mei: mask interrupt set bit on clean reset bit
[linux-2.6-block.git] / drivers / misc / mei / hw-me.c
CommitLineData
3ce72726
OW
1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
733ba91c 4 * Copyright (c) 2003-2012, Intel Corporation.
3ce72726
OW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
06ecd645
TW
18
19#include <linux/kthread.h>
20#include <linux/interrupt.h>
47a73801
TW
21
22#include "mei_dev.h"
06ecd645
TW
23#include "hbm.h"
24
6e4cd27a
TW
25#include "hw-me.h"
26#include "hw-me-regs.h"
06ecd645 27
3a65dd4e 28/**
b68301e9 29 * mei_me_reg_read - Reads 32bit data from the mei device
3a65dd4e 30 *
a8605ea2 31 * @hw: the me hardware structure
3a65dd4e
TW
32 * @offset: offset from which to read the data
33 *
a8605ea2 34 * Return: register value (u32)
3a65dd4e 35 */
b68301e9 36static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
3a65dd4e
TW
37 unsigned long offset)
38{
52c34561 39 return ioread32(hw->mem_addr + offset);
3a65dd4e
TW
40}
41
42
43/**
b68301e9 44 * mei_me_reg_write - Writes 32bit data to the mei device
3a65dd4e 45 *
a8605ea2 46 * @hw: the me hardware structure
3a65dd4e
TW
47 * @offset: offset from which to write the data
48 * @value: register value to write (u32)
49 */
b68301e9 50static inline void mei_me_reg_write(const struct mei_me_hw *hw,
3a65dd4e
TW
51 unsigned long offset, u32 value)
52{
52c34561 53 iowrite32(value, hw->mem_addr + offset);
3a65dd4e 54}
3ce72726 55
3a65dd4e 56/**
b68301e9 57 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
d025284d 58 * read window register
3a65dd4e
TW
59 *
60 * @dev: the device structure
61 *
a8605ea2 62 * Return: ME_CB_RW register value (u32)
3a65dd4e 63 */
827eef51 64static u32 mei_me_mecbrw_read(const struct mei_device *dev)
3a65dd4e 65{
b68301e9 66 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
3a65dd4e
TW
67}
68/**
b68301e9 69 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
3a65dd4e 70 *
a8605ea2 71 * @hw: the me hardware structure
3a65dd4e 72 *
a8605ea2 73 * Return: ME_CSR_HA register value (u32)
3a65dd4e 74 */
b68301e9 75static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
3a65dd4e 76{
b68301e9 77 return mei_me_reg_read(hw, ME_CSR_HA);
3a65dd4e 78}
3ce72726
OW
79
80/**
d025284d
TW
81 * mei_hcsr_read - Reads 32bit data from the host CSR
82 *
a8605ea2 83 * @hw: the me hardware structure
d025284d 84 *
a8605ea2 85 * Return: H_CSR register value (u32)
d025284d 86 */
52c34561 87static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
d025284d 88{
b68301e9 89 return mei_me_reg_read(hw, H_CSR);
d025284d
TW
90}
91
92/**
93 * mei_hcsr_set - writes H_CSR register to the mei device,
3ce72726
OW
94 * and ignores the H_IS bit for it is write-one-to-zero.
