mmc: sdricoh_cs: Respect the cmd->busy_timeout from the mmc core
[linux-block.git] / drivers / mmc / core / core.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
aaac1b47 3 * linux/drivers/mmc/core/core.c
1da177e4
LT
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4 9 */
1da177e4
LT
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
af8350c7 18#include <linux/leds.h>
b57c43ad 19#include <linux/scatterlist.h>
86e8286a 20#include <linux/log2.h>
e594573d 21#include <linux/pm_runtime.h>
bbd43682 22#include <linux/pm_wakeup.h>
35eb6db1 23#include <linux/suspend.h>
1b676f70
PF
24#include <linux/fault-inject.h>
25#include <linux/random.h>
950d56ac 26#include <linux/slab.h>
6e9e318b 27#include <linux/of.h>
1da177e4
LT
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
da7fbe58
PO
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
740a221e 33#include <linux/mmc/slot-gpio.h>
1da177e4 34
7962fc37
BW
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
aaac1b47 38#include "core.h"
4facdde1 39#include "card.h"
ffce2e7e
PO
40#include "bus.h"
41#include "host.h"
e29a7d73 42#include "sdio_bus.h"
3aa8793f 43#include "pwrseq.h"
da7fbe58
PO
44
45#include "mmc_ops.h"
46#include "sd_ops.h"
5c4e6f13 47#include "sdio_ops.h"
1da177e4 48
12182aff
UH
49/* The max erase timeout, used when host->max_busy_timeout isn't specified */
50#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
ad9be7ff 51#define SD_DISCARD_TIMEOUT_MS (250)
12182aff 52
fa550189 53static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 54
af517150
DB
55/*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it it to be disabled.
59 */
90ab5ee9 60bool use_spi_crc = 1;
af517150
DB
61module_param(use_spi_crc, bool, 0);
62
ffce2e7e
PO
63static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65{
520bd7a8
UH
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
ffce2e7e
PO
73}
74
1b676f70
PF
75#ifdef CONFIG_FAIL_MMC_REQUEST
76
77/*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
81static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83{
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
e5723f95 95 if ((cmd && cmd->error) || data->error ||
1b676f70
PF
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
2e744fcb
AM
99 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
101}
102
103#else /* CONFIG_FAIL_MMC_REQUEST */
104
105static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107{
108}
109
110#endif /* CONFIG_FAIL_MMC_REQUEST */
111
5163af5a
AH
112static inline void mmc_complete_cmd(struct mmc_request *mrq)
113{
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116}
117
118void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119{
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127}
128EXPORT_SYMBOL(mmc_command_done);
129
1da177e4 130/**
fe10c6ab
RK
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
1da177e4
LT
134 *
135 * MMC drivers should call this function when they have completed
fe10c6ab 136 * their processing of a request.
1da177e4
LT
137 */
138void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139{
140 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
141 int err = cmd->error;
142
bd11e8bd 143 /* Flag re-tuning needed on CRC errors */
0a55f4ab
DA
144 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 !host->retune_crc_disable &&
031277d4 147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
bd11e8bd 148 (mrq->data && mrq->data->error == -EILSEQ) ||
031277d4 149 (mrq->stop && mrq->stop->error == -EILSEQ)))
bd11e8bd
AH
150 mmc_retune_needed(host);
151
af517150
DB
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
5163af5a
AH
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
7962fc37
BW
162 trace_mmc_request_done(host, mrq);
163
67b8360a
LW
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
1b676f70
PF
174 mmc_should_fail_request(host, mrq);
175
5163af5a
AH
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
af8350c7 178
fc75b708
AG
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
e4d21708
PO
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
1da177e4 205 }
67b8360a
LW
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
1da177e4
LT
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
90a81489
AH
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
5d3f6ef0
HG
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
f328c76e 231 * And bypass I/O abort, reset and bus suspend operations.
5d3f6ef0 232 */
f328c76e 233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
5d3f6ef0
HG
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
5163af5a
AH
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
7962fc37
BW
256 trace_mmc_request_start(host, mrq);
257
3e207c8c
AH
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
90a81489
AH
261 host->ops->request(host, mrq);
262}
263
72a5af55
AH
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
1da177e4 266{
7b2fd4f2
JC
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
4b67e63f 273 if (mrq->cmd) {
72a5af55
AH
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
4b67e63f 280 }
1da177e4 281
e4d21708
PO
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
ce252edd 287 mrq->data->timeout_ns / 1000000,
e4d21708
PO
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
4b67e63f
AH
296}
297
f34bdd2f 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
4b67e63f 299{
b044b1bc 300 unsigned int i, sz = 0;
4b67e63f 301 struct scatterlist *sg;
1da177e4 302
f34bdd2f
AH
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
cce411e6
AG
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
1da177e4 312 if (mrq->data) {
6ff897ff
SL
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
b044b1bc 317
a84756c5
PO
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
6ff897ff
SL
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
b044b1bc 322
1da177e4
LT
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
f34bdd2f
AH
331
332 return 0;
333}
334
cb39f61e 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
f34bdd2f
AH
336{
337 int err;
338
d2383318
AH
339 init_completion(&mrq->cmd_completion);
340
f34bdd2f
AH
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
72a5af55 346 mmc_mrq_pr_debug(host, mrq, false);
f34bdd2f
AH
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
66c036e0 354 led_trigger_event(host->led, LED_FULL);
90a81489 355 __mmc_start_request(host, mrq);
f100c1c2
AH
356
357 return 0;
1da177e4 358}
cb39f61e 359EXPORT_SYMBOL(mmc_start_request);
1da177e4 360
1da177e4
LT
361static void mmc_wait_done(struct mmc_request *mrq)
362{
aa8b683a
PF
363 complete(&mrq->completion);
364}
365
5163af5a
AH
366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367{
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376}
377
956d9fd5 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a 379{
f100c1c2
AH
380 int err;
381
5163af5a
AH
382 mmc_wait_ongoing_tfr_cmd(host);
383
aa8b683a
PF
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
f100c1c2
AH
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
5163af5a 390 mmc_complete_cmd(mrq);
d3049504 391 complete(&mrq->completion);
d3049504 392 }
f100c1c2
AH
393
394 return err;
aa8b683a
PF
395}
396
5163af5a 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a 398{
08a7e1df
AH
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
775a9362 405
d3049504
AH
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
08a7e1df
AH
408 break;
409
90a81489
AH
410 mmc_retune_recheck(host);
411
08a7e1df
AH
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
90a81489 416 __mmc_start_request(host, mrq);
08a7e1df 417 }
90a81489
AH
418
419 mmc_retune_release(host);
aa8b683a 420}
5163af5a
AH
421EXPORT_SYMBOL(mmc_wait_for_req_done);
422
72a5af55
AH
423/*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432{
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470}
471EXPORT_SYMBOL(mmc_cqe_start_req);
472
473/**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482{
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507}
508EXPORT_SYMBOL(mmc_cqe_request_done);
509
510/**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516{
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519}
520EXPORT_SYMBOL(mmc_cqe_post_req);
521
522/* Arbitrary 1 second timeout */
523#define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525/*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
534int mmc_cqe_recovery(struct mmc_host *host)
535{
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION,
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
554 mmc_wait_for_cmd(host, &cmd, 0);
555
556 memset(&cmd, 0, sizeof(cmd));
557 cmd.opcode = MMC_CMDQ_TASK_MGMT;
558 cmd.arg = 1; /* Discard entire queue */
559 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
560 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
561 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
562 err = mmc_wait_for_cmd(host, &cmd, 0);
563
564 host->cqe_ops->cqe_recovery_finish(host);
565
566 mmc_retune_release(host);
567
568 return err;
569}
570EXPORT_SYMBOL(mmc_cqe_recovery);
571
5163af5a
AH
572/**
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574 * @host: MMC host
575 * @mrq: MMC request
576 *
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
583 */
584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
585{
126b6270 586 return completion_done(&mrq->completion);
5163af5a
AH
587}
588EXPORT_SYMBOL(mmc_is_req_done);
aa8b683a 589
67a61c48
PO
590/**
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
594 *
595 * Start a new MMC custom command request for a host, and wait
5163af5a
AH
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
67a61c48
PO
601 */
602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 603{
aa8b683a 604 __mmc_start_req(host, mrq);
5163af5a
AH
605
606 if (!mrq->cap_cmd_during_tfr)
607 mmc_wait_for_req_done(host, mrq);
1da177e4 608}
1da177e4
LT
609EXPORT_SYMBOL(mmc_wait_for_req);
610
611/**
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
616 *
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
620 */
621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
622{
c7836d15 623 struct mmc_request mrq = {};
1da177e4 624
d84075c8 625 WARN_ON(!host->claimed);
1da177e4 626
1da177e4
LT
627 memset(cmd->resp, 0, sizeof(cmd->resp));
628 cmd->retries = retries;
629
630 mrq.cmd = cmd;
631 cmd->data = NULL;
632
633 mmc_wait_for_req(host, &mrq);
634
635 return cmd->error;
636}
637
638EXPORT_SYMBOL(mmc_wait_for_cmd);
639
d773d725
RK
640/**
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
67a61c48
PO
644 *
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
d773d725 647 */
b146d26a 648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
649{
650 unsigned int mult;
651
e6f918bf
PO
652 /*
653 * SDIO cards only define an upper 1 s limit on access.
