mei: me: release hw from reset only during the reset flow
[linux-2.6-block.git] / drivers / misc / mei / hw-me.c
CommitLineData
3ce72726
OW
1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
733ba91c 4 * Copyright (c) 2003-2012, Intel Corporation.
3ce72726
OW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
06ecd645
TW
18
19#include <linux/kthread.h>
20#include <linux/interrupt.h>
47a73801
TW
21
22#include "mei_dev.h"
06ecd645
TW
23#include "hbm.h"
24
6e4cd27a
TW
25#include "hw-me.h"
26#include "hw-me-regs.h"
06ecd645 27
3a65dd4e 28/**
b68301e9 29 * mei_me_reg_read - Reads 32bit data from the mei device
3a65dd4e 30 *
a8605ea2 31 * @hw: the me hardware structure
3a65dd4e
TW
32 * @offset: offset from which to read the data
33 *
a8605ea2 34 * Return: register value (u32)
3a65dd4e 35 */
b68301e9 36static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
3a65dd4e
TW
37 unsigned long offset)
38{
52c34561 39 return ioread32(hw->mem_addr + offset);
3a65dd4e
TW
40}
41
42
43/**
b68301e9 44 * mei_me_reg_write - Writes 32bit data to the mei device
3a65dd4e 45 *
a8605ea2 46 * @hw: the me hardware structure
3a65dd4e
TW
47 * @offset: offset from which to write the data
48 * @value: register value to write (u32)
49 */
b68301e9 50static inline void mei_me_reg_write(const struct mei_me_hw *hw,
3a65dd4e
TW
51 unsigned long offset, u32 value)
52{
52c34561 53 iowrite32(value, hw->mem_addr + offset);
3a65dd4e 54}
3ce72726 55
3a65dd4e 56/**
b68301e9 57 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
d025284d 58 * read window register
3a65dd4e
TW
59 *
60 * @dev: the device structure
61 *
a8605ea2 62 * Return: ME_CB_RW register value (u32)
3a65dd4e 63 */
827eef51 64static u32 mei_me_mecbrw_read(const struct mei_device *dev)
3a65dd4e 65{
b68301e9 66 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
3a65dd4e
TW
67}
68/**
b68301e9 69 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
3a65dd4e 70 *
a8605ea2 71 * @hw: the me hardware structure
3a65dd4e 72 *
a8605ea2 73 * Return: ME_CSR_HA register value (u32)
3a65dd4e 74 */
b68301e9 75static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
3a65dd4e 76{
b68301e9 77 return mei_me_reg_read(hw, ME_CSR_HA);
3a65dd4e 78}
3ce72726
OW
79
80/**
d025284d
TW
81 * mei_hcsr_read - Reads 32bit data from the host CSR
82 *
a8605ea2 83 * @hw: the me hardware structure
d025284d 84 *
a8605ea2 85 * Return: H_CSR register value (u32)
d025284d 86 */
52c34561 87static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
d025284d 88{
b68301e9 89 return mei_me_reg_read(hw, H_CSR);
d025284d
TW
90}
91
92/**
93 * mei_hcsr_set - writes H_CSR register to the mei device,
3ce72726
OW
94 * and ignores the H_IS bit for it is write-one-to-zero.
