1],
166 cmd->resp[2], cmd->resp[3]);
167
168 if (mrq->data) {
169 pr_debug("%s: %d bytes transferred: %d\n",
170 mmc_hostname(host),
171 mrq->data->bytes_xfered, mrq->data->error);
172 }
173
174 if (mrq->stop) {
175 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
176 mmc_hostname(host), mrq->stop->opcode,
177 mrq->stop->error,
178 mrq->stop->resp[0], mrq->stop->resp[1],
179 mrq->stop->resp[2], mrq->stop->resp[3]);
180 }
181
182 if (mrq->done)
183 mrq->done(mrq);
04566831 184
08c14071 185 mmc_host_clk_release(host);
1da177e4
LT
186 }
187}
188
189EXPORT_SYMBOL(mmc_request_done);
190
39361851 191static void
1da177e4
LT
192mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
193{
976d9276
PO
194#ifdef CONFIG_MMC_DEBUG
195 unsigned int i, sz;
a84756c5 196 struct scatterlist *sg;
976d9276
PO
197#endif
198
7b2fd4f2
JC
199 if (mrq->sbc) {
200 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
201 mmc_hostname(host), mrq->sbc->opcode,
202 mrq->sbc->arg, mrq->sbc->flags);
203 }
204
920e70c5
RK
205 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host), mrq->cmd->opcode,
207 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 208
e4d21708
PO
209 if (mrq->data) {
210 pr_debug("%s: blksz %d blocks %d flags %08x "
211 "tsac %d ms nsac %d\n",
212 mmc_hostname(host), mrq->data->blksz,
213 mrq->data->blocks, mrq->data->flags,
ce252edd 214 mrq->data->timeout_ns / 1000000,
e4d21708
PO
215 mrq->data->timeout_clks);
216 }
217
218 if (mrq->stop) {
219 pr_debug("%s: CMD%u arg %08x flags %08x\n",
220 mmc_hostname(host), mrq->stop->opcode,
221 mrq->stop->arg, mrq->stop->flags);
222 }
223
f22ee4ed 224 WARN_ON(!host->claimed);
1da177e4
LT
225
226 mrq->cmd->error = 0;
227 mrq->cmd->mrq = mrq;
228 if (mrq->data) {
fe4a3c7a 229 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
230 BUG_ON(mrq->data->blocks > host->max_blk_count);
231 BUG_ON(mrq->data->blocks * mrq->data->blksz >
232 host->max_req_size);
fe4a3c7a 233
976d9276
PO
234#ifdef CONFIG_MMC_DEBUG
235 sz = 0;
a84756c5
PO
236 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
237 sz += sg->length;
976d9276
PO
238 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
239#endif
240
1da177e4
LT
241 mrq->cmd->data = mrq->data;
242 mrq->data->error = 0;
243 mrq->data->mrq = mrq;
244 if (mrq->stop) {
245 mrq->data->stop = mrq->stop;
246 mrq->stop->error = 0;
247 mrq->stop->mrq = mrq;
248 }
249 }
08c14071 250 mmc_host_clk_hold(host);
66c036e0 251 led_trigger_event(host->led, LED_FULL);
1da177e4
LT
252 host->ops->request(host, mrq);
253}
254
950d56ac
JC
255/**
256 * mmc_start_bkops - start BKOPS for supported cards
257 * @card: MMC card to start BKOPS
258 * @form_exception: A flag to indicate if this function was
259 * called due to an exception raised by the card
260 *
261 * Start background operations whenever requested.
262 * When the urgent BKOPS bit is set in a R1 command response
263 * then background operations should be started immediately.
264*/
265void mmc_start_bkops(struct mmc_card *card, bool from_exception)
266{
267 int err;
268 int timeout;
269 bool use_busy_signal;
270
271 BUG_ON(!card);
272
273 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
274 return;
275
276 err = mmc_read_bkops_status(card);
277 if (err) {
278 pr_err("%s: Failed to read bkops status: %d\n",
279 mmc_hostname(card->host), err);
280 return;
281 }
282
283 if (!card->ext_csd.raw_bkops_status)
284 return;
285
286 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
287 from_exception)
288 return;
289
290 mmc_claim_host(card->host);
291 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
292 timeout = MMC_BKOPS_MAX_TIMEOUT;
293 use_busy_signal = true;
294 } else {
295 timeout = 0;
296 use_busy_signal = false;
297 }
298
299 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
300 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
301 if (err) {
302 pr_warn("%s: Error %d starting bkops\n",
303 mmc_hostname(card->host), err);
304 goto out;
305 }
306
307 /*
308 * For urgent bkops status (LEVEL_2 and more)
309 * bkops executed synchronously, otherwise
310 * the operation is in progress
311 */
312 if (!use_busy_signal)
313 mmc_card_set_doing_bkops(card);
314out:
315 mmc_release_host(card->host);
316}
317EXPORT_SYMBOL(mmc_start_bkops);
318
1da177e4
LT
319static void mmc_wait_done(struct mmc_request *mrq)
320{
aa8b683a
PF
321 complete(&mrq->completion);
322}
323
956d9fd5 324static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a
PF
325{
326 init_completion(&mrq->completion);
327 mrq->done = mmc_wait_done;
d3049504
AH
328 if (mmc_card_removed(host->card)) {
329 mrq->cmd->error = -ENOMEDIUM;
330 complete(&mrq->completion);
956d9fd5 331 return -ENOMEDIUM;
d3049504 332 }
aa8b683a 333 mmc_start_request(host, mrq);
956d9fd5 334 return 0;
aa8b683a
PF
335}
336
337static void mmc_wait_for_req_done(struct mmc_host *host,
338 struct mmc_request *mrq)
339{
08a7e1df
AH
340 struct mmc_command *cmd;
341
342 while (1) {
343 wait_for_completion(&mrq->completion);
344
345 cmd = mrq->cmd;
d3049504
AH
346 if (!cmd->error || !cmd->retries ||
347 mmc_card_removed(host->card))
08a7e1df
AH
348 break;
349
350 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
351 mmc_hostname(host), cmd->opcode, cmd->error);
352 cmd->retries--;
353 cmd->error = 0;
354 host->ops->request(host, mrq);
355 }
aa8b683a
PF
356}
357
358/**
359 * mmc_pre_req - Prepare for a new request
360 * @host: MMC host to prepare command
361 * @mrq: MMC request to prepare for
362 * @is_first_req: true if there is no previous started request
363 * that may run in parellel to this call, otherwise false
364 *
365 * mmc_pre_req() is called in prior to mmc_start_req() to let
366 * host prepare for the new request. Preparation of a request may be
367 * performed while another request is running on the host.
368 */
369static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
370 bool is_first_req)
371{
2c4967f7
SRT
372 if (host->ops->pre_req) {
373 mmc_host_clk_hold(host);
aa8b683a 374 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
375 mmc_host_clk_release(host);
376 }
aa8b683a
PF
377}
378
379/**
380 * mmc_post_req - Post process a completed request
381 * @host: MMC host to post process command
382 * @mrq: MMC request to post process for
383 * @err: Error, if non zero, clean up any resources made in pre_req
384 *
385 * Let the host post process a completed request. Post processing of
386 * a request may be performed while another reuqest is running.
387 */
388static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
389 int err)
390{
2c4967f7
SRT
391 if (host->ops->post_req) {
392 mmc_host_clk_hold(host);
aa8b683a 393 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
394 mmc_host_clk_release(host);
395 }
1da177e4
LT
396}
397
aa8b683a
PF
398/**
399 * mmc_start_req - start a non-blocking request
400 * @host: MMC host to start command
401 * @areq: async request to start
402 * @error: out parameter returns 0 for success, otherwise non zero
403 *
404 * Start a new MMC custom command request for a host.
405 * If there is on ongoing async request wait for completion
406 * of that request and start the new one and return.
407 * Does not wait for the new request to complete.
408 *
409 * Returns the completed request, NULL in case of none completed.
410 * Wait for the an ongoing request (previoulsy started) to complete and
411 * return the completed request. If there is no ongoing request, NULL
412 * is returned without waiting. NULL is not an error condition.
413 */
414struct mmc_async_req *mmc_start_req(struct mmc_host *host,
415 struct mmc_async_req *areq, int *error)
416{
417 int err = 0;
956d9fd5 418 int start_err = 0;
aa8b683a
PF
419 struct mmc_async_req *data = host->areq;
420
421 /* Prepare a new request */
422 if (areq)
423 mmc_pre_req(host, areq->mrq, !host->areq);
424
425 if (host->areq) {
426 mmc_wait_for_req_done(host, host->areq->mrq);
427 err = host->areq->err_check(host->card, host->areq);
950d56ac
JC
428 /*
429 * Check BKOPS urgency for each R1 response
430 */
431 if (host->card && mmc_card_mmc(host->card) &&
432 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
433 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
434 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
435 mmc_start_bkops(host->card, true);
aa8b683a
PF
436 }
437
956d9fd5
UH
438 if (!err && areq)
439 start_err = __mmc_start_req(host, areq->mrq);
aa8b683a
PF
440
441 if (host->areq)
442 mmc_post_req(host, host->areq->mrq, 0);
443
956d9fd5
UH
444 /* Cancel a prepared request if it was not started. */
445 if ((err || start_err) && areq)
446 mmc_post_req(host, areq->mrq, -EINVAL);
447
448 if (err)
449 host->areq = NULL;
450 else
451 host->areq = areq;
452
aa8b683a
PF
453 if (error)
454 *error = err;
455 return data;
456}
457EXPORT_SYMBOL(mmc_start_req);
458
67a61c48
PO
459/**
460 * mmc_wait_for_req - start a request and wait for completion
461 * @host: MMC host to start command
462 * @mrq: MMC request to start
463 *
464 * Start a new MMC custom command request for a host, and wait
465 * for the command to complete. Does not attempt to parse the
466 * response.
