mmc: core: Fix low speed mmc card detection failure
[linux-block.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
35eb6db1 26#include <linux/suspend.h>
1b676f70
PF
27#include <linux/fault-inject.h>
28#include <linux/random.h>
1da177e4
LT
29
30#include <linux/mmc/card.h>
31#include <linux/mmc/host.h>
da7fbe58
PO
32#include <linux/mmc/mmc.h>
33#include <linux/mmc/sd.h>
1da177e4 34
aaac1b47 35#include "core.h"
ffce2e7e
PO
36#include "bus.h"
37#include "host.h"
e29a7d73 38#include "sdio_bus.h"
da7fbe58
PO
39
40#include "mmc_ops.h"
41#include "sd_ops.h"
5c4e6f13 42#include "sdio_ops.h"
1da177e4 43
ffce2e7e
PO
44static struct workqueue_struct *workqueue;
45
af517150
DB
46/*
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
50 */
90ab5ee9 51bool use_spi_crc = 1;
af517150
DB
52module_param(use_spi_crc, bool, 0);
53
bd68e083
BH
54/*
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume. Allow this to be
58 * overridden if necessary.
59 */
60#ifdef CONFIG_MMC_UNSAFE_RESUME
90ab5ee9 61bool mmc_assume_removable;
bd68e083 62#else
90ab5ee9 63bool mmc_assume_removable = 1;
bd68e083 64#endif
71d7d3d1 65EXPORT_SYMBOL(mmc_assume_removable);
bd68e083
BH
66module_param_named(removable, mmc_assume_removable, bool, 0644);
67MODULE_PARM_DESC(
68 removable,
69 "MMC/SD cards are removable and may be removed during suspend");
70
ffce2e7e
PO
71/*
72 * Internal function. Schedule delayed work in the MMC work queue.
73 */
74static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
76{
77 return queue_delayed_work(workqueue, work, delay);
78}
79
80/*
81 * Internal function. Flush all scheduled work from the MMC work queue.
82 */
83static void mmc_flush_scheduled_work(void)
84{
85 flush_workqueue(workqueue);
86}
87
1b676f70
PF
88#ifdef CONFIG_FAIL_MMC_REQUEST
89
90/*
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
93 */
94static void mmc_should_fail_request(struct mmc_host *host,
95 struct mmc_request *mrq)
96{
97 struct mmc_command *cmd = mrq->cmd;
98 struct mmc_data *data = mrq->data;
99 static const int data_errors[] = {
100 -ETIMEDOUT,
101 -EILSEQ,
102 -EIO,
103 };
104
105 if (!data)
106 return;
107
108 if (cmd->error || data->error ||
109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 return;
111
112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114}
115
116#else /* CONFIG_FAIL_MMC_REQUEST */
117
118static inline void mmc_should_fail_request(struct mmc_host *host,
119 struct mmc_request *mrq)
120{
121}
122
123#endif /* CONFIG_FAIL_MMC_REQUEST */
124
1da177e4 125/**
fe10c6ab
RK
126 * mmc_request_done - finish processing an MMC request
127 * @host: MMC host which completed request
128 * @mrq: MMC request which request
1da177e4
LT
129 *
130 * MMC drivers should call this function when they have completed
fe10c6ab 131 * their processing of a request.
1da177e4
LT
132 */
133void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134{
135 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
136 int err = cmd->error;
137
af517150
DB
138 if (err && cmd->retries && mmc_host_is_spi(host)) {
139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 cmd->retries = 0;
141 }
142
d3049504 143 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
144 /*
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
147 */
148 if (mrq->done)
149 mrq->done(mrq);
e4d21708 150 } else {
1b676f70
PF
151 mmc_should_fail_request(host, mrq);
152
af8350c7
PO
153 led_trigger_event(host->led, LED_OFF);
154
e4d21708
PO
155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 mmc_hostname(host), cmd->opcode, err,
157 cmd->resp[0], cmd->resp[1],
158 cmd->resp[2], cmd->resp[3]);
159
160 if (mrq->data) {
161 pr_debug("%s: %d bytes transferred: %d\n",
162 mmc_hostname(host),
163 mrq->data->bytes_xfered, mrq->data->error);
164 }
165
166 if (mrq->stop) {
167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), mrq->stop->opcode,
169 mrq->stop->error,
170 mrq->stop->resp[0], mrq->stop->resp[1],
171 mrq->stop->resp[2], mrq->stop->resp[3]);
172 }
173
174 if (mrq->done)
175 mrq->done(mrq);
04566831 176
08c14071 177 mmc_host_clk_release(host);
1da177e4
LT
178 }
179}
180
181EXPORT_SYMBOL(mmc_request_done);
182
39361851 183static void
1da177e4
LT
184mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185{
976d9276
PO
186#ifdef CONFIG_MMC_DEBUG
187 unsigned int i, sz;
a84756c5 188 struct scatterlist *sg;
976d9276
PO
189#endif
190
920e70c5
RK
191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 mmc_hostname(host), mrq->cmd->opcode,
193 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 194
e4d21708
PO
195 if (mrq->data) {
196 pr_debug("%s: blksz %d blocks %d flags %08x "
197 "tsac %d ms nsac %d\n",
198 mmc_hostname(host), mrq->data->blksz,
199 mrq->data->blocks, mrq->data->flags,
ce252edd 200 mrq->data->timeout_ns / 1000000,
e4d21708
PO
201 mrq->data->timeout_clks);
202 }
203
204 if (mrq->stop) {
205 pr_debug("%s: CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host), mrq->stop->opcode,
207 mrq->stop->arg, mrq->stop->flags);
208 }
209
f22ee4ed 210 WARN_ON(!host->claimed);
1da177e4
LT
211
212 mrq->cmd->error = 0;
213 mrq->cmd->mrq = mrq;
214 if (mrq->data) {
fe4a3c7a 215 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
216 BUG_ON(mrq->data->blocks > host->max_blk_count);
217 BUG_ON(mrq->data->blocks * mrq->data->blksz >
218 host->max_req_size);
fe4a3c7a 219
976d9276
PO
220#ifdef CONFIG_MMC_DEBUG
221 sz = 0;
a84756c5
PO
222 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223 sz += sg->length;
976d9276
PO
224 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225#endif
226
1da177e4
LT
227 mrq->cmd->data = mrq->data;
228 mrq->data->error = 0;
229 mrq->data->mrq = mrq;
230 if (mrq->stop) {
231 mrq->data->stop = mrq->stop;
232 mrq->stop->error = 0;
233 mrq->stop->mrq = mrq;
234 }
235 }
08c14071 236 mmc_host_clk_hold(host);
66c036e0 237 led_trigger_event(host->led, LED_FULL);
1da177e4
LT
238 host->ops->request(host, mrq);
239}
240
1da177e4
LT
241static void mmc_wait_done(struct mmc_request *mrq)
242{
aa8b683a
PF
243 complete(&mrq->completion);
244}
245
246static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
247{
248 init_completion(&mrq->completion);
249 mrq->done = mmc_wait_done;
d3049504
AH
250 if (mmc_card_removed(host->card)) {
251 mrq->cmd->error = -ENOMEDIUM;
252 complete(&mrq->completion);
253 return;
254 }
aa8b683a
PF
255 mmc_start_request(host, mrq);
256}
257
258static void mmc_wait_for_req_done(struct mmc_host *host,
259 struct mmc_request *mrq)
260{
08a7e1df
AH
261 struct mmc_command *cmd;
262
263 while (1) {
264 wait_for_completion(&mrq->completion);
265
266 cmd = mrq->cmd;
d3049504
AH
267 if (!cmd->error || !cmd->retries ||
268 mmc_card_removed(host->card))
08a7e1df
AH
269 break;
270
271 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
272 mmc_hostname(host), cmd->opcode, cmd->error);
273 cmd->retries--;
274 cmd->error = 0;
275 host->ops->request(host, mrq);
276 }
aa8b683a
PF
277}
278
279/**
280 * mmc_pre_req - Prepare for a new request
281 * @host: MMC host to prepare command
282 * @mrq: MMC request to prepare for
283 * @is_first_req: true if there is no previous started request
284 * that may run in parellel to this call, otherwise false
285 *
286 * mmc_pre_req() is called in prior to mmc_start_req() to let
287 * host prepare for the new request. Preparation of a request may be
288 * performed while another request is running on the host.
289 */
290static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
291 bool is_first_req)
292{
2c4967f7
SRT
293 if (host->ops->pre_req) {
294 mmc_host_clk_hold(host);
aa8b683a 295 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
296 mmc_host_clk_release(host);
297 }
aa8b683a
PF
298}
299
300/**
301 * mmc_post_req - Post process a completed request
302 * @host: MMC host to post process command
303 * @mrq: MMC request to post process for
304 * @err: Error, if non zero, clean up any resources made in pre_req
305 *
306 * Let the host post process a completed request. Post processing of
307 * a request may be performed while another reuqest is running.
308 */
309static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
310 int err)
311{
2c4967f7
SRT
312 if (host->ops->post_req) {
313 mmc_host_clk_hold(host);
aa8b683a 314 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
315 mmc_host_clk_release(host);
316 }
1da177e4
LT
317}
318
aa8b683a
PF
319/**
320 * mmc_start_req - start a non-blocking request
321 * @host: MMC host to start command
322 * @areq: async request to start
323 * @error: out parameter returns 0 for success, otherwise non zero
324 *
325 * Start a new MMC custom command request for a host.
326 * If there is on ongoing async request wait for completion
327 * of that request and start the new one and return.
328 * Does not wait for the new request to complete.
329 *
330 * Returns the completed request, NULL in case of none completed.
331 * Wait for the an ongoing request (previoulsy started) to complete and
332 * return the completed request. If there is no ongoing request, NULL
333 * is returned without waiting. NULL is not an error condition.
334 */
335struct mmc_async_req *mmc_start_req(struct mmc_host *host,
336 struct mmc_async_req *areq, int *error)
337{
338 int err = 0;
339 struct mmc_async_req *data = host->areq;
340
341 /* Prepare a new request */
342 if (areq)
343 mmc_pre_req(host, areq->mrq, !host->areq);
344
345 if (host->areq) {
346 mmc_wait_for_req_done(host, host->areq->mrq);
347 err = host->areq->err_check(host->card, host->areq);
348 if (err) {
7c8a2829 349 /* post process the completed failed request */
aa8b683a
PF
350 mmc_post_req(host, host->areq->mrq, 0);
351 if (areq)
7c8a2829
PF
352 /*
353 * Cancel the new prepared request, because
354 * it can't run until the failed
355 * request has been properly handled.
