habanalabs: implement INFO IOCTL
[linux-2.6-block.git] / drivers / misc / habanalabs / memory.c
CommitLineData
eff6f4a0
OG
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
0feaf86d 8#include <uapi/misc/habanalabs.h>
eff6f4a0 9#include "habanalabs.h"
0feaf86d 10#include "include/hw_ip/mmu/mmu_general.h"
eff6f4a0
OG
11
12#include <linux/uaccess.h>
13#include <linux/slab.h>
0feaf86d
OS
14#include <linux/genalloc.h>
15
16#define PGS_IN_2MB_PAGE (PAGE_SIZE_2MB >> PAGE_SHIFT)
17#define HL_MMU_DEBUG 0
18
19/*
20 * The va ranges in context object contain a list with the available chunks of
21 * device virtual memory.
22 * There is one range for host allocations and one for DRAM allocations.
23 *
24 * On initialization each range contains one chunk of all of its available
25 * virtual range which is a half of the total device virtual range.
26 *
27 * On each mapping of physical pages, a suitable virtual range chunk (with a
28 * minimum size) is selected from the list. If the chunk size equals the
29 * requested size, the chunk is returned. Otherwise, the chunk is split into
30 * two chunks - one to return as result and a remainder to stay in the list.
31 *
32 * On each Unmapping of a virtual address, the relevant virtual chunk is
33 * returned to the list. The chunk is added to the list and if its edges match
34 * the edges of the adjacent chunks (means a contiguous chunk can be created),
35 * the chunks are merged.
36 *
37 * On finish, the list is checked to have only one chunk of all the relevant
38 * virtual range (which is a half of the device total virtual range).
39 * If not (means not all mappings were unmapped), a warning is printed.
40 */
41
42/*
43 * alloc_device_memory - allocate device memory
44 *
45 * @ctx : current context
46 * @args : host parameters containing the requested size
47 * @ret_handle : result handle
48 *
49 * This function does the following:
50 * - Allocate the requested size rounded up to 2MB pages
51 * - Return unique handle
52 */
53static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
54 u32 *ret_handle)
55{
56 struct hl_device *hdev = ctx->hdev;
57 struct hl_vm *vm = &hdev->vm;
58 struct hl_vm_phys_pg_pack *phys_pg_pack;
59 u64 paddr = 0;
60 u32 total_size, num_pgs, num_curr_pgs, page_size, page_shift;
61 int handle, rc, i;
62 bool contiguous;
63
64 num_curr_pgs = 0;
65 page_size = hdev->asic_prop.dram_page_size;
66 page_shift = __ffs(page_size);
67 num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
68 total_size = num_pgs << page_shift;
69
70 contiguous = args->flags & HL_MEM_CONTIGUOUS;
71
72 if (contiguous) {
73 paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
74 if (!paddr) {
75 dev_err(hdev->dev,
76 "failed to allocate %u huge contiguous pages\n",
77 num_pgs);
78 return -ENOMEM;
79 }
80 }
81
82 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
83 if (!phys_pg_pack) {
84 rc = -ENOMEM;
85 goto pages_pack_err;
86 }
87
88 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
89 phys_pg_pack->asid = ctx->asid;
90 phys_pg_pack->npages = num_pgs;
91 phys_pg_pack->page_size = page_size;
92 phys_pg_pack->total_size = total_size;
93 phys_pg_pack->flags = args->flags;
94 phys_pg_pack->contiguous = contiguous;
95
96 phys_pg_pack->pages = kcalloc(num_pgs, sizeof(u64), GFP_KERNEL);
97 if (!phys_pg_pack->pages) {
98 rc = -ENOMEM;
99 goto pages_arr_err;
100 }
101
102 if (phys_pg_pack->contiguous) {
103 for (i = 0 ; i < num_pgs ; i++)
104 phys_pg_pack->pages[i] = paddr + i * page_size;
105 } else {
106 for (i = 0 ; i < num_pgs ; i++) {
107 phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
108 vm->dram_pg_pool,
109 page_size);
110 if (!phys_pg_pack->pages[i]) {
111 dev_err(hdev->dev,
112 "ioctl failed to allocate page\n");
113 rc = -ENOMEM;
114 goto page_err;
115 }
116
117 num_curr_pgs++;
118 }
119 }
120
121 spin_lock(&vm->idr_lock);
