Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[linux-block.git] / drivers / mmc / core / core.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
aaac1b47 3 * linux/drivers/mmc/core/core.c
1da177e4
LT
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4 9 */
1da177e4
LT
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
af8350c7 18#include <linux/leds.h>
b57c43ad 19#include <linux/scatterlist.h>
86e8286a 20#include <linux/log2.h>
e594573d 21#include <linux/pm_runtime.h>
bbd43682 22#include <linux/pm_wakeup.h>
35eb6db1 23#include <linux/suspend.h>
1b676f70
PF
24#include <linux/fault-inject.h>
25#include <linux/random.h>
950d56ac 26#include <linux/slab.h>
6e9e318b 27#include <linux/of.h>
1da177e4
LT
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
da7fbe58
PO
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
740a221e 33#include <linux/mmc/slot-gpio.h>
1da177e4 34
7962fc37
BW
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
aaac1b47 38#include "core.h"
4facdde1 39#include "card.h"
93f1c150 40#include "crypto.h"
ffce2e7e
PO
41#include "bus.h"
42#include "host.h"
e29a7d73 43#include "sdio_bus.h"
3aa8793f 44#include "pwrseq.h"
da7fbe58
PO
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
5c4e6f13 48#include "sdio_ops.h"
1da177e4 49
12182aff
UH
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
ad9be7ff 52#define SD_DISCARD_TIMEOUT_MS (250)
12182aff 53
fa550189 54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 55
af517150
DB
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
60 */
90ab5ee9 61bool use_spi_crc = 1;
af517150
DB
62module_param(use_spi_crc, bool, 0);
63
ffce2e7e
PO
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
520bd7a8
UH
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
ffce2e7e
PO
74}
75
1b676f70
PF
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
e5723f95 96 if ((cmd && cmd->error) || data->error ||
1b676f70
PF
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
2e744fcb
AM
100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
5163af5a
AH
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
1da177e4 131/**
fe10c6ab
RK
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
1da177e4
LT
135 *
136 * MMC drivers should call this function when they have completed
fe10c6ab 137 * their processing of a request.
1da177e4
LT
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
142 int err = cmd->error;
143
bd11e8bd 144 /* Flag re-tuning needed on CRC errors */
0a55f4ab
DA
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
031277d4 148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
bd11e8bd 149 (mrq->data && mrq->data->error == -EILSEQ) ||
031277d4 150 (mrq->stop && mrq->stop->error == -EILSEQ)))
bd11e8bd
AH
151 mmc_retune_needed(host);
152
af517150
DB
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 cmd->retries = 0;
156 }
157
5163af5a
AH
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
160
161 mmc_complete_cmd(mrq);
162
7962fc37
BW
163 trace_mmc_request_done(host, mrq);
164
67b8360a
LW
165 /*
166 * We list various conditions for the command to be considered
167 * properly done:
168 *
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
173 */
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
1b676f70
PF
175 mmc_should_fail_request(host, mrq);
176
5163af5a
AH
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
af8350c7 179
fc75b708
AG
180 if (mrq->sbc) {
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
183 mrq->sbc->error,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 }
187
e4d21708
PO
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
192
193 if (mrq->data) {
194 pr_debug("%s: %d bytes transferred: %d\n",
195 mmc_hostname(host),
196 mrq->data->bytes_xfered, mrq->data->error);
197 }
198
199 if (mrq->stop) {
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
202 mrq->stop->error,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
205 }
1da177e4 206 }
67b8360a
LW
207 /*
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
210 */
211 if (mrq->done)
212 mrq->done(mrq);
1da177e4
LT
213}
214
215EXPORT_SYMBOL(mmc_request_done);
216
90a81489
AH
217static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218{
219 int err;
220
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
223 if (err) {
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
226 return;
227 }
228
5d3f6ef0
HG
229 /*
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
f328c76e 232 * And bypass I/O abort, reset and bus suspend operations.
5d3f6ef0 233 */
f328c76e 234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
5d3f6ef0
HG
236 int tries = 500; /* Wait aprox 500ms at maximum */
237
238 while (host->ops->card_busy(host) && --tries)
239 mmc_delay(1);
240
241 if (tries == 0) {
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
244 return;
245 }
246 }
247
5163af5a
AH
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
250 /*
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
253 */
254 reinit_completion(&mrq->cmd_completion);
255 }
256
7962fc37
BW
257 trace_mmc_request_start(host, mrq);
258
3e207c8c
AH
259 if (host->cqe_on)
260 host->cqe_ops->cqe_off(host);
261
90a81489
AH
262 host->ops->request(host, mrq);
263}
264
72a5af55
AH
265static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 bool cqe)
1da177e4 267{
7b2fd4f2
JC
268 if (mrq->sbc) {
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
272 }
273
4b67e63f 274 if (mrq->cmd) {
72a5af55
AH
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 } else if (cqe) {
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
4b67e63f 281 }
1da177e4 282
e4d21708
PO
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
ce252edd 288 mrq->data->timeout_ns / 1000000,
e4d21708
PO
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
4b67e63f
AH
297}
298
f34bdd2f 299static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
4b67e63f 300{
b044b1bc 301 unsigned int i, sz = 0;
4b67e63f 302 struct scatterlist *sg;
1da177e4 303
f34bdd2f
AH
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
cce411e6
AG
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
1da177e4 313 if (mrq->data) {
6ff897ff
SL
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
b044b1bc 318
a84756c5
PO
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
6ff897ff
SL
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
b044b1bc 323
1da177e4
LT
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
f34bdd2f
AH
332
333 return 0;
334}
335
cb39f61e 336int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
f34bdd2f
AH
337{
338 int err;
339
d2383318
AH
340 init_completion(&mrq->cmd_completion);
341
f34bdd2f
AH
342 mmc_retune_hold(host);
343
344 if (mmc_card_removed(host->card))
345 return -ENOMEDIUM;
346
72a5af55 347 mmc_mrq_pr_debug(host, mrq, false);
f34bdd2f
AH
348
349 WARN_ON(!host->claimed);
350
351 err = mmc_mrq_prep(host, mrq);
352 if (err)
353 return err;
354
66c036e0 355 led_trigger_event(host->led, LED_FULL);
90a81489 356 __mmc_start_request(host, mrq);
f100c1c2
AH
357
358 return 0;
1da177e4 359}
cb39f61e 360EXPORT_SYMBOL(mmc_start_request);
1da177e4 361
1da177e4
LT
362static void mmc_wait_done(struct mmc_request *mrq)
363{
aa8b683a
PF
364 complete(&mrq->completion);
365}
366
5163af5a
AH
367static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368{
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370
371 /*
372 * If there is an ongoing transfer, wait for the command line to become
373 * available.
374 */
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
377}
378
956d9fd5 379static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a 380{
f100c1c2
AH
381 int err;
382
5163af5a
AH
383 mmc_wait_ongoing_tfr_cmd(host);
384
aa8b683a
PF
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
f100c1c2
AH
387
388 err = mmc_start_request(host, mrq);
389 if (err) {
390 mrq->cmd->error = err;
5163af5a 391 mmc_complete_cmd(mrq);
d3049504 392 complete(&mrq->completion);
d3049504 393 }
f100c1c2
AH
394
395 return err;
aa8b683a
PF
396}
397
5163af5a 398void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a 399{
08a7e1df
AH
400 struct mmc_command *cmd;
401
402 while (1) {
403 wait_for_completion(&mrq->completion);
404
405 cmd = mrq->cmd;
775a9362 406
d3049504
AH
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
08a7e1df
AH
409 break;
410
90a81489
AH
411 mmc_retune_recheck(host);
412
08a7e1df
AH
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
90a81489 417 __mmc_start_request(host, mrq);
08a7e1df 418 }
90a81489
AH
419
420 mmc_retune_release(host);
aa8b683a 421}
5163af5a
AH
422EXPORT_SYMBOL(mmc_wait_for_req_done);
423
72a5af55
AH
424/*
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
428 *
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
431 */
432int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433{
434 int err;
435
436 /*
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
440 * ->cqe_off().