467 */
468void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 469{
aa8b683a
PF
470 __mmc_start_req(host, mrq);
471 mmc_wait_for_req_done(host, mrq);
1da177e4 472}
1da177e4
LT
473EXPORT_SYMBOL(mmc_wait_for_req);
474
eb0d8f13
JC
475/**
476 * mmc_interrupt_hpi - Issue for High priority Interrupt
477 * @card: the MMC card associated with the HPI transfer
478 *
479 * Issued High Priority Interrupt, and check for card status
950d56ac 480 * until out-of prg-state.
eb0d8f13
JC
481 */
482int mmc_interrupt_hpi(struct mmc_card *card)
483{
484 int err;
485 u32 status;
6af9e96e 486 unsigned long prg_wait;
eb0d8f13
JC
487
488 BUG_ON(!card);
489
490 if (!card->ext_csd.hpi_en) {
491 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
492 return 1;
493 }
494
495 mmc_claim_host(card->host);
496 err = mmc_send_status(card, &status);
497 if (err) {
498 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
499 goto out;
500 }
501
6af9e96e
V
502 switch (R1_CURRENT_STATE(status)) {
503 case R1_STATE_IDLE:
504 case R1_STATE_READY:
505 case R1_STATE_STBY:
211d4fe5 506 case R1_STATE_TRAN:
6af9e96e 507 /*
211d4fe5 508 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
509 * can issue the next intended command immediately
510 */
511 goto out;
512 case R1_STATE_PRG:
513 break;
514 default:
515 /* In all other states, it's illegal to issue HPI */
516 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
517 mmc_hostname(card->host), R1_CURRENT_STATE(status));
518 err = -EINVAL;
519 goto out;
520 }
521
522 err = mmc_send_hpi_cmd(card, &status);
523 if (err)
524 goto out;
525
526 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
527 do {
528 err = mmc_send_status(card, &status);
529
530 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
531 break;
532 if (time_after(jiffies, prg_wait))
533 err = -ETIMEDOUT;
534 } while (!err);
eb0d8f13
JC
535
536out:
537 mmc_release_host(card->host);
538 return err;
539}
540EXPORT_SYMBOL(mmc_interrupt_hpi);
541
1da177e4
LT
542/**
543 * mmc_wait_for_cmd - start a command and wait for completion
544 * @host: MMC host to start command
545 * @cmd: MMC command to start
546 * @retries: maximum number of retries
547 *
548 * Start a new MMC command for a host, and wait for the command
549 * to complete. Return any error that occurred while the command
550 * was executing. Do not attempt to parse the response.
551 */
552int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
553{
ad5fd972 554 struct mmc_request mrq = {NULL};
1da177e4 555
d84075c8 556 WARN_ON(!host->claimed);
1da177e4 557
1da177e4
LT
558 memset(cmd->resp, 0, sizeof(cmd->resp));
559 cmd->retries = retries;
560
561 mrq.cmd = cmd;
562 cmd->data = NULL;
563
564 mmc_wait_for_req(host, &mrq);
565
566 return cmd->error;
567}
568
569EXPORT_SYMBOL(mmc_wait_for_cmd);
570
950d56ac
JC
571/**
572 * mmc_stop_bkops - stop ongoing BKOPS
573 * @card: MMC card to check BKOPS
574 *
575 * Send HPI command to stop ongoing background operations to
576 * allow rapid servicing of foreground operations, e.g. read/
577 * writes. Wait until the card comes out of the programming state
578 * to avoid errors in servicing read/write requests.
579 */
580int mmc_stop_bkops(struct mmc_card *card)
581{
582 int err = 0;
583
584 BUG_ON(!card);
585 err = mmc_interrupt_hpi(card);
586
587 /*
588 * If err is EINVAL, we can't issue an HPI.
589 * It should complete the BKOPS.
590 */
591 if (!err || (err == -EINVAL)) {
592 mmc_card_clr_doing_bkops(card);
593 err = 0;
594 }
595
596 return err;
597}
598EXPORT_SYMBOL(mmc_stop_bkops);
599
600int mmc_read_bkops_status(struct mmc_card *card)
601{
602 int err;
603 u8 *ext_csd;
604
605 /*
606 * In future work, we should consider storing the entire ext_csd.
607 */
608 ext_csd = kmalloc(512, GFP_KERNEL);
609 if (!ext_csd) {
610 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
611 mmc_hostname(card->host));
612 return -ENOMEM;
613 }
614
615 mmc_claim_host(card->host);
616 err = mmc_send_ext_csd(card, ext_csd);
617 mmc_release_host(card->host);
618 if (err)
619 goto out;
620
621 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
622 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
623out:
624 kfree(ext_csd);
625 return err;
626}
627EXPORT_SYMBOL(mmc_read_bkops_status);
628
d773d725
RK
629/**
630 * mmc_set_data_timeout - set the timeout for a data command
631 * @data: data phase for command
632 * @card: the MMC card associated with the data transfer
67a61c48
PO
633 *
634 * Computes the data timeout parameters according to the
635 * correct algorithm given the card type.
d773d725 636 */
b146d26a 637void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
638{
639 unsigned int mult;
640
e6f918bf
PO
641 /*
642 * SDIO cards only define an upper 1 s limit on access.
643 */
644 if (mmc_card_sdio(card)) {
645 data->timeout_ns = 1000000000;
646 data->timeout_clks = 0;
647 return;
648 }
649
d773d725
RK
650 /*
651 * SD cards use a 100 multiplier rather than 10
652 */
653 mult = mmc_card_sd(card) ? 100 : 10;
654
655 /*
656 * Scale up the multiplier (and therefore the timeout) by
657 * the r2w factor for writes.
658 */
b146d26a 659 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
660 mult <<= card->csd.r2w_factor;
661
662 data->timeout_ns = card->csd.tacc_ns * mult;
663 data->timeout_clks = card->csd.tacc_clks * mult;
664
665 /*
666 * SD cards also have an upper limit on the timeout.
667 */
668 if (mmc_card_sd(card)) {
669 unsigned int timeout_us, limit_us;
670
671 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
672 if (mmc_host_clk_rate(card->host))
673 timeout_us += data->timeout_clks * 1000 /
674 (mmc_host_clk_rate(card->host) / 1000);
d773d725 675
b146d26a 676 if (data->flags & MMC_DATA_WRITE)
493890e7 677 /*
3bdc9ba8
PW
678 * The MMC spec "It is strongly recommended
679 * for hosts to implement more than 500ms
680 * timeout value even if the card indicates
681 * the 250ms maximum busy length." Even the
682 * previous value of 300ms is known to be
683 * insufficient for some cards.
493890e7 684 */
3bdc9ba8 685 limit_us = 3000000;
d773d725
RK
686 else
687 limit_us = 100000;
688
fba68bd2
PL
689 /*
690 * SDHC cards always use these fixed values.
691 */
692 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
693 data->timeout_ns = limit_us * 1000;
694 data->timeout_clks = 0;
695 }
696 }
6de5fc9c
SNX
697
698 /*
699 * Some cards require longer data read timeout than indicated in CSD.
700 * Address this by setting the read timeout to a "reasonably high"
701 * value. For the cards tested, 300ms has proven enough. If necessary,
702 * this value can be increased if other problematic cards require this.
703 */
704 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
705 data->timeout_ns = 300000000;
706 data->timeout_clks = 0;
707 }
708
c0c88871
WM
709 /*
710 * Some cards need very high timeouts if driven in SPI mode.
711 * The worst observed timeout was 900ms after writing a
712 * continuous stream of data until the internal logic
713 * overflowed.
714 */
715 if (mmc_host_is_spi(card->host)) {
716 if (data->flags & MMC_DATA_WRITE) {
717 if (data->timeout_ns < 1000000000)
718 data->timeout_ns = 1000000000; /* 1s */
719 } else {
720 if (data->timeout_ns < 100000000)
721 data->timeout_ns = 100000000; /* 100ms */
722 }
723 }
d773d725
RK
724}
725EXPORT_SYMBOL(mmc_set_data_timeout);
726
ad3868b2
PO
727/**
728 * mmc_align_data_size - pads a transfer size to a more optimal value
729 * @card: the MMC card associated with the data transfer
730 * @sz: original transfer size
731 *
732 * Pads the original data size with a number of extra bytes in
733 * order to avoid controller bugs and/or performance hits
734 * (e.g. some controllers revert to PIO for certain sizes).
735 *
736 * Returns the improved size, which might be unmodified.
737 *
738 * Note that this function is only relevant when issuing a
739 * single scatter gather entry.
740 */
741unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
742{
743 /*
744 * FIXME: We don't have a system for the controller to tell
745 * the core about its problems yet, so for now we just 32-bit
746 * align the size.
747 */
748 sz = ((sz + 3) / 4) * 4;
749
750 return sz;
751}
752EXPORT_SYMBOL(mmc_align_data_size);
753
1da177e4 754/**
2342f332 755 * __mmc_claim_host - exclusively claim a host
1da177e4 756 * @host: mmc host to claim
2342f332 757 * @abort: whether or not the operation should be aborted
1da177e4 758 *
2342f332
NP
759 * Claim a host for a set of operations. If @abort is non null and
760 * dereference a non-zero value then this will return prematurely with
761 * that non-zero value without acquiring the lock. Returns zero
762 * with the lock held otherwise.