95 *
a8605ea2 96 * @hw: the me hardware structure
ce23139c 97 * @hcsr: new register value
3ce72726 98 */
52c34561 99static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
3ce72726 100{
88eb99f2 101 hcsr &= ~H_IS;
b68301e9 102 mei_me_reg_write(hw, H_CSR, hcsr);
3ce72726
OW
103}
104
1bd30b6a
TW
105/**
106 * mei_me_fw_status - read fw status register from pci config space
107 *
108 * @dev: mei device
109 * @fw_status: fw status register values
ce23139c
AU
110 *
111 * Return: 0 on success, error otherwise
1bd30b6a
TW
112 */
113static int mei_me_fw_status(struct mei_device *dev,
114 struct mei_fw_status *fw_status)
115{
1bd30b6a 116 struct pci_dev *pdev = to_pci_dev(dev->dev);
4ad96db6
TW
117 struct mei_me_hw *hw = to_me_hw(dev);
118 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
1bd30b6a
TW
119 int ret;
120 int i;
121
122 if (!fw_status)
123 return -EINVAL;
124
125 fw_status->count = fw_src->count;
126 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
127 ret = pci_read_config_dword(pdev,
128 fw_src->status[i], &fw_status->status[i]);
129 if (ret)
130 return ret;
131 }
132
133 return 0;
134}
e7e0c231
TW
135
136/**
393b148f 137 * mei_me_hw_config - configure hw dependent settings
e7e0c231
TW
138 *
139 * @dev: mei device
140 */
827eef51 141static void mei_me_hw_config(struct mei_device *dev)
e7e0c231 142{
ba9cdd0e 143 struct mei_me_hw *hw = to_me_hw(dev);
52c34561 144 u32 hcsr = mei_hcsr_read(to_me_hw(dev));
e7e0c231
TW
145 /* Doesn't change in runtime */
146 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
ba9cdd0e
TW
147
148 hw->pg_state = MEI_PG_OFF;
e7e0c231 149}
964a2331
TW
150
151/**
152 * mei_me_pg_state - translate internal pg state
153 * to the mei power gating state
154 *
ce23139c
AU
155 * @dev: mei device
156 *
157 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
964a2331
TW
158 */
159static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
160{
ba9cdd0e 161 struct mei_me_hw *hw = to_me_hw(dev);
92db1555 162
ba9cdd0e 163 return hw->pg_state;
964a2331
TW
164}
165
3ce72726 166/**
ce23139c 167 * mei_me_intr_clear - clear and stop interrupts
3a65dd4e
TW
168 *
169 * @dev: the device structure
170 */
827eef51 171static void mei_me_intr_clear(struct mei_device *dev)
3a65dd4e 172{
52c34561
TW
173 struct mei_me_hw *hw = to_me_hw(dev);
174 u32 hcsr = mei_hcsr_read(hw);
92db1555 175
9ea73ddd 176 if ((hcsr & H_IS) == H_IS)
b68301e9 177 mei_me_reg_write(hw, H_CSR, hcsr);
3a65dd4e 178}
3a65dd4e 179/**
827eef51 180 * mei_me_intr_enable - enables mei device interrupts
3ce72726
OW
181 *
182 * @dev: the device structure
183 */
827eef51 184static void mei_me_intr_enable(struct mei_device *dev)
3ce72726 185{
52c34561
TW
186 struct mei_me_hw *hw = to_me_hw(dev);
187 u32 hcsr = mei_hcsr_read(hw);
92db1555 188
9ea73ddd 189 hcsr |= H_IE;
52c34561 190 mei_hcsr_set(hw, hcsr);
3ce72726
OW
191}
192
193/**
ce23139c 194 * mei_me_intr_disable - disables mei device interrupts
3ce72726
OW
195 *
196 * @dev: the device structure
197 */
827eef51 198static void mei_me_intr_disable(struct mei_device *dev)
3ce72726 199{
52c34561
TW
200 struct mei_me_hw *hw = to_me_hw(dev);
201 u32 hcsr = mei_hcsr_read(hw);
92db1555 202
9ea73ddd 203 hcsr &= ~H_IE;
52c34561 204 mei_hcsr_set(hw, hcsr);
3ce72726
OW
205}
206
68f8ea18
TW
207/**
208 * mei_me_hw_reset_release - release device from the reset
209 *
210 * @dev: the device structure
211 */
212static void mei_me_hw_reset_release(struct mei_device *dev)
213{
214 struct mei_me_hw *hw = to_me_hw(dev);
215 u32 hcsr = mei_hcsr_read(hw);
216
217 hcsr |= H_IG;
218 hcsr &= ~H_RST;
219 mei_hcsr_set(hw, hcsr);
b04ada92
TW
220
221 /* complete this write before we set host ready on another CPU */
222 mmiowb();
68f8ea18 223}
adfba322 224/**
827eef51 225 * mei_me_hw_reset - resets fw via mei csr register.
adfba322
TW
226 *
227 * @dev: the device structure
393b148f 228 * @intr_enable: if interrupt should be enabled after reset.
ce23139c
AU
229 *
230 * Return: always 0
adfba322 231 */
c20c68d5 232static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
adfba322 233{
52c34561
TW
234 struct mei_me_hw *hw = to_me_hw(dev);
235 u32 hcsr = mei_hcsr_read(hw);
adfba322 236
b13a65ef
AU
237 /* H_RST may be found lit before reset is started,
238 * for example if preceding reset flow hasn't completed.
