drivers/misc/lkdtm/bugs.c: add arithmetic overflow and array bounds checks
[linux-2.6-block.git] / drivers / misc / lkdtm / bugs.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
00f496c4
KC
2/*
3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5 * lockups) along with other things that don't fit well into existing LKDTM
6 * test source files.
7 */
00f496c4 8#include "lkdtm.h"
6819d101 9#include <linux/list.h>
6d2e91a6 10#include <linux/sched.h>
e22aa9d7 11#include <linux/sched/signal.h>
7b25a85c 12#include <linux/sched/task_stack.h>
e22aa9d7 13#include <linux/uaccess.h>
ae2e1aad 14#include <linux/slab.h>
00f496c4 15
b09511c2
AL
16#ifdef CONFIG_X86_32
17#include <asm/desc.h>
18#endif
19
6819d101
KC
20struct lkdtm_list {
21 struct list_head node;
22};
23
00f496c4
KC
24/*
25 * Make sure our attempts to over run the kernel stack doesn't trigger
26 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27 * recurse past the end of THREAD_SIZE by default.
28 */
29#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
b9bc7b8b 30#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
00f496c4
KC
31#else
32#define REC_STACK_SIZE (THREAD_SIZE / 8)
33#endif
34#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35
36static int recur_count = REC_NUM_DEFAULT;
37
38static DEFINE_SPINLOCK(lock_me_up);
39
24cccab4
KC
40/*
41 * Make sure compiler does not optimize this function or stack frame away:
42 * - function marked noinline
43 * - stack variables are marked volatile
44 * - stack variables are written (memset()) and read (pr_info())
45 * - function has external effects (pr_info())
46 * */
47static int noinline recursive_loop(int remaining)
00f496c4 48{
24cccab4 49 volatile char buf[REC_STACK_SIZE];
00f496c4 50
24cccab4
KC
51 memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 recur_count);
00f496c4
KC
54 if (!remaining)
55 return 0;
56 else
57 return recursive_loop(remaining - 1);
58}
59
60/* If the depth is negative, use the default, otherwise keep parameter. */
61void __init lkdtm_bugs_init(int *recur_param)
62{
63 if (*recur_param < 0)
64 *recur_param = recur_count;
65 else
66 recur_count = *recur_param;
67}
68
69void lkdtm_PANIC(void)
70{
71 panic("dumptest");
72}
73
74void lkdtm_BUG(void)
75{
76 BUG();
77}
78
d32f11ba
KC
79static int warn_counter;
80
00f496c4
KC
81void lkdtm_WARNING(void)
82{
1ee170ea
KC
83 WARN_ON(++warn_counter);
84}
85
86void lkdtm_WARNING_MESSAGE(void)
87{
88 WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
00f496c4
KC
89}
90
91void lkdtm_EXCEPTION(void)
92{
9e18308a 93 *((volatile int *) 0) = 0;
00f496c4
KC
94}
95
96void lkdtm_LOOP(void)
97{
98 for (;;)
99 ;
100}
101
24cccab4 102void lkdtm_EXHAUST_STACK(void)
00f496c4 103{
b9bc7b8b 104 pr_info("Calling function with %lu frame size to depth %d ...\n",
24cccab4
KC
105 REC_STACK_SIZE, recur_count);
106 recursive_loop(recur_count);
107 pr_info("FAIL: survived without exhausting stack?!\n");
00f496c4
KC
108}
109
7a11a1d1
AB
110static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111{
93e78c6b 112 memset(stack, '\xff', 64);
7a11a1d1
AB
113}
114
93e78c6b 115/* This should trip the stack canary, not corrupt the return address. */
00f496c4
KC
116noinline void lkdtm_CORRUPT_STACK(void)
117{
118 /* Use default char array length that triggers stack protection. */
93e78c6b
KC
119 char data[8] __aligned(sizeof(void *));
120
121 __lkdtm_CORRUPT_STACK(&data);
122
123 pr_info("Corrupted stack containing char array ...\n");
124}
125
126/* Same as above but will only get a canary with -fstack-protector-strong */
127noinline void lkdtm_CORRUPT_STACK_STRONG(void)
128{