1da177e4 763 */
2342f332 764int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
765{
766 DECLARE_WAITQUEUE(wait, current);
767 unsigned long flags;
2342f332 768 int stop;
1da177e4 769
cf795bfb
PO
770 might_sleep();
771
1da177e4
LT
772 add_wait_queue(&host->wq, &wait);
773 spin_lock_irqsave(&host->lock, flags);
774 while (1) {
775 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 776 stop = abort ? atomic_read(abort) : 0;
319a3f14 777 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
778 break;
779 spin_unlock_irqrestore(&host->lock, flags);
780 schedule();
781 spin_lock_irqsave(&host->lock, flags);
782 }
783 set_current_state(TASK_RUNNING);
319a3f14 784 if (!stop) {
2342f332 785 host->claimed = 1;
319a3f14
AH
786 host->claimer = current;
787 host->claim_cnt += 1;
788 } else
2342f332 789 wake_up(&host->wq);
1da177e4
LT
790 spin_unlock_irqrestore(&host->lock, flags);
791 remove_wait_queue(&host->wq, &wait);
907d2e7c
AH
792 if (host->ops->enable && !stop && host->claim_cnt == 1)
793 host->ops->enable(host);
2342f332 794 return stop;
1da177e4
LT
795}
796
2342f332 797EXPORT_SYMBOL(__mmc_claim_host);
1da177e4 798
319a3f14
AH
799/**
800 * mmc_try_claim_host - try exclusively to claim a host
801 * @host: mmc host to claim
802 *
803 * Returns %1 if the host is claimed, %0 otherwise.
804 */
805int mmc_try_claim_host(struct mmc_host *host)
8ea926b2
AH
806{
807 int claimed_host = 0;
808 unsigned long flags;
809
810 spin_lock_irqsave(&host->lock, flags);
319a3f14 811 if (!host->claimed || host->claimer == current) {
8ea926b2 812 host->claimed = 1;
319a3f14
AH
813 host->claimer = current;
814 host->claim_cnt += 1;
8ea926b2
AH
815 claimed_host = 1;
816 }
817 spin_unlock_irqrestore(&host->lock, flags);
907d2e7c
AH
818 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
819 host->ops->enable(host);
8ea926b2
AH
820 return claimed_host;
821}
319a3f14 822EXPORT_SYMBOL(mmc_try_claim_host);
8ea926b2 823
ab1efd27 824/**
907d2e7c 825 * mmc_release_host - release a host
ab1efd27
UH
826 * @host: mmc host to release
827 *
907d2e7c
AH
828 * Release a MMC host, allowing others to claim the host
829 * for their operations.
ab1efd27 830 */
907d2e7c 831void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
832{
833 unsigned long flags;
834
907d2e7c
AH
835 WARN_ON(!host->claimed);
836
837 if (host->ops->disable && host->claim_cnt == 1)
838 host->ops->disable(host);
839
8ea926b2 840 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
841 if (--host->claim_cnt) {
842 /* Release for nested claim */
843 spin_unlock_irqrestore(&host->lock, flags);
844 } else {
845 host->claimed = 0;
846 host->claimer = NULL;
847 spin_unlock_irqrestore(&host->lock, flags);
848 wake_up(&host->wq);
849 }
8ea926b2 850}
1da177e4
LT
851EXPORT_SYMBOL(mmc_release_host);
852
7ea239d9
PO
853/*
854 * Internal function that does the actual ios call to the host driver,
855 * optionally printing some debug output.
856 */
920e70c5
RK
857static inline void mmc_set_ios(struct mmc_host *host)
858{
859 struct mmc_ios *ios = &host->ios;
860
cd9277c0
PO
861 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
862 "width %u timing %u\n",
920e70c5
RK
863 mmc_hostname(host), ios->clock, ios->bus_mode,
864 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 865 ios->bus_width, ios->timing);
fba68bd2 866
04566831
LW
867 if (ios->clock > 0)
868 mmc_set_ungated(host);
920e70c5
RK
869 host->ops->set_ios(host, ios);
870}
871
7ea239d9
PO
872/*
873 * Control chip select pin on a host.
874 */
da7fbe58 875void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 876{
778e277c 877 mmc_host_clk_hold(host);
da7fbe58
PO
878 host->ios.chip_select = mode;
879 mmc_set_ios(host);
778e277c 880 mmc_host_clk_release(host);
1da177e4
LT
881}
882
7ea239d9
PO
883/*
884 * Sets the host clock to the highest possible frequency that
885 * is below "hz".
886 */
778e277c 887static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9
PO
888{
889 WARN_ON(hz < host->f_min);
890
891 if (hz > host->f_max)
892 hz = host->f_max;
893
894 host->ios.clock = hz;
895 mmc_set_ios(host);
896}
897
778e277c
MW
898void mmc_set_clock(struct mmc_host *host, unsigned int hz)
899{
900 mmc_host_clk_hold(host);
901 __mmc_set_clock(host, hz);
902 mmc_host_clk_release(host);
903}
904
04566831
LW
905#ifdef CONFIG_MMC_CLKGATE
906/*
907 * This gates the clock by setting it to 0 Hz.
908 */
909void mmc_gate_clock(struct mmc_host *host)
910{
911 unsigned long flags;
912
913 spin_lock_irqsave(&host->clk_lock, flags);
914 host->clk_old = host->ios.clock;
915 host->ios.clock = 0;
916 host->clk_gated = true;
917 spin_unlock_irqrestore(&host->clk_lock, flags);
918 mmc_set_ios(host);
919}
920
921/*
922 * This restores the clock from gating by using the cached
923 * clock value.
924 */
925void mmc_ungate_clock(struct mmc_host *host)
926{
927 /*
928 * We should previously have gated the clock, so the clock shall
929 * be 0 here! The clock may however be 0 during initialization,
930 * when some request operations are performed before setting
931 * the frequency. When ungate is requested in that situation
932 * we just ignore the call.
933 */
934 if (host->clk_old) {
935 BUG_ON(host->ios.clock);
936 /* This call will also set host->clk_gated to false */
778e277c 937 __mmc_set_clock(host, host->clk_old);
04566831
LW
938 }
939}
940
941void mmc_set_ungated(struct mmc_host *host)
942{
943 unsigned long flags;
944
945 /*
946 * We've been given a new frequency while the clock is gated,
947 * so make sure we regard this as ungating it.
948 */
949 spin_lock_irqsave(&host->clk_lock, flags);
950 host->clk_gated = false;
951 spin_unlock_irqrestore(&host->clk_lock, flags);
952}
953
954#else
955void mmc_set_ungated(struct mmc_host *host)
956{
957}
958#endif
959
7ea239d9
PO
960/*
961 * Change the bus mode (open drain/push-pull) of a host.
962 */
963void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
964{
778e277c 965 mmc_host_clk_hold(host);
7ea239d9
PO
966 host->ios.bus_mode = mode;
967 mmc_set_ios(host);
778e277c 968 mmc_host_clk_release(host);
7ea239d9
PO
969}
970
0f8d8ea6
AH
971/*
972 * Change data bus width of a host.
973 */
974void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
975{
778e277c 976 mmc_host_clk_hold(host);
4c4cb171
PR
977 host->ios.bus_width = width;
978 mmc_set_ios(host);
778e277c 979 mmc_host_clk_release(host);
0f8d8ea6
AH
980}
981
86e8286a
AV
982/**
983 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
984 * @vdd: voltage (mV)
985 * @low_bits: prefer low bits in boundary cases
986 *
987 * This function returns the OCR bit number according to the provided @vdd
988 * value. If conversion is not possible a negative errno value returned.
989 *
990 * Depending on the @low_bits flag the function prefers low or high OCR bits
991 * on boundary voltages. For example,
992 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
993 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
994 *
995 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
996 */
997static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
998{
999 const int max_bit = ilog2(MMC_VDD_35_36);
1000 int bit;
1001
1002 if (vdd < 1650 || vdd > 3600)
1003 return -EINVAL;
1004
1005 if (vdd >= 1650 && vdd <= 1950)
1006 return ilog2(MMC_VDD_165_195);
1007
1008 if (low_bits)
1009 vdd -= 1;
1010
1011 /* Base 2000 mV, step 100 mV, bit's base 8. */
1012 bit = (vdd - 2000) / 100 + 8;
1013 if (bit > max_bit)
1014 return max_bit;
1015 return bit;
1016}
1017
1018/**
1019 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1020 * @vdd_min: minimum voltage value (mV)
1021 * @vdd_max: maximum voltage value (mV)
1022 *
1023 * This function returns the OCR mask bits according to the provided @vdd_min
1024 * and @vdd_max values. If conversion is not possible the function returns 0.
1025 *
1026 * Notes wrt boundary cases:
1027 * This function sets the OCR bits for all boundary voltages, for example
1028 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1029 * MMC_VDD_34_35 mask.
1030 */
1031u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1032{
1033 u32 mask = 0;
1034
1035 if (vdd_max < vdd_min)
1036 return 0;
1037
1038 /* Prefer high bits for the boundary vdd_max values. */
1039 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1040 if (vdd_max < 0)
1041 return 0;
1042
1043 /* Prefer low bits for the boundary vdd_min values. */
1044 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1045 if (vdd_min < 0)
1046 return 0;
1047
1048 /* Fill the mask, from max bit to min bit. */
1049 while (vdd_max >= vdd_min)
1050 mask |= 1 << vdd_max--;
1051
1052 return mask;
1053}
1054EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1055
5c13941a
DB
1056#ifdef CONFIG_REGULATOR
1057
1058/**
1059 * mmc_regulator_get_ocrmask - return mask of supported voltages
1060 * @supply: regulator to use
1061 *
1062 * This returns either a negative errno, or a mask of voltages that
1063 * can be provided to MMC/SD/SDIO devices using the specified voltage
1064 * regulator. This would normally be called before registering the
1065 * MMC host adapter.
1066 */
1067int mmc_regulator_get_ocrmask(struct regulator *supply)
1068{
1069 int result = 0;
1070 int count;
1071 int i;
1072
1073 count = regulator_count_voltages(supply);
1074 if (count < 0)
1075 return count;
1076
1077 for (i = 0; i < count; i++) {
1078 int vdd_uV;
1079 int vdd_mV;
1080
1081 vdd_uV = regulator_list_voltage(supply, i);
1082 if (vdd_uV <= 0)
1083 continue;
1084
1085 vdd_mV = vdd_uV / 1000;
1086 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1087 }
1088
1089 return result;
1090}
45a6b32e 1091EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1092
1093/**
1094 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1095 * @mmc: the host to regulate
5c13941a 1096 * @supply: regulator to use
99fc5131 1097 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1098 *
1099 * Returns zero on success, else negative errno.