239 * In that case asserting H_RST will be ignored, therefore
240 * we need to clean H_RST bit to start a successful reset sequence.
241 */
242 if ((hcsr & H_RST) == H_RST) {
243 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
244 hcsr &= ~H_RST;
1ab1e79b 245 mei_hcsr_set(hw, hcsr);
b13a65ef
AU
246 hcsr = mei_hcsr_read(hw);
247 }
248
ff96066e 249 hcsr |= H_RST | H_IG | H_IS;
adfba322
TW
250
251 if (intr_enable)
252 hcsr |= H_IE;
253 else
ff96066e 254 hcsr &= ~H_IE;
adfba322 255
07cd7be3 256 dev->recvd_hw_ready = false;
ff96066e 257 mei_me_reg_write(hw, H_CSR, hcsr);
adfba322 258
c40765d9
TW
259 /*
260 * Host reads the H_CSR once to ensure that the
261 * posted write to H_CSR completes.
262 */
263 hcsr = mei_hcsr_read(hw);
264
265 if ((hcsr & H_RST) == 0)
2bf94cab 266 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
c40765d9
TW
267
268 if ((hcsr & H_RDY) == H_RDY)
2bf94cab 269 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
c40765d9 270
33ec0826 271 if (intr_enable == false)
68f8ea18 272 mei_me_hw_reset_release(dev);
adfba322 273
c20c68d5 274 return 0;
adfba322
TW
275}
276
115ba28c 277/**
827eef51 278 * mei_me_host_set_ready - enable device
115ba28c 279 *
ce23139c 280 * @dev: mei device
115ba28c 281 */
827eef51 282static void mei_me_host_set_ready(struct mei_device *dev)
115ba28c 283{
52c34561 284 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 285 u32 hcsr = mei_hcsr_read(hw);
92db1555 286
18caeb70
TW
287 hcsr |= H_IE | H_IG | H_RDY;
288 mei_hcsr_set(hw, hcsr);
115ba28c 289}
ce23139c 290
115ba28c 291/**
827eef51 292 * mei_me_host_is_ready - check whether the host has turned ready
115ba28c 293 *
a8605ea2
AU
294 * @dev: mei device
295 * Return: bool
115ba28c 296 */
827eef51 297static bool mei_me_host_is_ready(struct mei_device *dev)
115ba28c 298{
52c34561 299 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 300 u32 hcsr = mei_hcsr_read(hw);
92db1555 301
18caeb70 302 return (hcsr & H_RDY) == H_RDY;
115ba28c
TW
303}
304
305/**
827eef51 306 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
115ba28c 307 *
a8605ea2
AU
308 * @dev: mei device
309 * Return: bool
115ba28c 310 */
827eef51 311static bool mei_me_hw_is_ready(struct mei_device *dev)
115ba28c 312{
52c34561 313 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 314 u32 mecsr = mei_me_mecsr_read(hw);
92db1555 315
18caeb70 316 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
115ba28c 317}
3a65dd4e 318
ce23139c
AU
319/**
320 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
321 * or timeout is reached
322 *
323 * @dev: mei device
324 * Return: 0 on success, error otherwise
325 */
aafae7ec
TW
326static int mei_me_hw_ready_wait(struct mei_device *dev)
327{
aafae7ec 328 mutex_unlock(&dev->device_lock);
2c2b93ec 329 wait_event_timeout(dev->wait_hw_ready,
dab9bf41 330 dev->recvd_hw_ready,