441 */
442 err = mmc_retune(host);
443 if (err)
444 goto out_err;
445
446 mrq->host = host;
447
448 mmc_mrq_pr_debug(host, mrq, true);
449
450 err = mmc_mrq_prep(host, mrq);
451 if (err)
452 goto out_err;
453
454 err = host->cqe_ops->cqe_request(host, mrq);
455 if (err)
456 goto out_err;
457
458 trace_mmc_request_start(host, mrq);
459
460 return 0;
461
462out_err:
463 if (mrq->cmd) {
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
466 } else {
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
469 }
470 return err;
471}
472EXPORT_SYMBOL(mmc_cqe_start_req);
473
474/**
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
478 *
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
481 */
482void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483{
484 mmc_should_fail_request(host, mrq);
485
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
490
491 trace_mmc_request_done(host, mrq);
492
493 if (mrq->cmd) {
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 } else {
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
499 }
500
501 if (mrq->data) {
502 pr_debug("%s: %d bytes transferred: %d\n",
503 mmc_hostname(host),
504 mrq->data->bytes_xfered, mrq->data->error);
505 }
506
507 mrq->done(mrq);
508}
509EXPORT_SYMBOL(mmc_cqe_request_done);
510
511/**
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @host: MMC host
514 * @mrq: MMC request to be processed
515 */
516void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517{
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
520}
521EXPORT_SYMBOL(mmc_cqe_post_req);
522
523/* Arbitrary 1 second timeout */
524#define MMC_CQE_RECOVERY_TIMEOUT 1000
525
526/*
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
529 *
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
534 */
535int mmc_cqe_recovery(struct mmc_host *host)
536{
537 struct mmc_command cmd;
538 int err;
539
540 mmc_retune_hold_now(host);
541
542 /*
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
545 */
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547
548 host->cqe_ops->cqe_recovery_start(host);
549
550 memset(&cmd, 0, sizeof(cmd));
6b1dc622
ZY
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
72a5af55 553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
6b1dc622 554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
72a5af55
AH
555 mmc_wait_for_cmd(host, &cmd, 0);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_CMDQ_TASK_MGMT;
559 cmd.arg = 1; /* Discard entire queue */
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
6b1dc622 562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
72a5af55
AH
563 err = mmc_wait_for_cmd(host, &cmd, 0);
564
565 host->cqe_ops->cqe_recovery_finish(host);
566
567 mmc_retune_release(host);
568
569 return err;
570}
571EXPORT_SYMBOL(mmc_cqe_recovery);
572
5163af5a
AH
573/**
574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
575 * @host: MMC host
576 * @mrq: MMC request
577 *
578 * mmc_is_req_done() is used with requests that have
579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580 * starting a request and before waiting for it to complete. That is,
581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582 * and before mmc_wait_for_req_done(). If it is called at other times the
583 * result is not meaningful.
584 */
585bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586{
126b6270 587 return completion_done(&mrq->completion);
5163af5a
AH
588}
589EXPORT_SYMBOL(mmc_is_req_done);
aa8b683a 590
67a61c48
PO
591/**
592 * mmc_wait_for_req - start a request and wait for completion
593 * @host: MMC host to start command
594 * @mrq: MMC request to start
595 *
596 * Start a new MMC custom command request for a host, and wait
5163af5a
AH
597 * for the command to complete. In the case of 'cap_cmd_during_tfr'
598 * requests, the transfer is ongoing and the caller can issue further
599 * commands that do not use the data lines, and then wait by calling
600 * mmc_wait_for_req_done().
601 * Does not attempt to parse the response.
67a61c48
PO
602 */
603void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 604{
aa8b683a 605 __mmc_start_req(host, mrq);
5163af5a
AH
606
607 if (!mrq->cap_cmd_during_tfr)
608 mmc_wait_for_req_done(host, mrq);
1da177e4 609}
1da177e4
LT
610EXPORT_SYMBOL(mmc_wait_for_req);
611
612/**
613 * mmc_wait_for_cmd - start a command and wait for completion
614 * @host: MMC host to start command
615 * @cmd: MMC command to start
616 * @retries: maximum number of retries
617 *
618 * Start a new MMC command for a host, and wait for the command
619 * to complete. Return any error that occurred while the command
620 * was executing. Do not attempt to parse the response.
621 */
622int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623{
c7836d15 624 struct mmc_request mrq = {};
1da177e4 625
d84075c8 626 WARN_ON(!host->claimed);
1da177e4 627
1da177e4
LT
628 memset(cmd->resp, 0, sizeof(cmd->resp));
629 cmd->retries = retries;
630
631 mrq.cmd = cmd;
632 cmd->data = NULL;
633
634 mmc_wait_for_req(host, &mrq);
635
636 return cmd->error;
637}
638
639EXPORT_SYMBOL(mmc_wait_for_cmd);
640
d773d725
RK
641/**
642 * mmc_set_data_timeout - set the timeout for a data command
643 * @data: data phase for command
644 * @card: the MMC card associated with the data transfer
67a61c48
PO
645 *
646 * Computes the data timeout parameters according to the
647 * correct algorithm given the card type.
d773d725 648 */
b146d26a 649void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
650{
651 unsigned int mult;
652
e6f918bf
PO
653 /*
654 * SDIO cards only define an upper 1 s limit on access.
655 */
656 if (mmc_card_sdio(card)) {
657 data->timeout_ns = 1000000000;
658 data->timeout_clks = 0;
659 return;
660 }
661
d773d725
RK
662 /*
663 * SD cards use a 100 multiplier rather than 10
664 */
665 mult = mmc_card_sd(card) ? 100 : 10;
666
667 /*
668 * Scale up the multiplier (and therefore the timeout) by
669 * the r2w factor for writes.
670 */
b146d26a 671 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
672 mult <<= card->csd.r2w_factor;
673
4406ae21
SL
674 data->timeout_ns = card->csd.taac_ns * mult;
675 data->timeout_clks = card->csd.taac_clks * mult;
d773d725
RK
676
677 /*
678 * SD cards also have an upper limit on the timeout.
679 */
680 if (mmc_card_sd(card)) {
681 unsigned int timeout_us, limit_us;
682
683 timeout_us = data->timeout_ns / 1000;
9eadcc05 684 if (card->host->ios.clock)
e9b86841 685 timeout_us += data->timeout_clks * 1000 /
9eadcc05 686 (card->host->ios.clock / 1000);
d773d725 687
b146d26a 688 if (data->flags & MMC_DATA_WRITE)
493890e7 689 /*
3bdc9ba8
PW
690 * The MMC spec "It is strongly recommended
691 * for hosts to implement more than 500ms
692 * timeout value even if the card indicates
693 * the 250ms maximum busy length." Even the
694 * previous value of 300ms is known to be
695 * insufficient for some cards.
493890e7 696 */
3bdc9ba8 697 limit_us = 3000000;
d773d725
RK
698 else
699 limit_us = 100000;
700
fba68bd2
PL
701 /*
702 * SDHC cards always use these fixed values.
703 */
6ca2920d 704 if (timeout_us > limit_us) {
d773d725
RK
705 data->timeout_ns = limit_us * 1000;
706 data->timeout_clks = 0;
707 }
f7bf11a3
SW
708
709 /* assign limit value if invalid */
710 if (timeout_us == 0)
711 data->timeout_ns = limit_us * 1000;
d773d725 712 }
6de5fc9c
SNX
713
714 /*
715 * Some cards require longer data read timeout than indicated in CSD.
716 * Address this by setting the read timeout to a "reasonably high"
32ecd320 717 * value. For the cards tested, 600ms has proven enough. If necessary,
6de5fc9c
SNX
718 * this value can be increased if other problematic cards require this.
719 */
720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
32ecd320 721 data->timeout_ns = 600000000;
6de5fc9c
SNX
722 data->timeout_clks = 0;
723 }
724
c0c88871
WM
725 /*
726 * Some cards need very high timeouts if driven in SPI mode.
727 * The worst observed timeout was 900ms after writing a
728 * continuous stream of data until the internal logic
729 * overflowed.
730 */
731 if (mmc_host_is_spi(card->host)) {
732 if (data->flags & MMC_DATA_WRITE) {
733 if (data->timeout_ns < 1000000000)
734 data->timeout_ns = 1000000000; /* 1s */
735 } else {
736 if (data->timeout_ns < 100000000)
737 data->timeout_ns = 100000000; /* 100ms */
738 }
739 }
d773d725
RK
740}
741EXPORT_SYMBOL(mmc_set_data_timeout);
742
6c0cedd1
AH
743/*
744 * Allow claiming an already claimed host if the context is the same or there is
745 * no context but the task is the same.
746 */
747static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748 struct task_struct *task)
749{
750 return host->claimer == ctx ||
751 (!ctx && task && host->claimer->task == task);
752}
753
754static inline void mmc_ctx_set_claimer(struct mmc_host *host,
755 struct mmc_ctx *ctx,
756 struct task_struct *task)
757{
758 if (!host->claimer) {
759 if (ctx)
760 host->claimer = ctx;
761 else
762 host->claimer = &host->default_ctx;
763 }
764 if (task)
765 host->claimer->task = task;
766}
767
1da177e4 768/**
2342f332 769 * __mmc_claim_host - exclusively claim a host
1da177e4 770 * @host: mmc host to claim
6c0cedd1
AH
771 * @ctx: context that claims the host or NULL in which case the default
772 * context will be used
2342f332 773 * @abort: whether or not the operation should be aborted
1da177e4 774 *
2342f332
NP
775 * Claim a host for a set of operations. If @abort is non null and
776 * dereference a non-zero value then this will return prematurely with
777 * that non-zero value without acquiring the lock. Returns zero
778 * with the lock held otherwise.