1100 *
1101 * MMC host drivers may use this to enable or disable a regulator using
1102 * a particular supply voltage. This would normally be called from the
1103 * set_ios() method.
1104 */
99fc5131
LW
1105int mmc_regulator_set_ocr(struct mmc_host *mmc,
1106 struct regulator *supply,
1107 unsigned short vdd_bit)
5c13941a
DB
1108{
1109 int result = 0;
1110 int min_uV, max_uV;
5c13941a
DB
1111
1112 if (vdd_bit) {
1113 int tmp;
1114 int voltage;
1115
9cde5b7a
CB
1116 /*
1117 * REVISIT mmc_vddrange_to_ocrmask() may have set some
5c13941a
DB
1118 * bits this regulator doesn't quite support ... don't
1119 * be too picky, most cards and regulators are OK with
1120 * a 0.1V range goof (it's a small error percentage).
1121 */
1122 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1123 if (tmp == 0) {
1124 min_uV = 1650 * 1000;
1125 max_uV = 1950 * 1000;
1126 } else {
1127 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1128 max_uV = min_uV + 100 * 1000;
1129 }
1130
9cde5b7a
CB
1131 /*
1132 * If we're using a fixed/static regulator, don't call
1133 * regulator_set_voltage; it would fail.
5c13941a
DB
1134 */
1135 voltage = regulator_get_voltage(supply);
6e8201f5 1136
9cde5b7a 1137 if (regulator_count_voltages(supply) == 1)
6e8201f5
JC
1138 min_uV = max_uV = voltage;
1139
5c13941a
DB
1140 if (voltage < 0)
1141 result = voltage;
1142 else if (voltage < min_uV || voltage > max_uV)
1143 result = regulator_set_voltage(supply, min_uV, max_uV);
1144 else
1145 result = 0;
1146
99fc5131 1147 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1148 result = regulator_enable(supply);
99fc5131
LW
1149 if (!result)
1150 mmc->regulator_enabled = true;
1151 }
1152 } else if (mmc->regulator_enabled) {
5c13941a 1153 result = regulator_disable(supply);
99fc5131
LW
1154 if (result == 0)
1155 mmc->regulator_enabled = false;
5c13941a
DB
1156 }
1157
99fc5131
LW
1158 if (result)
1159 dev_err(mmc_dev(mmc),
1160 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1161 return result;
1162}
45a6b32e 1163EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1164
e137788d
GL
1165int mmc_regulator_get_supply(struct mmc_host *mmc)
1166{
1167 struct device *dev = mmc_dev(mmc);
1168 struct regulator *supply;
1169 int ret;
1170
1171 supply = devm_regulator_get(dev, "vmmc");
1172 mmc->supply.vmmc = supply;
1173 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1174
1175 if (IS_ERR(supply))
1176 return PTR_ERR(supply);
1177
1178 ret = mmc_regulator_get_ocrmask(supply);
1179 if (ret > 0)
1180 mmc->ocr_avail = ret;
1181 else
1182 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1183
1184 return 0;
1185}
1186EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1187
99fc5131 1188#endif /* CONFIG_REGULATOR */
5c13941a 1189
1da177e4
LT
1190/*
1191 * Mask off any voltages we don't support and select
1192 * the lowest voltage
1193 */
7ea239d9 1194u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1195{
1196 int bit;
1197
1198 ocr &= host->ocr_avail;
1199
1200 bit = ffs(ocr);
1201 if (bit) {
1202 bit -= 1;
1203
63ef731a 1204 ocr &= 3 << bit;
1da177e4 1205
778e277c 1206 mmc_host_clk_hold(host);
1da177e4 1207 host->ios.vdd = bit;
920e70c5 1208 mmc_set_ios(host);
778e277c 1209 mmc_host_clk_release(host);
1da177e4 1210 } else {
f6e10b86
DB
1211 pr_warning("%s: host doesn't support card's voltages\n",
1212 mmc_hostname(host));
1da177e4
LT
1213 ocr = 0;
1214 }
1215
1216 return ocr;
1217}
1218
261bbd46 1219int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
f2119df6
AN
1220{
1221 struct mmc_command cmd = {0};
1222 int err = 0;
1223
1224 BUG_ON(!host);
1225
1226 /*
1227 * Send CMD11 only if the request is to switch the card to
1228 * 1.8V signalling.
1229 */
261bbd46 1230 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
f2119df6
AN
1231 cmd.opcode = SD_SWITCH_VOLTAGE;
1232 cmd.arg = 0;
1233 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1234
1235 err = mmc_wait_for_cmd(host, &cmd, 0);
1236 if (err)
1237 return err;
1238
1239 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1240 return -EIO;
1241 }
1242
1243 host->ios.signal_voltage = signal_voltage;
1244
2c4967f7
SRT
1245 if (host->ops->start_signal_voltage_switch) {
1246 mmc_host_clk_hold(host);
f2119df6 1247 err = host->ops->start_signal_voltage_switch(host, &host->ios);
2c4967f7
SRT
1248 mmc_host_clk_release(host);
1249 }
f2119df6
AN
1250
1251 return err;
1252}
1253
b57c43ad 1254/*
7ea239d9 1255 * Select timing parameters for host.
b57c43ad 1256 */
7ea239d9 1257void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1258{
778e277c 1259 mmc_host_clk_hold(host);
7ea239d9
PO
1260 host->ios.timing = timing;
1261 mmc_set_ios(host);
778e277c 1262 mmc_host_clk_release(host);
b57c43ad
PO
1263}
1264
d6d50a15
AN
1265/*
1266 * Select appropriate driver type for host.
1267 */
1268void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1269{
778e277c 1270 mmc_host_clk_hold(host);
d6d50a15
AN
1271 host->ios.drv_type = drv_type;
1272 mmc_set_ios(host);
778e277c 1273 mmc_host_clk_release(host);
d6d50a15
AN
1274}
1275
1da177e4 1276/*
45f8245b
RK
1277 * Apply power to the MMC stack. This is a two-stage process.
1278 * First, we enable power to the card without the clock running.
1279 * We then wait a bit for the power to stabilise. Finally,
1280 * enable the bus drivers and clock to the card.
1281 *
1282 * We must _NOT_ enable the clock prior to power stablising.
1283 *
1284 * If a host does all the power sequencing itself, ignore the
1285 * initial MMC_POWER_UP stage.
1da177e4
LT
1286 */
1287static void mmc_power_up(struct mmc_host *host)
1288{
500f3564
BR
1289 int bit;
1290
fa550189
UH
1291 if (host->ios.power_mode == MMC_POWER_ON)
1292 return;
1293
778e277c
MW
1294 mmc_host_clk_hold(host);
1295
500f3564
BR
1296 /* If ocr is set, we use it */
1297 if (host->ocr)
1298 bit = ffs(host->ocr) - 1;
1299 else
1300 bit = fls(host->ocr_avail) - 1;
1da177e4
LT
1301
1302 host->ios.vdd = bit;
44669034 1303 if (mmc_host_is_spi(host))
af517150 1304 host->ios.chip_select = MMC_CS_HIGH;
44669034 1305 else
af517150 1306 host->ios.chip_select = MMC_CS_DONTCARE;
44669034 1307 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1da177e4 1308 host->ios.power_mode = MMC_POWER_UP;
f218278a 1309 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1310 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1311 mmc_set_ios(host);
1da177e4 1312
108ecc4c
AL
1313 /* Set signal voltage to 3.3V */
1314 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false);
1315
f9996aee
PO
1316 /*
1317 * This delay should be sufficient to allow the power supply
1318 * to reach the minimum voltage.
1319 */
79bccc5a 1320 mmc_delay(10);
1da177e4 1321
88ae8b86 1322 host->ios.clock = host->f_init;
8dfd0374 1323
1da177e4 1324 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1325 mmc_set_ios(host);
1da177e4 1326
f9996aee
PO
1327 /*
1328 * This delay must be at least 74 clock sizes, or 1 ms, or the
1329 * time required to reach a stable voltage.
1330 */
79bccc5a 1331 mmc_delay(10);
778e277c
MW
1332
1333 mmc_host_clk_release(host);
1da177e4
LT
1334}
1335
7f7e4129 1336void mmc_power_off(struct mmc_host *host)
1da177e4 1337{
fa550189
UH
1338 if (host->ios.power_mode == MMC_POWER_OFF)
1339 return;
1340
778e277c
MW
1341 mmc_host_clk_hold(host);
1342
1da177e4
LT
1343 host->ios.clock = 0;
1344 host->ios.vdd = 0;
b33d46c3 1345
bec8726a 1346
b33d46c3
UH
1347 /*
1348 * Reset ocr mask to be the highest possible voltage supported for
1349 * this mmc host. This value will be used at next power up.
1350 */
1351 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1352
af517150
DB
1353 if (!mmc_host_is_spi(host)) {
1354 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1355 host->ios.chip_select = MMC_CS_DONTCARE;
1356 }
1da177e4 1357 host->ios.power_mode = MMC_POWER_OFF;
f218278a 1358 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1359 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1360 mmc_set_ios(host);
778e277c 1361
041beb1d
DD
1362 /*
1363 * Some configurations, such as the 802.11 SDIO card in the OLPC
1364 * XO-1.5, require a short delay after poweroff before the card
1365 * can be successfully turned on again.
1366 */
1367 mmc_delay(1);
1368
778e277c 1369 mmc_host_clk_release(host);
1da177e4
LT
1370}
1371
39361851
AB
1372/*
1373 * Cleanup when the last reference to the bus operator is dropped.
1374 */
261172fd 1375static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1376{
1377 BUG_ON(!host);
1378 BUG_ON(host->bus_refs);
1379 BUG_ON(!host->bus_dead);
1380
1381 host->bus_ops = NULL;
1382}
1383
1384/*
1385 * Increase reference count of bus operator
1386 */
1387static inline void mmc_bus_get(struct mmc_host *host)
1388{
1389 unsigned long flags;
1390
1391 spin_lock_irqsave(&host->lock, flags);
1392 host->bus_refs++;
1393 spin_unlock_irqrestore(&host->lock, flags);
1394}
1395
1396/*
1397 * Decrease reference count of bus operator and free it if
1398 * it is the last reference.