7d93e58d 331 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
aafae7ec 332 mutex_lock(&dev->device_lock);
2c2b93ec 333 if (!dev->recvd_hw_ready) {
2bf94cab 334 dev_err(dev->dev, "wait hw ready failed\n");
2c2b93ec 335 return -ETIME;
aafae7ec
TW
336 }
337
338 dev->recvd_hw_ready = false;
339 return 0;
340}
341
ce23139c
AU
342/**
343 * mei_me_hw_start - hw start routine
344 *
345 * @dev: mei device
346 * Return: 0 on success, error otherwise
347 */
aafae7ec
TW
348static int mei_me_hw_start(struct mei_device *dev)
349{
350 int ret = mei_me_hw_ready_wait(dev);
92db1555 351
aafae7ec
TW
352 if (ret)
353 return ret;
2bf94cab 354 dev_dbg(dev->dev, "hw is ready\n");
aafae7ec
TW
355
356 mei_me_host_set_ready(dev);
357 return ret;
358}
359
360
3ce72726 361/**
726917f0 362 * mei_hbuf_filled_slots - gets number of device filled buffer slots
3ce72726 363 *
7353f85c 364 * @dev: the device structure
3ce72726 365 *
a8605ea2 366 * Return: number of filled slots
3ce72726 367 */
726917f0 368static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
3ce72726 369{
52c34561 370 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 371 u32 hcsr;
3ce72726
OW
372 char read_ptr, write_ptr;
373
18caeb70 374 hcsr = mei_hcsr_read(hw);
726917f0 375
18caeb70
TW
376 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
377 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
3ce72726
OW
378
379 return (unsigned char) (write_ptr - read_ptr);
380}
381
382/**
393b148f 383 * mei_me_hbuf_is_empty - checks if host buffer is empty.
3ce72726
OW
384 *
385 * @dev: the device structure
386 *
a8605ea2 387 * Return: true if empty, false - otherwise.
3ce72726 388 */
827eef51 389static bool mei_me_hbuf_is_empty(struct mei_device *dev)
3ce72726 390{
726917f0 391 return mei_hbuf_filled_slots(dev) == 0;
3ce72726
OW
392}
393
394/**
827eef51 395 * mei_me_hbuf_empty_slots - counts write empty slots.
3ce72726
OW
396 *
397 * @dev: the device structure
398 *
a8605ea2 399 * Return: -EOVERFLOW if overflow, otherwise empty slots count
3ce72726 400 */
827eef51 401static int mei_me_hbuf_empty_slots(struct mei_device *dev)
3ce72726 402{
24aadc80 403 unsigned char filled_slots, empty_slots;
3ce72726 404
726917f0 405 filled_slots = mei_hbuf_filled_slots(dev);
24aadc80 406 empty_slots = dev->hbuf_depth - filled_slots;
3ce72726
OW
407
408 /* check for overflow */
24aadc80 409 if (filled_slots > dev->hbuf_depth)
3ce72726
OW
410 return -EOVERFLOW;
411
412 return empty_slots;
413}
414
ce23139c
AU
415/**
416 * mei_me_hbuf_max_len - returns size of hw buffer.
417 *
418 * @dev: the device structure
419 *
420 * Return: size of hw buffer in bytes
421 */
827eef51
TW
422static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
423{
424 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
425}
426
427
3ce72726 428/**
7ca96aa2 429 * mei_me_write_message - writes a message to mei device.