654 */
655 if (mmc_card_sdio(card)) {
656 data->timeout_ns = 1000000000;
657 data->timeout_clks = 0;
658 return;
659 }
660
d773d725
RK
661 /*
662 * SD cards use a 100 multiplier rather than 10
663 */
664 mult = mmc_card_sd(card) ? 100 : 10;
665
666 /*
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
669 */
b146d26a 670 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
671 mult <<= card->csd.r2w_factor;
672
4406ae21
SL
673 data->timeout_ns = card->csd.taac_ns * mult;
674 data->timeout_clks = card->csd.taac_clks * mult;
d773d725
RK
675
676 /*
677 * SD cards also have an upper limit on the timeout.
678 */
679 if (mmc_card_sd(card)) {
680 unsigned int timeout_us, limit_us;
681
682 timeout_us = data->timeout_ns / 1000;
9eadcc05 683 if (card->host->ios.clock)
e9b86841 684 timeout_us += data->timeout_clks * 1000 /
9eadcc05 685 (card->host->ios.clock / 1000);
d773d725 686
b146d26a 687 if (data->flags & MMC_DATA_WRITE)
493890e7 688 /*
3bdc9ba8
PW
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
493890e7 695 */
3bdc9ba8 696 limit_us = 3000000;
d773d725
RK
697 else
698 limit_us = 100000;
699
fba68bd2
PL
700 /*
701 * SDHC cards always use these fixed values.
702 */
6ca2920d 703 if (timeout_us > limit_us) {
d773d725
RK
704 data->timeout_ns = limit_us * 1000;
705 data->timeout_clks = 0;
706 }
f7bf11a3
SW
707
708 /* assign limit value if invalid */
709 if (timeout_us == 0)
710 data->timeout_ns = limit_us * 1000;
d773d725 711 }
6de5fc9c
SNX
712
713 /*
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
32ecd320 716 * value. For the cards tested, 600ms has proven enough. If necessary,
6de5fc9c
SNX
717 * this value can be increased if other problematic cards require this.
718 */
719 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
32ecd320 720 data->timeout_ns = 600000000;
6de5fc9c
SNX
721 data->timeout_clks = 0;
722 }
723
c0c88871
WM
724 /*
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
728 * overflowed.
729 */
730 if (mmc_host_is_spi(card->host)) {
731 if (data->flags & MMC_DATA_WRITE) {
732 if (data->timeout_ns < 1000000000)
733 data->timeout_ns = 1000000000; /* 1s */
734 } else {
735 if (data->timeout_ns < 100000000)
736 data->timeout_ns = 100000000; /* 100ms */
737 }
738 }
d773d725
RK
739}
740EXPORT_SYMBOL(mmc_set_data_timeout);
741
6c0cedd1
AH
742/*
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
745 */
746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 struct task_struct *task)
748{
749 return host->claimer == ctx ||
750 (!ctx && task && host->claimer->task == task);
751}
752
753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 struct mmc_ctx *ctx,
755 struct task_struct *task)
756{
757 if (!host->claimer) {
758 if (ctx)
759 host->claimer = ctx;
760 else
761 host->claimer = &host->default_ctx;
762 }
763 if (task)
764 host->claimer->task = task;
765}
766
1da177e4 767/**
2342f332 768 * __mmc_claim_host - exclusively claim a host
1da177e4 769 * @host: mmc host to claim
6c0cedd1
AH
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
2342f332 772 * @abort: whether or not the operation should be aborted
1da177e4 773 *
2342f332
NP
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
1da177e4 778 */
6c0cedd1
AH
779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 atomic_t *abort)
1da177e4 781{
6c0cedd1 782 struct task_struct *task = ctx ? NULL : current;
1da177e4
LT
783 DECLARE_WAITQUEUE(wait, current);
784 unsigned long flags;
2342f332 785 int stop;
9250aea7 786 bool pm = false;
1da177e4 787
cf795bfb
PO
788 might_sleep();
789
1da177e4
LT
790 add_wait_queue(&host->wq, &wait);
791 spin_lock_irqsave(&host->lock, flags);
792 while (1) {
793 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 794 stop = abort ? atomic_read(abort) : 0;
6c0cedd1 795 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
1da177e4
LT
796 break;
797 spin_unlock_irqrestore(&host->lock, flags);
798 schedule();
799 spin_lock_irqsave(&host->lock, flags);
800 }
801 set_current_state(TASK_RUNNING);
319a3f14 802 if (!stop) {
2342f332 803 host->claimed = 1;
6c0cedd1 804 mmc_ctx_set_claimer(host, ctx, task);
319a3f14 805 host->claim_cnt += 1;
9250aea7
UH
806 if (host->claim_cnt == 1)
807 pm = true;
319a3f14 808 } else
2342f332 809 wake_up(&host->wq);
1da177e4
LT
810 spin_unlock_irqrestore(&host->lock, flags);
811 remove_wait_queue(&host->wq, &wait);
9250aea7
UH
812
813 if (pm)
814 pm_runtime_get_sync(mmc_dev(host));
815
2342f332 816 return stop;
1da177e4 817}
2342f332 818EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 819
ab1efd27 820/**
907d2e7c 821 * mmc_release_host - release a host
ab1efd27
UH
822 * @host: mmc host to release
823 *
907d2e7c
AH
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
ab1efd27 826 */
907d2e7c 827void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
828{
829 unsigned long flags;
830
907d2e7c
AH
831 WARN_ON(!host->claimed);
832
8ea926b2 833 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
834 if (--host->claim_cnt) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host->lock, flags);
837 } else {
838 host->claimed = 0;
6c0cedd1 839 host->claimer->task = NULL;
319a3f14
AH
840 host->claimer = NULL;
841 spin_unlock_irqrestore(&host->lock, flags);
842 wake_up(&host->wq);
9250aea7 843 pm_runtime_mark_last_busy(mmc_dev(host));
7d5ef512
UH
844 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 pm_runtime_put_sync_suspend(mmc_dev(host));
846 else
847 pm_runtime_put_autosuspend(mmc_dev(host));
319a3f14 848 }
8ea926b2 849}
1da177e4
LT
850EXPORT_SYMBOL(mmc_release_host);
851
e94cfef6
UH
852/*
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
855 */
6c0cedd1 856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
e94cfef6
UH
857{
858 pm_runtime_get_sync(&card->dev);
6c0cedd1 859 __mmc_claim_host(card->host, ctx, NULL);
e94cfef6
UH
860}
861EXPORT_SYMBOL(mmc_get_card);
862
863/*
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
866 */
6c0cedd1 867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
e94cfef6 868{
6c0cedd1
AH
869 struct mmc_host *host = card->host;
870
871 WARN_ON(ctx && host->claimer != ctx);
872
873 mmc_release_host(host);
e94cfef6
UH
874 pm_runtime_mark_last_busy(&card->dev);
875 pm_runtime_put_autosuspend(&card->dev);
876}
877EXPORT_SYMBOL(mmc_put_card);
878
7ea239d9
PO
879/*
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
882 */
920e70c5
RK
883static inline void mmc_set_ios(struct mmc_host *host)
884{
885 struct mmc_ios *ios = &host->ios;
886
cd9277c0
PO
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
920e70c5
RK
889 mmc_hostname(host), ios->clock, ios->bus_mode,
890 ios->power_mode, ios->chip_select, ios->vdd,
ed9feec7 891 1 << ios->bus_width, ios->timing);
fba68bd2 892
920e70c5
RK
893 host->ops->set_ios(host, ios);
894}
895
7ea239d9
PO
896/*
897 * Control chip select pin on a host.
898 */
da7fbe58 899void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 900{
da7fbe58
PO
901 host->ios.chip_select = mode;
902 mmc_set_ios(host);
1da177e4
LT
903}
904
7ea239d9
PO
905/*
906 * Sets the host clock to the highest possible frequency that
907 * is below "hz".
908 */
9eadcc05 909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9 910{
6a98f1e8 911 WARN_ON(hz && hz < host->f_min);
7ea239d9
PO
912
913 if (hz > host->f_max)
914 hz = host->f_max;
915
916 host->ios.clock = hz;
917 mmc_set_ios(host);
918}
919
63e415c6
AH
920int mmc_execute_tuning(struct mmc_card *card)
921{
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
925
926 if (!host->ops->execute_tuning)
927 return 0;
928
3e207c8c
AH
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
931
63e415c6
AH
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
936
63e415c6 937 err = host->ops->execute_tuning(host, opcode);
63e415c6
AH
938
939 if (err)
07d97d87
RK
940 pr_err("%s: tuning execution failed: %d\n",
941 mmc_hostname(host), err);
79d5a65a
AH
942 else
943 mmc_retune_enable(host);
63e415c6
AH
944
945 return err;
946}
947
7ea239d9
PO
948/*
949 * Change the bus mode (open drain/push-pull) of a host.