1da177e4 779 */
6c0cedd1
AH
780int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
781 atomic_t *abort)
1da177e4 782{
6c0cedd1 783 struct task_struct *task = ctx ? NULL : current;
1da177e4
LT
784 DECLARE_WAITQUEUE(wait, current);
785 unsigned long flags;
2342f332 786 int stop;
9250aea7 787 bool pm = false;
1da177e4 788
cf795bfb
PO
789 might_sleep();
790
1da177e4
LT
791 add_wait_queue(&host->wq, &wait);
792 spin_lock_irqsave(&host->lock, flags);
793 while (1) {
794 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 795 stop = abort ? atomic_read(abort) : 0;
6c0cedd1 796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
1da177e4
LT
797 break;
798 spin_unlock_irqrestore(&host->lock, flags);
799 schedule();
800 spin_lock_irqsave(&host->lock, flags);
801 }
802 set_current_state(TASK_RUNNING);
319a3f14 803 if (!stop) {
2342f332 804 host->claimed = 1;
6c0cedd1 805 mmc_ctx_set_claimer(host, ctx, task);
319a3f14 806 host->claim_cnt += 1;
9250aea7
UH
807 if (host->claim_cnt == 1)
808 pm = true;
319a3f14 809 } else
2342f332 810 wake_up(&host->wq);
1da177e4
LT
811 spin_unlock_irqrestore(&host->lock, flags);
812 remove_wait_queue(&host->wq, &wait);
9250aea7
UH
813
814 if (pm)
815 pm_runtime_get_sync(mmc_dev(host));
816
2342f332 817 return stop;
1da177e4 818}
2342f332 819EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 820
ab1efd27 821/**
907d2e7c 822 * mmc_release_host - release a host
ab1efd27
UH
823 * @host: mmc host to release
824 *
907d2e7c
AH
825 * Release a MMC host, allowing others to claim the host
826 * for their operations.
ab1efd27 827 */
907d2e7c 828void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
829{
830 unsigned long flags;
831
907d2e7c
AH
832 WARN_ON(!host->claimed);
833
8ea926b2 834 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
835 if (--host->claim_cnt) {
836 /* Release for nested claim */
837 spin_unlock_irqrestore(&host->lock, flags);
838 } else {
839 host->claimed = 0;
6c0cedd1 840 host->claimer->task = NULL;
319a3f14
AH
841 host->claimer = NULL;
842 spin_unlock_irqrestore(&host->lock, flags);
843 wake_up(&host->wq);
9250aea7 844 pm_runtime_mark_last_busy(mmc_dev(host));
7d5ef512
UH
845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846 pm_runtime_put_sync_suspend(mmc_dev(host));
847 else
848 pm_runtime_put_autosuspend(mmc_dev(host));
319a3f14 849 }
8ea926b2 850}
1da177e4
LT
851EXPORT_SYMBOL(mmc_release_host);
852
e94cfef6
UH
853/*
854 * This is a helper function, which fetches a runtime pm reference for the
855 * card device and also claims the host.
856 */
6c0cedd1 857void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
e94cfef6
UH
858{
859 pm_runtime_get_sync(&card->dev);
6c0cedd1 860 __mmc_claim_host(card->host, ctx, NULL);
e94cfef6
UH
861}
862EXPORT_SYMBOL(mmc_get_card);
863
864/*
865 * This is a helper function, which releases the host and drops the runtime
866 * pm reference for the card device.
867 */
6c0cedd1 868void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
e94cfef6 869{
6c0cedd1
AH
870 struct mmc_host *host = card->host;
871
872 WARN_ON(ctx && host->claimer != ctx);
873
874 mmc_release_host(host);
e94cfef6
UH
875 pm_runtime_mark_last_busy(&card->dev);
876 pm_runtime_put_autosuspend(&card->dev);
877}
878EXPORT_SYMBOL(mmc_put_card);
879
7ea239d9
PO
880/*
881 * Internal function that does the actual ios call to the host driver,
882 * optionally printing some debug output.
883 */
920e70c5
RK
884static inline void mmc_set_ios(struct mmc_host *host)
885{
886 struct mmc_ios *ios = &host->ios;
887
cd9277c0
PO
888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889 "width %u timing %u\n",
920e70c5
RK
890 mmc_hostname(host), ios->clock, ios->bus_mode,
891 ios->power_mode, ios->chip_select, ios->vdd,
ed9feec7 892 1 << ios->bus_width, ios->timing);
fba68bd2 893
920e70c5
RK
894 host->ops->set_ios(host, ios);
895}
896
7ea239d9
PO
897/*
898 * Control chip select pin on a host.
899 */
da7fbe58 900void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 901{
da7fbe58
PO
902 host->ios.chip_select = mode;
903 mmc_set_ios(host);
1da177e4
LT
904}
905
7ea239d9
PO
906/*
907 * Sets the host clock to the highest possible frequency that
908 * is below "hz".
909 */
9eadcc05 910void mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9 911{
6a98f1e8 912 WARN_ON(hz && hz < host->f_min);
7ea239d9
PO
913
914 if (hz > host->f_max)
915 hz = host->f_max;
916
917 host->ios.clock = hz;
918 mmc_set_ios(host);
919}
920
63e415c6
AH
921int mmc_execute_tuning(struct mmc_card *card)
922{
923 struct mmc_host *host = card->host;
924 u32 opcode;
925 int err;
926
927 if (!host->ops->execute_tuning)
928 return 0;
929
3e207c8c
AH
930 if (host->cqe_on)
931 host->cqe_ops->cqe_off(host);
932
63e415c6
AH
933 if (mmc_card_mmc(card))
934 opcode = MMC_SEND_TUNING_BLOCK_HS200;
935 else
936 opcode = MMC_SEND_TUNING_BLOCK;
937
63e415c6 938 err = host->ops->execute_tuning(host, opcode);
63e415c6
AH
939
940 if (err)
07d97d87
RK
941 pr_err("%s: tuning execution failed: %d\n",
942 mmc_hostname(host), err);
79d5a65a
AH
943 else
944 mmc_retune_enable(host);
63e415c6
AH
945
946 return err;
947}
948
7ea239d9
PO
949/*
950 * Change the bus mode (open drain/push-pull) of a host.
951 */
952void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
953{
954 host->ios.bus_mode = mode;
955 mmc_set_ios(host);
956}
957
0f8d8ea6
AH
958/*
959 * Change data bus width of a host.
960 */
961void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
962{
4c4cb171
PR
963 host->ios.bus_width = width;
964 mmc_set_ios(host);
0f8d8ea6
AH
965}
966
2d079c43
JR
967/*
968 * Set initial state after a power cycle or a hw_reset.
969 */
970void mmc_set_initial_state(struct mmc_host *host)
971{
3e207c8c
AH
972 if (host->cqe_on)
973 host->cqe_ops->cqe_off(host);
974
79d5a65a
AH
975 mmc_retune_disable(host);
976
2d079c43
JR
977 if (mmc_host_is_spi(host))
978 host->ios.chip_select = MMC_CS_HIGH;
979 else
980 host->ios.chip_select = MMC_CS_DONTCARE;
981 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
982 host->ios.bus_width = MMC_BUS_WIDTH_1;
983 host->ios.timing = MMC_TIMING_LEGACY;
75e8a228 984 host->ios.drv_type = 0;
81ac2af6
SL
985 host->ios.enhanced_strobe = false;
986
987 /*
988 * Make sure we are in non-enhanced strobe mode before we
989 * actually enable it in ext_csd.
990 */
991 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
992 host->ops->hs400_enhanced_strobe)
993 host->ops->hs400_enhanced_strobe(host, &host->ios);
2d079c43
JR
994
995 mmc_set_ios(host);
93f1c150
EB
996
997 mmc_crypto_set_initial_state(host);
2d079c43
JR
998}
999
86e8286a
AV
1000/**
1001 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1002 * @vdd: voltage (mV)
1003 * @low_bits: prefer low bits in boundary cases
1004 *
1005 * This function returns the OCR bit number according to the provided @vdd
1006 * value. If conversion is not possible a negative errno value returned.
1007 *
1008 * Depending on the @low_bits flag the function prefers low or high OCR bits
1009 * on boundary voltages. For example,
1010 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1011 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1012 *
1013 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1014 */
1015static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1016{
1017 const int max_bit = ilog2(MMC_VDD_35_36);
1018 int bit;
1019
1020 if (vdd < 1650 || vdd > 3600)
1021 return -EINVAL;
1022
1023 if (vdd >= 1650 && vdd <= 1950)
1024 return ilog2(MMC_VDD_165_195);
1025
1026 if (low_bits)
1027 vdd -= 1;
1028
1029 /* Base 2000 mV, step 100 mV, bit's base 8. */
1030 bit = (vdd - 2000) / 100 + 8;
1031 if (bit > max_bit)
1032 return max_bit;
1033 return bit;
1034}
1035
1036/**
1037 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1038 * @vdd_min: minimum voltage value (mV)
1039 * @vdd_max: maximum voltage value (mV)
1040 *
1041 * This function returns the OCR mask bits according to the provided @vdd_min
1042 * and @vdd_max values. If conversion is not possible the function returns 0.