95 *
a8605ea2 96 * @hw: the me hardware structure
ce23139c 97 * @hcsr: new register value
3ce72726 98 */
52c34561 99static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
3ce72726 100{
88eb99f2 101 hcsr &= ~H_IS;
b68301e9 102 mei_me_reg_write(hw, H_CSR, hcsr);
3ce72726
OW
103}
104
1bd30b6a
TW
105/**
106 * mei_me_fw_status - read fw status register from pci config space
107 *
108 * @dev: mei device
109 * @fw_status: fw status register values
ce23139c
AU
110 *
111 * Return: 0 on success, error otherwise
1bd30b6a
TW
112 */
113static int mei_me_fw_status(struct mei_device *dev,
114 struct mei_fw_status *fw_status)
115{
1bd30b6a 116 struct pci_dev *pdev = to_pci_dev(dev->dev);
4ad96db6
TW
117 struct mei_me_hw *hw = to_me_hw(dev);
118 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
1bd30b6a
TW
119 int ret;
120 int i;
121
122 if (!fw_status)
123 return -EINVAL;
124
125 fw_status->count = fw_src->count;
126 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
127 ret = pci_read_config_dword(pdev,
128 fw_src->status[i], &fw_status->status[i]);
129 if (ret)
130 return ret;
131 }
132
133 return 0;
134}
e7e0c231
TW
135
136/**
393b148f 137 * mei_me_hw_config - configure hw dependent settings
e7e0c231
TW
138 *
139 * @dev: mei device
140 */
827eef51 141static void mei_me_hw_config(struct mei_device *dev)
e7e0c231 142{
ba9cdd0e 143 struct mei_me_hw *hw = to_me_hw(dev);
52c34561 144 u32 hcsr = mei_hcsr_read(to_me_hw(dev));
e7e0c231
TW
145 /* Doesn't change in runtime */
146 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
ba9cdd0e
TW
147
148 hw->pg_state = MEI_PG_OFF;
e7e0c231 149}
964a2331
TW
150
151/**
152 * mei_me_pg_state - translate internal pg state
153 * to the mei power gating state
154 *
ce23139c
AU
155 * @dev: mei device
156 *
157 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
964a2331
TW
158 */
159static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
160{
ba9cdd0e 161 struct mei_me_hw *hw = to_me_hw(dev);
92db1555 162
ba9cdd0e 163 return hw->pg_state;
964a2331
TW
164}
165
3ce72726 166/**
ce23139c 167 * mei_me_intr_clear - clear and stop interrupts
3a65dd4e
TW
168 *
169 * @dev: the device structure
170 */
827eef51 171static void mei_me_intr_clear(struct mei_device *dev)
3a65dd4e 172{
52c34561
TW
173 struct mei_me_hw *hw = to_me_hw(dev);
174 u32 hcsr = mei_hcsr_read(hw);
92db1555 175
9ea73ddd 176 if ((hcsr & H_IS) == H_IS)
b68301e9 177 mei_me_reg_write(hw, H_CSR, hcsr);
3a65dd4e 178}
3a65dd4e 179/**
827eef51 180 * mei_me_intr_enable - enables mei device interrupts
3ce72726
OW
181 *
182 * @dev: the device structure
183 */
827eef51 184static void mei_me_intr_enable(struct mei_device *dev)
3ce72726 185{
52c34561
TW
186 struct mei_me_hw *hw = to_me_hw(dev);
187 u32 hcsr = mei_hcsr_read(hw);
92db1555 188
9ea73ddd 189 hcsr |= H_IE;
52c34561 190 mei_hcsr_set(hw, hcsr);
3ce72726
OW
191}
192
193/**
ce23139c 194 * mei_me_intr_disable - disables mei device interrupts
3ce72726
OW
195 *
196 * @dev: the device structure
197 */
827eef51 198static void mei_me_intr_disable(struct mei_device *dev)
3ce72726 199{
52c34561
TW
200 struct mei_me_hw *hw = to_me_hw(dev);
201 u32 hcsr = mei_hcsr_read(hw);
92db1555 202
9ea73ddd 203 hcsr &= ~H_IE;
52c34561 204 mei_hcsr_set(hw, hcsr);
3ce72726
OW
205}
206
68f8ea18
TW
207/**
208 * mei_me_hw_reset_release - release device from the reset
209 *
210 * @dev: the device structure
211 */
212static void mei_me_hw_reset_release(struct mei_device *dev)
213{
214 struct mei_me_hw *hw = to_me_hw(dev);
215 u32 hcsr = mei_hcsr_read(hw);
216
217 hcsr |= H_IG;
218 hcsr &= ~H_RST;
219 mei_hcsr_set(hw, hcsr);
b04ada92
TW
220
221 /* complete this write before we set host ready on another CPU */
222 mmiowb();
68f8ea18 223}
adfba322 224/**
827eef51 225 * mei_me_hw_reset - resets fw via mei csr register.
adfba322
TW
226 *
227 * @dev: the device structure
393b148f 228 * @intr_enable: if interrupt should be enabled after reset.
ce23139c
AU
229 *
230 * Return: always 0
adfba322 231 */
c20c68d5 232static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
adfba322 233{
52c34561
TW
234 struct mei_me_hw *hw = to_me_hw(dev);
235 u32 hcsr = mei_hcsr_read(hw);
adfba322 236
b13a65ef
AU
237 /* H_RST may be found lit before reset is started,
238 * for example if preceding reset flow hasn't completed.