950 */
951void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
952{
953 host->ios.bus_mode = mode;
954 mmc_set_ios(host);
955}
956
0f8d8ea6
AH
957/*
958 * Change data bus width of a host.
959 */
960void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
961{
4c4cb171
PR
962 host->ios.bus_width = width;
963 mmc_set_ios(host);
0f8d8ea6
AH
964}
965
2d079c43
JR
966/*
967 * Set initial state after a power cycle or a hw_reset.
968 */
969void mmc_set_initial_state(struct mmc_host *host)
970{
3e207c8c
AH
971 if (host->cqe_on)
972 host->cqe_ops->cqe_off(host);
973
79d5a65a
AH
974 mmc_retune_disable(host);
975
2d079c43
JR
976 if (mmc_host_is_spi(host))
977 host->ios.chip_select = MMC_CS_HIGH;
978 else
979 host->ios.chip_select = MMC_CS_DONTCARE;
980 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
981 host->ios.bus_width = MMC_BUS_WIDTH_1;
982 host->ios.timing = MMC_TIMING_LEGACY;
75e8a228 983 host->ios.drv_type = 0;
81ac2af6
SL
984 host->ios.enhanced_strobe = false;
985
986 /*
987 * Make sure we are in non-enhanced strobe mode before we
988 * actually enable it in ext_csd.
989 */
990 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
991 host->ops->hs400_enhanced_strobe)
992 host->ops->hs400_enhanced_strobe(host, &host->ios);
2d079c43
JR
993
994 mmc_set_ios(host);
995}
996
86e8286a
AV
997/**
998 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
999 * @vdd: voltage (mV)
1000 * @low_bits: prefer low bits in boundary cases
1001 *
1002 * This function returns the OCR bit number according to the provided @vdd
1003 * value. If conversion is not possible a negative errno value returned.
1004 *
1005 * Depending on the @low_bits flag the function prefers low or high OCR bits
1006 * on boundary voltages. For example,
1007 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1008 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1009 *
1010 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1011 */
1012static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1013{
1014 const int max_bit = ilog2(MMC_VDD_35_36);
1015 int bit;
1016
1017 if (vdd < 1650 || vdd > 3600)
1018 return -EINVAL;
1019
1020 if (vdd >= 1650 && vdd <= 1950)
1021 return ilog2(MMC_VDD_165_195);
1022
1023 if (low_bits)
1024 vdd -= 1;
1025
1026 /* Base 2000 mV, step 100 mV, bit's base 8. */
1027 bit = (vdd - 2000) / 100 + 8;
1028 if (bit > max_bit)
1029 return max_bit;
1030 return bit;
1031}
1032
1033/**
1034 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1035 * @vdd_min: minimum voltage value (mV)
1036 * @vdd_max: maximum voltage value (mV)
1037 *
1038 * This function returns the OCR mask bits according to the provided @vdd_min
1039 * and @vdd_max values. If conversion is not possible the function returns 0.
1040 *
1041 * Notes wrt boundary cases:
1042 * This function sets the OCR bits for all boundary voltages, for example
1043 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1044 * MMC_VDD_34_35 mask.
1045 */
1046u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1047{
1048 u32 mask = 0;
1049
1050 if (vdd_max < vdd_min)
1051 return 0;
1052
1053 /* Prefer high bits for the boundary vdd_max values. */
1054 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1055 if (vdd_max < 0)
1056 return 0;
1057
1058 /* Prefer low bits for the boundary vdd_min values. */
1059 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1060 if (vdd_min < 0)
1061 return 0;
1062
1063 /* Fill the mask, from max bit to min bit. */
1064 while (vdd_max >= vdd_min)
1065 mask |= 1 << vdd_max--;
1066
1067 return mask;
1068}
86e8286a 1069
25185f3f
SH
1070static int mmc_of_get_func_num(struct device_node *node)
1071{
1072 u32 reg;
1073 int ret;
1074
1075 ret = of_property_read_u32(node, "reg", &reg);
1076 if (ret < 0)
1077 return ret;
1078
1079 return reg;
1080}
1081
1082struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1083 unsigned func_num)
1084{
1085 struct device_node *node;
1086
1087 if (!host->parent || !host->parent->of_node)
1088 return NULL;
1089
1090 for_each_child_of_node(host->parent->of_node, node) {
1091 if (mmc_of_get_func_num(node) == func_num)
1092 return node;
1093 }
1094
1095 return NULL;
1096}
1097
1da177e4
LT
1098/*
1099 * Mask off any voltages we don't support and select
1100 * the lowest voltage
1101 */
7ea239d9 1102u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1103{
1104 int bit;
1105
726d6f23
UH
1106 /*
1107 * Sanity check the voltages that the card claims to
1108 * support.
1109 */
1110 if (ocr & 0x7F) {
1111 dev_warn(mmc_dev(host),
1112 "card claims to support voltages below defined range\n");
1113 ocr &= ~0x7F;
1114 }
1115
1da177e4 1116 ocr &= host->ocr_avail;
ce69d37b
UH
1117 if (!ocr) {
1118 dev_warn(mmc_dev(host), "no support for card's volts\n");
1119 return 0;
1120 }
1da177e4 1121
ce69d37b
UH
1122 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1123 bit = ffs(ocr) - 1;
63ef731a 1124 ocr &= 3 << bit;
ce69d37b 1125 mmc_power_cycle(host, ocr);
1da177e4 1126 } else {
ce69d37b
UH
1127 bit = fls(ocr) - 1;
1128 ocr &= 3 << bit;
1129 if (bit != host->ios.vdd)
1130 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1da177e4
LT
1131 }
1132
1133 return ocr;
1134}
1135
4e74b6b3 1136int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
567c8903
JR
1137{
1138 int err = 0;
1139 int old_signal_voltage = host->ios.signal_voltage;
1140
1141 host->ios.signal_voltage = signal_voltage;
9eadcc05 1142 if (host->ops->start_signal_voltage_switch)
567c8903 1143 err = host->ops->start_signal_voltage_switch(host, &host->ios);
567c8903
JR
1144
1145 if (err)
1146 host->ios.signal_voltage = old_signal_voltage;
1147
1148 return err;
1149
1150}
1151
508c9864
UH
1152void mmc_set_initial_signal_voltage(struct mmc_host *host)
1153{
1154 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1155 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1156 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1157 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1158 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1159 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1160 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1161}
1162
3f496afb
AH
1163int mmc_host_set_uhs_voltage(struct mmc_host *host)
1164{
1165 u32 clock;
1166
1167 /*
1168 * During a signal voltage level switch, the clock must be gated
1169 * for 5 ms according to the SD spec
1170 */
1171 clock = host->ios.clock;
1172 host->ios.clock = 0;
1173 mmc_set_ios(host);
1174
1175 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1176 return -EAGAIN;
1177
1178 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1179 mmc_delay(10);
1180 host->ios.clock = clock;
1181 mmc_set_ios(host);
1182
1183 return 0;
1184}
1185
2ed573b6 1186int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
f2119df6 1187{
c7836d15 1188 struct mmc_command cmd = {};
f2119df6
AN
1189 int err = 0;
1190
0797e5f1
JR
1191 /*
1192 * If we cannot switch voltages, return failure so the caller
1193 * can continue without UHS mode
1194 */
1195 if (!host->ops->start_signal_voltage_switch)
1196 return -EPERM;
1197 if (!host->ops->card_busy)
6606110d
JP
1198 pr_warn("%s: cannot verify signal voltage switch\n",
1199 mmc_hostname(host));
0797e5f1
JR
1200
1201 cmd.opcode = SD_SWITCH_VOLTAGE;
1202 cmd.arg = 0;
1203 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1204
1205 err = mmc_wait_for_cmd(host, &cmd, 0);
1206 if (err)
9eadcc05
UH
1207 return err;
1208
1209 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1210 return -EIO;
0797e5f1 1211
0797e5f1
JR
1212 /*
1213 * The card should drive cmd and dat[0:3] low immediately
1214 * after the response of cmd11, but wait 1 ms to be sure
1215 */
1216 mmc_delay(1);
1217 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1218 err = -EAGAIN;
1219 goto power_cycle;
1220 }
f2119df6 1221
3f496afb 1222 if (mmc_host_set_uhs_voltage(host)) {
0797e5f1
JR
1223 /*
1224 * Voltages may not have been switched, but we've already
1225 * sent CMD11, so a power cycle is required anyway
1226 */
1227 err = -EAGAIN;
1228 goto power_cycle;
f2119df6
AN
1229 }
1230
0797e5f1
JR
1231 /* Wait for at least 1 ms according to spec */
1232 mmc_delay(1);
1233
1234 /*
1235 * Failure to switch is indicated by the card holding
1236 * dat[0:3] low
1237 */
1238 if (host->ops->card_busy && host->ops->card_busy(host))
1239 err = -EAGAIN;
1240
1241power_cycle:
1242 if (err) {
1243 pr_debug("%s: Signal voltage switch failed, "
1244 "power cycling card\n", mmc_hostname(host));
0f791fda 1245 mmc_power_cycle(host, ocr);
0797e5f1
JR
1246 }
1247
0797e5f1 1248 return err;
f2119df6
AN
1249}
1250
b57c43ad 1251/*
7ea239d9 1252 * Select timing parameters for host.
b57c43ad 1253 */
7ea239d9 1254void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1255{
7ea239d9
PO
1256 host->ios.timing = timing;
1257 mmc_set_ios(host);
b57c43ad
PO
1258}
1259
d6d50a15
AN
1260/*
1261 * Select appropriate driver type for host.