129 union {
130 unsigned short shorts[4];
131 unsigned long *ptr;
132 } data __aligned(sizeof(void *));
133
7a11a1d1 134 __lkdtm_CORRUPT_STACK(&data);
00f496c4 135
93e78c6b 136 pr_info("Corrupted stack containing union ...\n");
00f496c4
KC
137}
138
139void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
140{
141 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
142 u32 *p;
143 u32 val = 0x12345678;
144
145 p = (u32 *)(data + 1);
146 if (*p == 0)
147 val = 0x87654321;
148 *p = val;
149}
150
151void lkdtm_SOFTLOCKUP(void)
152{
153 preempt_disable();
154 for (;;)
155 cpu_relax();
156}
157
158void lkdtm_HARDLOCKUP(void)
159{
160 local_irq_disable();
161 for (;;)
162 cpu_relax();
163}
164
165void lkdtm_SPINLOCKUP(void)
166{
167 /* Must be called twice to trigger. */
168 spin_lock(&lock_me_up);
169 /* Let sparse know we intended to exit holding the lock. */
170 __release(&lock_me_up);
171}
172
173void lkdtm_HUNG_TASK(void)
174{
175 set_current_state(TASK_UNINTERRUPTIBLE);
176 schedule();
177}
178
ae2e1aad
KC
179volatile unsigned int huge = INT_MAX - 2;
180volatile unsigned int ignored;
181
182void lkdtm_OVERFLOW_SIGNED(void)
183{
184 int value;
185
186 value = huge;
187 pr_info("Normal signed addition ...\n");
188 value += 1;
189 ignored = value;
190
191 pr_info("Overflowing signed addition ...\n");
192 value += 4;
193 ignored = value;
194}
195
196
197void lkdtm_OVERFLOW_UNSIGNED(void)
198{
199 unsigned int value;
200
201 value = huge;
202 pr_info("Normal unsigned addition ...\n");
203 value += 1;
204 ignored = value;
205
206 pr_info("Overflowing unsigned addition ...\n");
207 value += 4;
208 ignored = value;
209}
210
211/* Intentially using old-style flex array definition of 1 byte. */
212struct array_bounds_flex_array {
213 int one;
214 int two;
215 char data[1];
216};
217
218struct array_bounds {
219 int one;
220 int two;
221 char data[8];
222 int three;
223};
224
225void lkdtm_ARRAY_BOUNDS(void)
226{
227 struct array_bounds_flex_array *not_checked;
228 struct array_bounds *checked;
229 volatile int i;
230
231 not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
232 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
233
234 pr_info("Array access within bounds ...\n");
235 /* For both, touch all bytes in the actual member size. */
236 for (i = 0; i < sizeof(checked->data); i++)
237 checked->data[i] = 'A';
238 /*
239 * For the uninstrumented flex array member, also touch 1 byte
240 * beyond to verify it is correctly uninstrumented.
241 */
242 for (i = 0; i < sizeof(not_checked->data) + 1; i++)
243 not_checked->data[i] = 'A';
244
245 pr_info("Array access beyond bounds ...\n");
246 for (i = 0; i < sizeof(checked->data) + 1; i++)
247 checked->data[i] = 'B';
248
249 kfree(not_checked);
250 kfree(checked);
251}
252
6819d101
KC
253void lkdtm_CORRUPT_LIST_ADD(void)
254{
255 /*
256 * Initially, an empty list via LIST_HEAD:
257 * test_head.next = &test_head
258 * test_head.prev = &test_head
259 */
260 LIST_HEAD(test_head);
261 struct lkdtm_list good, bad;
262 void *target[2] = { };
263 void *redirection = &target;
264
265 pr_info("attempting good list addition\n");
266
267 /*
268 * Adding to the list performs these actions:
269 * test_head.next->prev = &good.node
270 * good.node.next = test_head.next
271 * good.node.prev = test_head
272 * test_head.next = good.node
273 */
274 list_add(&good.node, &test_head);
275
276 pr_info("attempting corrupted list addition\n");
277 /*
278 * In simulating this "write what where" primitive, the "what" is
279 * the address of &bad.node, and the "where" is the address held
280 * by "redirection".