239 * In that case asserting H_RST will be ignored, therefore
240 * we need to clean H_RST bit to start a successful reset sequence.
241 */
242 if ((hcsr & H_RST) == H_RST) {
243 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
244 hcsr &= ~H_RST;
1ab1e79b 245 mei_hcsr_set(hw, hcsr);
b13a65ef
AU
246 hcsr = mei_hcsr_read(hw);
247 }
248
ff96066e 249 hcsr |= H_RST | H_IG | H_IS;
adfba322
TW
250
251 if (intr_enable)
252 hcsr |= H_IE;
253 else
ff96066e 254 hcsr &= ~H_IE;
adfba322 255
07cd7be3 256 dev->recvd_hw_ready = false;
ff96066e 257 mei_me_reg_write(hw, H_CSR, hcsr);
adfba322 258
c40765d9
TW
259 /*
260 * Host reads the H_CSR once to ensure that the
261 * posted write to H_CSR completes.
262 */
263 hcsr = mei_hcsr_read(hw);
264
265 if ((hcsr & H_RST) == 0)
2bf94cab 266 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
c40765d9
TW
267
268 if ((hcsr & H_RDY) == H_RDY)
2bf94cab 269 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
c40765d9 270
33ec0826 271 if (intr_enable == false)
68f8ea18 272 mei_me_hw_reset_release(dev);
adfba322 273
c20c68d5 274 return 0;
adfba322
TW
275}
276
115ba28c 277/**
827eef51 278 * mei_me_host_set_ready - enable device
115ba28c 279 *
ce23139c 280 * @dev: mei device
115ba28c 281 */
827eef51 282static void mei_me_host_set_ready(struct mei_device *dev)
115ba28c 283{
52c34561 284 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 285 u32 hcsr = mei_hcsr_read(hw);
92db1555 286
18caeb70
TW
287 hcsr |= H_IE | H_IG | H_RDY;
288 mei_hcsr_set(hw, hcsr);
115ba28c 289}
ce23139c 290
115ba28c 291/**
827eef51 292 * mei_me_host_is_ready - check whether the host has turned ready
115ba28c 293 *
a8605ea2
AU
294 * @dev: mei device
295 * Return: bool
115ba28c 296 */
827eef51 297static bool mei_me_host_is_ready(struct mei_device *dev)
115ba28c 298{
52c34561 299 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 300 u32 hcsr = mei_hcsr_read(hw);
92db1555 301
18caeb70 302 return (hcsr & H_RDY) == H_RDY;
115ba28c
TW
303}
304
305/**
827eef51 306 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
115ba28c 307 *
a8605ea2
AU
308 * @dev: mei device
309 * Return: bool
115ba28c 310 */
827eef51 311static bool mei_me_hw_is_ready(struct mei_device *dev)
115ba28c 312{
52c34561 313 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 314 u32 mecsr = mei_me_mecsr_read(hw);
92db1555 315
18caeb70 316 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
115ba28c 317}
3a65dd4e 318
ce23139c
AU
319/**
320 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
321 * or timeout is reached
322 *
323 * @dev: mei device
324 * Return: 0 on success, error otherwise
325 */
aafae7ec
TW
326static int mei_me_hw_ready_wait(struct mei_device *dev)
327{
aafae7ec 328 mutex_unlock(&dev->device_lock);
2c2b93ec 329 wait_event_timeout(dev->wait_hw_ready,
dab9bf41 330 dev->recvd_hw_ready,
7d93e58d 331 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