1262 */
1263void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1264{
1265 host->ios.drv_type = drv_type;
1266 mmc_set_ios(host);
1267}
1268
e23350b3
AH
1269int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1270 int card_drv_type, int *drv_type)
1271{
1272 struct mmc_host *host = card->host;
1273 int host_drv_type = SD_DRIVER_TYPE_B;
e23350b3
AH
1274
1275 *drv_type = 0;
1276
1277 if (!host->ops->select_drive_strength)
1278 return 0;
1279
1280 /* Use SD definition of driver strength for hosts */
1281 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1282 host_drv_type |= SD_DRIVER_TYPE_A;
1283
1284 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1285 host_drv_type |= SD_DRIVER_TYPE_C;
1286
1287 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1288 host_drv_type |= SD_DRIVER_TYPE_D;
1289
1290 /*
1291 * The drive strength that the hardware can support
1292 * depends on the board design. Pass the appropriate
1293 * information and let the hardware specific code
1294 * return what is possible given the options
1295 */
9eadcc05
UH
1296 return host->ops->select_drive_strength(card, max_dtr,
1297 host_drv_type,
1298 card_drv_type,
1299 drv_type);
e23350b3
AH
1300}
1301
1da177e4 1302/*
45f8245b
RK
1303 * Apply power to the MMC stack. This is a two-stage process.
1304 * First, we enable power to the card without the clock running.
1305 * We then wait a bit for the power to stabilise. Finally,
1306 * enable the bus drivers and clock to the card.
1307 *
1308 * We must _NOT_ enable the clock prior to power stablising.
1309 *
1310 * If a host does all the power sequencing itself, ignore the
1311 * initial MMC_POWER_UP stage.
1da177e4 1312 */
4a065193 1313void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1314{
fa550189
UH
1315 if (host->ios.power_mode == MMC_POWER_ON)
1316 return;
1317
3aa8793f
UH
1318 mmc_pwrseq_pre_power_on(host);
1319
4a065193 1320 host->ios.vdd = fls(ocr) - 1;
1da177e4 1321 host->ios.power_mode = MMC_POWER_UP;
2d079c43
JR
1322 /* Set initial state and call mmc_set_ios */
1323 mmc_set_initial_state(host);
1da177e4 1324
508c9864 1325 mmc_set_initial_signal_voltage(host);
108ecc4c 1326
f9996aee
PO
1327 /*
1328 * This delay should be sufficient to allow the power supply
1329 * to reach the minimum voltage.
1330 */
6d796c68 1331 mmc_delay(host->ios.power_delay_ms);
1da177e4 1332
4febb7e2
UH
1333 mmc_pwrseq_post_power_on(host);
1334
88ae8b86 1335 host->ios.clock = host->f_init;
8dfd0374 1336
1da177e4 1337 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1338 mmc_set_ios(host);
1da177e4 1339
f9996aee
PO
1340 /*
1341 * This delay must be at least 74 clock sizes, or 1 ms, or the
1342 * time required to reach a stable voltage.
1343 */
6d796c68 1344 mmc_delay(host->ios.power_delay_ms);
1da177e4
LT
1345}
1346
7f7e4129 1347void mmc_power_off(struct mmc_host *host)
1da177e4 1348{
fa550189
UH
1349 if (host->ios.power_mode == MMC_POWER_OFF)
1350 return;
1351
3aa8793f
UH
1352 mmc_pwrseq_power_off(host);
1353
1da177e4
LT
1354 host->ios.clock = 0;
1355 host->ios.vdd = 0;
b33d46c3 1356
1da177e4 1357 host->ios.power_mode = MMC_POWER_OFF;
2d079c43
JR
1358 /* Set initial state and call mmc_set_ios */
1359 mmc_set_initial_state(host);
778e277c 1360
041beb1d
DD
1361 /*
1362 * Some configurations, such as the 802.11 SDIO card in the OLPC
1363 * XO-1.5, require a short delay after poweroff before the card
1364 * can be successfully turned on again.
1365 */
1366 mmc_delay(1);
1da177e4
LT
1367}
1368
4a065193 1369void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1370{
1371 mmc_power_off(host);
1372 /* Wait at least 1 ms according to SD spec */
1373 mmc_delay(1);
4a065193 1374 mmc_power_up(host, ocr);
276e090f
JR
1375}
1376
39361851
AB
1377/*
1378 * Cleanup when the last reference to the bus operator is dropped.
1379 */
261172fd 1380static void __mmc_release_bus(struct mmc_host *host)
39361851 1381{
6ff897ff 1382 WARN_ON(!host->bus_dead);
39361851
AB
1383
1384 host->bus_ops = NULL;
1385}
1386
1387/*
1388 * Increase reference count of bus operator
1389 */
1390static inline void mmc_bus_get(struct mmc_host *host)
1391{
1392 unsigned long flags;
1393
1394 spin_lock_irqsave(&host->lock, flags);
1395 host->bus_refs++;
1396 spin_unlock_irqrestore(&host->lock, flags);
1397}
1398
1399/*
1400 * Decrease reference count of bus operator and free it if
1401 * it is the last reference.
1402 */
1403static inline void mmc_bus_put(struct mmc_host *host)
1404{
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&host->lock, flags);
1408 host->bus_refs--;
1409 if ((host->bus_refs == 0) && host->bus_ops)
1410 __mmc_release_bus(host);
1411 spin_unlock_irqrestore(&host->lock, flags);
1412}
1413
1da177e4 1414/*
7ea239d9
PO
1415 * Assign a mmc bus handler to a host. Only one bus handler may control a
1416 * host at any given time.
1da177e4 1417 */
7ea239d9 1418void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1419{
7ea239d9 1420 unsigned long flags;
e45a1bd2 1421
d84075c8 1422 WARN_ON(!host->claimed);
bce40a36 1423
7ea239d9 1424 spin_lock_irqsave(&host->lock, flags);
bce40a36 1425
6ff897ff
SL
1426 WARN_ON(host->bus_ops);
1427 WARN_ON(host->bus_refs);
b57c43ad 1428
7ea239d9
PO
1429 host->bus_ops = ops;
1430 host->bus_refs = 1;
1431 host->bus_dead = 0;
b57c43ad 1432
7ea239d9 1433 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1434}
1435
7ea239d9 1436/*
7f7e4129 1437 * Remove the current bus handler from a host.
7ea239d9
PO
1438 */
1439void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1440{
7ea239d9 1441 unsigned long flags;
7ccd266e 1442
d84075c8
PO
1443 WARN_ON(!host->claimed);
1444 WARN_ON(!host->bus_ops);
cd9277c0 1445
7ea239d9 1446 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1447
7ea239d9 1448 host->bus_dead = 1;
7ccd266e 1449
7ea239d9 1450 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1451
7ea239d9 1452 mmc_bus_put(host);
1da177e4
LT
1453}
1454
2ac55d5e 1455void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
bbd43682 1456{
bbd43682
UH
1457 /*
1458 * If the device is configured as wakeup, we prevent a new sleep for
1459 * 5 s to give provision for user space to consume the event.
1460 */
1461 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1462 device_can_wakeup(mmc_dev(host)))
1463 pm_wakeup_event(mmc_dev(host), 5000);
1464
1465 host->detect_change = 1;
1466 mmc_schedule_delayed_work(&host->detect, delay);
1467}
1468
1da177e4
LT
1469/**
1470 * mmc_detect_change - process change of state on a MMC socket
1471 * @host: host which changed state.
8dc00335 1472 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1473 *
67a61c48
PO
1474 * MMC drivers should call this when they detect a card has been
1475 * inserted or removed. The MMC layer will confirm that any
1476 * present card is still functional, and initialize any newly
1477 * inserted.
1da177e4 1478 */
8dc00335 1479void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1480{
bbd43682 1481 _mmc_detect_change(host, delay, true);
1da177e4 1482}
1da177e4
LT
1483EXPORT_SYMBOL(mmc_detect_change);
1484
dfe86cba
AH
1485void mmc_init_erase(struct mmc_card *card)
1486{
1487 unsigned int sz;
1488
1489 if (is_power_of_2(card->erase_size))
1490 card->erase_shift = ffs(card->erase_size) - 1;
1491 else
1492 card->erase_shift = 0;
1493
1494 /*
1495 * It is possible to erase an arbitrarily large area of an SD or MMC
1496 * card. That is not desirable because it can take a long time
1497 * (minutes) potentially delaying more important I/O, and also the
1498 * timeout calculations become increasingly hugely over-estimated.