356 */
aa8b683a
PF
357 mmc_post_req(host, areq->mrq, -EINVAL);
358
359 host->areq = NULL;
360 goto out;
361 }
362 }
363
364 if (areq)
365 __mmc_start_req(host, areq->mrq);
366
367 if (host->areq)
368 mmc_post_req(host, host->areq->mrq, 0);
369
370 host->areq = areq;
371 out:
372 if (error)
373 *error = err;
374 return data;
375}
376EXPORT_SYMBOL(mmc_start_req);
377
67a61c48
PO
378/**
379 * mmc_wait_for_req - start a request and wait for completion
380 * @host: MMC host to start command
381 * @mrq: MMC request to start
382 *
383 * Start a new MMC custom command request for a host, and wait
384 * for the command to complete. Does not attempt to parse the
385 * response.
386 */
387void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 388{
aa8b683a
PF
389 __mmc_start_req(host, mrq);
390 mmc_wait_for_req_done(host, mrq);
1da177e4 391}
1da177e4
LT
392EXPORT_SYMBOL(mmc_wait_for_req);
393
eb0d8f13
JC
394/**
395 * mmc_interrupt_hpi - Issue for High priority Interrupt
396 * @card: the MMC card associated with the HPI transfer
397 *
398 * Issued High Priority Interrupt, and check for card status
399 * util out-of prg-state.
400 */
401int mmc_interrupt_hpi(struct mmc_card *card)
402{
403 int err;
404 u32 status;
405
406 BUG_ON(!card);
407
408 if (!card->ext_csd.hpi_en) {
409 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
410 return 1;
411 }
412
413 mmc_claim_host(card->host);
414 err = mmc_send_status(card, &status);
415 if (err) {
416 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
417 goto out;
418 }
419
420 /*
421 * If the card status is in PRG-state, we can send the HPI command.
422 */
423 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
424 do {
425 /*
426 * We don't know when the HPI command will finish
427 * processing, so we need to resend HPI until out
428 * of prg-state, and keep checking the card status
429 * with SEND_STATUS. If a timeout error occurs when
430 * sending the HPI command, we are already out of
431 * prg-state.
432 */
433 err = mmc_send_hpi_cmd(card, &status);
434 if (err)
435 pr_debug("%s: abort HPI (%d error)\n",
436 mmc_hostname(card->host), err);
437
438 err = mmc_send_status(card, &status);
439 if (err)
440 break;
441 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
442 } else
443 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
444
445out:
446 mmc_release_host(card->host);
447 return err;
448}
449EXPORT_SYMBOL(mmc_interrupt_hpi);
450
1da177e4
LT
451/**
452 * mmc_wait_for_cmd - start a command and wait for completion
453 * @host: MMC host to start command
454 * @cmd: MMC command to start
455 * @retries: maximum number of retries
456 *
457 * Start a new MMC command for a host, and wait for the command
458 * to complete. Return any error that occurred while the command
459 * was executing. Do not attempt to parse the response.
460 */
461int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
462{
ad5fd972 463 struct mmc_request mrq = {NULL};
1da177e4 464
d84075c8 465 WARN_ON(!host->claimed);
1da177e4 466
1da177e4
LT
467 memset(cmd->resp, 0, sizeof(cmd->resp));
468 cmd->retries = retries;
469
470 mrq.cmd = cmd;
471 cmd->data = NULL;
472
473 mmc_wait_for_req(host, &mrq);
474
475 return cmd->error;
476}
477
478EXPORT_SYMBOL(mmc_wait_for_cmd);
479
d773d725
RK
480/**
481 * mmc_set_data_timeout - set the timeout for a data command
482 * @data: data phase for command
483 * @card: the MMC card associated with the data transfer
67a61c48
PO
484 *
485 * Computes the data timeout parameters according to the
486 * correct algorithm given the card type.
d773d725 487 */
b146d26a 488void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
489{
490 unsigned int mult;
491
e6f918bf
PO
492 /*
493 * SDIO cards only define an upper 1 s limit on access.
494 */
495 if (mmc_card_sdio(card)) {
496 data->timeout_ns = 1000000000;
497 data->timeout_clks = 0;
498 return;
499 }
500
d773d725
RK
501 /*
502 * SD cards use a 100 multiplier rather than 10
503 */
504 mult = mmc_card_sd(card) ? 100 : 10;
505
506 /*
507 * Scale up the multiplier (and therefore the timeout) by
508 * the r2w factor for writes.
509 */
b146d26a 510 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
511 mult <<= card->csd.r2w_factor;
512
513 data->timeout_ns = card->csd.tacc_ns * mult;
514 data->timeout_clks = card->csd.tacc_clks * mult;
515
516 /*
517 * SD cards also have an upper limit on the timeout.
518 */
519 if (mmc_card_sd(card)) {
520 unsigned int timeout_us, limit_us;
521
522 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
523 if (mmc_host_clk_rate(card->host))
524 timeout_us += data->timeout_clks * 1000 /
525 (mmc_host_clk_rate(card->host) / 1000);
d773d725 526
b146d26a 527 if (data->flags & MMC_DATA_WRITE)
493890e7
PO
528 /*
529 * The limit is really 250 ms, but that is
530 * insufficient for some crappy cards.
531 */
532 limit_us = 300000;
d773d725
RK
533 else
534 limit_us = 100000;
535
fba68bd2
PL
536 /*
537 * SDHC cards always use these fixed values.
538 */
539 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
540 data->timeout_ns = limit_us * 1000;
541 data->timeout_clks = 0;
542 }
543 }
6de5fc9c
SNX
544
545 /*
546 * Some cards require longer data read timeout than indicated in CSD.
547 * Address this by setting the read timeout to a "reasonably high"
548 * value. For the cards tested, 300ms has proven enough. If necessary,
549 * this value can be increased if other problematic cards require this.
550 */
551 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
552 data->timeout_ns = 300000000;
553 data->timeout_clks = 0;
554 }
555
c0c88871
WM
556 /*
557 * Some cards need very high timeouts if driven in SPI mode.
558 * The worst observed timeout was 900ms after writing a
559 * continuous stream of data until the internal logic
560 * overflowed.
561 */
562 if (mmc_host_is_spi(card->host)) {
563 if (data->flags & MMC_DATA_WRITE) {
564 if (data->timeout_ns < 1000000000)
565 data->timeout_ns = 1000000000; /* 1s */
566 } else {
567 if (data->timeout_ns < 100000000)
568 data->timeout_ns = 100000000; /* 100ms */
569 }
570 }
d773d725
RK
571}
572EXPORT_SYMBOL(mmc_set_data_timeout);
573
ad3868b2
PO
574/**
575 * mmc_align_data_size - pads a transfer size to a more optimal value
576 * @card: the MMC card associated with the data transfer
577 * @sz: original transfer size
578 *
579 * Pads the original data size with a number of extra bytes in
580 * order to avoid controller bugs and/or performance hits
581 * (e.g. some controllers revert to PIO for certain sizes).
582 *
583 * Returns the improved size, which might be unmodified.
584 *
585 * Note that this function is only relevant when issuing a
586 * single scatter gather entry.
587 */
588unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
589{
590 /*
591 * FIXME: We don't have a system for the controller to tell
592 * the core about its problems yet, so for now we just 32-bit
593 * align the size.
594 */
595 sz = ((sz + 3) / 4) * 4;
596
597 return sz;
598}
599EXPORT_SYMBOL(mmc_align_data_size);
600
8ea926b2
AH
601/**
602 * mmc_host_enable - enable a host.
603 * @host: mmc host to enable
604 *
605 * Hosts that support power saving can use the 'enable' and 'disable'
606 * methods to exit and enter power saving states. For more information
607 * see comments for struct mmc_host_ops.
608 */
609int mmc_host_enable(struct mmc_host *host)
610{
611 if (!(host->caps & MMC_CAP_DISABLE))
612 return 0;
613
614 if (host->en_dis_recurs)
615 return 0;
616
617 if (host->nesting_cnt++)
618 return 0;
619
620 cancel_delayed_work_sync(&host->disable);
621
622 if (host->enabled)
623 return 0;
624
625 if (host->ops->enable) {
626 int err;
627
628 host->en_dis_recurs = 1;
2c4967f7 629 mmc_host_clk_hold(host);
8ea926b2 630 err = host->ops->enable(host);
2c4967f7 631 mmc_host_clk_release(host);
8ea926b2
AH
632 host->en_dis_recurs = 0;
633
634 if (err) {
635 pr_debug("%s: enable error %d\n",
636 mmc_hostname(host), err);
637 return err;
638 }
639 }
640 host->enabled = 1;
641 return 0;
642}
643EXPORT_SYMBOL(mmc_host_enable);
644
645static int mmc_host_do_disable(struct mmc_host *host, int lazy)
646{
647 if (host->ops->disable) {
648 int err;
649
650 host->en_dis_recurs = 1;
2c4967f7 651 mmc_host_clk_hold(host);
8ea926b2 652 err = host->ops->disable(host, lazy);
2c4967f7 653 mmc_host_clk_release(host);
8ea926b2
AH
654 host->en_dis_recurs = 0;
655
656 if (err < 0) {
657 pr_debug("%s: disable error %d\n",
658 mmc_hostname(host), err);
659 return err;
660 }
661 if (err > 0) {
662 unsigned long delay = msecs_to_jiffies(err);
663
664 mmc_schedule_delayed_work(&host->disable, delay);
665 }
666 }
667 host->enabled = 0;
668 return 0;
669}
670
671/**
672 * mmc_host_disable - disable a host.
673 * @host: mmc host to disable
674 *
675 * Hosts that support power saving can use the 'enable' and 'disable'
676 * methods to exit and enter power saving states. For more information
677 * see comments for struct mmc_host_ops.