aafae7ec 332 mutex_lock(&dev->device_lock);
2c2b93ec 333 if (!dev->recvd_hw_ready) {
2bf94cab 334 dev_err(dev->dev, "wait hw ready failed\n");
2c2b93ec 335 return -ETIME;
aafae7ec
TW
336 }
337
663b7ee9 338 mei_me_hw_reset_release(dev);
aafae7ec
TW
339 dev->recvd_hw_ready = false;
340 return 0;
341}
342
ce23139c
AU
343/**
344 * mei_me_hw_start - hw start routine
345 *
346 * @dev: mei device
347 * Return: 0 on success, error otherwise
348 */
aafae7ec
TW
349static int mei_me_hw_start(struct mei_device *dev)
350{
351 int ret = mei_me_hw_ready_wait(dev);
92db1555 352
aafae7ec
TW
353 if (ret)
354 return ret;
2bf94cab 355 dev_dbg(dev->dev, "hw is ready\n");
aafae7ec
TW
356
357 mei_me_host_set_ready(dev);
358 return ret;
359}
360
361
3ce72726 362/**
726917f0 363 * mei_hbuf_filled_slots - gets number of device filled buffer slots
3ce72726 364 *
7353f85c 365 * @dev: the device structure
3ce72726 366 *
a8605ea2 367 * Return: number of filled slots
3ce72726 368 */
726917f0 369static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
3ce72726 370{
52c34561 371 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 372 u32 hcsr;
3ce72726
OW
373 char read_ptr, write_ptr;
374
18caeb70 375 hcsr = mei_hcsr_read(hw);
726917f0 376
18caeb70
TW
377 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
378 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
3ce72726
OW
379
380 return (unsigned char) (write_ptr - read_ptr);
381}
382
383/**
393b148f 384 * mei_me_hbuf_is_empty - checks if host buffer is empty.
3ce72726
OW
385 *
386 * @dev: the device structure
387 *
a8605ea2 388 * Return: true if empty, false - otherwise.
3ce72726 389 */
827eef51 390static bool mei_me_hbuf_is_empty(struct mei_device *dev)
3ce72726 391{
726917f0 392 return mei_hbuf_filled_slots(dev) == 0;
3ce72726
OW
393}
394
395/**
827eef51 396 * mei_me_hbuf_empty_slots - counts write empty slots.
3ce72726
OW
397 *
398 * @dev: the device structure
399 *
a8605ea2 400 * Return: -EOVERFLOW if overflow, otherwise empty slots count
3ce72726 401 */
827eef51 402static int mei_me_hbuf_empty_slots(struct mei_device *dev)
3ce72726 403{
24aadc80 404 unsigned char filled_slots, empty_slots;
3ce72726 405
726917f0 406 filled_slots = mei_hbuf_filled_slots(dev);
24aadc80 407 empty_slots = dev->hbuf_depth - filled_slots;
3ce72726
OW
408
409 /* check for overflow */
24aadc80 410 if (filled_slots > dev->hbuf_depth)
3ce72726
OW
411 return -EOVERFLOW;
412
413 return empty_slots;
414}
415
ce23139c
AU
416/**
417 * mei_me_hbuf_max_len - returns size of hw buffer.
418 *
419 * @dev: the device structure
420 *
421 * Return: size of hw buffer in bytes
422 */
827eef51
TW
423static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
424{
425 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
426}
427
428
3ce72726 429/**
7ca96aa2 430 * mei_me_write_message - writes a message to mei device.