1499 * Consequently, 'pref_erase' is defined as a guide to limit erases
1500 * to that size and alignment.
1501 *
1502 * For SD cards that define Allocation Unit size, limit erases to one
c6d8fd61
GG
1503 * Allocation Unit at a time.
1504 * For MMC, have a stab at ai good value and for modern cards it will
1505 * end up being 4MiB. Note that if the value is too small, it can end
1506 * up taking longer to erase. Also note, erase_size is already set to
1507 * High Capacity Erase Size if available when this function is called.
dfe86cba
AH
1508 */
1509 if (mmc_card_sd(card) && card->ssr.au) {
1510 card->pref_erase = card->ssr.au;
1511 card->erase_shift = ffs(card->ssr.au) - 1;
cc8aa7de 1512 } else if (card->erase_size) {
dfe86cba
AH
1513 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1514 if (sz < 128)
1515 card->pref_erase = 512 * 1024 / 512;
1516 else if (sz < 512)
1517 card->pref_erase = 1024 * 1024 / 512;
1518 else if (sz < 1024)
1519 card->pref_erase = 2 * 1024 * 1024 / 512;
1520 else
1521 card->pref_erase = 4 * 1024 * 1024 / 512;
1522 if (card->pref_erase < card->erase_size)
1523 card->pref_erase = card->erase_size;
1524 else {
1525 sz = card->pref_erase % card->erase_size;
1526 if (sz)
1527 card->pref_erase += card->erase_size - sz;
1528 }
cc8aa7de
CD
1529 } else
1530 card->pref_erase = 0;
dfe86cba
AH
1531}
1532
eaa02f75
AW
1533static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1534 unsigned int arg, unsigned int qty)
dfe86cba
AH
1535{
1536 unsigned int erase_timeout;
1537
7194efb8
AH
1538 if (arg == MMC_DISCARD_ARG ||
1539 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1540 erase_timeout = card->ext_csd.trim_timeout;
1541 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1542 /* High Capacity Erase Group Size uses HC timeouts */
1543 if (arg == MMC_TRIM_ARG)
1544 erase_timeout = card->ext_csd.trim_timeout;
1545 else
1546 erase_timeout = card->ext_csd.hc_erase_timeout;
1547 } else {
1548 /* CSD Erase Group Size uses write timeout */
1549 unsigned int mult = (10 << card->csd.r2w_factor);
4406ae21 1550 unsigned int timeout_clks = card->csd.taac_clks * mult;
dfe86cba
AH
1551 unsigned int timeout_us;
1552
4406ae21
SL
1553 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1554 if (card->csd.taac_ns < 1000000)
1555 timeout_us = (card->csd.taac_ns * mult) / 1000;
dfe86cba 1556 else
4406ae21 1557 timeout_us = (card->csd.taac_ns / 1000) * mult;
dfe86cba
AH
1558
1559 /*
1560 * ios.clock is only a target. The real clock rate might be
1561 * less but not that much less, so fudge it by multiplying by 2.
1562 */
1563 timeout_clks <<= 1;
1564 timeout_us += (timeout_clks * 1000) /
9eadcc05 1565 (card->host->ios.clock / 1000);
dfe86cba
AH
1566
1567 erase_timeout = timeout_us / 1000;
1568
1569 /*
1570 * Theoretically, the calculation could underflow so round up
1571 * to 1ms in that case.
1572 */
1573 if (!erase_timeout)
1574 erase_timeout = 1;
1575 }
1576
1577 /* Multiplier for secure operations */
1578 if (arg & MMC_SECURE_ARGS) {
1579 if (arg == MMC_SECURE_ERASE_ARG)
1580 erase_timeout *= card->ext_csd.sec_erase_mult;
1581 else
1582 erase_timeout *= card->ext_csd.sec_trim_mult;
1583 }
1584
1585 erase_timeout *= qty;
1586
1587 /*
1588 * Ensure at least a 1 second timeout for SPI as per
1589 * 'mmc_set_data_timeout()'
1590 */
1591 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1592 erase_timeout = 1000;
1593
eaa02f75 1594 return erase_timeout;
dfe86cba
AH
1595}
1596
eaa02f75
AW
1597static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1598 unsigned int arg,
1599 unsigned int qty)
dfe86cba 1600{
eaa02f75
AW
1601 unsigned int erase_timeout;
1602
ad9be7ff
AA
1603 /* for DISCARD none of the below calculation applies.
1604 * the busy timeout is 250msec per discard command.
1605 */
1606 if (arg == SD_DISCARD_ARG)
1607 return SD_DISCARD_TIMEOUT_MS;
1608
dfe86cba
AH
1609 if (card->ssr.erase_timeout) {
1610 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1611 erase_timeout = card->ssr.erase_timeout * qty +
1612 card->ssr.erase_offset;
dfe86cba
AH
1613 } else {
1614 /*
1615 * Erase timeout not specified in SD Status Register (SSR) so
1616 * use 250ms per write block.
1617 */
eaa02f75 1618 erase_timeout = 250 * qty;
dfe86cba
AH
1619 }
1620
1621 /* Must not be less than 1 second */
eaa02f75
AW
1622 if (erase_timeout < 1000)
1623 erase_timeout = 1000;
1624
1625 return erase_timeout;
dfe86cba
AH
1626}
1627
eaa02f75
AW
1628static unsigned int mmc_erase_timeout(struct mmc_card *card,
1629 unsigned int arg,
1630 unsigned int qty)
dfe86cba
AH
1631{
1632 if (mmc_card_sd(card))
eaa02f75 1633 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1634 else
eaa02f75 1635 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1636}
1637
1638static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1639 unsigned int to, unsigned int arg)
1640{
c7836d15 1641 struct mmc_command cmd = {};
bb4eecf2
BW
1642 unsigned int qty = 0, busy_timeout = 0;
1643 bool use_r1b_resp = false;
dfe86cba
AH
1644 int err;
1645
8f11d106
AH
1646 mmc_retune_hold(card->host);
1647
dfe86cba
AH
1648 /*
1649 * qty is used to calculate the erase timeout which depends on how many
1650 * erase groups (or allocation units in SD terminology) are affected.
1651 * We count erasing part of an erase group as one erase group.
1652 * For SD, the allocation units are always a power of 2. For MMC, the
1653 * erase group size is almost certainly also power of 2, but it does not
1654 * seem to insist on that in the JEDEC standard, so we fall back to
1655 * division in that case. SD may not specify an allocation unit size,
1656 * in which case the timeout is based on the number of write blocks.
1657 *
1658 * Note that the timeout for secure trim 2 will only be correct if the
1659 * number of erase groups specified is the same as the total of all
1660 * preceding secure trim 1 commands. Since the power may have been
1661 * lost since the secure trim 1 commands occurred, it is generally
1662 * impossible to calculate the secure trim 2 timeout correctly.
1663 */
1664 if (card->erase_shift)
1665 qty += ((to >> card->erase_shift) -
1666 (from >> card->erase_shift)) + 1;
1667 else if (mmc_card_sd(card))
1668 qty += to - from + 1;
1669 else
1670 qty += ((to / card->erase_size) -
1671 (from / card->erase_size)) + 1;
1672
1673 if (!mmc_card_blockaddr(card)) {
1674 from <<= 9;
1675 to <<= 9;
1676 }
1677
dfe86cba
AH
1678 if (mmc_card_sd(card))
1679 cmd.opcode = SD_ERASE_WR_BLK_START;
1680 else
1681 cmd.opcode = MMC_ERASE_GROUP_START;
1682 cmd.arg = from;
1683 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1684 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1685 if (err) {
a3c76eb9 1686 pr_err("mmc_erase: group start error %d, "
dfe86cba 1687 "status %#x\n", err, cmd.resp[0]);
67716327 1688 err = -EIO;
dfe86cba
AH
1689 goto out;
1690 }
1691
1692 memset(&cmd, 0, sizeof(struct mmc_command));
1693 if (mmc_card_sd(card))
1694 cmd.opcode = SD_ERASE_WR_BLK_END;
1695 else
1696 cmd.opcode = MMC_ERASE_GROUP_END;
1697 cmd.arg = to;
1698 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1699 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1700 if (err) {
a3c76eb9 1701 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1702 err, cmd.resp[0]);
67716327 1703 err = -EIO;
dfe86cba
AH
1704 goto out;
1705 }
1706
1707 memset(&cmd, 0, sizeof(struct mmc_command));
1708 cmd.opcode = MMC_ERASE;
1709 cmd.arg = arg;
bb4eecf2
BW
1710 busy_timeout = mmc_erase_timeout(card, arg, qty);
1711 /*
1712 * If the host controller supports busy signalling and the timeout for
1713 * the erase operation does not exceed the max_busy_timeout, we should
1714 * use R1B response. Or we need to prevent the host from doing hw busy
1715 * detection, which is done by converting to a R1 response instead.