678 */
679int mmc_host_disable(struct mmc_host *host)
680{
681 int err;
682
683 if (!(host->caps & MMC_CAP_DISABLE))
684 return 0;
685
686 if (host->en_dis_recurs)
687 return 0;
688
689 if (--host->nesting_cnt)
690 return 0;
691
692 if (!host->enabled)
693 return 0;
694
695 err = mmc_host_do_disable(host, 0);
696 return err;
697}
698EXPORT_SYMBOL(mmc_host_disable);
699
1da177e4 700/**
2342f332 701 * __mmc_claim_host - exclusively claim a host
1da177e4 702 * @host: mmc host to claim
2342f332 703 * @abort: whether or not the operation should be aborted
1da177e4 704 *
2342f332
NP
705 * Claim a host for a set of operations. If @abort is non null and
706 * dereference a non-zero value then this will return prematurely with
707 * that non-zero value without acquiring the lock. Returns zero
708 * with the lock held otherwise.
1da177e4 709 */
2342f332 710int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
711{
712 DECLARE_WAITQUEUE(wait, current);
713 unsigned long flags;
2342f332 714 int stop;
1da177e4 715
cf795bfb
PO
716 might_sleep();
717
1da177e4
LT
718 add_wait_queue(&host->wq, &wait);
719 spin_lock_irqsave(&host->lock, flags);
720 while (1) {
721 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 722 stop = abort ? atomic_read(abort) : 0;
319a3f14 723 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
724 break;
725 spin_unlock_irqrestore(&host->lock, flags);
726 schedule();
727 spin_lock_irqsave(&host->lock, flags);
728 }
729 set_current_state(TASK_RUNNING);
319a3f14 730 if (!stop) {
2342f332 731 host->claimed = 1;
319a3f14
AH
732 host->claimer = current;
733 host->claim_cnt += 1;
734 } else
2342f332 735 wake_up(&host->wq);
1da177e4
LT
736 spin_unlock_irqrestore(&host->lock, flags);
737 remove_wait_queue(&host->wq, &wait);
8ea926b2
AH
738 if (!stop)
739 mmc_host_enable(host);
2342f332 740 return stop;
1da177e4
LT
741}
742
2342f332 743EXPORT_SYMBOL(__mmc_claim_host);
1da177e4 744
319a3f14
AH
745/**
746 * mmc_try_claim_host - try exclusively to claim a host
747 * @host: mmc host to claim
748 *
749 * Returns %1 if the host is claimed, %0 otherwise.
750 */
751int mmc_try_claim_host(struct mmc_host *host)
8ea926b2
AH
752{
753 int claimed_host = 0;
754 unsigned long flags;
755
756 spin_lock_irqsave(&host->lock, flags);
319a3f14 757 if (!host->claimed || host->claimer == current) {
8ea926b2 758 host->claimed = 1;
319a3f14
AH
759 host->claimer = current;
760 host->claim_cnt += 1;
8ea926b2
AH
761 claimed_host = 1;
762 }
763 spin_unlock_irqrestore(&host->lock, flags);
764 return claimed_host;
765}
319a3f14 766EXPORT_SYMBOL(mmc_try_claim_host);
8ea926b2 767
ab1efd27
UH
768/**
769 * mmc_do_release_host - release a claimed host
770 * @host: mmc host to release
771 *
772 * If you successfully claimed a host, this function will
773 * release it again.
774 */
775void mmc_do_release_host(struct mmc_host *host)
8ea926b2
AH
776{
777 unsigned long flags;
778
779 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
780 if (--host->claim_cnt) {
781 /* Release for nested claim */
782 spin_unlock_irqrestore(&host->lock, flags);
783 } else {
784 host->claimed = 0;
785 host->claimer = NULL;
786 spin_unlock_irqrestore(&host->lock, flags);
787 wake_up(&host->wq);
788 }
8ea926b2 789}
ab1efd27 790EXPORT_SYMBOL(mmc_do_release_host);
8ea926b2
AH
791
792void mmc_host_deeper_disable(struct work_struct *work)
793{
794 struct mmc_host *host =
795 container_of(work, struct mmc_host, disable.work);
796
797 /* If the host is claimed then we do not want to disable it anymore */
798 if (!mmc_try_claim_host(host))
799 return;
800 mmc_host_do_disable(host, 1);
801 mmc_do_release_host(host);
802}
803
804/**
805 * mmc_host_lazy_disable - lazily disable a host.
806 * @host: mmc host to disable
807 *
808 * Hosts that support power saving can use the 'enable' and 'disable'
809 * methods to exit and enter power saving states. For more information
810 * see comments for struct mmc_host_ops.
811 */
812int mmc_host_lazy_disable(struct mmc_host *host)
813{
814 if (!(host->caps & MMC_CAP_DISABLE))
815 return 0;
816
817 if (host->en_dis_recurs)
818 return 0;
819
820 if (--host->nesting_cnt)
821 return 0;
822
823 if (!host->enabled)
824 return 0;
825
826 if (host->disable_delay) {
827 mmc_schedule_delayed_work(&host->disable,
828 msecs_to_jiffies(host->disable_delay));
829 return 0;
830 } else
831 return mmc_host_do_disable(host, 1);
832}
833EXPORT_SYMBOL(mmc_host_lazy_disable);
834
1da177e4
LT
835/**
836 * mmc_release_host - release a host
837 * @host: mmc host to release
838 *
839 * Release a MMC host, allowing others to claim the host
840 * for their operations.
841 */
842void mmc_release_host(struct mmc_host *host)
843{
d84075c8 844 WARN_ON(!host->claimed);
1da177e4 845
8ea926b2 846 mmc_host_lazy_disable(host);
1da177e4 847
8ea926b2 848 mmc_do_release_host(host);
1da177e4
LT
849}
850
851EXPORT_SYMBOL(mmc_release_host);
852
7ea239d9
PO
853/*
854 * Internal function that does the actual ios call to the host driver,
855 * optionally printing some debug output.
856 */
920e70c5
RK
857static inline void mmc_set_ios(struct mmc_host *host)
858{
859 struct mmc_ios *ios = &host->ios;
860
cd9277c0
PO
861 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
862 "width %u timing %u\n",
920e70c5
RK
863 mmc_hostname(host), ios->clock, ios->bus_mode,
864 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 865 ios->bus_width, ios->timing);
fba68bd2 866
04566831
LW
867 if (ios->clock > 0)
868 mmc_set_ungated(host);
920e70c5
RK
869 host->ops->set_ios(host, ios);
870}
871
7ea239d9
PO
872/*
873 * Control chip select pin on a host.
874 */
da7fbe58 875void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 876{
778e277c 877 mmc_host_clk_hold(host);
da7fbe58
PO
878 host->ios.chip_select = mode;
879 mmc_set_ios(host);
778e277c 880 mmc_host_clk_release(host);
1da177e4
LT
881}
882
7ea239d9
PO
883/*
884 * Sets the host clock to the highest possible frequency that
885 * is below "hz".
886 */
778e277c 887static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9
PO
888{
889 WARN_ON(hz < host->f_min);
890
891 if (hz > host->f_max)
892 hz = host->f_max;
893
894 host->ios.clock = hz;
895 mmc_set_ios(host);
896}
897
778e277c
MW
898void mmc_set_clock(struct mmc_host *host, unsigned int hz)
899{
900 mmc_host_clk_hold(host);
901 __mmc_set_clock(host, hz);
902 mmc_host_clk_release(host);
903}
904
04566831
LW
905#ifdef CONFIG_MMC_CLKGATE
906/*
907 * This gates the clock by setting it to 0 Hz.
908 */
909void mmc_gate_clock(struct mmc_host *host)
910{
911 unsigned long flags;
912
913 spin_lock_irqsave(&host->clk_lock, flags);
914 host->clk_old = host->ios.clock;
915 host->ios.clock = 0;
916 host->clk_gated = true;
917 spin_unlock_irqrestore(&host->clk_lock, flags);
918 mmc_set_ios(host);
919}
920
921/*
922 * This restores the clock from gating by using the cached
923 * clock value.
924 */
925void mmc_ungate_clock(struct mmc_host *host)
926{
927 /*
928 * We should previously have gated the clock, so the clock shall
929 * be 0 here! The clock may however be 0 during initialization,
930 * when some request operations are performed before setting
931 * the frequency. When ungate is requested in that situation
932 * we just ignore the call.
933 */
934 if (host->clk_old) {
935 BUG_ON(host->ios.clock);
936 /* This call will also set host->clk_gated to false */
778e277c 937 __mmc_set_clock(host, host->clk_old);
04566831
LW
938 }
939}
940
941void mmc_set_ungated(struct mmc_host *host)
942{
943 unsigned long flags;
944
945 /*
946 * We've been given a new frequency while the clock is gated,
947 * so make sure we regard this as ungating it.
948 */
949 spin_lock_irqsave(&host->clk_lock, flags);
950 host->clk_gated = false;
951 spin_unlock_irqrestore(&host->clk_lock, flags);
952}
953
954#else
955void mmc_set_ungated(struct mmc_host *host)
956{
957}
958#endif
959
7ea239d9
PO
960/*
961 * Change the bus mode (open drain/push-pull) of a host.
962 */
963void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
964{
778e277c 965 mmc_host_clk_hold(host);
7ea239d9
PO
966 host->ios.bus_mode = mode;
967 mmc_set_ios(host);
778e277c 968 mmc_host_clk_release(host);
7ea239d9
PO
969}
970
0f8d8ea6
AH
971/*
972 * Change data bus width of a host.
973 */
974void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
975{
778e277c 976 mmc_host_clk_hold(host);
4c4cb171
PR
977 host->ios.bus_width = width;
978 mmc_set_ios(host);
778e277c 979 mmc_host_clk_release(host);
0f8d8ea6
AH
980}
981
86e8286a
AV
982/**
983 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
984 * @vdd: voltage (mV)
985 * @low_bits: prefer low bits in boundary cases
986 *
987 * This function returns the OCR bit number according to the provided @vdd
988 * value. If conversion is not possible a negative errno value returned.
989 *
990 * Depending on the @low_bits flag the function prefers low or high OCR bits
991 * on boundary voltages. For example,
992 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
993 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
994 *
995 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
996 */
997static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
998{
999 const int max_bit = ilog2(MMC_VDD_35_36);
1000 int bit;
1001
1002 if (vdd < 1650 || vdd > 3600)
1003 return -EINVAL;
1004
1005 if (vdd >= 1650 && vdd <= 1950)
1006 return ilog2(MMC_VDD_165_195);
1007
1008 if (low_bits)
1009 vdd -= 1;
1010
1011 /* Base 2000 mV, step 100 mV, bit's base 8. */
1012 bit = (vdd - 2000) / 100 + 8;
1013 if (bit > max_bit)
1014 return max_bit;
1015 return bit;
1016}
1017
1018/**
1019 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1020 * @vdd_min: minimum voltage value (mV)
1021 * @vdd_max: maximum voltage value (mV)
1022 *
1023 * This function returns the OCR mask bits according to the provided @vdd_min
1024 * and @vdd_max values. If conversion is not possible the function returns 0.