1399 */
1400static inline void mmc_bus_put(struct mmc_host *host)
1401{
1402 unsigned long flags;
1403
1404 spin_lock_irqsave(&host->lock, flags);
1405 host->bus_refs--;
1406 if ((host->bus_refs == 0) && host->bus_ops)
1407 __mmc_release_bus(host);
1408 spin_unlock_irqrestore(&host->lock, flags);
1409}
1410
1da177e4 1411/*
7ea239d9
PO
1412 * Assign a mmc bus handler to a host. Only one bus handler may control a
1413 * host at any given time.
1da177e4 1414 */
7ea239d9 1415void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1416{
7ea239d9 1417 unsigned long flags;
e45a1bd2 1418
7ea239d9
PO
1419 BUG_ON(!host);
1420 BUG_ON(!ops);
b855885e 1421
d84075c8 1422 WARN_ON(!host->claimed);
bce40a36 1423
7ea239d9 1424 spin_lock_irqsave(&host->lock, flags);
bce40a36 1425
7ea239d9
PO
1426 BUG_ON(host->bus_ops);
1427 BUG_ON(host->bus_refs);
b57c43ad 1428
7ea239d9
PO
1429 host->bus_ops = ops;
1430 host->bus_refs = 1;
1431 host->bus_dead = 0;
b57c43ad 1432
7ea239d9 1433 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1434}
1435
7ea239d9 1436/*
7f7e4129 1437 * Remove the current bus handler from a host.
7ea239d9
PO
1438 */
1439void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1440{
7ea239d9 1441 unsigned long flags;
7ccd266e 1442
7ea239d9 1443 BUG_ON(!host);
7ccd266e 1444
d84075c8
PO
1445 WARN_ON(!host->claimed);
1446 WARN_ON(!host->bus_ops);
cd9277c0 1447
7ea239d9 1448 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1449
7ea239d9 1450 host->bus_dead = 1;
7ccd266e 1451
7ea239d9 1452 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1453
7ea239d9 1454 mmc_bus_put(host);
1da177e4
LT
1455}
1456
1da177e4
LT
1457/**
1458 * mmc_detect_change - process change of state on a MMC socket
1459 * @host: host which changed state.
8dc00335 1460 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1461 *
67a61c48
PO
1462 * MMC drivers should call this when they detect a card has been
1463 * inserted or removed. The MMC layer will confirm that any
1464 * present card is still functional, and initialize any newly
1465 * inserted.
1da177e4 1466 */
8dc00335 1467void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1468{
3b91e550 1469#ifdef CONFIG_MMC_DEBUG
1efd48b3 1470 unsigned long flags;
01f41ec7 1471 spin_lock_irqsave(&host->lock, flags);
d84075c8 1472 WARN_ON(host->removed);
01f41ec7 1473 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 1474#endif
d3049504 1475 host->detect_change = 1;
c4028958 1476 mmc_schedule_delayed_work(&host->detect, delay);
1da177e4
LT
1477}
1478
1479EXPORT_SYMBOL(mmc_detect_change);
1480
dfe86cba
AH
1481void mmc_init_erase(struct mmc_card *card)
1482{
1483 unsigned int sz;
1484
1485 if (is_power_of_2(card->erase_size))
1486 card->erase_shift = ffs(card->erase_size) - 1;
1487 else
1488 card->erase_shift = 0;
1489
1490 /*
1491 * It is possible to erase an arbitrarily large area of an SD or MMC
1492 * card. That is not desirable because it can take a long time
1493 * (minutes) potentially delaying more important I/O, and also the
1494 * timeout calculations become increasingly hugely over-estimated.
1495 * Consequently, 'pref_erase' is defined as a guide to limit erases
1496 * to that size and alignment.
1497 *
1498 * For SD cards that define Allocation Unit size, limit erases to one
1499 * Allocation Unit at a time. For MMC cards that define High Capacity
1500 * Erase Size, whether it is switched on or not, limit to that size.
1501 * Otherwise just have a stab at a good value. For modern cards it
1502 * will end up being 4MiB. Note that if the value is too small, it
1503 * can end up taking longer to erase.
1504 */
1505 if (mmc_card_sd(card) && card->ssr.au) {
1506 card->pref_erase = card->ssr.au;
1507 card->erase_shift = ffs(card->ssr.au) - 1;
1508 } else if (card->ext_csd.hc_erase_size) {
1509 card->pref_erase = card->ext_csd.hc_erase_size;
1510 } else {
1511 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1512 if (sz < 128)
1513 card->pref_erase = 512 * 1024 / 512;
1514 else if (sz < 512)
1515 card->pref_erase = 1024 * 1024 / 512;
1516 else if (sz < 1024)
1517 card->pref_erase = 2 * 1024 * 1024 / 512;
1518 else
1519 card->pref_erase = 4 * 1024 * 1024 / 512;
1520 if (card->pref_erase < card->erase_size)
1521 card->pref_erase = card->erase_size;
1522 else {
1523 sz = card->pref_erase % card->erase_size;
1524 if (sz)
1525 card->pref_erase += card->erase_size - sz;
1526 }
1527 }
1528}
1529
eaa02f75
AW
1530static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1531 unsigned int arg, unsigned int qty)
dfe86cba
AH
1532{
1533 unsigned int erase_timeout;
1534
7194efb8
AH
1535 if (arg == MMC_DISCARD_ARG ||
1536 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1537 erase_timeout = card->ext_csd.trim_timeout;
1538 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1539 /* High Capacity Erase Group Size uses HC timeouts */
1540 if (arg == MMC_TRIM_ARG)
1541 erase_timeout = card->ext_csd.trim_timeout;
1542 else
1543 erase_timeout = card->ext_csd.hc_erase_timeout;
1544 } else {
1545 /* CSD Erase Group Size uses write timeout */
1546 unsigned int mult = (10 << card->csd.r2w_factor);
1547 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1548 unsigned int timeout_us;
1549
1550 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1551 if (card->csd.tacc_ns < 1000000)
1552 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1553 else
1554 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1555
1556 /*
1557 * ios.clock is only a target. The real clock rate might be
1558 * less but not that much less, so fudge it by multiplying by 2.
1559 */
1560 timeout_clks <<= 1;
1561 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1562 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1563
1564 erase_timeout = timeout_us / 1000;
1565
1566 /*
1567 * Theoretically, the calculation could underflow so round up
1568 * to 1ms in that case.
1569 */
1570 if (!erase_timeout)
1571 erase_timeout = 1;
1572 }
1573
1574 /* Multiplier for secure operations */
1575 if (arg & MMC_SECURE_ARGS) {
1576 if (arg == MMC_SECURE_ERASE_ARG)
1577 erase_timeout *= card->ext_csd.sec_erase_mult;
1578 else
1579 erase_timeout *= card->ext_csd.sec_trim_mult;
1580 }
1581
1582 erase_timeout *= qty;
1583
1584 /*
1585 * Ensure at least a 1 second timeout for SPI as per
1586 * 'mmc_set_data_timeout()'
1587 */
1588 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1589 erase_timeout = 1000;
1590
eaa02f75 1591 return erase_timeout;
dfe86cba
AH
1592}
1593
eaa02f75
AW
1594static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1595 unsigned int arg,
1596 unsigned int qty)
dfe86cba 1597{
eaa02f75
AW
1598 unsigned int erase_timeout;
1599
dfe86cba
AH
1600 if (card->ssr.erase_timeout) {
1601 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1602 erase_timeout = card->ssr.erase_timeout * qty +
1603 card->ssr.erase_offset;
dfe86cba
AH
1604 } else {
1605 /*
1606 * Erase timeout not specified in SD Status Register (SSR) so
1607 * use 250ms per write block.
1608 */
eaa02f75 1609 erase_timeout = 250 * qty;
dfe86cba
AH
1610 }
1611
1612 /* Must not be less than 1 second */
eaa02f75
AW
1613 if (erase_timeout < 1000)
1614 erase_timeout = 1000;
1615
1616 return erase_timeout;
dfe86cba
AH
1617}
1618
eaa02f75
AW
1619static unsigned int mmc_erase_timeout(struct mmc_card *card,
1620 unsigned int arg,
1621 unsigned int qty)
dfe86cba
AH
1622{
1623 if (mmc_card_sd(card))
eaa02f75 1624 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1625 else
eaa02f75 1626 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1627}
1628
1629static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1630 unsigned int to, unsigned int arg)
1631{
1278dba1 1632 struct mmc_command cmd = {0};
dfe86cba
AH
1633 unsigned int qty = 0;
1634 int err;
1635
1636 /*
1637 * qty is used to calculate the erase timeout which depends on how many
1638 * erase groups (or allocation units in SD terminology) are affected.
1639 * We count erasing part of an erase group as one erase group.
1640 * For SD, the allocation units are always a power of 2. For MMC, the
1641 * erase group size is almost certainly also power of 2, but it does not
1642 * seem to insist on that in the JEDEC standard, so we fall back to
1643 * division in that case. SD may not specify an allocation unit size,
1644 * in which case the timeout is based on the number of write blocks.
1645 *
1646 * Note that the timeout for secure trim 2 will only be correct if the
1647 * number of erase groups specified is the same as the total of all
1648 * preceding secure trim 1 commands. Since the power may have been
1649 * lost since the secure trim 1 commands occurred, it is generally
1650 * impossible to calculate the secure trim 2 timeout correctly.