1043 *
1044 * Notes wrt boundary cases:
1045 * This function sets the OCR bits for all boundary voltages, for example
1046 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1047 * MMC_VDD_34_35 mask.
1048 */
1049u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1050{
1051 u32 mask = 0;
1052
1053 if (vdd_max < vdd_min)
1054 return 0;
1055
1056 /* Prefer high bits for the boundary vdd_max values. */
1057 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1058 if (vdd_max < 0)
1059 return 0;
1060
1061 /* Prefer low bits for the boundary vdd_min values. */
1062 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1063 if (vdd_min < 0)
1064 return 0;
1065
1066 /* Fill the mask, from max bit to min bit. */
1067 while (vdd_max >= vdd_min)
1068 mask |= 1 << vdd_max--;
1069
1070 return mask;
1071}
86e8286a 1072
25185f3f
SH
1073static int mmc_of_get_func_num(struct device_node *node)
1074{
1075 u32 reg;
1076 int ret;
1077
1078 ret = of_property_read_u32(node, "reg", &reg);
1079 if (ret < 0)
1080 return ret;
1081
1082 return reg;
1083}
1084
1085struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1086 unsigned func_num)
1087{
1088 struct device_node *node;
1089
1090 if (!host->parent || !host->parent->of_node)
1091 return NULL;
1092
1093 for_each_child_of_node(host->parent->of_node, node) {
1094 if (mmc_of_get_func_num(node) == func_num)
1095 return node;
1096 }
1097
1098 return NULL;
1099}
1100
1da177e4
LT
1101/*
1102 * Mask off any voltages we don't support and select
1103 * the lowest voltage
1104 */
7ea239d9 1105u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1106{
1107 int bit;
1108
726d6f23
UH
1109 /*
1110 * Sanity check the voltages that the card claims to
1111 * support.
1112 */
1113 if (ocr & 0x7F) {
1114 dev_warn(mmc_dev(host),
1115 "card claims to support voltages below defined range\n");
1116 ocr &= ~0x7F;
1117 }
1118
1da177e4 1119 ocr &= host->ocr_avail;
ce69d37b
UH
1120 if (!ocr) {
1121 dev_warn(mmc_dev(host), "no support for card's volts\n");
1122 return 0;
1123 }
1da177e4 1124
ce69d37b
UH
1125 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1126 bit = ffs(ocr) - 1;
63ef731a 1127 ocr &= 3 << bit;
ce69d37b 1128 mmc_power_cycle(host, ocr);
1da177e4 1129 } else {
ce69d37b
UH
1130 bit = fls(ocr) - 1;
1131 ocr &= 3 << bit;
1132 if (bit != host->ios.vdd)
1133 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1da177e4
LT
1134 }
1135
1136 return ocr;
1137}
1138
4e74b6b3 1139int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
567c8903
JR
1140{
1141 int err = 0;
1142 int old_signal_voltage = host->ios.signal_voltage;
1143
1144 host->ios.signal_voltage = signal_voltage;
9eadcc05 1145 if (host->ops->start_signal_voltage_switch)
567c8903 1146 err = host->ops->start_signal_voltage_switch(host, &host->ios);
567c8903
JR
1147
1148 if (err)
1149 host->ios.signal_voltage = old_signal_voltage;
1150
1151 return err;
1152
1153}
1154
508c9864
UH
1155void mmc_set_initial_signal_voltage(struct mmc_host *host)
1156{
1157 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1158 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1159 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1160 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1161 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1162 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1163 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1164}
1165
3f496afb
AH
1166int mmc_host_set_uhs_voltage(struct mmc_host *host)
1167{
1168 u32 clock;
1169
1170 /*
1171 * During a signal voltage level switch, the clock must be gated
1172 * for 5 ms according to the SD spec
1173 */
1174 clock = host->ios.clock;
1175 host->ios.clock = 0;
1176 mmc_set_ios(host);
1177
1178 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1179 return -EAGAIN;
1180
1181 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1182 mmc_delay(10);
1183 host->ios.clock = clock;
1184 mmc_set_ios(host);
1185
1186 return 0;
1187}
1188
2ed573b6 1189int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
f2119df6 1190{
c7836d15 1191 struct mmc_command cmd = {};
f2119df6
AN
1192 int err = 0;
1193
0797e5f1
JR
1194 /*
1195 * If we cannot switch voltages, return failure so the caller
1196 * can continue without UHS mode
1197 */
1198 if (!host->ops->start_signal_voltage_switch)
1199 return -EPERM;
1200 if (!host->ops->card_busy)
6606110d
JP
1201 pr_warn("%s: cannot verify signal voltage switch\n",
1202 mmc_hostname(host));
0797e5f1
JR
1203
1204 cmd.opcode = SD_SWITCH_VOLTAGE;
1205 cmd.arg = 0;
1206 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1207
1208 err = mmc_wait_for_cmd(host, &cmd, 0);
1209 if (err)
147186f5 1210 goto power_cycle;
9eadcc05
UH
1211
1212 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1213 return -EIO;
0797e5f1 1214
0797e5f1
JR
1215 /*
1216 * The card should drive cmd and dat[0:3] low immediately
1217 * after the response of cmd11, but wait 1 ms to be sure
1218 */
1219 mmc_delay(1);
1220 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1221 err = -EAGAIN;
1222 goto power_cycle;
1223 }
f2119df6 1224
3f496afb 1225 if (mmc_host_set_uhs_voltage(host)) {
0797e5f1
JR
1226 /*
1227 * Voltages may not have been switched, but we've already
1228 * sent CMD11, so a power cycle is required anyway
1229 */
1230 err = -EAGAIN;
1231 goto power_cycle;
f2119df6
AN
1232 }
1233
0797e5f1
JR
1234 /* Wait for at least 1 ms according to spec */
1235 mmc_delay(1);
1236
1237 /*
1238 * Failure to switch is indicated by the card holding
1239 * dat[0:3] low
1240 */
1241 if (host->ops->card_busy && host->ops->card_busy(host))
1242 err = -EAGAIN;
1243
1244power_cycle:
1245 if (err) {
1246 pr_debug("%s: Signal voltage switch failed, "
1247 "power cycling card\n", mmc_hostname(host));
0f791fda 1248 mmc_power_cycle(host, ocr);
0797e5f1
JR
1249 }
1250
0797e5f1 1251 return err;
f2119df6
AN
1252}
1253
b57c43ad 1254/*
7ea239d9 1255 * Select timing parameters for host.
b57c43ad 1256 */
7ea239d9 1257void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1258{
7ea239d9
PO
1259 host->ios.timing = timing;
1260 mmc_set_ios(host);
b57c43ad
PO
1261}
1262
d6d50a15
AN
1263/*
1264 * Select appropriate driver type for host.
1265 */
1266void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1267{
1268 host->ios.drv_type = drv_type;
1269 mmc_set_ios(host);
1270}
1271
e23350b3
AH
1272int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1273 int card_drv_type, int *drv_type)
1274{
1275 struct mmc_host *host = card->host;
1276 int host_drv_type = SD_DRIVER_TYPE_B;
e23350b3
AH
1277
1278 *drv_type = 0;
1279
1280 if (!host->ops->select_drive_strength)
1281 return 0;
1282
1283 /* Use SD definition of driver strength for hosts */
1284 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1285 host_drv_type |= SD_DRIVER_TYPE_A;
1286
1287 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1288 host_drv_type |= SD_DRIVER_TYPE_C;
1289
1290 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1291 host_drv_type |= SD_DRIVER_TYPE_D;
1292
1293 /*
1294 * The drive strength that the hardware can support
1295 * depends on the board design. Pass the appropriate
1296 * information and let the hardware specific code
1297 * return what is possible given the options
1298 */
9eadcc05
UH
1299 return host->ops->select_drive_strength(card, max_dtr,
1300 host_drv_type,
1301 card_drv_type,
1302 drv_type);
e23350b3
AH
1303}
1304
1da177e4 1305/*
45f8245b
RK
1306 * Apply power to the MMC stack. This is a two-stage process.
1307 * First, we enable power to the card without the clock running.
1308 * We then wait a bit for the power to stabilise. Finally,
1309 * enable the bus drivers and clock to the card.
1310 *
1311 * We must _NOT_ enable the clock prior to power stablising.
1312 *
1313 * If a host does all the power sequencing itself, ignore the
1314 * initial MMC_POWER_UP stage.
1da177e4 1315 */
4a065193 1316void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1317{
fa550189
UH
1318 if (host->ios.power_mode == MMC_POWER_ON)
1319 return;
1320
3aa8793f
UH
1321 mmc_pwrseq_pre_power_on(host);
1322
4a065193 1323 host->ios.vdd = fls(ocr) - 1;
1da177e4 1324 host->ios.power_mode = MMC_POWER_UP;
2d079c43
JR
1325 /* Set initial state and call mmc_set_ios */
1326 mmc_set_initial_state(host);
1da177e4 1327
508c9864 1328 mmc_set_initial_signal_voltage(host);
108ecc4c 1329
f9996aee
PO
1330 /*
1331 * This delay should be sufficient to allow the power supply
1332 * to reach the minimum voltage.