3ce72726
OW
430 *
431 * @dev: the device structure
7353f85c 432 * @header: mei HECI header of message
438763f3 433 * @buf: message payload will be written
3ce72726 434 *
a8605ea2 435 * Return: -EIO if write has failed
3ce72726 436 */
827eef51
TW
437static int mei_me_write_message(struct mei_device *dev,
438 struct mei_msg_hdr *header,
439 unsigned char *buf)
3ce72726 440{
52c34561 441 struct mei_me_hw *hw = to_me_hw(dev);
c8c8d080 442 unsigned long rem;
438763f3 443 unsigned long length = header->length;
169d1338 444 u32 *reg_buf = (u32 *)buf;
88eb99f2 445 u32 hcsr;
c8c8d080 446 u32 dw_cnt;
169d1338
TW
447 int i;
448 int empty_slots;
3ce72726 449
2bf94cab 450 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
3ce72726 451
726917f0 452 empty_slots = mei_hbuf_empty_slots(dev);
2bf94cab 453 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
3ce72726 454
7bdf72d3 455 dw_cnt = mei_data2slots(length);
169d1338 456 if (empty_slots < 0 || dw_cnt > empty_slots)
9d098192 457 return -EMSGSIZE;
3ce72726 458
b68301e9 459 mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
3ce72726 460
169d1338 461 for (i = 0; i < length / 4; i++)
b68301e9 462 mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
3ce72726 463
169d1338
TW
464 rem = length & 0x3;
465 if (rem > 0) {
466 u32 reg = 0;
92db1555 467
169d1338 468 memcpy(&reg, &buf[length - rem], rem);
b68301e9 469 mei_me_reg_write(hw, H_CB_WW, reg);
3ce72726
OW
470 }
471
52c34561
TW
472 hcsr = mei_hcsr_read(hw) | H_IG;
473 mei_hcsr_set(hw, hcsr);
827eef51 474 if (!mei_me_hw_is_ready(dev))
1ccb7b62 475 return -EIO;
3ce72726 476
1ccb7b62 477 return 0;
3ce72726
OW
478}
479
480/**
827eef51 481 * mei_me_count_full_read_slots - counts read full slots.
3ce72726
OW
482 *
483 * @dev: the device structure
484 *
a8605ea2 485 * Return: -EOVERFLOW if overflow, otherwise filled slots count
3ce72726 486 */
827eef51 487static int mei_me_count_full_read_slots(struct mei_device *dev)
3ce72726 488{
52c34561 489 struct mei_me_hw *hw = to_me_hw(dev);
18caeb70 490 u32 me_csr;
3ce72726
OW
491 char read_ptr, write_ptr;
492 unsigned char buffer_depth, filled_slots;
493
18caeb70
TW
494 me_csr = mei_me_mecsr_read(hw);
495 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
496 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
497 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
3ce72726
OW
498 filled_slots = (unsigned char) (write_ptr - read_ptr);
499
500 /* check for overflow */
501 if (filled_slots > buffer_depth)
502 return -EOVERFLOW;
503
2bf94cab 504 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
3ce72726
OW
505 return (int)filled_slots;
506}
507
508/**
827eef51 509 * mei_me_read_slots - reads a message from mei device.
3ce72726
OW
510 *
511 * @dev: the device structure
512 * @buffer: message buffer will be written
513 * @buffer_length: message size will be read
ce23139c
AU
514 *
515 * Return: always 0
3ce72726 516 */
827eef51 517static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
edf1eed4 518 unsigned long buffer_length)
3ce72726 519{
52c34561 520 struct mei_me_hw *hw = to_me_hw(dev);
edf1eed4 521 u32 *reg_buf = (u32 *)buffer;
88eb99f2 522 u32 hcsr;
3ce72726 523
edf1eed4 524 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
827eef51 525 *reg_buf++ = mei_me_mecbrw_read(dev);
3ce72726
OW
526
527 if (buffer_length > 0) {
827eef51 528 u32 reg = mei_me_mecbrw_read(dev);
92db1555 529
edf1eed4 530 memcpy(reg_buf, &reg, buffer_length);
3ce72726
OW
531 }
532
52c34561
TW
533 hcsr = mei_hcsr_read(hw) | H_IG;
534 mei_hcsr_set(hw, hcsr);
827eef51 535 return 0;
3ce72726
OW
536}
537
b16c3571 538/**
152de90d 539 * mei_me_pg_enter - write pg enter register
b16c3571
TW
540 *
541 * @dev: the device structure
542 */
543static void mei_me_pg_enter(struct mei_device *dev)
544{
545 struct mei_me_hw *hw = to_me_hw(dev);
546 u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