1025 *
1026 * Notes wrt boundary cases:
1027 * This function sets the OCR bits for all boundary voltages, for example
1028 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1029 * MMC_VDD_34_35 mask.
1030 */
1031u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1032{
1033 u32 mask = 0;
1034
1035 if (vdd_max < vdd_min)
1036 return 0;
1037
1038 /* Prefer high bits for the boundary vdd_max values. */
1039 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1040 if (vdd_max < 0)
1041 return 0;
1042
1043 /* Prefer low bits for the boundary vdd_min values. */
1044 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1045 if (vdd_min < 0)
1046 return 0;
1047
1048 /* Fill the mask, from max bit to min bit. */
1049 while (vdd_max >= vdd_min)
1050 mask |= 1 << vdd_max--;
1051
1052 return mask;
1053}
1054EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1055
5c13941a
DB
1056#ifdef CONFIG_REGULATOR
1057
1058/**
1059 * mmc_regulator_get_ocrmask - return mask of supported voltages
1060 * @supply: regulator to use
1061 *
1062 * This returns either a negative errno, or a mask of voltages that
1063 * can be provided to MMC/SD/SDIO devices using the specified voltage
1064 * regulator. This would normally be called before registering the
1065 * MMC host adapter.
1066 */
1067int mmc_regulator_get_ocrmask(struct regulator *supply)
1068{
1069 int result = 0;
1070 int count;
1071 int i;
1072
1073 count = regulator_count_voltages(supply);
1074 if (count < 0)
1075 return count;
1076
1077 for (i = 0; i < count; i++) {
1078 int vdd_uV;
1079 int vdd_mV;
1080
1081 vdd_uV = regulator_list_voltage(supply, i);
1082 if (vdd_uV <= 0)
1083 continue;
1084
1085 vdd_mV = vdd_uV / 1000;
1086 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1087 }
1088
1089 return result;
1090}
1091EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
1092
1093/**
1094 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1095 * @mmc: the host to regulate
5c13941a 1096 * @supply: regulator to use
99fc5131 1097 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1098 *
1099 * Returns zero on success, else negative errno.
1100 *
1101 * MMC host drivers may use this to enable or disable a regulator using
1102 * a particular supply voltage. This would normally be called from the
1103 * set_ios() method.
1104 */
99fc5131
LW
1105int mmc_regulator_set_ocr(struct mmc_host *mmc,
1106 struct regulator *supply,
1107 unsigned short vdd_bit)
5c13941a
DB
1108{
1109 int result = 0;
1110 int min_uV, max_uV;
5c13941a
DB
1111
1112 if (vdd_bit) {
1113 int tmp;
1114 int voltage;
1115
1116 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
1117 * bits this regulator doesn't quite support ... don't
1118 * be too picky, most cards and regulators are OK with
1119 * a 0.1V range goof (it's a small error percentage).
1120 */
1121 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1122 if (tmp == 0) {
1123 min_uV = 1650 * 1000;
1124 max_uV = 1950 * 1000;
1125 } else {
1126 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1127 max_uV = min_uV + 100 * 1000;
1128 }
1129
1130 /* avoid needless changes to this voltage; the regulator
1131 * might not allow this operation
1132 */
1133 voltage = regulator_get_voltage(supply);
1134 if (voltage < 0)
1135 result = voltage;
1136 else if (voltage < min_uV || voltage > max_uV)
1137 result = regulator_set_voltage(supply, min_uV, max_uV);
1138 else
1139 result = 0;
1140
99fc5131 1141 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1142 result = regulator_enable(supply);
99fc5131
LW
1143 if (!result)
1144 mmc->regulator_enabled = true;
1145 }
1146 } else if (mmc->regulator_enabled) {
5c13941a 1147 result = regulator_disable(supply);
99fc5131
LW
1148 if (result == 0)
1149 mmc->regulator_enabled = false;
5c13941a
DB
1150 }
1151
99fc5131
LW
1152 if (result)
1153 dev_err(mmc_dev(mmc),
1154 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1155 return result;
1156}
1157EXPORT_SYMBOL(mmc_regulator_set_ocr);
1158
99fc5131 1159#endif /* CONFIG_REGULATOR */
5c13941a 1160
1da177e4
LT
1161/*
1162 * Mask off any voltages we don't support and select
1163 * the lowest voltage
1164 */
7ea239d9 1165u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1166{
1167 int bit;
1168
1169 ocr &= host->ocr_avail;
1170
1171 bit = ffs(ocr);
1172 if (bit) {
1173 bit -= 1;
1174
63ef731a 1175 ocr &= 3 << bit;
1da177e4 1176
778e277c 1177 mmc_host_clk_hold(host);
1da177e4 1178 host->ios.vdd = bit;
920e70c5 1179 mmc_set_ios(host);
778e277c 1180 mmc_host_clk_release(host);
1da177e4 1181 } else {
f6e10b86
DB
1182 pr_warning("%s: host doesn't support card's voltages\n",
1183 mmc_hostname(host));
1da177e4
LT
1184 ocr = 0;
1185 }
1186
1187 return ocr;
1188}
1189
261bbd46 1190int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
f2119df6
AN
1191{
1192 struct mmc_command cmd = {0};
1193 int err = 0;
1194
1195 BUG_ON(!host);
1196
1197 /*
1198 * Send CMD11 only if the request is to switch the card to
1199 * 1.8V signalling.
1200 */
261bbd46 1201 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
f2119df6
AN
1202 cmd.opcode = SD_SWITCH_VOLTAGE;
1203 cmd.arg = 0;
1204 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1205
1206 err = mmc_wait_for_cmd(host, &cmd, 0);
1207 if (err)
1208 return err;
1209
1210 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1211 return -EIO;
1212 }
1213
1214 host->ios.signal_voltage = signal_voltage;
1215
2c4967f7
SRT
1216 if (host->ops->start_signal_voltage_switch) {
1217 mmc_host_clk_hold(host);
f2119df6 1218 err = host->ops->start_signal_voltage_switch(host, &host->ios);
2c4967f7
SRT
1219 mmc_host_clk_release(host);
1220 }
f2119df6
AN
1221
1222 return err;
1223}
1224
b57c43ad 1225/*
7ea239d9 1226 * Select timing parameters for host.
b57c43ad 1227 */
7ea239d9 1228void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1229{
778e277c 1230 mmc_host_clk_hold(host);
7ea239d9
PO
1231 host->ios.timing = timing;
1232 mmc_set_ios(host);
778e277c 1233 mmc_host_clk_release(host);
b57c43ad
PO
1234}
1235
d6d50a15
AN
1236/*
1237 * Select appropriate driver type for host.
1238 */
1239void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1240{
778e277c 1241 mmc_host_clk_hold(host);
d6d50a15
AN
1242 host->ios.drv_type = drv_type;
1243 mmc_set_ios(host);
778e277c 1244 mmc_host_clk_release(host);
d6d50a15
AN
1245}
1246
a80f1627
G
1247static void mmc_poweroff_notify(struct mmc_host *host)
1248{
1249 struct mmc_card *card;
1250 unsigned int timeout;
1251 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1252 int err = 0;
1253
1254 card = host->card;
1255
1256 /*
1257 * Send power notify command only if card
1258 * is mmc and notify state is powered ON
1259 */
1260 if (card && mmc_card_mmc(card) &&
1261 (card->poweroff_notify_state == MMC_POWERED_ON)) {
1262
1263 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1264 notify_type = EXT_CSD_POWER_OFF_SHORT;
1265 timeout = card->ext_csd.generic_cmd6_time;
1266 card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1267 } else {
1268 notify_type = EXT_CSD_POWER_OFF_LONG;
1269 timeout = card->ext_csd.power_off_longtime;
1270 card->poweroff_notify_state = MMC_POWEROFF_LONG;
1271 }
1272
1273 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1274 EXT_CSD_POWER_OFF_NOTIFICATION,
1275 notify_type, timeout);
1276
1277 if (err && err != -EBADMSG)
1278 pr_err("Device failed to respond within %d poweroff "
1279 "time. Forcefully powering down the device\n",
1280 timeout);
1281
1282 /* Set the card state to no notification after the poweroff */
1283 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1284 }
1285}
1286
1da177e4 1287/*
45f8245b
RK
1288 * Apply power to the MMC stack. This is a two-stage process.
1289 * First, we enable power to the card without the clock running.
1290 * We then wait a bit for the power to stabilise. Finally,
1291 * enable the bus drivers and clock to the card.
1292 *
1293 * We must _NOT_ enable the clock prior to power stablising.
1294 *
1295 * If a host does all the power sequencing itself, ignore the
1296 * initial MMC_POWER_UP stage.
1da177e4
LT
1297 */
1298static void mmc_power_up(struct mmc_host *host)
1299{
500f3564
BR
1300 int bit;
1301
778e277c
MW
1302 mmc_host_clk_hold(host);
1303
500f3564
BR
1304 /* If ocr is set, we use it */
1305 if (host->ocr)
1306 bit = ffs(host->ocr) - 1;
1307 else
1308 bit = fls(host->ocr_avail) - 1;
1da177e4
LT
1309
1310 host->ios.vdd = bit;
44669034 1311 if (mmc_host_is_spi(host))
af517150 1312 host->ios.chip_select = MMC_CS_HIGH;
44669034 1313 else
af517150 1314 host->ios.chip_select = MMC_CS_DONTCARE;
44669034 1315 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1da177e4 1316 host->ios.power_mode = MMC_POWER_UP;
f218278a 1317 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1318 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1319 mmc_set_ios(host);
1da177e4 1320
f9996aee
PO
1321 /*
1322 * This delay should be sufficient to allow the power supply
1323 * to reach the minimum voltage.