1651 */
1652 if (card->erase_shift)
1653 qty += ((to >> card->erase_shift) -
1654 (from >> card->erase_shift)) + 1;
1655 else if (mmc_card_sd(card))
1656 qty += to - from + 1;
1657 else
1658 qty += ((to / card->erase_size) -
1659 (from / card->erase_size)) + 1;
1660
1661 if (!mmc_card_blockaddr(card)) {
1662 from <<= 9;
1663 to <<= 9;
1664 }
1665
dfe86cba
AH
1666 if (mmc_card_sd(card))
1667 cmd.opcode = SD_ERASE_WR_BLK_START;
1668 else
1669 cmd.opcode = MMC_ERASE_GROUP_START;
1670 cmd.arg = from;
1671 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1672 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1673 if (err) {
a3c76eb9 1674 pr_err("mmc_erase: group start error %d, "
dfe86cba 1675 "status %#x\n", err, cmd.resp[0]);
67716327 1676 err = -EIO;
dfe86cba
AH
1677 goto out;
1678 }
1679
1680 memset(&cmd, 0, sizeof(struct mmc_command));
1681 if (mmc_card_sd(card))
1682 cmd.opcode = SD_ERASE_WR_BLK_END;
1683 else
1684 cmd.opcode = MMC_ERASE_GROUP_END;
1685 cmd.arg = to;
1686 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1687 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1688 if (err) {
a3c76eb9 1689 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1690 err, cmd.resp[0]);
67716327 1691 err = -EIO;
dfe86cba
AH
1692 goto out;
1693 }
1694
1695 memset(&cmd, 0, sizeof(struct mmc_command));
1696 cmd.opcode = MMC_ERASE;
1697 cmd.arg = arg;
1698 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
eaa02f75 1699 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1700 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1701 if (err) {
a3c76eb9 1702 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1703 err, cmd.resp[0]);
1704 err = -EIO;
1705 goto out;
1706 }
1707
1708 if (mmc_host_is_spi(card->host))
1709 goto out;
1710
1711 do {
1712 memset(&cmd, 0, sizeof(struct mmc_command));
1713 cmd.opcode = MMC_SEND_STATUS;
1714 cmd.arg = card->rca << 16;
1715 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1716 /* Do not retry else we can't see errors */
1717 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1718 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 1719 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
1720 err, cmd.resp[0]);
1721 err = -EIO;
1722 goto out;
1723 }
1724 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
7435bb79 1725 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
dfe86cba
AH
1726out:
1727 return err;
1728}
1729
1730/**
1731 * mmc_erase - erase sectors.
1732 * @card: card to erase
1733 * @from: first sector to erase
1734 * @nr: number of sectors to erase
1735 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1736 *
1737 * Caller must claim host before calling this function.
1738 */
1739int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1740 unsigned int arg)
1741{
1742 unsigned int rem, to = from + nr;
1743
1744 if (!(card->host->caps & MMC_CAP_ERASE) ||
1745 !(card->csd.cmdclass & CCC_ERASE))
1746 return -EOPNOTSUPP;
1747
1748 if (!card->erase_size)
1749 return -EOPNOTSUPP;
1750
1751 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1752 return -EOPNOTSUPP;
1753
1754 if ((arg & MMC_SECURE_ARGS) &&
1755 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1756 return -EOPNOTSUPP;
1757
1758 if ((arg & MMC_TRIM_ARGS) &&
1759 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1760 return -EOPNOTSUPP;
1761
1762 if (arg == MMC_SECURE_ERASE_ARG) {
1763 if (from % card->erase_size || nr % card->erase_size)
1764 return -EINVAL;
1765 }
1766
1767 if (arg == MMC_ERASE_ARG) {
1768 rem = from % card->erase_size;
1769 if (rem) {
1770 rem = card->erase_size - rem;
1771 from += rem;
1772 if (nr > rem)
1773 nr -= rem;
1774 else
1775 return 0;
1776 }
1777 rem = nr % card->erase_size;
1778 if (rem)
1779 nr -= rem;
1780 }
1781
1782 if (nr == 0)
1783 return 0;
1784
1785 to = from + nr;
1786
1787 if (to <= from)
1788 return -EINVAL;
1789
1790 /* 'from' and 'to' are inclusive */
1791 to -= 1;
1792
1793 return mmc_do_erase(card, from, to, arg);
1794}
1795EXPORT_SYMBOL(mmc_erase);
1796
1797int mmc_can_erase(struct mmc_card *card)
1798{
1799 if ((card->host->caps & MMC_CAP_ERASE) &&
1800 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1801 return 1;
1802 return 0;
1803}
1804EXPORT_SYMBOL(mmc_can_erase);
1805
1806int mmc_can_trim(struct mmc_card *card)
1807{
1808 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1809 return 1;
1810 return 0;
1811}
1812EXPORT_SYMBOL(mmc_can_trim);
1813
b3bf9153
KP
1814int mmc_can_discard(struct mmc_card *card)
1815{
1816 /*
1817 * As there's no way to detect the discard support bit at v4.5
1818 * use the s/w feature support filed.
1819 */
1820 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1821 return 1;
1822 return 0;
1823}
1824EXPORT_SYMBOL(mmc_can_discard);
1825
d9ddd629
KP
1826int mmc_can_sanitize(struct mmc_card *card)
1827{
28302812
AH
1828 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1829 return 0;
d9ddd629
KP
1830 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1831 return 1;
1832 return 0;
1833}
1834EXPORT_SYMBOL(mmc_can_sanitize);
1835
dfe86cba
AH
1836int mmc_can_secure_erase_trim(struct mmc_card *card)
1837{
1838 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1839 return 1;
1840 return 0;
1841}
1842EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1843
1844int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1845 unsigned int nr)
1846{
1847 if (!card->erase_size)
1848 return 0;
1849 if (from % card->erase_size || nr % card->erase_size)
1850 return 0;
1851 return 1;
1852}
1853EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 1854
e056a1b5
AH
1855static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1856 unsigned int arg)
1857{
1858 struct mmc_host *host = card->host;
1859 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1860 unsigned int last_timeout = 0;
1861
1862 if (card->erase_shift)
1863 max_qty = UINT_MAX >> card->erase_shift;
1864 else if (mmc_card_sd(card))
1865 max_qty = UINT_MAX;
1866 else
1867 max_qty = UINT_MAX / card->erase_size;
1868
1869 /* Find the largest qty with an OK timeout */
1870 do {
1871 y = 0;
1872 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1873 timeout = mmc_erase_timeout(card, arg, qty + x);
1874 if (timeout > host->max_discard_to)
1875 break;
1876 if (timeout < last_timeout)
1877 break;
1878 last_timeout = timeout;
1879 y = x;
1880 }
1881 qty += y;
1882 } while (y);
1883
1884 if (!qty)
1885 return 0;
1886
1887 if (qty == 1)
1888 return 1;
1889
1890 /* Convert qty to sectors */
1891 if (card->erase_shift)
1892 max_discard = --qty << card->erase_shift;
1893 else if (mmc_card_sd(card))
1894 max_discard = qty;
1895 else
1896 max_discard = --qty * card->erase_size;
1897
1898 return max_discard;
1899}
1900
1901unsigned int mmc_calc_max_discard(struct mmc_card *card)
1902{
1903 struct mmc_host *host = card->host;
1904 unsigned int max_discard, max_trim;
1905
1906 if (!host->max_discard_to)
1907 return UINT_MAX;
1908
1909 /*
1910 * Without erase_group_def set, MMC erase timeout depends on clock
1911 * frequence which can change. In that case, the best choice is
1912 * just the preferred erase size.
1913 */
1914 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1915 return card->pref_erase;
1916
1917 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1918 if (mmc_can_trim(card)) {
1919 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1920 if (max_trim < max_discard)
1921 max_discard = max_trim;
1922 } else if (max_discard < card->erase_size) {
1923 max_discard = 0;
1924 }
1925 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1926 mmc_hostname(host), max_discard, host->max_discard_to);
1927 return max_discard;
1928}
1929EXPORT_SYMBOL(mmc_calc_max_discard);
1930
0f8d8ea6
AH
1931int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1932{
1278dba1 1933 struct mmc_command cmd = {0};
0f8d8ea6
AH
1934
1935 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1936 return 0;
1937
0f8d8ea6
AH
1938 cmd.opcode = MMC_SET_BLOCKLEN;
1939 cmd.arg = blocklen;
1940 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1941 return mmc_wait_for_cmd(card->host, &cmd, 5);
1942}
1943EXPORT_SYMBOL(mmc_set_blocklen);
1944
b2499518
AH
1945static void mmc_hw_reset_for_init(struct mmc_host *host)
1946{
1947 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1948 return;
1949 mmc_host_clk_hold(host);
1950 host->ops->hw_reset(host);
1951 mmc_host_clk_release(host);
1952}
1953
1954int mmc_can_reset(struct mmc_card *card)
1955{
1956 u8 rst_n_function;
1957
1958 if (!mmc_card_mmc(card))
1959 return 0;
1960 rst_n_function = card->ext_csd.rst_n_function;
1961 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1962 return 0;
1963 return 1;
1964}
1965EXPORT_SYMBOL(mmc_can_reset);
1966
1967static int mmc_do_hw_reset(struct mmc_host *host, int check)
1968{
1969 struct mmc_card *card = host->card;
1970
1971 if (!host->bus_ops->power_restore)
1972 return -EOPNOTSUPP;
1973
1974 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1975 return -EOPNOTSUPP;
1976
1977 if (!card)
1978 return -EINVAL;
1979
1980 if (!mmc_can_reset(card))
1981 return -EOPNOTSUPP;
1982
1983 mmc_host_clk_hold(host);
1984 mmc_set_clock(host, host->f_init);
1985
1986 host->ops->hw_reset(host);
1987
1988 /* If the reset has happened, then a status command will fail */
1989 if (check) {
1990 struct mmc_command cmd = {0};
1991 int err;
1992
1993 cmd.opcode = MMC_SEND_STATUS;
1994 if (!mmc_host_is_spi(card->host))
1995 cmd.arg = card->rca << 16;
1996 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1997 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1998 if (!err) {
1999 mmc_host_clk_release(host);
2000 return -ENOSYS;
2001 }
2002 }
2003
2004 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2005 if (mmc_host_is_spi(host)) {
2006 host->ios.chip_select = MMC_CS_HIGH;
2007 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2008 } else {
2009 host->ios.chip_select = MMC_CS_DONTCARE;
2010 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2011 }
2012 host->ios.bus_width = MMC_BUS_WIDTH_1;
2013 host->ios.timing = MMC_TIMING_LEGACY;
2014 mmc_set_ios(host);
2015
2016 mmc_host_clk_release(host);
2017
2018 return host->bus_ops->power_restore(host);
2019}
2020
2021int mmc_hw_reset(struct mmc_host *host)
2022{
2023 return mmc_do_hw_reset(host, 0);
2024}
2025EXPORT_SYMBOL(mmc_hw_reset);
2026
2027int mmc_hw_reset_check(struct mmc_host *host)
2028{
2029 return mmc_do_hw_reset(host, 1);
2030}
2031EXPORT_SYMBOL(mmc_hw_reset_check);
2032
807e8e40
AR
2033static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2034{
2035 host->f_init = freq;
2036
2037#ifdef CONFIG_MMC_DEBUG
2038 pr_info("%s: %s: trying to init card at %u Hz\n",
2039 mmc_hostname(host), __func__, host->f_init);
2040#endif
2041 mmc_power_up(host);
2f94e55a 2042
b2499518
AH
2043 /*
2044 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045 * do a hardware reset if possible.