281 */
282 test_head.next = redirection;
283 list_add(&bad.node, &test_head);
284
285 if (target[0] == NULL && target[1] == NULL)
286 pr_err("Overwrite did not happen, but no BUG?!\n");
287 else
288 pr_err("list_add() corruption not detected!\n");
289}
290
291void lkdtm_CORRUPT_LIST_DEL(void)
292{
293 LIST_HEAD(test_head);
294 struct lkdtm_list item;
295 void *target[2] = { };
296 void *redirection = &target;
297
298 list_add(&item.node, &test_head);
299
300 pr_info("attempting good list removal\n");
301 list_del(&item.node);
302
303 pr_info("attempting corrupted list removal\n");
304 list_add(&item.node, &test_head);
305
306 /* As with the list_add() test above, this corrupts "next". */
307 item.node.next = redirection;
308 list_del(&item.node);
309
310 if (target[0] == NULL && target[1] == NULL)
311 pr_err("Overwrite did not happen, but no BUG?!\n");
312 else
313 pr_err("list_del() corruption not detected!\n");
314}
e22aa9d7 315
7b25a85c 316/* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
e22aa9d7
KC
317void lkdtm_CORRUPT_USER_DS(void)
318{
319 pr_info("setting bad task size limit\n");
320 set_fs(KERNEL_DS);
321
322 /* Make sure we do not keep running with a KERNEL_DS! */
3cf5d076 323 force_sig(SIGKILL);
e22aa9d7 324}
7b25a85c
KC
325
326/* Test that VMAP_STACK is actually allocating with a leading guard page */
327void lkdtm_STACK_GUARD_PAGE_LEADING(void)
328{
329 const unsigned char *stack = task_stack_page(current);
330 const unsigned char *ptr = stack - 1;
331 volatile unsigned char byte;
332
333 pr_info("attempting bad read from page below current stack\n");
334
335 byte = *ptr;
336
337 pr_err("FAIL: accessed page before stack!\n");
338}
339
340/* Test that VMAP_STACK is actually allocating with a trailing guard page */
341void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
342{
343 const unsigned char *stack = task_stack_page(current);
344 const unsigned char *ptr = stack + THREAD_SIZE;
345 volatile unsigned char byte;
346
347 pr_info("attempting bad read from page above current stack\n");
348
349 byte = *ptr;
350
351 pr_err("FAIL: accessed page after stack!\n");
352}
06b32fdb
KC
353
354void lkdtm_UNSET_SMEP(void)
355{
0e31e357 356#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
06b32fdb
KC
357#define MOV_CR4_DEPTH 64
358 void (*direct_write_cr4)(unsigned long val);
359 unsigned char *insn;
360 unsigned long cr4;
361 int i;
362
363 cr4 = native_read_cr4();
364
365 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
366 pr_err("FAIL: SMEP not in use\n");
367 return;
368 }
369 cr4 &= ~(X86_CR4_SMEP);
370
371 pr_info("trying to clear SMEP normally\n");
372 native_write_cr4(cr4);
373 if (cr4 == native_read_cr4()) {
374 pr_err("FAIL: pinning SMEP failed!\n");
375 cr4 |= X86_CR4_SMEP;
376 pr_info("restoring SMEP\n");
377 native_write_cr4(cr4);
378 return;
379 }
380 pr_info("ok: SMEP did not get cleared\n");
381
382 /*
383 * To test the post-write pinning verification we need to call
384 * directly into the middle of native_write_cr4() where the
385 * cr4 write happens, skipping any pinning. This searches for
386 * the cr4 writing instruction.