1324 */
79bccc5a 1325 mmc_delay(10);
1da177e4 1326
88ae8b86 1327 host->ios.clock = host->f_init;
8dfd0374 1328
1da177e4 1329 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1330 mmc_set_ios(host);
1da177e4 1331
f9996aee
PO
1332 /*
1333 * This delay must be at least 74 clock sizes, or 1 ms, or the
1334 * time required to reach a stable voltage.
1335 */
79bccc5a 1336 mmc_delay(10);
778e277c
MW
1337
1338 mmc_host_clk_release(host);
1da177e4
LT
1339}
1340
7f7e4129 1341void mmc_power_off(struct mmc_host *host)
1da177e4 1342{
778e277c
MW
1343 mmc_host_clk_hold(host);
1344
1da177e4
LT
1345 host->ios.clock = 0;
1346 host->ios.vdd = 0;
b33d46c3 1347
a80f1627 1348 mmc_poweroff_notify(host);
bec8726a 1349
b33d46c3
UH
1350 /*
1351 * Reset ocr mask to be the highest possible voltage supported for
1352 * this mmc host. This value will be used at next power up.
1353 */
1354 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1355
af517150
DB
1356 if (!mmc_host_is_spi(host)) {
1357 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1358 host->ios.chip_select = MMC_CS_DONTCARE;
1359 }
1da177e4 1360 host->ios.power_mode = MMC_POWER_OFF;
f218278a 1361 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1362 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1363 mmc_set_ios(host);
778e277c 1364
041beb1d
DD
1365 /*
1366 * Some configurations, such as the 802.11 SDIO card in the OLPC
1367 * XO-1.5, require a short delay after poweroff before the card
1368 * can be successfully turned on again.
1369 */
1370 mmc_delay(1);
1371
778e277c 1372 mmc_host_clk_release(host);
1da177e4
LT
1373}
1374
39361851
AB
1375/*
1376 * Cleanup when the last reference to the bus operator is dropped.
1377 */
261172fd 1378static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1379{
1380 BUG_ON(!host);
1381 BUG_ON(host->bus_refs);
1382 BUG_ON(!host->bus_dead);
1383
1384 host->bus_ops = NULL;
1385}
1386
1387/*
1388 * Increase reference count of bus operator
1389 */
1390static inline void mmc_bus_get(struct mmc_host *host)
1391{
1392 unsigned long flags;
1393
1394 spin_lock_irqsave(&host->lock, flags);
1395 host->bus_refs++;
1396 spin_unlock_irqrestore(&host->lock, flags);
1397}
1398
1399/*
1400 * Decrease reference count of bus operator and free it if
1401 * it is the last reference.
1402 */
1403static inline void mmc_bus_put(struct mmc_host *host)
1404{
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&host->lock, flags);
1408 host->bus_refs--;
1409 if ((host->bus_refs == 0) && host->bus_ops)
1410 __mmc_release_bus(host);
1411 spin_unlock_irqrestore(&host->lock, flags);
1412}
1413
1da177e4 1414/*
7ea239d9
PO
1415 * Assign a mmc bus handler to a host. Only one bus handler may control a
1416 * host at any given time.
1da177e4 1417 */
7ea239d9 1418void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1419{
7ea239d9 1420 unsigned long flags;
e45a1bd2 1421
7ea239d9
PO
1422 BUG_ON(!host);
1423 BUG_ON(!ops);
b855885e 1424
d84075c8 1425 WARN_ON(!host->claimed);
bce40a36 1426
7ea239d9 1427 spin_lock_irqsave(&host->lock, flags);
bce40a36 1428
7ea239d9
PO
1429 BUG_ON(host->bus_ops);
1430 BUG_ON(host->bus_refs);
b57c43ad 1431
7ea239d9
PO
1432 host->bus_ops = ops;
1433 host->bus_refs = 1;
1434 host->bus_dead = 0;
b57c43ad 1435
7ea239d9 1436 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1437}
1438
7ea239d9 1439/*
7f7e4129 1440 * Remove the current bus handler from a host.
7ea239d9
PO
1441 */
1442void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1443{
7ea239d9 1444 unsigned long flags;
7ccd266e 1445
7ea239d9 1446 BUG_ON(!host);
7ccd266e 1447
d84075c8
PO
1448 WARN_ON(!host->claimed);
1449 WARN_ON(!host->bus_ops);
cd9277c0 1450
7ea239d9 1451 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1452
7ea239d9 1453 host->bus_dead = 1;
7ccd266e 1454
7ea239d9 1455 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1456
7ea239d9 1457 mmc_bus_put(host);
1da177e4
LT
1458}
1459
1da177e4
LT
1460/**
1461 * mmc_detect_change - process change of state on a MMC socket
1462 * @host: host which changed state.
8dc00335 1463 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1464 *
67a61c48
PO
1465 * MMC drivers should call this when they detect a card has been
1466 * inserted or removed. The MMC layer will confirm that any
1467 * present card is still functional, and initialize any newly
1468 * inserted.
1da177e4 1469 */
8dc00335 1470void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1471{
3b91e550 1472#ifdef CONFIG_MMC_DEBUG
1efd48b3 1473 unsigned long flags;
01f41ec7 1474 spin_lock_irqsave(&host->lock, flags);
d84075c8 1475 WARN_ON(host->removed);
01f41ec7 1476 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 1477#endif
d3049504 1478 host->detect_change = 1;
c4028958 1479 mmc_schedule_delayed_work(&host->detect, delay);
1da177e4
LT
1480}
1481
1482EXPORT_SYMBOL(mmc_detect_change);
1483
dfe86cba
AH
1484void mmc_init_erase(struct mmc_card *card)
1485{
1486 unsigned int sz;
1487
1488 if (is_power_of_2(card->erase_size))
1489 card->erase_shift = ffs(card->erase_size) - 1;
1490 else
1491 card->erase_shift = 0;
1492
1493 /*
1494 * It is possible to erase an arbitrarily large area of an SD or MMC
1495 * card. That is not desirable because it can take a long time
1496 * (minutes) potentially delaying more important I/O, and also the
1497 * timeout calculations become increasingly hugely over-estimated.
1498 * Consequently, 'pref_erase' is defined as a guide to limit erases
1499 * to that size and alignment.
1500 *
1501 * For SD cards that define Allocation Unit size, limit erases to one
1502 * Allocation Unit at a time. For MMC cards that define High Capacity
1503 * Erase Size, whether it is switched on or not, limit to that size.
1504 * Otherwise just have a stab at a good value. For modern cards it
1505 * will end up being 4MiB. Note that if the value is too small, it
1506 * can end up taking longer to erase.
1507 */
1508 if (mmc_card_sd(card) && card->ssr.au) {
1509 card->pref_erase = card->ssr.au;
1510 card->erase_shift = ffs(card->ssr.au) - 1;
1511 } else if (card->ext_csd.hc_erase_size) {
1512 card->pref_erase = card->ext_csd.hc_erase_size;
1513 } else {
1514 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1515 if (sz < 128)
1516 card->pref_erase = 512 * 1024 / 512;
1517 else if (sz < 512)
1518 card->pref_erase = 1024 * 1024 / 512;
1519 else if (sz < 1024)
1520 card->pref_erase = 2 * 1024 * 1024 / 512;
1521 else
1522 card->pref_erase = 4 * 1024 * 1024 / 512;
1523 if (card->pref_erase < card->erase_size)
1524 card->pref_erase = card->erase_size;
1525 else {
1526 sz = card->pref_erase % card->erase_size;
1527 if (sz)
1528 card->pref_erase += card->erase_size - sz;
1529 }
1530 }
1531}
1532
eaa02f75
AW
1533static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1534 unsigned int arg, unsigned int qty)
dfe86cba
AH
1535{
1536 unsigned int erase_timeout;
1537
1538 if (card->ext_csd.erase_group_def & 1) {
1539 /* High Capacity Erase Group Size uses HC timeouts */
1540 if (arg == MMC_TRIM_ARG)
1541 erase_timeout = card->ext_csd.trim_timeout;
1542 else
1543 erase_timeout = card->ext_csd.hc_erase_timeout;
1544 } else {
1545 /* CSD Erase Group Size uses write timeout */
1546 unsigned int mult = (10 << card->csd.r2w_factor);
1547 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1548 unsigned int timeout_us;
1549
1550 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1551 if (card->csd.tacc_ns < 1000000)
1552 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1553 else
1554 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1555
1556 /*
1557 * ios.clock is only a target. The real clock rate might be
1558 * less but not that much less, so fudge it by multiplying by 2.
1559 */
1560 timeout_clks <<= 1;
1561 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1562 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1563
1564 erase_timeout = timeout_us / 1000;
1565
1566 /*
1567 * Theoretically, the calculation could underflow so round up
1568 * to 1ms in that case.
1569 */
1570 if (!erase_timeout)
1571 erase_timeout = 1;
1572 }
1573
1574 /* Multiplier for secure operations */
1575 if (arg & MMC_SECURE_ARGS) {
1576 if (arg == MMC_SECURE_ERASE_ARG)
1577 erase_timeout *= card->ext_csd.sec_erase_mult;
1578 else
1579 erase_timeout *= card->ext_csd.sec_trim_mult;
1580 }
1581
1582 erase_timeout *= qty;
1583
1584 /*
1585 * Ensure at least a 1 second timeout for SPI as per
1586 * 'mmc_set_data_timeout()'
1587 */
1588 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1589 erase_timeout = 1000;
1590
eaa02f75 1591 return erase_timeout;
dfe86cba
AH
1592}
1593
eaa02f75
AW
1594static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1595 unsigned int arg,
1596 unsigned int qty)
dfe86cba 1597{
eaa02f75
AW
1598 unsigned int erase_timeout;
1599
dfe86cba
AH
1600 if (card->ssr.erase_timeout) {
1601 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1602 erase_timeout = card->ssr.erase_timeout * qty +
1603 card->ssr.erase_offset;
dfe86cba
AH
1604 } else {
1605 /*
1606 * Erase timeout not specified in SD Status Register (SSR) so
1607 * use 250ms per write block.