3ce72726
OW
431 *
432 * @dev: the device structure
7353f85c 433 * @header: mei HECI header of message
438763f3 434 * @buf: message payload will be written
3ce72726 435 *
a8605ea2 436 * Return: -EIO if write has failed
3ce72726 437 */
827eef51
TW
438static int mei_me_write_message(struct mei_device *dev,
439 struct mei_msg_hdr *header,
440 unsigned char *buf)
3ce72726 441{
52c34561 442 struct mei_me_hw *hw = to_me_hw(dev);
c8c8d080 443 unsigned long rem;
438763f3 444 unsigned long length = header->length;
169d1338 445 u32 *reg_buf = (u32 *)buf;
88eb99f2 446 u32 hcsr;
c8c8d080 447 u32 dw_cnt;
169d1338
TW
448 int i;
449 int empty_slots;
3ce72726 450
2bf94cab 451 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
3ce72726 452
726917f0 453 empty_slots = mei_hbuf_empty_slots(dev);
2bf94cab 454 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
3ce72726 455
7bdf72d3 456 dw_cnt = mei_data2slots(length);
169d1338 457 if (empty_slots < 0 || dw_cnt > empty_slots)
9d098192 458 return -EMSGSIZE;
3ce72726 459
b68301e9 460 mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
3ce72726 461
169d1338 462 for (i = 0; i < length / 4; i++)
b68301e9 463 mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
3ce72726 464
169d1338
TW
465 rem = length & 0x3;
466 if (rem > 0) {
467 u32 reg = 0;
92db1555 468
169d1338 469 memcpy(&reg, &buf[length - rem], rem);
b68301e9 470 mei_me_reg_write(hw, H_CB_WW, reg);
3ce72726
OW
471 }
472
52c34561
TW
473 hcsr = mei_hcsr_read(hw) | H_IG;
474 mei_hcsr_set(hw, hcsr);
827eef51 475 if (!mei_me_hw_is_ready(dev))
1ccb7b62 476 return -EIO;
3ce72726 477
1ccb7b62 478 return 0;
3ce72726
OW
479}
480
481/**
827eef51 482 * mei_me_count_full_read_slots - counts read full slots.
3ce72726
OW
483 *
484 * @dev: the device structure
485 *
a8605ea2 486 * Return: -EOVERFLOW if overflow, otherwise filled slots count
3ce72726 487 */
827eef51 488static int mei_me_count_full_read_slots(struct mei_device *dev)
3ce72726 489{
52c34561 490 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 491 u32 me_csr;
3ce72726
OW
492 char read_ptr, write_ptr;
493 unsigned char buffer_depth, filled_slots;
494
18caeb70
TW
495 me_csr = mei_me_mecsr_read(hw);
496 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
497 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
498 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
3ce72726
OW
499 filled_slots = (unsigned char) (write_ptr - read_ptr);
500
501 /* check for overflow */
502 if (filled_slots > buffer_depth)
503 return -EOVERFLOW;
504
2bf94cab 505 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
3ce72726
OW
506 return (int)filled_slots;
507}
508
509/**
827eef51 510 * mei_me_read_slots - reads a message from mei device.
3ce72726
OW
511 *
512 * @dev: the device structure
513 * @buffer: message buffer will be written
514 * @buffer_length: message size will be read
ce23139c
AU
515 *
516 * Return: always 0
3ce72726 517 */
827eef51 518static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
edf1eed4 519 unsigned long buffer_length)
3ce72726 520{
52c34561 521 struct mei_me_hw *hw = to_me_hw(dev);
edf1eed4 522 u32 *reg_buf = (u32 *)buffer;
88eb99f2 523 u32 hcsr;
3ce72726 524
edf1eed4 525 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
827eef51 526 *reg_buf++ = mei_me_mecbrw_read(dev);
3ce72726
OW
527
528 if (buffer_length > 0) {
827eef51 529 u32 reg = mei_me_mecbrw_read(dev);
92db1555 530
edf1eed4 531 memcpy(reg_buf, &reg, buffer_length);
3ce72726
OW
532 }
533
52c34561
TW
534 hcsr = mei_hcsr_read(hw) | H_IG;
535 mei_hcsr_set(hw, hcsr);
827eef51 536 return 0;
3ce72726
OW
537}
538
b16c3571 539/**
152de90d 540 * mei_me_pg_enter - write pg enter register
b16c3571
TW
541 *
542 * @dev: the device structure
543 */
544static void mei_me_pg_enter(struct mei_device *dev)
545{
546 struct mei_me_hw *hw = to_me_hw(dev);
547 u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