92db1555 547
b16c3571
TW
548 reg |= H_HPG_CSR_PGI;
549 mei_me_reg_write(hw, H_HPG_CSR, reg);
550}
551
552/**
152de90d 553 * mei_me_pg_exit - write pg exit register
b16c3571
TW
554 *
555 * @dev: the device structure
556 */
557static void mei_me_pg_exit(struct mei_device *dev)
558{
559 struct mei_me_hw *hw = to_me_hw(dev);
560 u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
561
562 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
563
564 reg |= H_HPG_CSR_PGIHEXR;
565 mei_me_reg_write(hw, H_HPG_CSR, reg);
566}
567
ba9cdd0e
TW
568/**
569 * mei_me_pg_set_sync - perform pg entry procedure
570 *
571 * @dev: the device structure
572 *
a8605ea2 573 * Return: 0 on success an error code otherwise
ba9cdd0e
TW
574 */
575int mei_me_pg_set_sync(struct mei_device *dev)
576{
577 struct mei_me_hw *hw = to_me_hw(dev);
578 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
579 int ret;
580
581 dev->pg_event = MEI_PG_EVENT_WAIT;
582
583 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
584 if (ret)
585 return ret;
586
587 mutex_unlock(&dev->device_lock);
588 wait_event_timeout(dev->wait_pg,
589 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
590 mutex_lock(&dev->device_lock);
591
592 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
593 mei_me_pg_enter(dev);
594 ret = 0;
595 } else {
596 ret = -ETIME;
597 }
598
599 dev->pg_event = MEI_PG_EVENT_IDLE;
600 hw->pg_state = MEI_PG_ON;
601
602 return ret;
603}
604
605/**
606 * mei_me_pg_unset_sync - perform pg exit procedure
607 *
608 * @dev: the device structure
609 *
a8605ea2 610 * Return: 0 on success an error code otherwise
ba9cdd0e
TW
611 */
612int mei_me_pg_unset_sync(struct mei_device *dev)
613{
614 struct mei_me_hw *hw = to_me_hw(dev);
615 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
616 int ret;
617
618 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
619 goto reply;
620
621 dev->pg_event = MEI_PG_EVENT_WAIT;
622
623 mei_me_pg_exit(dev);
624
625 mutex_unlock(&dev->device_lock);
626 wait_event_timeout(dev->wait_pg,
627 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
628 mutex_lock(&dev->device_lock);
629
630reply:
631 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
632 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
633 else
634 ret = -ETIME;
635
636 dev->pg_event = MEI_PG_EVENT_IDLE;
637 hw->pg_state = MEI_PG_OFF;
638
639 return ret;
640}
641
ee7e5afd
TW
642/**
643 * mei_me_pg_is_enabled - detect if PG is supported by HW
644 *
645 * @dev: the device structure
646 *
a8605ea2 647 * Return: true is pg supported, false otherwise
ee7e5afd
TW
648 */
649static bool mei_me_pg_is_enabled(struct mei_device *dev)
650{
651 struct mei_me_hw *hw = to_me_hw(dev);
652 u32 reg = mei_me_reg_read(hw, ME_CSR_HA);
653
654 if ((reg & ME_PGIC_HRA) == 0)
655 goto notsupported;
656
bae1cc7d 657 if (!dev->hbm_f_pg_supported)
ee7e5afd
TW
658 goto notsupported;
659
660 return true;
661
662notsupported:
2bf94cab 663 dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
ee7e5afd
TW
664 !!(reg & ME_PGIC_HRA),
665 dev->version.major_version,
666 dev->version.minor_version,
667 HBM_MAJOR_VERSION_PGI,
668 HBM_MINOR_VERSION_PGI);
669
670 return false;
671}
672
06ecd645
TW
673/**
674 * mei_me_irq_quick_handler - The ISR of the MEI device
675 *
676 * @irq: The irq number
677 * @dev_id: pointer to the device structure
678 *
a8605ea2 679 * Return: irqreturn_t
06ecd645
TW
680 */
681
682irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
683{
684 struct mei_device *dev = (struct mei_device *) dev_id;
685 struct mei_me_hw *hw = to_me_hw(dev);
686 u32 csr_reg = mei_hcsr_read(hw);
687
688 if ((csr_reg & H_IS) != H_IS)
689 return IRQ_NONE;
690
691 /* clear H_IS bit in H_CSR */
b68301e9 692 mei_me_reg_write(hw, H_CSR, csr_reg);
06ecd645
TW
693
694 return IRQ_WAKE_THREAD;
695}
696
697/**
698 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
699 * processing.