1333 */
6d796c68 1334 mmc_delay(host->ios.power_delay_ms);
1da177e4 1335
4febb7e2
UH
1336 mmc_pwrseq_post_power_on(host);
1337
88ae8b86 1338 host->ios.clock = host->f_init;
8dfd0374 1339
1da177e4 1340 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1341 mmc_set_ios(host);
1da177e4 1342
f9996aee
PO
1343 /*
1344 * This delay must be at least 74 clock sizes, or 1 ms, or the
1345 * time required to reach a stable voltage.
1346 */
6d796c68 1347 mmc_delay(host->ios.power_delay_ms);
1da177e4
LT
1348}
1349
7f7e4129 1350void mmc_power_off(struct mmc_host *host)
1da177e4 1351{
fa550189
UH
1352 if (host->ios.power_mode == MMC_POWER_OFF)
1353 return;
1354
3aa8793f
UH
1355 mmc_pwrseq_power_off(host);
1356
1da177e4
LT
1357 host->ios.clock = 0;
1358 host->ios.vdd = 0;
b33d46c3 1359
1da177e4 1360 host->ios.power_mode = MMC_POWER_OFF;
2d079c43
JR
1361 /* Set initial state and call mmc_set_ios */
1362 mmc_set_initial_state(host);
778e277c 1363
041beb1d
DD
1364 /*
1365 * Some configurations, such as the 802.11 SDIO card in the OLPC
1366 * XO-1.5, require a short delay after poweroff before the card
1367 * can be successfully turned on again.
1368 */
1369 mmc_delay(1);
1da177e4
LT
1370}
1371
4a065193 1372void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1373{
1374 mmc_power_off(host);
1375 /* Wait at least 1 ms according to SD spec */
1376 mmc_delay(1);
4a065193 1377 mmc_power_up(host, ocr);
276e090f
JR
1378}
1379
1da177e4 1380/*
7ea239d9
PO
1381 * Assign a mmc bus handler to a host. Only one bus handler may control a
1382 * host at any given time.
1da177e4 1383 */
7ea239d9 1384void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1385{
7ea239d9 1386 host->bus_ops = ops;
b57c43ad
PO
1387}
1388
7ea239d9 1389/*
7f7e4129 1390 * Remove the current bus handler from a host.
7ea239d9
PO
1391 */
1392void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1393{
e9ce2ce1 1394 host->bus_ops = NULL;
1da177e4
LT
1395}
1396
2ac55d5e 1397void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
bbd43682 1398{
bbd43682 1399 /*
b52fb259
UH
1400 * Prevent system sleep for 5s to allow user space to consume the
1401 * corresponding uevent. This is especially useful, when CD irq is used
1402 * as a system wakeup, but doesn't hurt in other cases.
bbd43682 1403 */
b52fb259
UH
1404 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1405 __pm_wakeup_event(host->ws, 5000);
bbd43682
UH
1406
1407 host->detect_change = 1;
1408 mmc_schedule_delayed_work(&host->detect, delay);
1409}
1410
1da177e4
LT
1411/**
1412 * mmc_detect_change - process change of state on a MMC socket
1413 * @host: host which changed state.
8dc00335 1414 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1415 *
67a61c48
PO
1416 * MMC drivers should call this when they detect a card has been
1417 * inserted or removed. The MMC layer will confirm that any
1418 * present card is still functional, and initialize any newly
1419 * inserted.
1da177e4 1420 */
8dc00335 1421void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1422{
bbd43682 1423 _mmc_detect_change(host, delay, true);
1da177e4 1424}
1da177e4
LT
1425EXPORT_SYMBOL(mmc_detect_change);
1426
dfe86cba
AH
1427void mmc_init_erase(struct mmc_card *card)
1428{
1429 unsigned int sz;
1430
1431 if (is_power_of_2(card->erase_size))
1432 card->erase_shift = ffs(card->erase_size) - 1;
1433 else
1434 card->erase_shift = 0;
1435
1436 /*
1437 * It is possible to erase an arbitrarily large area of an SD or MMC
1438 * card. That is not desirable because it can take a long time
1439 * (minutes) potentially delaying more important I/O, and also the
1440 * timeout calculations become increasingly hugely over-estimated.
1441 * Consequently, 'pref_erase' is defined as a guide to limit erases
1442 * to that size and alignment.
1443 *
1444 * For SD cards that define Allocation Unit size, limit erases to one
c6d8fd61
GG
1445 * Allocation Unit at a time.
1446 * For MMC, have a stab at ai good value and for modern cards it will
1447 * end up being 4MiB. Note that if the value is too small, it can end
1448 * up taking longer to erase. Also note, erase_size is already set to
1449 * High Capacity Erase Size if available when this function is called.
dfe86cba
AH
1450 */
1451 if (mmc_card_sd(card) && card->ssr.au) {
1452 card->pref_erase = card->ssr.au;
1453 card->erase_shift = ffs(card->ssr.au) - 1;
cc8aa7de 1454 } else if (card->erase_size) {
dfe86cba
AH
1455 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1456 if (sz < 128)
1457 card->pref_erase = 512 * 1024 / 512;
1458 else if (sz < 512)
1459 card->pref_erase = 1024 * 1024 / 512;
1460 else if (sz < 1024)
1461 card->pref_erase = 2 * 1024 * 1024 / 512;
1462 else
1463 card->pref_erase = 4 * 1024 * 1024 / 512;
1464 if (card->pref_erase < card->erase_size)
1465 card->pref_erase = card->erase_size;
1466 else {
1467 sz = card->pref_erase % card->erase_size;
1468 if (sz)
1469 card->pref_erase += card->erase_size - sz;
1470 }
cc8aa7de
CD
1471 } else
1472 card->pref_erase = 0;
dfe86cba
AH
1473}
1474
eaa02f75
AW
1475static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1476 unsigned int arg, unsigned int qty)
dfe86cba
AH
1477{
1478 unsigned int erase_timeout;
1479
7194efb8
AH
1480 if (arg == MMC_DISCARD_ARG ||
1481 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1482 erase_timeout = card->ext_csd.trim_timeout;
1483 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1484 /* High Capacity Erase Group Size uses HC timeouts */
1485 if (arg == MMC_TRIM_ARG)
1486 erase_timeout = card->ext_csd.trim_timeout;
1487 else
1488 erase_timeout = card->ext_csd.hc_erase_timeout;
1489 } else {
1490 /* CSD Erase Group Size uses write timeout */
1491 unsigned int mult = (10 << card->csd.r2w_factor);
4406ae21 1492 unsigned int timeout_clks = card->csd.taac_clks * mult;
dfe86cba
AH
1493 unsigned int timeout_us;
1494
4406ae21
SL
1495 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1496 if (card->csd.taac_ns < 1000000)
1497 timeout_us = (card->csd.taac_ns * mult) / 1000;
dfe86cba 1498 else
4406ae21 1499 timeout_us = (card->csd.taac_ns / 1000) * mult;
dfe86cba
AH
1500
1501 /*
1502 * ios.clock is only a target. The real clock rate might be
1503 * less but not that much less, so fudge it by multiplying by 2.
1504 */
1505 timeout_clks <<= 1;
1506 timeout_us += (timeout_clks * 1000) /
9eadcc05 1507 (card->host->ios.clock / 1000);
dfe86cba
AH
1508
1509 erase_timeout = timeout_us / 1000;
1510
1511 /*
1512 * Theoretically, the calculation could underflow so round up
1513 * to 1ms in that case.
1514 */
1515 if (!erase_timeout)
1516 erase_timeout = 1;
1517 }
1518
1519 /* Multiplier for secure operations */
1520 if (arg & MMC_SECURE_ARGS) {
1521 if (arg == MMC_SECURE_ERASE_ARG)
1522 erase_timeout *= card->ext_csd.sec_erase_mult;
1523 else
1524 erase_timeout *= card->ext_csd.sec_trim_mult;
1525 }
1526
1527 erase_timeout *= qty;
1528
1529 /*
1530 * Ensure at least a 1 second timeout for SPI as per
1531 * 'mmc_set_data_timeout()'
1532 */
1533 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1534 erase_timeout = 1000;
1535
eaa02f75 1536 return erase_timeout;
dfe86cba
AH
1537}
1538
eaa02f75
AW
1539static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1540 unsigned int arg,
1541 unsigned int qty)
dfe86cba 1542{
eaa02f75
AW
1543 unsigned int erase_timeout;
1544
ad9be7ff
AA
1545 /* for DISCARD none of the below calculation applies.
1546 * the busy timeout is 250msec per discard command.