2046 */
2047 mmc_hw_reset_for_init(host);
2048
2f94e55a
PR
2049 /*
2050 * sdio_reset sends CMD52 to reset card. Since we do not know
2051 * if the card is being re-initialized, just send it. CMD52
2052 * should be ignored by SD/eMMC cards.
2053 */
807e8e40
AR
2054 sdio_reset(host);
2055 mmc_go_idle(host);
2056
2057 mmc_send_if_cond(host, host->ocr_avail);
2058
2059 /* Order's important: probe SDIO, then SD, then MMC */
2060 if (!mmc_attach_sdio(host))
2061 return 0;
2062 if (!mmc_attach_sd(host))
2063 return 0;
2064 if (!mmc_attach_mmc(host))
2065 return 0;
2066
2067 mmc_power_off(host);
2068 return -EIO;
2069}
2070
d3049504
AH
2071int _mmc_detect_card_removed(struct mmc_host *host)
2072{
2073 int ret;
2074
2075 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2076 return 0;
2077
2078 if (!host->card || mmc_card_removed(host->card))
2079 return 1;
2080
2081 ret = host->bus_ops->alive(host);
2082 if (ret) {
2083 mmc_card_set_removed(host->card);
2084 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2085 }
2086
2087 return ret;
2088}
2089
2090int mmc_detect_card_removed(struct mmc_host *host)
2091{
2092 struct mmc_card *card = host->card;
f0cc9cf9 2093 int ret;
d3049504
AH
2094
2095 WARN_ON(!host->claimed);
f0cc9cf9
UH
2096
2097 if (!card)
2098 return 1;
2099
2100 ret = mmc_card_removed(card);
d3049504
AH
2101 /*
2102 * The card will be considered unchanged unless we have been asked to
2103 * detect a change or host requires polling to provide card detection.
2104 */
f0cc9cf9
UH
2105 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2106 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2107 return ret;
d3049504
AH
2108
2109 host->detect_change = 0;
f0cc9cf9
UH
2110 if (!ret) {
2111 ret = _mmc_detect_card_removed(host);
2112 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2113 /*
2114 * Schedule a detect work as soon as possible to let a
2115 * rescan handle the card removal.
2116 */
2117 cancel_delayed_work(&host->detect);
2118 mmc_detect_change(host, 0);
2119 }
2120 }
d3049504 2121
f0cc9cf9 2122 return ret;
d3049504
AH
2123}
2124EXPORT_SYMBOL(mmc_detect_card_removed);
2125
b93931a6 2126void mmc_rescan(struct work_struct *work)
1da177e4 2127{
c4028958
DH
2128 struct mmc_host *host =
2129 container_of(work, struct mmc_host, detect.work);
88ae8b86 2130 int i;
4c2ef25f 2131
807e8e40 2132 if (host->rescan_disable)
4c2ef25f 2133 return;
1da177e4 2134
3339d1e3
JR
2135 /* If there is a non-removable card registered, only scan once */
2136 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2137 return;
2138 host->rescan_entered = 1;
2139
7ea239d9 2140 mmc_bus_get(host);
b855885e 2141
30201e7f
OBC
2142 /*
2143 * if there is a _removable_ card registered, check whether it is
2144 * still present
2145 */
2146 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
bad3baba 2147 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2148 host->bus_ops->detect(host);
2149
d3049504
AH
2150 host->detect_change = 0;
2151
c5841798
CB
2152 /*
2153 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2154 * the card is no longer present.
2155 */
94d89efb 2156 mmc_bus_put(host);
94d89efb
JS
2157 mmc_bus_get(host);
2158
2159 /* if there still is a card present, stop here */
2160 if (host->bus_ops != NULL) {
7ea239d9 2161 mmc_bus_put(host);
94d89efb
JS
2162 goto out;
2163 }
1da177e4 2164
94d89efb
JS
2165 /*
2166 * Only we can add a new handler, so it's safe to
2167 * release the lock here.
2168 */
2169 mmc_bus_put(host);
1da177e4 2170
fa550189
UH
2171 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2172 mmc_claim_host(host);
2173 mmc_power_off(host);
2174 mmc_release_host(host);
94d89efb 2175 goto out;
fa550189 2176 }
1da177e4 2177
807e8e40 2178 mmc_claim_host(host);
88ae8b86 2179 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2180 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2181 break;
06b2233a 2182 if (freqs[i] <= host->f_min)
807e8e40 2183 break;
88ae8b86 2184 }
807e8e40
AR
2185 mmc_release_host(host);
2186
2187 out:
28f52482
AV
2188 if (host->caps & MMC_CAP_NEEDS_POLL)
2189 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2190}
2191
b93931a6 2192void mmc_start_host(struct mmc_host *host)
1da177e4 2193{
fa550189 2194 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2195 host->rescan_disable = 0;
fa550189 2196 mmc_power_up(host);
b93931a6 2197 mmc_detect_change(host, 0);
1da177e4
LT
2198}
2199
b93931a6 2200void mmc_stop_host(struct mmc_host *host)
1da177e4 2201{
3b91e550 2202#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2203 unsigned long flags;
2204 spin_lock_irqsave(&host->lock, flags);
3b91e550 2205 host->removed = 1;
1efd48b3 2206 spin_unlock_irqrestore(&host->lock, flags);
3b91e550
PO
2207#endif
2208
d9adcc12 2209 host->rescan_disable = 1;
d9bcbf34 2210 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2211 mmc_flush_scheduled_work();
2212
da68c4eb
NP
2213 /* clear pm flags now and let card drivers set them as needed */
2214 host->pm_flags = 0;
2215
7ea239d9
PO
2216 mmc_bus_get(host);
2217 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2218 /* Calling bus_ops->remove() with a claimed host can deadlock */
7ea239d9
PO
2219 if (host->bus_ops->remove)
2220 host->bus_ops->remove(host);
2221
2222 mmc_claim_host(host);
2223 mmc_detach_bus(host);
7f7e4129 2224 mmc_power_off(host);
7ea239d9 2225 mmc_release_host(host);
53509f0f
DK
2226 mmc_bus_put(host);
2227 return;
1da177e4 2228 }
7ea239d9
PO
2229 mmc_bus_put(host);
2230
2231 BUG_ON(host->card);
1da177e4
LT
2232
2233 mmc_power_off(host);
2234}
2235
12ae637f 2236int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2237{
12ae637f
OBC
2238 int ret = 0;
2239
bb9cab94
DD
2240#ifdef CONFIG_MMC_DEBUG
2241 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2242#endif
2243
eae1aeee
AH
2244 mmc_bus_get(host);
2245
2246 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2247 mmc_bus_put(host);
12ae637f 2248 return -EINVAL;
eae1aeee
AH
2249 }
2250
2251 if (host->bus_ops->power_save)
12ae637f 2252 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2253
2254 mmc_bus_put(host);
2255
2256 mmc_power_off(host);
12ae637f
OBC
2257
2258 return ret;
eae1aeee
AH
2259}
2260EXPORT_SYMBOL(mmc_power_save_host);
2261
12ae637f 2262int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2263{
12ae637f
OBC
2264 int ret;
2265
bb9cab94
DD
2266#ifdef CONFIG_MMC_DEBUG
2267 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2268#endif
2269
eae1aeee
AH
2270 mmc_bus_get(host);
2271
2272 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2273 mmc_bus_put(host);
12ae637f 2274 return -EINVAL;
eae1aeee
AH
2275 }
2276
2277 mmc_power_up(host);
12ae637f 2278 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2279
2280 mmc_bus_put(host);
12ae637f
OBC
2281
2282 return ret;
eae1aeee
AH
2283}
2284EXPORT_SYMBOL(mmc_power_restore_host);
2285
b1ebe384
JL
2286int mmc_card_awake(struct mmc_host *host)
2287{
2288 int err = -ENOSYS;
2289
aa9df4fb
UH
2290 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2291 return 0;
2292
b1ebe384
JL
2293 mmc_bus_get(host);
2294
2295 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2296 err = host->bus_ops->awake(host);
2297
2298 mmc_bus_put(host);
2299
2300 return err;
2301}
2302EXPORT_SYMBOL(mmc_card_awake);
2303
2304int mmc_card_sleep(struct mmc_host *host)
2305{
2306 int err = -ENOSYS;
2307
aa9df4fb
UH
2308 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2309 return 0;
2310
b1ebe384
JL
2311 mmc_bus_get(host);
2312
c99872a1 2313 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
b1ebe384
JL
2314 err = host->bus_ops->sleep(host);
2315
2316 mmc_bus_put(host);
2317
2318 return err;
2319}
2320EXPORT_SYMBOL(mmc_card_sleep);
2321
2322int mmc_card_can_sleep(struct mmc_host *host)
2323{
2324 struct mmc_card *card = host->card;
2325
2326 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2327 return 1;
2328 return 0;
2329}
2330EXPORT_SYMBOL(mmc_card_can_sleep);
2331
881d1c25
SJ
2332/*
2333 * Flush the cache to the non-volatile storage.