92db1555 548
b16c3571
TW
549 reg |= H_HPG_CSR_PGI;
550 mei_me_reg_write(hw, H_HPG_CSR, reg);
551}
552
553/**
152de90d 554 * mei_me_pg_exit - write pg exit register
b16c3571
TW
555 *
556 * @dev: the device structure
557 */
558static void mei_me_pg_exit(struct mei_device *dev)
559{
560 struct mei_me_hw *hw = to_me_hw(dev);
561 u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
562
563 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
564
565 reg |= H_HPG_CSR_PGIHEXR;
566 mei_me_reg_write(hw, H_HPG_CSR, reg);
567}
568
ba9cdd0e
TW
569/**
570 * mei_me_pg_set_sync - perform pg entry procedure
571 *
572 * @dev: the device structure
573 *
a8605ea2 574 * Return: 0 on success an error code otherwise
ba9cdd0e
TW
575 */
576int mei_me_pg_set_sync(struct mei_device *dev)
577{
578 struct mei_me_hw *hw = to_me_hw(dev);
579 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
580 int ret;
581
582 dev->pg_event = MEI_PG_EVENT_WAIT;
583
584 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
585 if (ret)
586 return ret;
587
588 mutex_unlock(&dev->device_lock);
589 wait_event_timeout(dev->wait_pg,
590 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
591 mutex_lock(&dev->device_lock);
592
593 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
594 mei_me_pg_enter(dev);
595 ret = 0;
596 } else {
597 ret = -ETIME;
598 }
599
600 dev->pg_event = MEI_PG_EVENT_IDLE;
601 hw->pg_state = MEI_PG_ON;
602
603 return ret;
604}
605
606/**
607 * mei_me_pg_unset_sync - perform pg exit procedure
608 *
609 * @dev: the device structure
610 *
a8605ea2 611 * Return: 0 on success an error code otherwise
ba9cdd0e
TW
612 */
613int mei_me_pg_unset_sync(struct mei_device *dev)
614{
615 struct mei_me_hw *hw = to_me_hw(dev);
616 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
617 int ret;
618
619 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
620 goto reply;
621
622 dev->pg_event = MEI_PG_EVENT_WAIT;
623
624 mei_me_pg_exit(dev);
625
626 mutex_unlock(&dev->device_lock);
627 wait_event_timeout(dev->wait_pg,
628 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
629 mutex_lock(&dev->device_lock);
630
631reply:
632 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
633 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
634 else
635 ret = -ETIME;
636
637 dev->pg_event = MEI_PG_EVENT_IDLE;
638 hw->pg_state = MEI_PG_OFF;
639
640 return ret;
641}
642
ee7e5afd
TW
643/**
644 * mei_me_pg_is_enabled - detect if PG is supported by HW
645 *
646 * @dev: the device structure
647 *
a8605ea2 648 * Return: true is pg supported, false otherwise
ee7e5afd
TW
649 */
650static bool mei_me_pg_is_enabled(struct mei_device *dev)
651{
652 struct mei_me_hw *hw = to_me_hw(dev);
653 u32 reg = mei_me_reg_read(hw, ME_CSR_HA);
654
655 if ((reg & ME_PGIC_HRA) == 0)
656 goto notsupported;
657
bae1cc7d 658 if (!dev->hbm_f_pg_supported)
ee7e5afd
TW
659 goto notsupported;
660
661 return true;
662
663notsupported:
2bf94cab 664 dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
ee7e5afd
TW
665 !!(reg & ME_PGIC_HRA),
666 dev->version.major_version,
667 dev->version.minor_version,
668 HBM_MAJOR_VERSION_PGI,
669 HBM_MINOR_VERSION_PGI);
670
671 return false;
672}
673
06ecd645
TW
674/**
675 * mei_me_irq_quick_handler - The ISR of the MEI device
676 *
677 * @irq: The irq number
678 * @dev_id: pointer to the device structure
679 *
a8605ea2 680 * Return: irqreturn_t
06ecd645
TW
681 */
682
683irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
684{
685 struct mei_device *dev = (struct mei_device *) dev_id;
686 struct mei_me_hw *hw = to_me_hw(dev);
687 u32 csr_reg = mei_hcsr_read(hw);
688
689 if ((csr_reg & H_IS) != H_IS)
690 return IRQ_NONE;
691
692 /* clear H_IS bit in H_CSR */
b68301e9 693 mei_me_reg_write(hw, H_CSR, csr_reg);
06ecd645
TW
694
695 return IRQ_WAKE_THREAD;
696}
697
698/**
699 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
700 * processing.