700 *
701 * @irq: The irq number
702 * @dev_id: pointer to the device structure
703 *
a8605ea2 704 * Return: irqreturn_t
06ecd645
TW
705 *
706 */
707irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
708{
709 struct mei_device *dev = (struct mei_device *) dev_id;
710 struct mei_cl_cb complete_list;
06ecd645 711 s32 slots;
544f9460 712 int rets = 0;
06ecd645 713
2bf94cab 714 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
06ecd645
TW
715 /* initialize our complete list */
716 mutex_lock(&dev->device_lock);
717 mei_io_list_init(&complete_list);
718
719 /* Ack the interrupt here
720 * In case of MSI we don't go through the quick handler */
d08b8fc0 721 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
06ecd645
TW
722 mei_clear_interrupts(dev);
723
724 /* check if ME wants a reset */
33ec0826 725 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 726 dev_warn(dev->dev, "FW not ready: resetting.\n");
544f9460
TW
727 schedule_work(&dev->reset_work);
728 goto end;
06ecd645
TW
729 }
730
731 /* check if we need to start the dev */
732 if (!mei_host_is_ready(dev)) {
733 if (mei_hw_is_ready(dev)) {
b04ada92 734 mei_me_hw_reset_release(dev);
2bf94cab 735 dev_dbg(dev->dev, "we need to start the dev.\n");
06ecd645 736
aafae7ec 737 dev->recvd_hw_ready = true;
2c2b93ec 738 wake_up(&dev->wait_hw_ready);
06ecd645 739 } else {
2bf94cab 740 dev_dbg(dev->dev, "Spurious Interrupt\n");
06ecd645 741 }
544f9460 742 goto end;
06ecd645
TW
743 }
744 /* check slots available for reading */
745 slots = mei_count_full_read_slots(dev);
746 while (slots > 0) {
2bf94cab 747 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
06ecd645 748 rets = mei_irq_read_handler(dev, &complete_list, &slots);
b1b94b5d
TW
749 /* There is a race between ME write and interrupt delivery:
750 * Not all data is always available immediately after the
751 * interrupt, so try to read again on the next interrupt.
752 */
753 if (rets == -ENODATA)
754 break;
755
33ec0826 756 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 757 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
b1b94b5d 758 rets);
544f9460 759 schedule_work(&dev->reset_work);
06ecd645 760 goto end;
544f9460 761 }
06ecd645 762 }
544f9460 763
6aae48ff
TW
764 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
765
ba9cdd0e
TW
766 /*
767 * During PG handshake only allowed write is the replay to the
768 * PG exit message, so block calling write function
769 * if the pg state is not idle
770 */
771 if (dev->pg_event == MEI_PG_EVENT_IDLE) {
772 rets = mei_irq_write_handler(dev, &complete_list);
773 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
774 }
06ecd645 775
4c6e22b8 776 mei_irq_compl_handler(dev, &complete_list);
06ecd645 777
544f9460 778end:
2bf94cab 779 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
544f9460 780 mutex_unlock(&dev->device_lock);
06ecd645
TW
781 return IRQ_HANDLED;
782}
04dd3661 783
827eef51
TW
784static const struct mei_hw_ops mei_me_hw_ops = {
785
1bd30b6a 786 .fw_status = mei_me_fw_status,
964a2331
TW
787 .pg_state = mei_me_pg_state,
788
827eef51
TW
789 .host_is_ready = mei_me_host_is_ready,
790
791 .hw_is_ready = mei_me_hw_is_ready,
792 .hw_reset = mei_me_hw_reset,
aafae7ec
TW
793 .hw_config = mei_me_hw_config,
794 .hw_start = mei_me_hw_start,
827eef51 795
ee7e5afd
TW
796 .pg_is_enabled = mei_me_pg_is_enabled,
797
827eef51
TW
798 .intr_clear = mei_me_intr_clear,