43cc64e5
UH
1716 * Note, some hosts requires R1B, which also means they are on their own
1717 * when it comes to deal with the busy timeout.
bb4eecf2 1718 */
43cc64e5
UH
1719 if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1720 card->host->max_busy_timeout &&
bb4eecf2
BW
1721 busy_timeout > card->host->max_busy_timeout) {
1722 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1723 } else {
1724 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1725 cmd.busy_timeout = busy_timeout;
1726 use_r1b_resp = true;
1727 }
1728
dfe86cba
AH
1729 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1730 if (err) {
a3c76eb9 1731 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1732 err, cmd.resp[0]);
1733 err = -EIO;
1734 goto out;
1735 }
1736
1737 if (mmc_host_is_spi(card->host))
1738 goto out;
1739
bb4eecf2
BW
1740 /*
1741 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1742 * shall be avoided.
1743 */
1744 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1745 goto out;
1746
0d84c3e6
UH
1747 /* Let's poll to find out when the erase operation completes. */
1748 err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
8fee476b 1749
dfe86cba 1750out:
8f11d106 1751 mmc_retune_release(card->host);
dfe86cba
AH
1752 return err;
1753}
1754
71085123
BW
1755static unsigned int mmc_align_erase_size(struct mmc_card *card,
1756 unsigned int *from,
1757 unsigned int *to,
1758 unsigned int nr)
1759{
1760 unsigned int from_new = *from, nr_new = nr, rem;
1761
6c689886
BW
1762 /*
1763 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1764 * to align the erase size efficiently.
1765 */
1766 if (is_power_of_2(card->erase_size)) {
1767 unsigned int temp = from_new;
1768
1769 from_new = round_up(temp, card->erase_size);
1770 rem = from_new - temp;
1771
71085123
BW
1772 if (nr_new > rem)
1773 nr_new -= rem;
1774 else
1775 return 0;
71085123 1776
6c689886
BW
1777 nr_new = round_down(nr_new, card->erase_size);
1778 } else {
1779 rem = from_new % card->erase_size;
1780 if (rem) {
1781 rem = card->erase_size - rem;
1782 from_new += rem;
1783 if (nr_new > rem)
1784 nr_new -= rem;
1785 else
1786 return 0;
1787 }
1788
1789 rem = nr_new % card->erase_size;
1790 if (rem)
1791 nr_new -= rem;
1792 }
71085123
BW
1793
1794 if (nr_new == 0)
1795 return 0;
1796
1797 *to = from_new + nr_new;
1798 *from = from_new;
1799
1800 return nr_new;
1801}
1802
dfe86cba
AH
1803/**
1804 * mmc_erase - erase sectors.
1805 * @card: card to erase
1806 * @from: first sector to erase
1807 * @nr: number of sectors to erase
bc47e2f6 1808 * @arg: erase command argument
dfe86cba
AH
1809 *
1810 * Caller must claim host before calling this function.
1811 */
1812int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1813 unsigned int arg)
1814{
1815 unsigned int rem, to = from + nr;
642c28ab 1816 int err;
dfe86cba
AH
1817
1818 if (!(card->host->caps & MMC_CAP_ERASE) ||
1819 !(card->csd.cmdclass & CCC_ERASE))
1820 return -EOPNOTSUPP;
1821
1822 if (!card->erase_size)
1823 return -EOPNOTSUPP;
1824
bc47e2f6 1825 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
dfe86cba
AH
1826 return -EOPNOTSUPP;
1827
bc47e2f6 1828 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
dfe86cba
AH
1829 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1830 return -EOPNOTSUPP;
1831
bc47e2f6 1832 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
dfe86cba
AH
1833 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1834 return -EOPNOTSUPP;
1835
1836 if (arg == MMC_SECURE_ERASE_ARG) {
1837 if (from % card->erase_size || nr % card->erase_size)
1838 return -EINVAL;
1839 }
1840
71085123
BW
1841 if (arg == MMC_ERASE_ARG)
1842 nr = mmc_align_erase_size(card, &from, &to, nr);
dfe86cba
AH
1843
1844 if (nr == 0)
1845 return 0;
1846
dfe86cba
AH
1847 if (to <= from)
1848 return -EINVAL;
1849
1850 /* 'from' and 'to' are inclusive */
1851 to -= 1;
1852
642c28ab
DJ
1853 /*
1854 * Special case where only one erase-group fits in the timeout budget:
1855 * If the region crosses an erase-group boundary on this particular
1856 * case, we will be trimming more than one erase-group which, does not
1857 * fit in the timeout budget of the controller, so we need to split it
1858 * and call mmc_do_erase() twice if necessary. This special case is
1859 * identified by the card->eg_boundary flag.
1860 */
22d7e85f
RG
1861 rem = card->erase_size - (from % card->erase_size);
1862 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
642c28ab
DJ
1863 err = mmc_do_erase(card, from, from + rem - 1, arg);
1864 from += rem;
1865 if ((err) || (to <= from))
1866 return err;
1867 }
1868
dfe86cba
AH
1869 return mmc_do_erase(card, from, to, arg);
1870}
1871EXPORT_SYMBOL(mmc_erase);
1872
1873int mmc_can_erase(struct mmc_card *card)
1874{
1875 if ((card->host->caps & MMC_CAP_ERASE) &&
1876 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1877 return 1;
1878 return 0;
1879}
1880EXPORT_SYMBOL(mmc_can_erase);
1881
1882int mmc_can_trim(struct mmc_card *card)
1883{
b5b4ff0a
SL
1884 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1885 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
dfe86cba
AH
1886 return 1;
1887 return 0;
1888}
1889EXPORT_SYMBOL(mmc_can_trim);
1890
b3bf9153
KP
1891int mmc_can_discard(struct mmc_card *card)
1892{
1893 /*
1894 * As there's no way to detect the discard support bit at v4.5
1895 * use the s/w feature support filed.
1896 */
1897 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1898 return 1;
1899 return 0;
1900}
1901EXPORT_SYMBOL(mmc_can_discard);
1902
d9ddd629
KP
1903int mmc_can_sanitize(struct mmc_card *card)
1904{
28302812
AH
1905 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1906 return 0;
d9ddd629
KP
1907 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1908 return 1;
1909 return 0;
1910}
d9ddd629 1911
dfe86cba
AH
1912int mmc_can_secure_erase_trim(struct mmc_card *card)
1913{
5204d00f
LC
1914 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1915 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
dfe86cba
AH
1916 return 1;
1917 return 0;
1918}
1919EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1920
1921int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1922 unsigned int nr)
1923{
1924 if (!card->erase_size)
1925 return 0;
1926 if (from % card->erase_size || nr % card->erase_size)
1927 return 0;
1928 return 1;
1929}
1930EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 1931
e056a1b5
AH
1932static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1933 unsigned int arg)
1934{
1935 struct mmc_host *host = card->host;
bb4eecf2 1936 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
e056a1b5 1937 unsigned int last_timeout = 0;
12182aff
UH
1938 unsigned int max_busy_timeout = host->max_busy_timeout ?
1939 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
e056a1b5 1940
bb4eecf2 1941 if (card->erase_shift) {
e056a1b5 1942 max_qty = UINT_MAX >> card->erase_shift;
bb4eecf2
BW
1943 min_qty = card->pref_erase >> card->erase_shift;
1944 } else if (mmc_card_sd(card)) {
e056a1b5 1945 max_qty = UINT_MAX;
bb4eecf2
BW
1946 min_qty = card->pref_erase;
1947 } else {
e056a1b5 1948 max_qty = UINT_MAX / card->erase_size;
bb4eecf2
BW
1949 min_qty = card->pref_erase / card->erase_size;
1950 }
e056a1b5 1951
bb4eecf2
BW
1952 /*
1953 * We should not only use 'host->max_busy_timeout' as the limitation
1954 * when deciding the max discard sectors. We should set a balance value
1955 * to improve the erase speed, and it can not get too long timeout at
1956 * the same time.
1957 *
1958 * Here we set 'card->pref_erase' as the minimal discard sectors no
1959 * matter what size of 'host->max_busy_timeout', but if the
1960 * 'host->max_busy_timeout' is large enough for more discard sectors,
1961 * then we can continue to increase the max discard sectors until we
12182aff
UH
1962 * get a balance value. In cases when the 'host->max_busy_timeout'
1963 * isn't specified, use the default max erase timeout.
bb4eecf2 1964 */
e056a1b5
AH
1965 do {
1966 y = 0;
1967 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1968 timeout = mmc_erase_timeout(card, arg, qty + x);
bb4eecf2 1969
12182aff 1970 if (qty + x > min_qty && timeout > max_busy_timeout)
e056a1b5 1971 break;
bb4eecf2 1972
e056a1b5
AH
1973 if (timeout < last_timeout)
1974 break;
1975 last_timeout = timeout;
1976 y = x;
1977 }
1978 qty += y;
1979 } while (y);
1980
1981 if (!qty)
1982 return 0;
1983
642c28ab
DJ
1984 /*
1985 * When specifying a sector range to trim, chances are we might cross
1986 * an erase-group boundary even if the amount of sectors is less than
1987 * one erase-group.