1608 */
eaa02f75 1609 erase_timeout = 250 * qty;
dfe86cba
AH
1610 }
1611
1612 /* Must not be less than 1 second */
eaa02f75
AW
1613 if (erase_timeout < 1000)
1614 erase_timeout = 1000;
1615
1616 return erase_timeout;
dfe86cba
AH
1617}
1618
eaa02f75
AW
1619static unsigned int mmc_erase_timeout(struct mmc_card *card,
1620 unsigned int arg,
1621 unsigned int qty)
dfe86cba
AH
1622{
1623 if (mmc_card_sd(card))
eaa02f75 1624 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1625 else
eaa02f75 1626 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1627}
1628
1629static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1630 unsigned int to, unsigned int arg)
1631{
1278dba1 1632 struct mmc_command cmd = {0};
dfe86cba
AH
1633 unsigned int qty = 0;
1634 int err;
1635
1636 /*
1637 * qty is used to calculate the erase timeout which depends on how many
1638 * erase groups (or allocation units in SD terminology) are affected.
1639 * We count erasing part of an erase group as one erase group.
1640 * For SD, the allocation units are always a power of 2. For MMC, the
1641 * erase group size is almost certainly also power of 2, but it does not
1642 * seem to insist on that in the JEDEC standard, so we fall back to
1643 * division in that case. SD may not specify an allocation unit size,
1644 * in which case the timeout is based on the number of write blocks.
1645 *
1646 * Note that the timeout for secure trim 2 will only be correct if the
1647 * number of erase groups specified is the same as the total of all
1648 * preceding secure trim 1 commands. Since the power may have been
1649 * lost since the secure trim 1 commands occurred, it is generally
1650 * impossible to calculate the secure trim 2 timeout correctly.
1651 */
1652 if (card->erase_shift)
1653 qty += ((to >> card->erase_shift) -
1654 (from >> card->erase_shift)) + 1;
1655 else if (mmc_card_sd(card))
1656 qty += to - from + 1;
1657 else
1658 qty += ((to / card->erase_size) -
1659 (from / card->erase_size)) + 1;
1660
1661 if (!mmc_card_blockaddr(card)) {
1662 from <<= 9;
1663 to <<= 9;
1664 }
1665
dfe86cba
AH
1666 if (mmc_card_sd(card))
1667 cmd.opcode = SD_ERASE_WR_BLK_START;
1668 else
1669 cmd.opcode = MMC_ERASE_GROUP_START;
1670 cmd.arg = from;
1671 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1672 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1673 if (err) {
a3c76eb9 1674 pr_err("mmc_erase: group start error %d, "
dfe86cba 1675 "status %#x\n", err, cmd.resp[0]);
67716327 1676 err = -EIO;
dfe86cba
AH
1677 goto out;
1678 }
1679
1680 memset(&cmd, 0, sizeof(struct mmc_command));
1681 if (mmc_card_sd(card))
1682 cmd.opcode = SD_ERASE_WR_BLK_END;
1683 else
1684 cmd.opcode = MMC_ERASE_GROUP_END;
1685 cmd.arg = to;
1686 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1687 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1688 if (err) {
a3c76eb9 1689 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1690 err, cmd.resp[0]);
67716327 1691 err = -EIO;
dfe86cba
AH
1692 goto out;
1693 }
1694
1695 memset(&cmd, 0, sizeof(struct mmc_command));
1696 cmd.opcode = MMC_ERASE;
1697 cmd.arg = arg;
1698 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
eaa02f75 1699 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1700 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1701 if (err) {
a3c76eb9 1702 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1703 err, cmd.resp[0]);
1704 err = -EIO;
1705 goto out;
1706 }
1707
1708 if (mmc_host_is_spi(card->host))
1709 goto out;
1710
1711 do {
1712 memset(&cmd, 0, sizeof(struct mmc_command));
1713 cmd.opcode = MMC_SEND_STATUS;
1714 cmd.arg = card->rca << 16;
1715 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1716 /* Do not retry else we can't see errors */
1717 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1718 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 1719 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
1720 err, cmd.resp[0]);
1721 err = -EIO;
1722 goto out;
1723 }
1724 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
7435bb79 1725 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
dfe86cba
AH
1726out:
1727 return err;
1728}
1729
1730/**
1731 * mmc_erase - erase sectors.
1732 * @card: card to erase
1733 * @from: first sector to erase
1734 * @nr: number of sectors to erase
1735 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1736 *
1737 * Caller must claim host before calling this function.
1738 */
1739int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1740 unsigned int arg)
1741{
1742 unsigned int rem, to = from + nr;
1743
1744 if (!(card->host->caps & MMC_CAP_ERASE) ||
1745 !(card->csd.cmdclass & CCC_ERASE))
1746 return -EOPNOTSUPP;
1747
1748 if (!card->erase_size)
1749 return -EOPNOTSUPP;
1750
1751 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1752 return -EOPNOTSUPP;
1753
1754 if ((arg & MMC_SECURE_ARGS) &&
1755 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1756 return -EOPNOTSUPP;
1757
1758 if ((arg & MMC_TRIM_ARGS) &&
1759 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1760 return -EOPNOTSUPP;
1761
1762 if (arg == MMC_SECURE_ERASE_ARG) {
1763 if (from % card->erase_size || nr % card->erase_size)
1764 return -EINVAL;
1765 }
1766
1767 if (arg == MMC_ERASE_ARG) {
1768 rem = from % card->erase_size;
1769 if (rem) {
1770 rem = card->erase_size - rem;
1771 from += rem;
1772 if (nr > rem)
1773 nr -= rem;
1774 else
1775 return 0;
1776 }
1777 rem = nr % card->erase_size;
1778 if (rem)
1779 nr -= rem;
1780 }
1781
1782 if (nr == 0)
1783 return 0;
1784
1785 to = from + nr;
1786
1787 if (to <= from)
1788 return -EINVAL;
1789
1790 /* 'from' and 'to' are inclusive */
1791 to -= 1;
1792
1793 return mmc_do_erase(card, from, to, arg);
1794}
1795EXPORT_SYMBOL(mmc_erase);
1796
1797int mmc_can_erase(struct mmc_card *card)
1798{
1799 if ((card->host->caps & MMC_CAP_ERASE) &&
1800 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1801 return 1;
1802 return 0;
1803}
1804EXPORT_SYMBOL(mmc_can_erase);
1805
1806int mmc_can_trim(struct mmc_card *card)
1807{
1808 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1809 return 1;
b3bf9153
KP
1810 if (mmc_can_discard(card))
1811 return 1;
dfe86cba
AH
1812 return 0;
1813}
1814EXPORT_SYMBOL(mmc_can_trim);
1815
b3bf9153
KP
1816int mmc_can_discard(struct mmc_card *card)
1817{
1818 /*
1819 * As there's no way to detect the discard support bit at v4.5
1820 * use the s/w feature support filed.
1821 */
1822 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1823 return 1;
1824 return 0;
1825}
1826EXPORT_SYMBOL(mmc_can_discard);
1827
d9ddd629
KP
1828int mmc_can_sanitize(struct mmc_card *card)
1829{
1830 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1831 return 1;
1832 return 0;
1833}
1834EXPORT_SYMBOL(mmc_can_sanitize);
1835
dfe86cba
AH
1836int mmc_can_secure_erase_trim(struct mmc_card *card)
1837{
1838 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1839 return 1;
1840 return 0;
1841}
1842EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1843
1844int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1845 unsigned int nr)
1846{
1847 if (!card->erase_size)
1848 return 0;
1849 if (from % card->erase_size || nr % card->erase_size)
1850 return 0;
1851 return 1;
1852}
1853EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 1854
e056a1b5
AH
1855static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1856 unsigned int arg)
1857{
1858 struct mmc_host *host = card->host;
1859 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1860 unsigned int last_timeout = 0;
1861
1862 if (card->erase_shift)
1863 max_qty = UINT_MAX >> card->erase_shift;
1864 else if (mmc_card_sd(card))
1865 max_qty = UINT_MAX;
1866 else
1867 max_qty = UINT_MAX / card->erase_size;
1868
1869 /* Find the largest qty with an OK timeout */
1870 do {
1871 y = 0;
1872 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1873 timeout = mmc_erase_timeout(card, arg, qty + x);
1874 if (timeout > host->max_discard_to)
1875 break;
1876 if (timeout < last_timeout)
1877 break;
1878 last_timeout = timeout;
1879 y = x;
1880 }
1881 qty += y;
1882 } while (y);
1883
1884 if (!qty)
1885 return 0;
1886
1887 if (qty == 1)
1888 return 1;
1889
1890 /* Convert qty to sectors */
1891 if (card->erase_shift)
1892 max_discard = --qty << card->erase_shift;
1893 else if (mmc_card_sd(card))
1894 max_discard = qty;
1895 else
1896 max_discard = --qty * card->erase_size;
1897
1898 return max_discard;
1899}
1900
1901unsigned int mmc_calc_max_discard(struct mmc_card *card)
1902{
1903 struct mmc_host *host = card->host;
1904 unsigned int max_discard, max_trim;
1905
1906 if (!host->max_discard_to)
1907 return UINT_MAX;
1908
1909 /*
1910 * Without erase_group_def set, MMC erase timeout depends on clock
1911 * frequence which can change. In that case, the best choice is
1912 * just the preferred erase size.