387 */
388 insn = (unsigned char *)native_write_cr4;
389 for (i = 0; i < MOV_CR4_DEPTH; i++) {
390 /* mov %rdi, %cr4 */
391 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
392 break;
393 /* mov %rdi,%rax; mov %rax, %cr4 */
394 if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
395 insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
396 insn[i+4] == 0x22 && insn[i+5] == 0xe0)
397 break;
398 }
399 if (i >= MOV_CR4_DEPTH) {
400 pr_info("ok: cannot locate cr4 writing call gadget\n");
401 return;
402 }
403 direct_write_cr4 = (void *)(insn + i);
404
405 pr_info("trying to clear SMEP with call gadget\n");
406 direct_write_cr4(cr4);
407 if (native_read_cr4() & X86_CR4_SMEP) {
408 pr_info("ok: SMEP removal was reverted\n");
409 } else {
410 pr_err("FAIL: cleared SMEP not detected!\n");
411 cr4 |= X86_CR4_SMEP;
412 pr_info("restoring SMEP\n");
413 native_write_cr4(cr4);
414 }
415#else
cea23efb 416 pr_err("XFAIL: this test is x86_64-only\n");
06b32fdb
KC
417#endif
418}
b09511c2 419
b09511c2
AL
420void lkdtm_DOUBLE_FAULT(void)
421{
cea23efb 422#ifdef CONFIG_X86_32
b09511c2
AL
423 /*
424 * Trigger #DF by setting the stack limit to zero. This clobbers
425 * a GDT TLS slot, which is okay because the current task will die
426 * anyway due to the double fault.
427 */
428 struct desc_struct d = {
429 .type = 3, /* expand-up, writable, accessed data */
430 .p = 1, /* present */
431 .d = 1, /* 32-bit */
432 .g = 0, /* limit in bytes */
433 .s = 1, /* not system */
434 };
435
436 local_irq_disable();
437 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
438 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
439
440 /*
441 * Put our zero-limit segment in SS and then trigger a fault. The
442 * 4-byte access to (%esp) will fault with #SS, and the attempt to
443 * deliver the fault will recursively cause #SS and result in #DF.
444 * This whole process happens while NMIs and MCEs are blocked by the
445 * MOV SS window. This is nice because an NMI with an invalid SS
446 * would also double-fault, resulting in the NMI or MCE being lost.
447 */
448 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
449 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
450
cea23efb
KC
451 pr_err("FAIL: tried to double fault but didn't die\n");
452#else
453 pr_err("XFAIL: this test is ia32-only\n");
b09511c2 454#endif
cea23efb 455}
6cb6982f
ADK
456
457#ifdef CONFIG_ARM64_PTR_AUTH
458static noinline void change_pac_parameters(void)
459{
460 /* Reset the keys of current task */
461 ptrauth_thread_init_kernel(current);
462 ptrauth_thread_switch_kernel(current);
463}
464
465#define CORRUPT_PAC_ITERATE 10
466noinline void lkdtm_CORRUPT_PAC(void)
467{
468 int i;
469
470 if (!system_supports_address_auth()) {
471 pr_err("FAIL: arm64 pointer authentication feature not present\n");
472 return;
473 }
474
475 pr_info("Change the PAC parameters to force function return failure\n");
476 /*
477 * Pac is a hash value computed from input keys, return address and
478 * stack pointer. As pac has fewer bits so there is a chance of
479 * collision, so iterate few times to reduce the collision probability.
480 */
481 for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
482 change_pac_parameters();
483
484 pr_err("FAIL: %s test failed. Kernel may be unstable from here\n", __func__);
485}
486#else /* !CONFIG_ARM64_PTR_AUTH */
487noinline void lkdtm_CORRUPT_PAC(void)
488{
489 pr_err("FAIL: arm64 pointer authentication config disabled\n");
490}
491#endif