701 *
702 * @irq: The irq number
703 * @dev_id: pointer to the device structure
704 *
a8605ea2 705 * Return: irqreturn_t
06ecd645
TW
706 *
707 */
708irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
709{
710 struct mei_device *dev = (struct mei_device *) dev_id;
711 struct mei_cl_cb complete_list;
06ecd645 712 s32 slots;
544f9460 713 int rets = 0;
06ecd645 714
2bf94cab 715 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
06ecd645
TW
716 /* initialize our complete list */
717 mutex_lock(&dev->device_lock);
718 mei_io_list_init(&complete_list);
719
720 /* Ack the interrupt here
721 * In case of MSI we don't go through the quick handler */
d08b8fc0 722 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
06ecd645
TW
723 mei_clear_interrupts(dev);
724
725 /* check if ME wants a reset */
33ec0826 726 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 727 dev_warn(dev->dev, "FW not ready: resetting.\n");
544f9460
TW
728 schedule_work(&dev->reset_work);
729 goto end;
06ecd645
TW
730 }
731
732 /* check if we need to start the dev */
733 if (!mei_host_is_ready(dev)) {
734 if (mei_hw_is_ready(dev)) {
2bf94cab 735 dev_dbg(dev->dev, "we need to start the dev.\n");
aafae7ec 736 dev->recvd_hw_ready = true;
2c2b93ec 737 wake_up(&dev->wait_hw_ready);
06ecd645 738 } else {
2bf94cab 739 dev_dbg(dev->dev, "Spurious Interrupt\n");
06ecd645 740 }
544f9460 741 goto end;
06ecd645
TW
742 }
743 /* check slots available for reading */
744 slots = mei_count_full_read_slots(dev);
745 while (slots > 0) {
2bf94cab 746 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
06ecd645 747 rets = mei_irq_read_handler(dev, &complete_list, &slots);
b1b94b5d
TW
748 /* There is a race between ME write and interrupt delivery:
749 * Not all data is always available immediately after the
750 * interrupt, so try to read again on the next interrupt.
751 */
752 if (rets == -ENODATA)
753 break;
754
33ec0826 755 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 756 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
b1b94b5d 757 rets);
544f9460 758 schedule_work(&dev->reset_work);
06ecd645 759 goto end;
544f9460 760 }
06ecd645 761 }
544f9460 762
6aae48ff
TW
763 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
764
ba9cdd0e
TW
765 /*
766 * During PG handshake only allowed write is the replay to the
767 * PG exit message, so block calling write function
768 * if the pg state is not idle
769 */
770 if (dev->pg_event == MEI_PG_EVENT_IDLE) {
771 rets = mei_irq_write_handler(dev, &complete_list);
772 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
773 }
06ecd645 774
4c6e22b8 775 mei_irq_compl_handler(dev, &complete_list);
06ecd645 776
544f9460 777end:
2bf94cab 778 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
544f9460 779 mutex_unlock(&dev->device_lock);
06ecd645
TW
780 return IRQ_HANDLED;
781}
04dd3661 782
827eef51
TW
783static const struct mei_hw_ops mei_me_hw_ops = {
784
1bd30b6a 785 .fw_status = mei_me_fw_status,
964a2331
TW
786 .pg_state = mei_me_pg_state,
787
827eef51
TW
788 .host_is_ready = mei_me_host_is_ready,
789
790 .hw_is_ready = mei_me_hw_is_ready,
791 .hw_reset = mei_me_hw_reset,
aafae7ec
TW
792 .hw_config = mei_me_hw_config,
793 .hw_start = mei_me_hw_start,
827eef51 794
ee7e5afd
TW
795 .pg_is_enabled = mei_me_pg_is_enabled,
796
827eef51
TW
797 .intr_clear = mei_me_intr_clear,