1988 * If we can only fit one erase-group in the controller timeout budget,
1989 * we have to care that erase-group boundaries are not crossed by a
1990 * single trim operation. We flag that special case with "eg_boundary".
1991 * In all other cases we can just decrement qty and pretend that we
1992 * always touch (qty + 1) erase-groups as a simple optimization.
1993 */
e056a1b5 1994 if (qty == 1)
642c28ab
DJ
1995 card->eg_boundary = 1;
1996 else
1997 qty--;
e056a1b5
AH
1998
1999 /* Convert qty to sectors */
2000 if (card->erase_shift)
642c28ab 2001 max_discard = qty << card->erase_shift;
e056a1b5 2002 else if (mmc_card_sd(card))
642c28ab 2003 max_discard = qty + 1;
e056a1b5 2004 else
642c28ab 2005 max_discard = qty * card->erase_size;
e056a1b5
AH
2006
2007 return max_discard;
2008}
2009
2010unsigned int mmc_calc_max_discard(struct mmc_card *card)
2011{
2012 struct mmc_host *host = card->host;
2013 unsigned int max_discard, max_trim;
2014
e056a1b5
AH
2015 /*
2016 * Without erase_group_def set, MMC erase timeout depends on clock
2017 * frequence which can change. In that case, the best choice is
2018 * just the preferred erase size.
2019 */
2020 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2021 return card->pref_erase;
2022
2023 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
d4721339 2024 if (mmc_can_trim(card)) {
e056a1b5 2025 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
d4721339 2026 if (max_trim < max_discard || max_discard == 0)
e056a1b5
AH
2027 max_discard = max_trim;
2028 } else if (max_discard < card->erase_size) {
2029 max_discard = 0;
2030 }
2031 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
12182aff
UH
2032 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2033 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
e056a1b5
AH
2034 return max_discard;
2035}
2036EXPORT_SYMBOL(mmc_calc_max_discard);
2037
33e6d74d
UH
2038bool mmc_card_is_blockaddr(struct mmc_card *card)
2039{
2040 return card ? mmc_card_blockaddr(card) : false;
2041}
2042EXPORT_SYMBOL(mmc_card_is_blockaddr);
2043
0f8d8ea6
AH
2044int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2045{
c7836d15 2046 struct mmc_command cmd = {};
0f8d8ea6 2047
1712c937
ZX
2048 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2049 mmc_card_hs400(card) || mmc_card_hs400es(card))
0f8d8ea6
AH
2050 return 0;
2051
0f8d8ea6
AH
2052 cmd.opcode = MMC_SET_BLOCKLEN;
2053 cmd.arg = blocklen;
2054 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2055 return mmc_wait_for_cmd(card->host, &cmd, 5);
2056}
2057EXPORT_SYMBOL(mmc_set_blocklen);
2058
b2499518
AH
2059static void mmc_hw_reset_for_init(struct mmc_host *host)
2060{
52c8212d
UH
2061 mmc_pwrseq_reset(host);
2062
b2499518
AH
2063 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2064 return;
b2499518 2065 host->ops->hw_reset(host);
b2499518
AH
2066}
2067
83533ab2 2068int mmc_hw_reset(struct mmc_host *host)
b2499518 2069{
f855a371 2070 int ret;
b2499518 2071
f855a371 2072 if (!host->card)
b2499518
AH
2073 return -EINVAL;
2074
f855a371 2075 mmc_bus_get(host);
3a3db603 2076 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
f855a371 2077 mmc_bus_put(host);
b2499518 2078 return -EOPNOTSUPP;
b2499518
AH
2079 }
2080
3a3db603 2081 ret = host->bus_ops->hw_reset(host);
f855a371 2082 mmc_bus_put(host);
b2499518 2083
2ac55d5e 2084 if (ret < 0)
3a3db603 2085 pr_warn("%s: tried to HW reset card, got error %d\n",
4e6c7178 2086 mmc_hostname(host), ret);
b2499518 2087
f855a371 2088 return ret;
b2499518 2089}
b2499518
AH
2090EXPORT_SYMBOL(mmc_hw_reset);
2091
1433269c
UH
2092int mmc_sw_reset(struct mmc_host *host)
2093{
2094 int ret;
2095
2096 if (!host->card)
2097 return -EINVAL;
2098
2099 mmc_bus_get(host);
2100 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2101 mmc_bus_put(host);
2102 return -EOPNOTSUPP;
2103 }
2104
2105 ret = host->bus_ops->sw_reset(host);
2106 mmc_bus_put(host);
2107
2108 if (ret)
2109 pr_warn("%s: tried to SW reset card, got error %d\n",
2110 mmc_hostname(host), ret);
2111
2112 return ret;
2113}
2114EXPORT_SYMBOL(mmc_sw_reset);
2115
807e8e40
AR
2116static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2117{
2118 host->f_init = freq;
2119
69f25f9b 2120 pr_debug("%s: %s: trying to init card at %u Hz\n",
807e8e40 2121 mmc_hostname(host), __func__, host->f_init);
69f25f9b 2122
4a065193 2123 mmc_power_up(host, host->ocr_avail);
2f94e55a 2124
b2499518
AH
2125 /*
2126 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2127 * do a hardware reset if possible.
2128 */
2129 mmc_hw_reset_for_init(host);
2130
2f94e55a
PR
2131 /*
2132 * sdio_reset sends CMD52 to reset card. Since we do not know
2133 * if the card is being re-initialized, just send it. CMD52
2134 * should be ignored by SD/eMMC cards.
100a606d 2135 * Skip it if we already know that we do not support SDIO commands
2f94e55a 2136 */
100a606d
CC
2137 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2138 sdio_reset(host);
2139
807e8e40
AR
2140 mmc_go_idle(host);
2141
1b8d79c5
UH
2142 if (!(host->caps2 & MMC_CAP2_NO_SD))
2143 mmc_send_if_cond(host, host->ocr_avail);
807e8e40
AR
2144
2145 /* Order's important: probe SDIO, then SD, then MMC */
100a606d
CC
2146 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2147 if (!mmc_attach_sdio(host))
2148 return 0;
2149
1b8d79c5
UH
2150 if (!(host->caps2 & MMC_CAP2_NO_SD))
2151 if (!mmc_attach_sd(host))
2152 return 0;
2153
a0c3b68c
SL
2154 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2155 if (!mmc_attach_mmc(host))
2156 return 0;
807e8e40
AR
2157
2158 mmc_power_off(host);
2159 return -EIO;
2160}
2161
d3049504
AH
2162int _mmc_detect_card_removed(struct mmc_host *host)
2163{
2164 int ret;
2165
d3049504
AH
2166 if (!host->card || mmc_card_removed(host->card))
2167 return 1;
2168
2169 ret = host->bus_ops->alive(host);
1450734e
KL
2170
2171 /*
2172 * Card detect status and alive check may be out of sync if card is
2173 * removed slowly, when card detect switch changes while card/slot
2174 * pads are still contacted in hardware (refer to "SD Card Mechanical
2175 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2176 * detect work 200ms later for this case.
2177 */
2178 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2179 mmc_detect_change(host, msecs_to_jiffies(200));
2180 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2181 }
2182
d3049504
AH
2183 if (ret) {
2184 mmc_card_set_removed(host->card);
2185 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2186 }
2187
2188 return ret;
2189}
2190
2191int mmc_detect_card_removed(struct mmc_host *host)
2192{
2193 struct mmc_card *card = host->card;
f0cc9cf9 2194 int ret;
d3049504
AH
2195
2196 WARN_ON(!host->claimed);
f0cc9cf9
UH
2197
2198 if (!card)
2199 return 1;
2200
6067bafe 2201 if (!mmc_card_is_removable(host))
1ff2575b
UH
2202 return 0;
2203
f0cc9cf9 2204 ret = mmc_card_removed(card);
d3049504
AH
2205 /*
2206 * The card will be considered unchanged unless we have been asked to
2207 * detect a change or host requires polling to provide card detection.
2208 */
b6891679 2209 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2210 return ret;
d3049504
AH
2211
2212 host->detect_change = 0;
f0cc9cf9
UH
2213 if (!ret) {
2214 ret = _mmc_detect_card_removed(host);
b6891679 2215 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2216 /*
2217 * Schedule a detect work as soon as possible to let a
2218 * rescan handle the card removal.