1547 */
1548 if (arg == SD_DISCARD_ARG)
1549 return SD_DISCARD_TIMEOUT_MS;
1550
dfe86cba
AH
1551 if (card->ssr.erase_timeout) {
1552 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1553 erase_timeout = card->ssr.erase_timeout * qty +
1554 card->ssr.erase_offset;
dfe86cba
AH
1555 } else {
1556 /*
1557 * Erase timeout not specified in SD Status Register (SSR) so
1558 * use 250ms per write block.
1559 */
eaa02f75 1560 erase_timeout = 250 * qty;
dfe86cba
AH
1561 }
1562
1563 /* Must not be less than 1 second */
eaa02f75
AW
1564 if (erase_timeout < 1000)
1565 erase_timeout = 1000;
1566
1567 return erase_timeout;
dfe86cba
AH
1568}
1569
eaa02f75
AW
1570static unsigned int mmc_erase_timeout(struct mmc_card *card,
1571 unsigned int arg,
1572 unsigned int qty)
dfe86cba
AH
1573{
1574 if (mmc_card_sd(card))
eaa02f75 1575 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1576 else
eaa02f75 1577 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1578}
1579
1580static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1581 unsigned int to, unsigned int arg)
1582{
c7836d15 1583 struct mmc_command cmd = {};
bb4eecf2 1584 unsigned int qty = 0, busy_timeout = 0;
e62f1e0b 1585 bool use_r1b_resp;
dfe86cba
AH
1586 int err;
1587
8f11d106
AH
1588 mmc_retune_hold(card->host);
1589
dfe86cba
AH
1590 /*
1591 * qty is used to calculate the erase timeout which depends on how many
1592 * erase groups (or allocation units in SD terminology) are affected.
1593 * We count erasing part of an erase group as one erase group.
1594 * For SD, the allocation units are always a power of 2. For MMC, the
1595 * erase group size is almost certainly also power of 2, but it does not
1596 * seem to insist on that in the JEDEC standard, so we fall back to
1597 * division in that case. SD may not specify an allocation unit size,
1598 * in which case the timeout is based on the number of write blocks.
1599 *
1600 * Note that the timeout for secure trim 2 will only be correct if the
1601 * number of erase groups specified is the same as the total of all
1602 * preceding secure trim 1 commands. Since the power may have been
1603 * lost since the secure trim 1 commands occurred, it is generally
1604 * impossible to calculate the secure trim 2 timeout correctly.
1605 */
1606 if (card->erase_shift)
1607 qty += ((to >> card->erase_shift) -
1608 (from >> card->erase_shift)) + 1;
1609 else if (mmc_card_sd(card))
1610 qty += to - from + 1;
1611 else
1612 qty += ((to / card->erase_size) -
1613 (from / card->erase_size)) + 1;
1614
1615 if (!mmc_card_blockaddr(card)) {
1616 from <<= 9;
1617 to <<= 9;
1618 }
1619
dfe86cba
AH
1620 if (mmc_card_sd(card))
1621 cmd.opcode = SD_ERASE_WR_BLK_START;
1622 else
1623 cmd.opcode = MMC_ERASE_GROUP_START;
1624 cmd.arg = from;
1625 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1626 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1627 if (err) {
a3c76eb9 1628 pr_err("mmc_erase: group start error %d, "
dfe86cba 1629 "status %#x\n", err, cmd.resp[0]);
67716327 1630 err = -EIO;
dfe86cba
AH
1631 goto out;
1632 }
1633
1634 memset(&cmd, 0, sizeof(struct mmc_command));
1635 if (mmc_card_sd(card))
1636 cmd.opcode = SD_ERASE_WR_BLK_END;
1637 else
1638 cmd.opcode = MMC_ERASE_GROUP_END;
1639 cmd.arg = to;
1640 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1641 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1642 if (err) {
a3c76eb9 1643 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1644 err, cmd.resp[0]);
67716327 1645 err = -EIO;
dfe86cba
AH
1646 goto out;
1647 }
1648
1649 memset(&cmd, 0, sizeof(struct mmc_command));
1650 cmd.opcode = MMC_ERASE;
1651 cmd.arg = arg;
bb4eecf2 1652 busy_timeout = mmc_erase_timeout(card, arg, qty);
e62f1e0b 1653 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
bb4eecf2 1654
dfe86cba
AH
1655 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1656 if (err) {
a3c76eb9 1657 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1658 err, cmd.resp[0]);
1659 err = -EIO;
1660 goto out;
1661 }
1662
1663 if (mmc_host_is_spi(card->host))
1664 goto out;
1665
bb4eecf2
BW
1666 /*
1667 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1668 * shall be avoided.
1669 */
1670 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1671 goto out;
1672
0d84c3e6 1673 /* Let's poll to find out when the erase operation completes. */
04f967ad 1674 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
8fee476b 1675
dfe86cba 1676out:
8f11d106 1677 mmc_retune_release(card->host);
dfe86cba
AH
1678 return err;
1679}
1680
71085123
BW
1681static unsigned int mmc_align_erase_size(struct mmc_card *card,
1682 unsigned int *from,
1683 unsigned int *to,
1684 unsigned int nr)
1685{
1686 unsigned int from_new = *from, nr_new = nr, rem;
1687
6c689886
BW
1688 /*
1689 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1690 * to align the erase size efficiently.
1691 */
1692 if (is_power_of_2(card->erase_size)) {
1693 unsigned int temp = from_new;
1694
1695 from_new = round_up(temp, card->erase_size);
1696 rem = from_new - temp;
1697
71085123
BW
1698 if (nr_new > rem)
1699 nr_new -= rem;
1700 else
1701 return 0;
71085123 1702
6c689886
BW
1703 nr_new = round_down(nr_new, card->erase_size);
1704 } else {
1705 rem = from_new % card->erase_size;
1706 if (rem) {
1707 rem = card->erase_size - rem;
1708 from_new += rem;
1709 if (nr_new > rem)
1710 nr_new -= rem;
1711 else
1712 return 0;
1713 }
1714
1715 rem = nr_new % card->erase_size;
1716 if (rem)
1717 nr_new -= rem;
1718 }
71085123
BW
1719
1720 if (nr_new == 0)
1721 return 0;
1722
1723 *to = from_new + nr_new;
1724 *from = from_new;
1725
1726 return nr_new;
1727}
1728
dfe86cba
AH
1729/**
1730 * mmc_erase - erase sectors.
1731 * @card: card to erase
1732 * @from: first sector to erase
1733 * @nr: number of sectors to erase
bc47e2f6 1734 * @arg: erase command argument
dfe86cba
AH
1735 *
1736 * Caller must claim host before calling this function.
1737 */
1738int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1739 unsigned int arg)
1740{
1741 unsigned int rem, to = from + nr;
642c28ab 1742 int err;
dfe86cba 1743
94fe2580 1744 if (!(card->csd.cmdclass & CCC_ERASE))
dfe86cba
AH
1745 return -EOPNOTSUPP;
1746
1747 if (!card->erase_size)
1748 return -EOPNOTSUPP;
1749
bc47e2f6 1750 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
dfe86cba
AH
1751 return -EOPNOTSUPP;
1752
bc47e2f6 1753 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
dfe86cba
AH
1754 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1755 return -EOPNOTSUPP;
1756
bc47e2f6 1757 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
dfe86cba
AH
1758 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1759 return -EOPNOTSUPP;
1760
1761 if (arg == MMC_SECURE_ERASE_ARG) {
1762 if (from % card->erase_size || nr % card->erase_size)
1763 return -EINVAL;
1764 }
1765
71085123
BW
1766 if (arg == MMC_ERASE_ARG)
1767 nr = mmc_align_erase_size(card, &from, &to, nr);
dfe86cba
AH
1768
1769 if (nr == 0)
1770 return 0;
1771
dfe86cba
AH
1772 if (to <= from)
1773 return -EINVAL;
1774
1775 /* 'from' and 'to' are inclusive */
1776 to -= 1;
1777
642c28ab
DJ
1778 /*
1779 * Special case where only one erase-group fits in the timeout budget:
1780 * If the region crosses an erase-group boundary on this particular
1781 * case, we will be trimming more than one erase-group which, does not
1782 * fit in the timeout budget of the controller, so we need to split it
1783 * and call mmc_do_erase() twice if necessary. This special case is
1784 * identified by the card->eg_boundary flag.
1785 */
22d7e85f
RG
1786 rem = card->erase_size - (from % card->erase_size);
1787 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
642c28ab
DJ
1788 err = mmc_do_erase(card, from, from + rem - 1, arg);
1789 from += rem;
1790 if ((err) || (to <= from))
1791 return err;
1792 }
1793
dfe86cba
AH
1794 return mmc_do_erase(card, from, to, arg);
1795}
1796EXPORT_SYMBOL(mmc_erase);
1797
1798int mmc_can_erase(struct mmc_card *card)
1799{
94fe2580 1800 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
dfe86cba
AH
1801 return 1;
1802 return 0;
1803}
1804EXPORT_SYMBOL(mmc_can_erase);
1805
1806int mmc_can_trim(struct mmc_card *card)
1807{
b5b4ff0a
SL
1808 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1809 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
dfe86cba
AH
1810 return 1;
1811 return 0;
1812}
1813EXPORT_SYMBOL(mmc_can_trim);
1814
b3bf9153
KP
1815int mmc_can_discard(struct mmc_card *card)
1816{
1817 /*
1818 * As there's no way to detect the discard support bit at v4.5
1819 * use the s/w feature support filed.