798 .intr_enable = mei_me_intr_enable,
799 .intr_disable = mei_me_intr_disable,
800
801 .hbuf_free_slots = mei_me_hbuf_empty_slots,
802 .hbuf_is_ready = mei_me_hbuf_is_empty,
803 .hbuf_max_len = mei_me_hbuf_max_len,
804
805 .write = mei_me_write_message,
806
807 .rdbuf_full_slots = mei_me_count_full_read_slots,
808 .read_hdr = mei_me_mecbrw_read,
809 .read = mei_me_read_slots
810};
811
c919951d
TW
812static bool mei_me_fw_type_nm(struct pci_dev *pdev)
813{
814 u32 reg;
92db1555 815
c919951d
TW
816 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
817 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
818 return (reg & 0x600) == 0x200;
819}
820
821#define MEI_CFG_FW_NM \
822 .quirk_probe = mei_me_fw_type_nm
823
824static bool mei_me_fw_type_sps(struct pci_dev *pdev)
825{
826 u32 reg;
827 /* Read ME FW Status check for SPS Firmware */
828 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
829 /* if bits [19:16] = 15, running SPS Firmware */
830 return (reg & 0xf0000) == 0xf0000;
831}
832
833#define MEI_CFG_FW_SPS \
834 .quirk_probe = mei_me_fw_type_sps
835
836
8d929d48
AU
837#define MEI_CFG_LEGACY_HFS \
838 .fw_status.count = 0
839
840#define MEI_CFG_ICH_HFS \
841 .fw_status.count = 1, \
842 .fw_status.status[0] = PCI_CFG_HFS_1
843
844#define MEI_CFG_PCH_HFS \
845 .fw_status.count = 2, \
846 .fw_status.status[0] = PCI_CFG_HFS_1, \
847 .fw_status.status[1] = PCI_CFG_HFS_2
848
edca5ea3
AU
849#define MEI_CFG_PCH8_HFS \
850 .fw_status.count = 6, \
851 .fw_status.status[0] = PCI_CFG_HFS_1, \
852 .fw_status.status[1] = PCI_CFG_HFS_2, \
853 .fw_status.status[2] = PCI_CFG_HFS_3, \
854 .fw_status.status[3] = PCI_CFG_HFS_4, \
855 .fw_status.status[4] = PCI_CFG_HFS_5, \
856 .fw_status.status[5] = PCI_CFG_HFS_6
8d929d48
AU
857
858/* ICH Legacy devices */
859const struct mei_cfg mei_me_legacy_cfg = {
860 MEI_CFG_LEGACY_HFS,
861};
862
863/* ICH devices */
864const struct mei_cfg mei_me_ich_cfg = {
865 MEI_CFG_ICH_HFS,
866};
867
868/* PCH devices */
869const struct mei_cfg mei_me_pch_cfg = {
870 MEI_CFG_PCH_HFS,
871};
872
c919951d
TW
873
874/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
875const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
876 MEI_CFG_PCH_HFS,
877 MEI_CFG_FW_NM,
878};
879
edca5ea3
AU
880/* PCH8 Lynx Point and newer devices */
881const struct mei_cfg mei_me_pch8_cfg = {
882 MEI_CFG_PCH8_HFS,
883};
884
885/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
886const struct mei_cfg mei_me_pch8_sps_cfg = {
887 MEI_CFG_PCH8_HFS,
c919951d
TW
888 MEI_CFG_FW_SPS,
889};
890
52c34561 891/**
393b148f 892 * mei_me_dev_init - allocates and initializes the mei device structure
52c34561
TW
893 *
894 * @pdev: The pci device structure
8d929d48 895 * @cfg: per device generation config
52c34561 896 *
a8605ea2 897 * Return: The mei_device_device pointer on success, NULL on failure.
52c34561 898 */
8d929d48
AU
899struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
900 const struct mei_cfg *cfg)
52c34561
TW
901{
902 struct mei_device *dev;
4ad96db6 903 struct mei_me_hw *hw;
52c34561
TW
904
905 dev = kzalloc(sizeof(struct mei_device) +
906 sizeof(struct mei_me_hw), GFP_KERNEL);
907 if (!dev)
908 return NULL;
4ad96db6 909 hw = to_me_hw(dev);
52c34561 910
3a7e9b6c 911 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
4ad96db6 912 hw->cfg = cfg;
52c34561
TW
913 return dev;
914}
06ecd645 915