2334 */
2335int mmc_flush_cache(struct mmc_card *card)
2336{
2337 struct mmc_host *host = card->host;
2338 int err = 0;
2339
2340 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2341 return err;
2342
2343 if (mmc_card_mmc(card) &&
2344 (card->ext_csd.cache_size > 0) &&
2345 (card->ext_csd.cache_ctrl & 1)) {
2346 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2347 EXT_CSD_FLUSH_CACHE, 1, 0);
2348 if (err)
2349 pr_err("%s: cache flush error %d\n",
2350 mmc_hostname(card->host), err);
2351 }
2352
2353 return err;
2354}
2355EXPORT_SYMBOL(mmc_flush_cache);
2356
2357/*
2358 * Turn the cache ON/OFF.
2359 * Turning the cache OFF shall trigger flushing of the data
2360 * to the non-volatile storage.
2361 */
2362int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2363{
2364 struct mmc_card *card = host->card;
8bc0678b 2365 unsigned int timeout;
881d1c25
SJ
2366 int err = 0;
2367
2368 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2369 mmc_card_is_removable(host))
2370 return err;
2371
7c570919 2372 mmc_claim_host(host);
881d1c25
SJ
2373 if (card && mmc_card_mmc(card) &&
2374 (card->ext_csd.cache_size > 0)) {
2375 enable = !!enable;
2376
8bc0678b
SJ
2377 if (card->ext_csd.cache_ctrl ^ enable) {
2378 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
881d1c25 2379 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
8bc0678b
SJ
2380 EXT_CSD_CACHE_CTRL, enable, timeout);
2381 if (err)
2382 pr_err("%s: cache %s error %d\n",
2383 mmc_hostname(card->host),
2384 enable ? "on" : "off",
2385 err);
2386 else
2387 card->ext_csd.cache_ctrl = enable;
2388 }
881d1c25 2389 }
7c570919 2390 mmc_release_host(host);
881d1c25
SJ
2391
2392 return err;
2393}
2394EXPORT_SYMBOL(mmc_cache_ctrl);
2395
1da177e4
LT
2396#ifdef CONFIG_PM
2397
2398/**
2399 * mmc_suspend_host - suspend a host
2400 * @host: mmc host
1da177e4 2401 */
1a13f8fa 2402int mmc_suspend_host(struct mmc_host *host)
1da177e4 2403{
95cdfb72
NP
2404 int err = 0;
2405
7de427d0 2406 cancel_delayed_work(&host->detect);
b5af25be 2407 mmc_flush_scheduled_work();
17e9ff55 2408
7c570919 2409 err = mmc_cache_ctrl(host, 0);
881d1c25
SJ
2410 if (err)
2411 goto out;
b5af25be 2412
7ea239d9
PO
2413 mmc_bus_get(host);
2414 if (host->bus_ops && !host->bus_dead) {
950d56ac
JC
2415 if (host->bus_ops->suspend) {
2416 if (mmc_card_doing_bkops(host->card)) {
2417 err = mmc_stop_bkops(host->card);
2418 if (err)
2419 goto out;
2420 }
7c570919 2421 err = host->bus_ops->suspend(host);
950d56ac 2422 }
49df7807 2423
7c570919
UH
2424 if (err == -ENOSYS || !host->bus_ops->resume) {
2425 /*
2426 * We simply "remove" the card in this case.
2427 * It will be redetected on resume. (Calling
2428 * bus_ops->remove() with a claimed host can
2429 * deadlock.)
2430 */
2431 if (host->bus_ops->remove)
2432 host->bus_ops->remove(host);
2433 mmc_claim_host(host);
2434 mmc_detach_bus(host);
2435 mmc_power_off(host);
2436 mmc_release_host(host);
2437 host->pm_flags = 0;
2438 err = 0;
1c8cf9c9 2439 }
b5af25be 2440 }
7ea239d9
PO
2441 mmc_bus_put(host);
2442
a5e9425d 2443 if (!err && !mmc_card_keep_power(host))
95cdfb72 2444 mmc_power_off(host);
1da177e4 2445
881d1c25 2446out:
95cdfb72 2447 return err;
1da177e4
LT
2448}
2449
2450EXPORT_SYMBOL(mmc_suspend_host);
2451
2452/**
2453 * mmc_resume_host - resume a previously suspended host
2454 * @host: mmc host
2455 */
2456int mmc_resume_host(struct mmc_host *host)
2457{
95cdfb72
NP
2458 int err = 0;
2459
6abaa0c9
PO
2460 mmc_bus_get(host);
2461 if (host->bus_ops && !host->bus_dead) {
a5e9425d 2462 if (!mmc_card_keep_power(host)) {
da68c4eb
NP
2463 mmc_power_up(host);
2464 mmc_select_voltage(host, host->ocr);
e594573d
OBC
2465 /*
2466 * Tell runtime PM core we just powered up the card,
2467 * since it still believes the card is powered off.
2468 * Note that currently runtime PM is only enabled
2469 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2470 */
2471 if (mmc_card_sdio(host->card) &&
2472 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2473 pm_runtime_disable(&host->card->dev);
2474 pm_runtime_set_active(&host->card->dev);
2475 pm_runtime_enable(&host->card->dev);
2476 }
da68c4eb 2477 }
6abaa0c9 2478 BUG_ON(!host->bus_ops->resume);
95cdfb72
NP
2479 err = host->bus_ops->resume(host);
2480 if (err) {
a3c76eb9 2481 pr_warning("%s: error %d during resume "
95cdfb72
NP
2482 "(card was removed?)\n",
2483 mmc_hostname(host), err);
95cdfb72
NP
2484 err = 0;
2485 }
6abaa0c9 2486 }
a8e6df73 2487 host->pm_flags &= ~MMC_PM_KEEP_POWER;
6abaa0c9
PO
2488 mmc_bus_put(host);
2489
95cdfb72 2490 return err;
1da177e4 2491}
1da177e4
LT
2492EXPORT_SYMBOL(mmc_resume_host);
2493
4c2ef25f
ML
2494/* Do the card removal on suspend if card is assumed removeable
2495 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2496 to sync the card.
2497*/
2498int mmc_pm_notify(struct notifier_block *notify_block,
2499 unsigned long mode, void *unused)
2500{
2501 struct mmc_host *host = container_of(
2502 notify_block, struct mmc_host, pm_notify);
2503 unsigned long flags;
950d56ac 2504 int err = 0;
4c2ef25f
ML
2505
2506 switch (mode) {
2507 case PM_HIBERNATION_PREPARE:
2508 case PM_SUSPEND_PREPARE:
950d56ac
JC
2509 if (host->card && mmc_card_mmc(host->card) &&
2510 mmc_card_doing_bkops(host->card)) {
2511 err = mmc_stop_bkops(host->card);
2512 if (err) {
2513 pr_err("%s: didn't stop bkops\n",
2514 mmc_hostname(host));
2515 return err;
2516 }
2517 mmc_card_clr_doing_bkops(host->card);
2518 }
4c2ef25f
ML
2519
2520 spin_lock_irqsave(&host->lock, flags);
2521 host->rescan_disable = 1;
2522 spin_unlock_irqrestore(&host->lock, flags);
2523 cancel_delayed_work_sync(&host->detect);
2524
2525 if (!host->bus_ops || host->bus_ops->suspend)
2526 break;
2527
0db13fc2 2528 /* Calling bus_ops->remove() with a claimed host can deadlock */
4c2ef25f
ML
2529 if (host->bus_ops->remove)
2530 host->bus_ops->remove(host);
2531
0db13fc2 2532 mmc_claim_host(host);
4c2ef25f 2533 mmc_detach_bus(host);
7f7e4129 2534 mmc_power_off(host);
4c2ef25f
ML
2535 mmc_release_host(host);
2536 host->pm_flags = 0;
2537 break;
2538
2539 case PM_POST_SUSPEND:
2540 case PM_POST_HIBERNATION:
274476f8 2541 case PM_POST_RESTORE:
4c2ef25f
ML
2542
2543 spin_lock_irqsave(&host->lock, flags);
2544 host->rescan_disable = 0;
2545 spin_unlock_irqrestore(&host->lock, flags);
2546 mmc_detect_change(host, 0);
2547
2548 }
2549
2550 return 0;
2551}
1da177e4
LT
2552#endif
2553
ffce2e7e
PO
2554static int __init mmc_init(void)
2555{
2556 int ret;
2557
0d9ee5b2 2558 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2559 if (!workqueue)
2560 return -ENOMEM;
2561
2562 ret = mmc_register_bus();
e29a7d73
PO
2563 if (ret)
2564 goto destroy_workqueue;
2565
2566 ret = mmc_register_host_class();
2567 if (ret)
2568 goto unregister_bus;
2569
2570 ret = sdio_register_bus();
2571 if (ret)
2572 goto unregister_host_class;
2573
2574 return 0;
2575
2576unregister_host_class:
2577 mmc_unregister_host_class();
2578unregister_bus:
2579 mmc_unregister_bus();
2580destroy_workqueue:
2581 destroy_workqueue(workqueue);
2582
ffce2e7e
PO
2583 return ret;
2584}
2585
2586static void __exit mmc_exit(void)
2587{
e29a7d73 2588 sdio_unregister_bus();
ffce2e7e
PO
2589 mmc_unregister_host_class();
2590 mmc_unregister_bus();
2591 destroy_workqueue(workqueue);
2592}
2593
26074962 2594subsys_initcall(mmc_init);
ffce2e7e
PO
2595module_exit(mmc_exit);
2596
1da177e4 2597MODULE_LICENSE("GPL");