1913 */
1914 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1915 return card->pref_erase;
1916
1917 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1918 if (mmc_can_trim(card)) {
1919 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1920 if (max_trim < max_discard)
1921 max_discard = max_trim;
1922 } else if (max_discard < card->erase_size) {
1923 max_discard = 0;
1924 }
1925 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1926 mmc_hostname(host), max_discard, host->max_discard_to);
1927 return max_discard;
1928}
1929EXPORT_SYMBOL(mmc_calc_max_discard);
1930
0f8d8ea6
AH
1931int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1932{
1278dba1 1933 struct mmc_command cmd = {0};
0f8d8ea6
AH
1934
1935 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1936 return 0;
1937
0f8d8ea6
AH
1938 cmd.opcode = MMC_SET_BLOCKLEN;
1939 cmd.arg = blocklen;
1940 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1941 return mmc_wait_for_cmd(card->host, &cmd, 5);
1942}
1943EXPORT_SYMBOL(mmc_set_blocklen);
1944
b2499518
AH
1945static void mmc_hw_reset_for_init(struct mmc_host *host)
1946{
1947 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1948 return;
1949 mmc_host_clk_hold(host);
1950 host->ops->hw_reset(host);
1951 mmc_host_clk_release(host);
1952}
1953
1954int mmc_can_reset(struct mmc_card *card)
1955{
1956 u8 rst_n_function;
1957
1958 if (!mmc_card_mmc(card))
1959 return 0;
1960 rst_n_function = card->ext_csd.rst_n_function;
1961 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1962 return 0;
1963 return 1;
1964}
1965EXPORT_SYMBOL(mmc_can_reset);
1966
1967static int mmc_do_hw_reset(struct mmc_host *host, int check)
1968{
1969 struct mmc_card *card = host->card;
1970
1971 if (!host->bus_ops->power_restore)
1972 return -EOPNOTSUPP;
1973
1974 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1975 return -EOPNOTSUPP;
1976
1977 if (!card)
1978 return -EINVAL;
1979
1980 if (!mmc_can_reset(card))
1981 return -EOPNOTSUPP;
1982
1983 mmc_host_clk_hold(host);
1984 mmc_set_clock(host, host->f_init);
1985
1986 host->ops->hw_reset(host);
1987
1988 /* If the reset has happened, then a status command will fail */
1989 if (check) {
1990 struct mmc_command cmd = {0};
1991 int err;
1992
1993 cmd.opcode = MMC_SEND_STATUS;
1994 if (!mmc_host_is_spi(card->host))
1995 cmd.arg = card->rca << 16;
1996 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1997 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1998 if (!err) {
1999 mmc_host_clk_release(host);
2000 return -ENOSYS;
2001 }
2002 }
2003
2004 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2005 if (mmc_host_is_spi(host)) {
2006 host->ios.chip_select = MMC_CS_HIGH;
2007 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2008 } else {
2009 host->ios.chip_select = MMC_CS_DONTCARE;
2010 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2011 }
2012 host->ios.bus_width = MMC_BUS_WIDTH_1;
2013 host->ios.timing = MMC_TIMING_LEGACY;
2014 mmc_set_ios(host);
2015
2016 mmc_host_clk_release(host);
2017
2018 return host->bus_ops->power_restore(host);
2019}
2020
2021int mmc_hw_reset(struct mmc_host *host)
2022{
2023 return mmc_do_hw_reset(host, 0);
2024}
2025EXPORT_SYMBOL(mmc_hw_reset);
2026
2027int mmc_hw_reset_check(struct mmc_host *host)
2028{
2029 return mmc_do_hw_reset(host, 1);
2030}
2031EXPORT_SYMBOL(mmc_hw_reset_check);
2032
807e8e40
AR
2033static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2034{
2035 host->f_init = freq;
2036
2037#ifdef CONFIG_MMC_DEBUG
2038 pr_info("%s: %s: trying to init card at %u Hz\n",
2039 mmc_hostname(host), __func__, host->f_init);
2040#endif
2041 mmc_power_up(host);
2f94e55a 2042
b2499518
AH
2043 /*
2044 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045 * do a hardware reset if possible.
2046 */
2047 mmc_hw_reset_for_init(host);
2048
2f94e55a
PR
2049 /*
2050 * sdio_reset sends CMD52 to reset card. Since we do not know
2051 * if the card is being re-initialized, just send it. CMD52
2052 * should be ignored by SD/eMMC cards.
2053 */
807e8e40
AR
2054 sdio_reset(host);
2055 mmc_go_idle(host);
2056
2057 mmc_send_if_cond(host, host->ocr_avail);
2058
2059 /* Order's important: probe SDIO, then SD, then MMC */
2060 if (!mmc_attach_sdio(host))
2061 return 0;
2062 if (!mmc_attach_sd(host))
2063 return 0;
2064 if (!mmc_attach_mmc(host))
2065 return 0;
2066
2067 mmc_power_off(host);
2068 return -EIO;
2069}
2070
d3049504
AH
2071int _mmc_detect_card_removed(struct mmc_host *host)
2072{
2073 int ret;
2074
2075 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2076 return 0;
2077
2078 if (!host->card || mmc_card_removed(host->card))
2079 return 1;
2080
2081 ret = host->bus_ops->alive(host);
2082 if (ret) {
2083 mmc_card_set_removed(host->card);
2084 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2085 }
2086
2087 return ret;
2088}
2089
2090int mmc_detect_card_removed(struct mmc_host *host)
2091{
2092 struct mmc_card *card = host->card;
2093
2094 WARN_ON(!host->claimed);
2095 /*
2096 * The card will be considered unchanged unless we have been asked to
2097 * detect a change or host requires polling to provide card detection.
2098 */
2099 if (card && !host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2100 return mmc_card_removed(card);
2101
2102 host->detect_change = 0;
2103
2104 return _mmc_detect_card_removed(host);
2105}
2106EXPORT_SYMBOL(mmc_detect_card_removed);
2107
b93931a6 2108void mmc_rescan(struct work_struct *work)
1da177e4 2109{
807e8e40 2110 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
c4028958
DH
2111 struct mmc_host *host =
2112 container_of(work, struct mmc_host, detect.work);
88ae8b86 2113 int i;
4c2ef25f 2114
807e8e40 2115 if (host->rescan_disable)
4c2ef25f 2116 return;
1da177e4 2117
7ea239d9 2118 mmc_bus_get(host);
b855885e 2119
30201e7f
OBC
2120 /*
2121 * if there is a _removable_ card registered, check whether it is
2122 * still present
2123 */
2124 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
bad3baba 2125 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2126 host->bus_ops->detect(host);
2127
d3049504
AH
2128 host->detect_change = 0;
2129
c5841798
CB
2130 /*
2131 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2132 * the card is no longer present.
2133 */
94d89efb 2134 mmc_bus_put(host);
94d89efb
JS
2135 mmc_bus_get(host);
2136
2137 /* if there still is a card present, stop here */
2138 if (host->bus_ops != NULL) {
7ea239d9 2139 mmc_bus_put(host);
94d89efb
JS
2140 goto out;
2141 }
1da177e4 2142
94d89efb
JS
2143 /*
2144 * Only we can add a new handler, so it's safe to
2145 * release the lock here.
2146 */
2147 mmc_bus_put(host);
1da177e4 2148
94d89efb
JS
2149 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2150 goto out;
1da177e4 2151
807e8e40 2152 mmc_claim_host(host);
88ae8b86 2153 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2154 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2155 break;
06b2233a 2156 if (freqs[i] <= host->f_min)
807e8e40 2157 break;
88ae8b86 2158 }
807e8e40
AR
2159 mmc_release_host(host);
2160
2161 out:
28f52482
AV
2162 if (host->caps & MMC_CAP_NEEDS_POLL)
2163 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2164}
2165
b93931a6 2166void mmc_start_host(struct mmc_host *host)
1da177e4 2167{
b93931a6
PO
2168 mmc_power_off(host);
2169 mmc_detect_change(host, 0);
1da177e4
LT
2170}
2171
b93931a6 2172void mmc_stop_host(struct mmc_host *host)
1da177e4 2173{
3b91e550 2174#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2175 unsigned long flags;
2176 spin_lock_irqsave(&host->lock, flags);
3b91e550 2177 host->removed = 1;
1efd48b3 2178 spin_unlock_irqrestore(&host->lock, flags);
3b91e550
PO
2179#endif
2180
8ea926b2
AH
2181 if (host->caps & MMC_CAP_DISABLE)
2182 cancel_delayed_work(&host->disable);
d9bcbf34 2183 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2184 mmc_flush_scheduled_work();
2185
da68c4eb
NP
2186 /* clear pm flags now and let card drivers set them as needed */
2187 host->pm_flags = 0;
2188
7ea239d9
PO
2189 mmc_bus_get(host);
2190 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2191 /* Calling bus_ops->remove() with a claimed host can deadlock */
7ea239d9
PO
2192 if (host->bus_ops->remove)
2193 host->bus_ops->remove(host);
2194
2195 mmc_claim_host(host);
2196 mmc_detach_bus(host);
7f7e4129 2197 mmc_power_off(host);
7ea239d9 2198 mmc_release_host(host);
53509f0f
DK
2199 mmc_bus_put(host);
2200 return;
1da177e4 2201 }
7ea239d9
PO
2202 mmc_bus_put(host);
2203
2204 BUG_ON(host->card);
1da177e4
LT
2205
2206 mmc_power_off(host);
2207}
2208
12ae637f 2209int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2210{
12ae637f
OBC
2211 int ret = 0;
2212
bb9cab94
DD
2213#ifdef CONFIG_MMC_DEBUG
2214 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2215#endif
2216
eae1aeee
AH
2217 mmc_bus_get(host);
2218
2219 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2220 mmc_bus_put(host);
12ae637f 2221 return -EINVAL;
eae1aeee
AH
2222 }
2223
2224 if (host->bus_ops->power_save)
12ae637f 2225 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2226
2227 mmc_bus_put(host);
2228
2229 mmc_power_off(host);
12ae637f
OBC
2230
2231 return ret;
eae1aeee
AH
2232}
2233EXPORT_SYMBOL(mmc_power_save_host);
2234
12ae637f 2235int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2236{
12ae637f
OBC
2237 int ret;
2238
bb9cab94
DD
2239#ifdef CONFIG_MMC_DEBUG
2240 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2241#endif
2242
eae1aeee
AH
2243 mmc_bus_get(host);
2244
2245 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2246 mmc_bus_put(host);
12ae637f 2247 return -EINVAL;
eae1aeee
AH
2248 }
2249
2250 mmc_power_up(host);
12ae637f 2251 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2252
2253 mmc_bus_put(host);
12ae637f
OBC
2254
2255 return ret;
eae1aeee
AH
2256}
2257EXPORT_SYMBOL(mmc_power_restore_host);
2258
b1ebe384
JL
2259int mmc_card_awake(struct mmc_host *host)
2260{
2261 int err = -ENOSYS;
2262
aa9df4fb
UH
2263 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2264 return 0;
2265
b1ebe384
JL
2266 mmc_bus_get(host);
2267
2268 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2269 err = host->bus_ops->awake(host);
2270
2271 mmc_bus_put(host);
2272
2273 return err;
2274}
2275EXPORT_SYMBOL(mmc_card_awake);
2276
2277int mmc_card_sleep(struct mmc_host *host)
2278{
2279 int err = -ENOSYS;
2280
aa9df4fb
UH
2281 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2282 return 0;
2283
b1ebe384
JL
2284 mmc_bus_get(host);
2285
c99872a1 2286 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
b1ebe384
JL
2287 err = host->bus_ops->sleep(host);
2288
2289 mmc_bus_put(host);
2290
2291 return err;
2292}
2293EXPORT_SYMBOL(mmc_card_sleep);
2294
2295int mmc_card_can_sleep(struct mmc_host *host)
2296{
2297 struct mmc_card *card = host->card;
2298
2299 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2300 return 1;
2301 return 0;
2302}
2303EXPORT_SYMBOL(mmc_card_can_sleep);
2304
881d1c25
SJ
2305/*
2306 * Flush the cache to the non-volatile storage.