2219 */
2220 cancel_delayed_work(&host->detect);
bbd43682 2221 _mmc_detect_change(host, 0, false);
f0cc9cf9
UH
2222 }
2223 }
d3049504 2224
f0cc9cf9 2225 return ret;
d3049504
AH
2226}
2227EXPORT_SYMBOL(mmc_detect_card_removed);
2228
b93931a6 2229void mmc_rescan(struct work_struct *work)
1da177e4 2230{
c4028958
DH
2231 struct mmc_host *host =
2232 container_of(work, struct mmc_host, detect.work);
88ae8b86 2233 int i;
4c2ef25f 2234
807e8e40 2235 if (host->rescan_disable)
4c2ef25f 2236 return;
1da177e4 2237
3339d1e3 2238 /* If there is a non-removable card registered, only scan once */
6067bafe 2239 if (!mmc_card_is_removable(host) && host->rescan_entered)
3339d1e3
JR
2240 return;
2241 host->rescan_entered = 1;
2242
86236813 2243 if (host->trigger_card_event && host->ops->card_event) {
d234d212 2244 mmc_claim_host(host);
86236813 2245 host->ops->card_event(host);
d234d212 2246 mmc_release_host(host);
86236813
UH
2247 host->trigger_card_event = false;
2248 }
2249
7ea239d9 2250 mmc_bus_get(host);
b855885e 2251
99b4ddd8
UH
2252 /* Verify a registered card to be functional, else remove it. */
2253 if (host->bus_ops && !host->bus_dead)
94d89efb
JS
2254 host->bus_ops->detect(host);
2255
d3049504
AH
2256 host->detect_change = 0;
2257
c5841798
CB
2258 /*
2259 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2260 * the card is no longer present.
2261 */
94d89efb 2262 mmc_bus_put(host);
94d89efb
JS
2263 mmc_bus_get(host);
2264
2265 /* if there still is a card present, stop here */
2266 if (host->bus_ops != NULL) {
7ea239d9 2267 mmc_bus_put(host);
94d89efb
JS
2268 goto out;
2269 }
1da177e4 2270
94d89efb
JS
2271 /*
2272 * Only we can add a new handler, so it's safe to
2273 * release the lock here.
2274 */
2275 mmc_bus_put(host);
1da177e4 2276
d234d212 2277 mmc_claim_host(host);
6067bafe 2278 if (mmc_card_is_removable(host) && host->ops->get_cd &&
c1b55bfc 2279 host->ops->get_cd(host) == 0) {
fa550189
UH
2280 mmc_power_off(host);
2281 mmc_release_host(host);
94d89efb 2282 goto out;
fa550189 2283 }
1da177e4 2284
88ae8b86 2285 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
661cf2d8
MM
2286 unsigned int freq = freqs[i];
2287 if (freq > host->f_max) {
2288 if (i + 1 < ARRAY_SIZE(freqs))
2289 continue;
2290 freq = host->f_max;
2291 }
2292 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
807e8e40 2293 break;
06b2233a 2294 if (freqs[i] <= host->f_min)
807e8e40 2295 break;
88ae8b86 2296 }
807e8e40
AR
2297 mmc_release_host(host);
2298
2299 out:
28f52482
AV
2300 if (host->caps & MMC_CAP_NEEDS_POLL)
2301 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2302}
2303
b93931a6 2304void mmc_start_host(struct mmc_host *host)
1da177e4 2305{
661cf2d8 2306 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
d9adcc12 2307 host->rescan_disable = 0;
8af465db 2308 host->ios.power_mode = MMC_POWER_UNDEFINED;
8d1ffc8c 2309
c2c24819
UH
2310 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2311 mmc_claim_host(host);
4a065193 2312 mmc_power_up(host, host->ocr_avail);
c2c24819
UH
2313 mmc_release_host(host);
2314 }
8d1ffc8c 2315
740a221e 2316 mmc_gpiod_request_cd_irq(host);
bbd43682 2317 _mmc_detect_change(host, 0, false);
1da177e4
LT
2318}
2319
b93931a6 2320void mmc_stop_host(struct mmc_host *host)
1da177e4 2321{
03dbaa04 2322 if (host->slot.cd_irq >= 0) {
36f1d7e8 2323 mmc_gpio_set_cd_wake(host, false);
740a221e 2324 disable_irq(host->slot.cd_irq);
03dbaa04 2325 }
3b91e550 2326
d9adcc12 2327 host->rescan_disable = 1;
d9bcbf34 2328 cancel_delayed_work_sync(&host->detect);
3b91e550 2329
da68c4eb
NP
2330 /* clear pm flags now and let card drivers set them as needed */
2331 host->pm_flags = 0;
2332
7ea239d9
PO
2333 mmc_bus_get(host);
2334 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2335 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2336 host->bus_ops->remove(host);
7ea239d9
PO
2337 mmc_claim_host(host);
2338 mmc_detach_bus(host);
7f7e4129 2339 mmc_power_off(host);
7ea239d9 2340 mmc_release_host(host);
53509f0f
DK
2341 mmc_bus_put(host);
2342 return;
1da177e4 2343 }
7ea239d9
PO
2344 mmc_bus_put(host);
2345
8d1ffc8c 2346 mmc_claim_host(host);
1da177e4 2347 mmc_power_off(host);
8d1ffc8c 2348 mmc_release_host(host);
1da177e4
LT
2349}
2350
8dede18e 2351#ifdef CONFIG_PM_SLEEP
4c2ef25f
ML
2352/* Do the card removal on suspend if card is assumed removeable
2353 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2354 to sync the card.
2355*/
8dede18e
UH
2356static int mmc_pm_notify(struct notifier_block *notify_block,
2357 unsigned long mode, void *unused)
4c2ef25f
ML
2358{
2359 struct mmc_host *host = container_of(
2360 notify_block, struct mmc_host, pm_notify);
2361 unsigned long flags;
810caddb 2362 int err = 0;
4c2ef25f
ML
2363
2364 switch (mode) {
2365 case PM_HIBERNATION_PREPARE:
2366 case PM_SUSPEND_PREPARE:
184af16b 2367 case PM_RESTORE_PREPARE:
4c2ef25f
ML
2368 spin_lock_irqsave(&host->lock, flags);
2369 host->rescan_disable = 1;
2370 spin_unlock_irqrestore(&host->lock, flags);
2371 cancel_delayed_work_sync(&host->detect);
2372
810caddb
UH
2373 if (!host->bus_ops)
2374 break;
2375
2376 /* Validate prerequisites for suspend */
2377 if (host->bus_ops->pre_suspend)
2378 err = host->bus_ops->pre_suspend(host);
5601aaf7 2379 if (!err)
4c2ef25f
ML
2380 break;
2381
de8dcc3d
DD
2382 if (!mmc_card_is_removable(host)) {
2383 dev_warn(mmc_dev(host),
2384 "pre_suspend failed for non-removable host: "
2385 "%d\n", err);
2386 /* Avoid removing non-removable hosts */
2387 break;
2388 }
2389
0db13fc2 2390 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2391 host->bus_ops->remove(host);
0db13fc2 2392 mmc_claim_host(host);
4c2ef25f 2393 mmc_detach_bus(host);
7f7e4129 2394 mmc_power_off(host);
4c2ef25f
ML
2395 mmc_release_host(host);
2396 host->pm_flags = 0;
2397 break;
2398
2399 case PM_POST_SUSPEND:
2400 case PM_POST_HIBERNATION:
274476f8 2401 case PM_POST_RESTORE:
4c2ef25f
ML
2402
2403 spin_lock_irqsave(&host->lock, flags);
2404 host->rescan_disable = 0;
2405 spin_unlock_irqrestore(&host->lock, flags);
bbd43682 2406 _mmc_detect_change(host, 0, false);
4c2ef25f
ML
2407
2408 }
2409
2410 return 0;
2411}
8dede18e
UH
2412
2413void mmc_register_pm_notifier(struct mmc_host *host)
2414{
2415 host->pm_notify.notifier_call = mmc_pm_notify;
2416 register_pm_notifier(&host->pm_notify);
2417}
2418
2419void mmc_unregister_pm_notifier(struct mmc_host *host)
2420{
2421 unregister_pm_notifier(&host->pm_notify);
2422}
1da177e4
LT
2423#endif
2424
ffce2e7e
PO
2425static int __init mmc_init(void)
2426{
2427 int ret;
2428
ffce2e7e 2429 ret = mmc_register_bus();
e29a7d73 2430 if (ret)
520bd7a8 2431 return ret;
e29a7d73
PO
2432
2433 ret = mmc_register_host_class();
2434 if (ret)
2435 goto unregister_bus;
2436
2437 ret = sdio_register_bus();
2438 if (ret)
2439 goto unregister_host_class;
2440
2441 return 0;
2442
2443unregister_host_class:
2444 mmc_unregister_host_class();
2445unregister_bus:
2446 mmc_unregister_bus();
ffce2e7e
PO
2447 return ret;
2448}
2449
2450static void __exit mmc_exit(void)
2451{
e29a7d73 2452 sdio_unregister_bus();
ffce2e7e
PO
2453 mmc_unregister_host_class();
2454 mmc_unregister_bus();
ffce2e7e
PO
2455}
2456
26074962 2457subsys_initcall(mmc_init);
ffce2e7e
PO
2458module_exit(mmc_exit);
2459
1da177e4 2460MODULE_LICENSE("GPL");