1820 */
1821 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1822 return 1;
1823 return 0;
1824}
1825EXPORT_SYMBOL(mmc_can_discard);
1826
d9ddd629
KP
1827int mmc_can_sanitize(struct mmc_card *card)
1828{
28302812
AH
1829 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1830 return 0;
d9ddd629
KP
1831 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1832 return 1;
1833 return 0;
1834}
d9ddd629 1835
dfe86cba
AH
1836int mmc_can_secure_erase_trim(struct mmc_card *card)
1837{
5204d00f
LC
1838 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1839 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
dfe86cba
AH
1840 return 1;
1841 return 0;
1842}
1843EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1844
1845int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1846 unsigned int nr)
1847{
1848 if (!card->erase_size)
1849 return 0;
1850 if (from % card->erase_size || nr % card->erase_size)
1851 return 0;
1852 return 1;
1853}
1854EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 1855
e056a1b5
AH
1856static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1857 unsigned int arg)
1858{
1859 struct mmc_host *host = card->host;
bb4eecf2 1860 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
e056a1b5 1861 unsigned int last_timeout = 0;
12182aff
UH
1862 unsigned int max_busy_timeout = host->max_busy_timeout ?
1863 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
e056a1b5 1864
bb4eecf2 1865 if (card->erase_shift) {
e056a1b5 1866 max_qty = UINT_MAX >> card->erase_shift;
bb4eecf2
BW
1867 min_qty = card->pref_erase >> card->erase_shift;
1868 } else if (mmc_card_sd(card)) {
e056a1b5 1869 max_qty = UINT_MAX;
bb4eecf2
BW
1870 min_qty = card->pref_erase;
1871 } else {
e056a1b5 1872 max_qty = UINT_MAX / card->erase_size;
bb4eecf2
BW
1873 min_qty = card->pref_erase / card->erase_size;
1874 }
e056a1b5 1875
bb4eecf2
BW
1876 /*
1877 * We should not only use 'host->max_busy_timeout' as the limitation
1878 * when deciding the max discard sectors. We should set a balance value
1879 * to improve the erase speed, and it can not get too long timeout at
1880 * the same time.
1881 *
1882 * Here we set 'card->pref_erase' as the minimal discard sectors no
1883 * matter what size of 'host->max_busy_timeout', but if the
1884 * 'host->max_busy_timeout' is large enough for more discard sectors,
1885 * then we can continue to increase the max discard sectors until we
12182aff
UH
1886 * get a balance value. In cases when the 'host->max_busy_timeout'
1887 * isn't specified, use the default max erase timeout.
bb4eecf2 1888 */
e056a1b5
AH
1889 do {
1890 y = 0;
1891 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1892 timeout = mmc_erase_timeout(card, arg, qty + x);
bb4eecf2 1893
12182aff 1894 if (qty + x > min_qty && timeout > max_busy_timeout)
e056a1b5 1895 break;
bb4eecf2 1896
e056a1b5
AH
1897 if (timeout < last_timeout)
1898 break;
1899 last_timeout = timeout;
1900 y = x;
1901 }
1902 qty += y;
1903 } while (y);
1904
1905 if (!qty)
1906 return 0;
1907
642c28ab
DJ
1908 /*
1909 * When specifying a sector range to trim, chances are we might cross
1910 * an erase-group boundary even if the amount of sectors is less than
1911 * one erase-group.
1912 * If we can only fit one erase-group in the controller timeout budget,
1913 * we have to care that erase-group boundaries are not crossed by a
1914 * single trim operation. We flag that special case with "eg_boundary".
1915 * In all other cases we can just decrement qty and pretend that we
1916 * always touch (qty + 1) erase-groups as a simple optimization.
1917 */
e056a1b5 1918 if (qty == 1)
642c28ab
DJ
1919 card->eg_boundary = 1;
1920 else
1921 qty--;
e056a1b5
AH
1922
1923 /* Convert qty to sectors */
1924 if (card->erase_shift)
642c28ab 1925 max_discard = qty << card->erase_shift;
e056a1b5 1926 else if (mmc_card_sd(card))
642c28ab 1927 max_discard = qty + 1;
e056a1b5 1928 else
642c28ab 1929 max_discard = qty * card->erase_size;
e056a1b5
AH
1930
1931 return max_discard;
1932}
1933
1934unsigned int mmc_calc_max_discard(struct mmc_card *card)
1935{
1936 struct mmc_host *host = card->host;
1937 unsigned int max_discard, max_trim;
1938
e056a1b5
AH
1939 /*
1940 * Without erase_group_def set, MMC erase timeout depends on clock
1941 * frequence which can change. In that case, the best choice is
1942 * just the preferred erase size.
1943 */
1944 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1945 return card->pref_erase;
1946
1947 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
d4721339 1948 if (mmc_can_trim(card)) {
e056a1b5 1949 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
d4721339 1950 if (max_trim < max_discard || max_discard == 0)
e056a1b5
AH
1951 max_discard = max_trim;
1952 } else if (max_discard < card->erase_size) {
1953 max_discard = 0;
1954 }
1955 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
12182aff
UH
1956 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1957 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
e056a1b5
AH
1958 return max_discard;
1959}
1960EXPORT_SYMBOL(mmc_calc_max_discard);
1961
33e6d74d
UH
1962bool mmc_card_is_blockaddr(struct mmc_card *card)
1963{
1964 return card ? mmc_card_blockaddr(card) : false;
1965}
1966EXPORT_SYMBOL(mmc_card_is_blockaddr);
1967
0f8d8ea6
AH
1968int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1969{
c7836d15 1970 struct mmc_command cmd = {};
0f8d8ea6 1971
1712c937
ZX
1972 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1973 mmc_card_hs400(card) || mmc_card_hs400es(card))
0f8d8ea6
AH
1974 return 0;
1975
0f8d8ea6
AH
1976 cmd.opcode = MMC_SET_BLOCKLEN;
1977 cmd.arg = blocklen;
1978 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1979 return mmc_wait_for_cmd(card->host, &cmd, 5);
1980}
1981EXPORT_SYMBOL(mmc_set_blocklen);
1982
b2499518
AH
1983static void mmc_hw_reset_for_init(struct mmc_host *host)
1984{
52c8212d
UH
1985 mmc_pwrseq_reset(host);
1986
b2499518
AH
1987 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1988 return;
b2499518 1989 host->ops->hw_reset(host);
b2499518
AH
1990}
1991
3439c588
WS
1992/**
1993 * mmc_hw_reset - reset the card in hardware
1994 * @host: MMC host to which the card is attached
1995 *
1996 * Hard reset the card. This function is only for upper layers, like the
1997 * block layer or card drivers. You cannot use it in host drivers (struct
1998 * mmc_card might be gone then).
1999 *
2000 * Return: 0 on success, -errno on failure
2001 */
83533ab2 2002int mmc_hw_reset(struct mmc_host *host)
b2499518 2003{
f855a371 2004 int ret;
b2499518 2005
3a3db603 2006 ret = host->bus_ops->hw_reset(host);
2ac55d5e 2007 if (ret < 0)
3a3db603 2008 pr_warn("%s: tried to HW reset card, got error %d\n",
4e6c7178 2009 mmc_hostname(host), ret);
b2499518 2010
f855a371 2011 return ret;
b2499518 2012}
b2499518
AH
2013EXPORT_SYMBOL(mmc_hw_reset);
2014
1433269c
UH
2015int mmc_sw_reset(struct mmc_host *host)
2016{
2017 int ret;
2018
fefdd3c9 2019 if (!host->bus_ops->sw_reset)
1433269c 2020 return -EOPNOTSUPP;
1433269c
UH
2021
2022 ret = host->bus_ops->sw_reset(host);
1433269c
UH
2023 if (ret)
2024 pr_warn("%s: tried to SW reset card, got error %d\n",
2025 mmc_hostname(host), ret);
2026
2027 return ret;
2028}
2029EXPORT_SYMBOL(mmc_sw_reset);
2030
807e8e40
AR
2031static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2032{
2033 host->f_init = freq;
2034
69f25f9b 2035 pr_debug("%s: %s: trying to init card at %u Hz\n",
807e8e40 2036 mmc_hostname(host), __func__, host->f_init);
69f25f9b 2037
4a065193 2038 mmc_power_up(host, host->ocr_avail);
2f94e55a 2039
b2499518
AH
2040 /*
2041 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2042 * do a hardware reset if possible.
2043 */
2044 mmc_hw_reset_for_init(host);
2045
2f94e55a
PR
2046 /*
2047 * sdio_reset sends CMD52 to reset card. Since we do not know
2048 * if the card is being re-initialized, just send it. CMD52
2049 * should be ignored by SD/eMMC cards.