799 .intr_enable = mei_me_intr_enable,
800 .intr_disable = mei_me_intr_disable,
801
802 .hbuf_free_slots = mei_me_hbuf_empty_slots,
803 .hbuf_is_ready = mei_me_hbuf_is_empty,
804 .hbuf_max_len = mei_me_hbuf_max_len,
805
806 .write = mei_me_write_message,
807
808 .rdbuf_full_slots = mei_me_count_full_read_slots,
809 .read_hdr = mei_me_mecbrw_read,
810 .read = mei_me_read_slots
811};
812
c919951d
TW
813static bool mei_me_fw_type_nm(struct pci_dev *pdev)
814{
815 u32 reg;
92db1555 816
c919951d
TW
817 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
818 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
819 return (reg & 0x600) == 0x200;
820}
821
822#define MEI_CFG_FW_NM \
823 .quirk_probe = mei_me_fw_type_nm
824
825static bool mei_me_fw_type_sps(struct pci_dev *pdev)
826{
827 u32 reg;
828 /* Read ME FW Status check for SPS Firmware */
829 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
830 /* if bits [19:16] = 15, running SPS Firmware */
831 return (reg & 0xf0000) == 0xf0000;
832}
833
834#define MEI_CFG_FW_SPS \
835 .quirk_probe = mei_me_fw_type_sps
836
837
8d929d48
AU
838#define MEI_CFG_LEGACY_HFS \
839 .fw_status.count = 0
840
841#define MEI_CFG_ICH_HFS \
842 .fw_status.count = 1, \
843 .fw_status.status[0] = PCI_CFG_HFS_1
844
845#define MEI_CFG_PCH_HFS \
846 .fw_status.count = 2, \
847 .fw_status.status[0] = PCI_CFG_HFS_1, \
848 .fw_status.status[1] = PCI_CFG_HFS_2
849
edca5ea3
AU
850#define MEI_CFG_PCH8_HFS \
851 .fw_status.count = 6, \
852 .fw_status.status[0] = PCI_CFG_HFS_1, \
853 .fw_status.status[1] = PCI_CFG_HFS_2, \
854 .fw_status.status[2] = PCI_CFG_HFS_3, \
855 .fw_status.status[3] = PCI_CFG_HFS_4, \
856 .fw_status.status[4] = PCI_CFG_HFS_5, \
857 .fw_status.status[5] = PCI_CFG_HFS_6
8d929d48
AU
858
859/* ICH Legacy devices */
860const struct mei_cfg mei_me_legacy_cfg = {
861 MEI_CFG_LEGACY_HFS,
862};
863
864/* ICH devices */
865const struct mei_cfg mei_me_ich_cfg = {
866 MEI_CFG_ICH_HFS,
867};
868
869/* PCH devices */
870const struct mei_cfg mei_me_pch_cfg = {
871 MEI_CFG_PCH_HFS,
872};
873
c919951d
TW
874
875/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
876const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
877 MEI_CFG_PCH_HFS,
878 MEI_CFG_FW_NM,
879};
880
edca5ea3
AU
881/* PCH8 Lynx Point and newer devices */
882const struct mei_cfg mei_me_pch8_cfg = {
883 MEI_CFG_PCH8_HFS,
884};
885
886/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
887const struct mei_cfg mei_me_pch8_sps_cfg = {
888 MEI_CFG_PCH8_HFS,
c919951d
TW
889 MEI_CFG_FW_SPS,
890};
891
52c34561 892/**
393b148f 893 * mei_me_dev_init - allocates and initializes the mei device structure
52c34561
TW
894 *
895 * @pdev: The pci device structure
8d929d48 896 * @cfg: per device generation config
52c34561 897 *
a8605ea2 898 * Return: The mei_device_device pointer on success, NULL on failure.
52c34561 899 */
8d929d48
AU
900struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
901 const struct mei_cfg *cfg)
52c34561
TW
902{
903 struct mei_device *dev;
4ad96db6 904 struct mei_me_hw *hw;
52c34561
TW
905
906 dev = kzalloc(sizeof(struct mei_device) +
907 sizeof(struct mei_me_hw), GFP_KERNEL);
908 if (!dev)
909 return NULL;
4ad96db6 910 hw = to_me_hw(dev);
52c34561 911
3a7e9b6c 912 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
4ad96db6 913 hw->cfg = cfg;
52c34561
TW
914 return dev;
915}
06ecd645 916