2307 */
2308int mmc_flush_cache(struct mmc_card *card)
2309{
2310 struct mmc_host *host = card->host;
2311 int err = 0;
2312
2313 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2314 return err;
2315
2316 if (mmc_card_mmc(card) &&
2317 (card->ext_csd.cache_size > 0) &&
2318 (card->ext_csd.cache_ctrl & 1)) {
2319 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2320 EXT_CSD_FLUSH_CACHE, 1, 0);
2321 if (err)
2322 pr_err("%s: cache flush error %d\n",
2323 mmc_hostname(card->host), err);
2324 }
2325
2326 return err;
2327}
2328EXPORT_SYMBOL(mmc_flush_cache);
2329
2330/*
2331 * Turn the cache ON/OFF.
2332 * Turning the cache OFF shall trigger flushing of the data
2333 * to the non-volatile storage.
2334 */
2335int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2336{
2337 struct mmc_card *card = host->card;
8bc0678b 2338 unsigned int timeout;
881d1c25
SJ
2339 int err = 0;
2340
2341 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2342 mmc_card_is_removable(host))
2343 return err;
2344
2345 if (card && mmc_card_mmc(card) &&
2346 (card->ext_csd.cache_size > 0)) {
2347 enable = !!enable;
2348
8bc0678b
SJ
2349 if (card->ext_csd.cache_ctrl ^ enable) {
2350 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
881d1c25 2351 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
8bc0678b
SJ
2352 EXT_CSD_CACHE_CTRL, enable, timeout);
2353 if (err)
2354 pr_err("%s: cache %s error %d\n",
2355 mmc_hostname(card->host),
2356 enable ? "on" : "off",
2357 err);
2358 else
2359 card->ext_csd.cache_ctrl = enable;
2360 }
881d1c25
SJ
2361 }
2362
2363 return err;
2364}
2365EXPORT_SYMBOL(mmc_cache_ctrl);
2366
1da177e4
LT
2367#ifdef CONFIG_PM
2368
2369/**
2370 * mmc_suspend_host - suspend a host
2371 * @host: mmc host
1da177e4 2372 */
1a13f8fa 2373int mmc_suspend_host(struct mmc_host *host)
1da177e4 2374{
95cdfb72
NP
2375 int err = 0;
2376
8ea926b2
AH
2377 if (host->caps & MMC_CAP_DISABLE)
2378 cancel_delayed_work(&host->disable);
7de427d0 2379 cancel_delayed_work(&host->detect);
b5af25be 2380 mmc_flush_scheduled_work();
17e9ff55
SJ
2381 if (mmc_try_claim_host(host)) {
2382 err = mmc_cache_ctrl(host, 0);
2383 mmc_do_release_host(host);
2384 } else {
2385 err = -EBUSY;
2386 }
2387
881d1c25
SJ
2388 if (err)
2389 goto out;
b5af25be 2390
7ea239d9
PO
2391 mmc_bus_get(host);
2392 if (host->bus_ops && !host->bus_dead) {
b6ad726e
UH
2393
2394 /*
2395 * A long response time is not acceptable for device drivers
2396 * when doing suspend. Prevent mmc_claim_host in the suspend
2397 * sequence, to potentially wait "forever" by trying to
2398 * pre-claim the host.
2399 */
2400 if (mmc_try_claim_host(host)) {
a80f1627
G
2401 if (host->bus_ops->suspend) {
2402 /*
2403 * For eMMC 4.5 device send notify command
2404 * before sleep, because in sleep state eMMC 4.5
2405 * devices respond to only RESET and AWAKE cmd
2406 */
2407 mmc_poweroff_notify(host);
b6ad726e 2408 err = host->bus_ops->suspend(host);
a80f1627 2409 }
49df7807
SRT
2410 mmc_do_release_host(host);
2411
b6ad726e
UH
2412 if (err == -ENOSYS || !host->bus_ops->resume) {
2413 /*
2414 * We simply "remove" the card in this case.
0db13fc2
GL
2415 * It will be redetected on resume. (Calling
2416 * bus_ops->remove() with a claimed host can
2417 * deadlock.)
b6ad726e
UH
2418 */
2419 if (host->bus_ops->remove)
2420 host->bus_ops->remove(host);
2421 mmc_claim_host(host);
2422 mmc_detach_bus(host);
2423 mmc_power_off(host);
2424 mmc_release_host(host);
2425 host->pm_flags = 0;
2426 err = 0;
2427 }
b6ad726e
UH
2428 } else {
2429 err = -EBUSY;
1c8cf9c9 2430 }
b5af25be 2431 }
7ea239d9
PO
2432 mmc_bus_put(host);
2433
a5e9425d 2434 if (!err && !mmc_card_keep_power(host))
95cdfb72 2435 mmc_power_off(host);
1da177e4 2436
881d1c25 2437out:
95cdfb72 2438 return err;
1da177e4
LT
2439}
2440
2441EXPORT_SYMBOL(mmc_suspend_host);
2442
2443/**
2444 * mmc_resume_host - resume a previously suspended host
2445 * @host: mmc host
2446 */
2447int mmc_resume_host(struct mmc_host *host)
2448{
95cdfb72
NP
2449 int err = 0;
2450
6abaa0c9
PO
2451 mmc_bus_get(host);
2452 if (host->bus_ops && !host->bus_dead) {
a5e9425d 2453 if (!mmc_card_keep_power(host)) {
da68c4eb
NP
2454 mmc_power_up(host);
2455 mmc_select_voltage(host, host->ocr);
e594573d
OBC
2456 /*
2457 * Tell runtime PM core we just powered up the card,
2458 * since it still believes the card is powered off.
2459 * Note that currently runtime PM is only enabled
2460 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2461 */
2462 if (mmc_card_sdio(host->card) &&
2463 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2464 pm_runtime_disable(&host->card->dev);
2465 pm_runtime_set_active(&host->card->dev);
2466 pm_runtime_enable(&host->card->dev);
2467 }
da68c4eb 2468 }
6abaa0c9 2469 BUG_ON(!host->bus_ops->resume);
95cdfb72
NP
2470 err = host->bus_ops->resume(host);
2471 if (err) {
a3c76eb9 2472 pr_warning("%s: error %d during resume "
95cdfb72
NP
2473 "(card was removed?)\n",
2474 mmc_hostname(host), err);
95cdfb72
NP
2475 err = 0;
2476 }
6abaa0c9 2477 }
a8e6df73 2478 host->pm_flags &= ~MMC_PM_KEEP_POWER;
6abaa0c9
PO
2479 mmc_bus_put(host);
2480
95cdfb72 2481 return err;
1da177e4 2482}
1da177e4
LT
2483EXPORT_SYMBOL(mmc_resume_host);
2484
4c2ef25f
ML
2485/* Do the card removal on suspend if card is assumed removeable
2486 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2487 to sync the card.
2488*/
2489int mmc_pm_notify(struct notifier_block *notify_block,
2490 unsigned long mode, void *unused)
2491{
2492 struct mmc_host *host = container_of(
2493 notify_block, struct mmc_host, pm_notify);
2494 unsigned long flags;
2495
2496
2497 switch (mode) {
2498 case PM_HIBERNATION_PREPARE:
2499 case PM_SUSPEND_PREPARE:
2500
2501 spin_lock_irqsave(&host->lock, flags);
2502 host->rescan_disable = 1;
bec8726a 2503 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
4c2ef25f
ML
2504 spin_unlock_irqrestore(&host->lock, flags);
2505 cancel_delayed_work_sync(&host->detect);
2506
2507 if (!host->bus_ops || host->bus_ops->suspend)
2508 break;
2509
0db13fc2 2510 /* Calling bus_ops->remove() with a claimed host can deadlock */
4c2ef25f
ML
2511 if (host->bus_ops->remove)
2512 host->bus_ops->remove(host);
2513
0db13fc2 2514 mmc_claim_host(host);
4c2ef25f 2515 mmc_detach_bus(host);
7f7e4129 2516 mmc_power_off(host);
4c2ef25f
ML
2517 mmc_release_host(host);
2518 host->pm_flags = 0;
2519 break;
2520
2521 case PM_POST_SUSPEND:
2522 case PM_POST_HIBERNATION:
274476f8 2523 case PM_POST_RESTORE:
4c2ef25f
ML
2524
2525 spin_lock_irqsave(&host->lock, flags);
2526 host->rescan_disable = 0;
bec8726a 2527 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
4c2ef25f
ML
2528 spin_unlock_irqrestore(&host->lock, flags);
2529 mmc_detect_change(host, 0);
2530
2531 }
2532
2533 return 0;
2534}
1da177e4
LT
2535#endif
2536
ffce2e7e
PO
2537static int __init mmc_init(void)
2538{
2539 int ret;
2540
0d9ee5b2 2541 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2542 if (!workqueue)
2543 return -ENOMEM;
2544
2545 ret = mmc_register_bus();
e29a7d73
PO
2546 if (ret)
2547 goto destroy_workqueue;
2548
2549 ret = mmc_register_host_class();
2550 if (ret)
2551 goto unregister_bus;
2552
2553 ret = sdio_register_bus();
2554 if (ret)
2555 goto unregister_host_class;
2556
2557 return 0;
2558
2559unregister_host_class:
2560 mmc_unregister_host_class();
2561unregister_bus:
2562 mmc_unregister_bus();
2563destroy_workqueue:
2564 destroy_workqueue(workqueue);
2565
ffce2e7e
PO
2566 return ret;
2567}
2568
2569static void __exit mmc_exit(void)
2570{
e29a7d73 2571 sdio_unregister_bus();
ffce2e7e
PO
2572 mmc_unregister_host_class();
2573 mmc_unregister_bus();
2574 destroy_workqueue(workqueue);
2575}
2576
26074962 2577subsys_initcall(mmc_init);
ffce2e7e
PO
2578module_exit(mmc_exit);
2579
1da177e4 2580MODULE_LICENSE("GPL");