100a606d 2050 * Skip it if we already know that we do not support SDIO commands
2f94e55a 2051 */
100a606d
CC
2052 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2053 sdio_reset(host);
2054
807e8e40
AR
2055 mmc_go_idle(host);
2056
ead49373
UH
2057 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2058 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2059 goto out;
2060 if (mmc_card_sd_express(host))
2061 return 0;
2062 }
807e8e40
AR
2063
2064 /* Order's important: probe SDIO, then SD, then MMC */
100a606d
CC
2065 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2066 if (!mmc_attach_sdio(host))
2067 return 0;
2068
1b8d79c5
UH
2069 if (!(host->caps2 & MMC_CAP2_NO_SD))
2070 if (!mmc_attach_sd(host))
2071 return 0;
2072
a0c3b68c
SL
2073 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2074 if (!mmc_attach_mmc(host))
2075 return 0;
807e8e40 2076
ead49373 2077out:
807e8e40
AR
2078 mmc_power_off(host);
2079 return -EIO;
2080}
2081
d3049504
AH
2082int _mmc_detect_card_removed(struct mmc_host *host)
2083{
2084 int ret;
2085
d3049504
AH
2086 if (!host->card || mmc_card_removed(host->card))
2087 return 1;
2088
2089 ret = host->bus_ops->alive(host);
1450734e
KL
2090
2091 /*
2092 * Card detect status and alive check may be out of sync if card is
2093 * removed slowly, when card detect switch changes while card/slot
2094 * pads are still contacted in hardware (refer to "SD Card Mechanical
2095 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2096 * detect work 200ms later for this case.
2097 */
2098 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2099 mmc_detect_change(host, msecs_to_jiffies(200));
2100 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2101 }
2102
d3049504
AH
2103 if (ret) {
2104 mmc_card_set_removed(host->card);
2105 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2106 }
2107
2108 return ret;
2109}
2110
2111int mmc_detect_card_removed(struct mmc_host *host)
2112{
2113 struct mmc_card *card = host->card;
f0cc9cf9 2114 int ret;
d3049504
AH
2115
2116 WARN_ON(!host->claimed);
f0cc9cf9
UH
2117
2118 if (!card)
2119 return 1;
2120
6067bafe 2121 if (!mmc_card_is_removable(host))
1ff2575b
UH
2122 return 0;
2123
f0cc9cf9 2124 ret = mmc_card_removed(card);
d3049504
AH
2125 /*
2126 * The card will be considered unchanged unless we have been asked to
2127 * detect a change or host requires polling to provide card detection.
2128 */
b6891679 2129 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2130 return ret;
d3049504
AH
2131
2132 host->detect_change = 0;
f0cc9cf9
UH
2133 if (!ret) {
2134 ret = _mmc_detect_card_removed(host);
b6891679 2135 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2136 /*
2137 * Schedule a detect work as soon as possible to let a
2138 * rescan handle the card removal.
2139 */
2140 cancel_delayed_work(&host->detect);
bbd43682 2141 _mmc_detect_change(host, 0, false);
f0cc9cf9
UH
2142 }
2143 }
d3049504 2144
f0cc9cf9 2145 return ret;
d3049504
AH
2146}
2147EXPORT_SYMBOL(mmc_detect_card_removed);
2148
b93931a6 2149void mmc_rescan(struct work_struct *work)
1da177e4 2150{
c4028958
DH
2151 struct mmc_host *host =
2152 container_of(work, struct mmc_host, detect.work);
88ae8b86 2153 int i;
4c2ef25f 2154
807e8e40 2155 if (host->rescan_disable)
4c2ef25f 2156 return;
1da177e4 2157
3339d1e3 2158 /* If there is a non-removable card registered, only scan once */
6067bafe 2159 if (!mmc_card_is_removable(host) && host->rescan_entered)
3339d1e3
JR
2160 return;
2161 host->rescan_entered = 1;
2162
86236813 2163 if (host->trigger_card_event && host->ops->card_event) {
d234d212 2164 mmc_claim_host(host);
86236813 2165 host->ops->card_event(host);
d234d212 2166 mmc_release_host(host);
86236813
UH
2167 host->trigger_card_event = false;
2168 }
2169
99b4ddd8 2170 /* Verify a registered card to be functional, else remove it. */
e9ce2ce1 2171 if (host->bus_ops)
94d89efb
JS
2172 host->bus_ops->detect(host);
2173
d3049504
AH
2174 host->detect_change = 0;
2175
94d89efb 2176 /* if there still is a card present, stop here */
e9ce2ce1 2177 if (host->bus_ops != NULL)
94d89efb 2178 goto out;
1da177e4 2179
d234d212 2180 mmc_claim_host(host);
6067bafe 2181 if (mmc_card_is_removable(host) && host->ops->get_cd &&
c1b55bfc 2182 host->ops->get_cd(host) == 0) {
fa550189
UH
2183 mmc_power_off(host);
2184 mmc_release_host(host);
94d89efb 2185 goto out;
fa550189 2186 }
1da177e4 2187
ead49373
UH
2188 /* If an SD express card is present, then leave it as is. */
2189 if (mmc_card_sd_express(host)) {
2190 mmc_release_host(host);
2191 goto out;
2192 }
2193
88ae8b86 2194 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
661cf2d8
MM
2195 unsigned int freq = freqs[i];
2196 if (freq > host->f_max) {
2197 if (i + 1 < ARRAY_SIZE(freqs))
2198 continue;
2199 freq = host->f_max;
2200 }
2201 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
807e8e40 2202 break;
06b2233a 2203 if (freqs[i] <= host->f_min)
807e8e40 2204 break;
88ae8b86 2205 }
807e8e40
AR
2206 mmc_release_host(host);
2207
2208 out:
28f52482
AV
2209 if (host->caps & MMC_CAP_NEEDS_POLL)
2210 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2211}
2212
b93931a6 2213void mmc_start_host(struct mmc_host *host)
1da177e4 2214{
661cf2d8 2215 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
d9adcc12 2216 host->rescan_disable = 0;
8d1ffc8c 2217
c2c24819
UH
2218 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2219 mmc_claim_host(host);
4a065193 2220 mmc_power_up(host, host->ocr_avail);
c2c24819
UH
2221 mmc_release_host(host);
2222 }
8d1ffc8c 2223
740a221e 2224 mmc_gpiod_request_cd_irq(host);
bbd43682 2225 _mmc_detect_change(host, 0, false);
1da177e4
LT
2226}
2227
b93931a6 2228void mmc_stop_host(struct mmc_host *host)
1da177e4 2229{
03dbaa04 2230 if (host->slot.cd_irq >= 0) {
36f1d7e8 2231 mmc_gpio_set_cd_wake(host, false);
740a221e 2232 disable_irq(host->slot.cd_irq);
03dbaa04 2233 }
3b91e550 2234
d9adcc12 2235 host->rescan_disable = 1;
d9bcbf34 2236 cancel_delayed_work_sync(&host->detect);
3b91e550 2237
da68c4eb
NP
2238 /* clear pm flags now and let card drivers set them as needed */
2239 host->pm_flags = 0;
2240
e9ce2ce1 2241 if (host->bus_ops) {
0db13fc2 2242 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2243 host->bus_ops->remove(host);
7ea239d9
PO
2244 mmc_claim_host(host);
2245 mmc_detach_bus(host);
7f7e4129 2246 mmc_power_off(host);
7ea239d9 2247 mmc_release_host(host);
53509f0f 2248 return;
1da177e4 2249 }
7ea239d9 2250
8d1ffc8c 2251 mmc_claim_host(host);
1da177e4 2252 mmc_power_off(host);
8d1ffc8c 2253 mmc_release_host(host);
1da177e4
LT
2254}
2255
ffce2e7e
PO
2256static int __init mmc_init(void)
2257{
2258 int ret;
2259
ffce2e7e 2260 ret = mmc_register_bus();
e29a7d73 2261 if (ret)
520bd7a8 2262 return ret;
e29a7d73
PO
2263
2264 ret = mmc_register_host_class();
2265 if (ret)
2266 goto unregister_bus;
2267
2268 ret = sdio_register_bus();
2269 if (ret)
2270 goto unregister_host_class;
2271
2272 return 0;
2273
2274unregister_host_class:
2275 mmc_unregister_host_class();
2276unregister_bus:
2277 mmc_unregister_bus();
ffce2e7e
PO
2278 return ret;
2279}
2280
2281static void __exit mmc_exit(void)
2282{
e29a7d73 2283 sdio_unregister_bus();
ffce2e7e
PO
2284 mmc_unregister_host_class();
2285 mmc_unregister_bus();
ffce2e7e
PO
2286}
2287
26074962 2288subsys_initcall(mmc_init);
ffce2e7e
PO
2289module_exit(mmc_exit);
2290
1da177e4 2291MODULE_LICENSE("GPL");