122 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
123 GFP_KERNEL);
124 spin_unlock(&vm->idr_lock);
125
126 if (handle < 0) {
127 dev_err(hdev->dev, "Failed to get handle for page\n");
128 rc = -EFAULT;
129 goto idr_err;
130 }
131
132 for (i = 0 ; i < num_pgs ; i++)
133 kref_get(&vm->dram_pg_pool_refcount);
134
135 phys_pg_pack->handle = handle;
136
137 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
138 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
139
140 *ret_handle = handle;
141
142 return 0;
143
144idr_err:
145page_err:
146 if (!phys_pg_pack->contiguous)
147 for (i = 0 ; i < num_curr_pgs ; i++)
148 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
149 page_size);
150
151 kfree(phys_pg_pack->pages);
152pages_arr_err:
153 kfree(phys_pg_pack);
154pages_pack_err:
155 if (contiguous)
156 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
157
158 return rc;
159}
160
161/*
162 * get_userptr_from_host_va - initialize userptr structure from given host
163 * virtual address
164 *
165 * @hdev : habanalabs device structure
166 * @args : parameters containing the virtual address and size
167 * @p_userptr : pointer to result userptr structure
168 *
169 * This function does the following:
170 * - Allocate userptr structure
171 * - Pin the given host memory using the userptr structure
172 * - Perform DMA mapping to have the DMA addresses of the pages
173 */
174static int get_userptr_from_host_va(struct hl_device *hdev,
175 struct hl_mem_in *args, struct hl_userptr **p_userptr)
176{
177 struct hl_userptr *userptr;
178 int rc;
179
180 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
181 if (!userptr) {
182 rc = -ENOMEM;
183 goto userptr_err;
184 }
185
186 rc = hl_pin_host_memory(hdev, args->map_host.host_virt_addr,
187 args->map_host.mem_size, userptr);
188 if (rc) {
189 dev_err(hdev->dev, "Failed to pin host memory\n");
190 goto pin_err;
191 }
192
193 rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
194 userptr->sgt->nents, DMA_BIDIRECTIONAL);
195 if (rc) {
196 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
197 goto dma_map_err;
198 }
199
200 userptr->dma_mapped = true;
201 userptr->dir = DMA_BIDIRECTIONAL;
202 userptr->vm_type = VM_TYPE_USERPTR;
203
204 *p_userptr = userptr;
205
206 return 0;
207
208dma_map_err:
209 hl_unpin_host_memory(hdev, userptr);
210pin_err:
211 kfree(userptr);
212userptr_err:
213
214 return rc;
215}
216
217/*
218 * free_userptr - free userptr structure
219 *
220 * @hdev : habanalabs device structure
221 * @userptr : userptr to free
222 *
223 * This function does the following:
224 * - Unpins the physical pages
225 * - Frees the userptr structure
226 */
227static void free_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
228{
229 hl_unpin_host_memory(hdev, userptr);
230 kfree(userptr);
231}
232
233/*
234 * dram_pg_pool_do_release - free DRAM pages pool
235 *
236 * @ref : pointer to reference object
237 *
238 * This function does the following:
239 * - Frees the idr structure of physical pages handles
240 * - Frees the generic pool of DRAM physical pages
241 */
242static void dram_pg_pool_do_release(struct kref *ref)
243{
244 struct hl_vm *vm = container_of(ref, struct hl_vm,
245 dram_pg_pool_refcount);
246
247 /*
248 * free the idr here as only here we know for sure that there are no
249 * allocated physical pages and hence there are no handles in use
250 */
251 idr_destroy(&vm->phys_pg_pack_handles);
252 gen_pool_destroy(vm->dram_pg_pool);
253}
254
255/*
256 * free_phys_pg_pack - free physical page pack
257 *
258 * @hdev : habanalabs device structure
259 * @phys_pg_pack : physical page pack to free
260 *
261 * This function does the following:
262 * - For DRAM memory only, iterate over the pack and free each physical block
263 * structure by returning it to the general pool
264 * - Free the hl_vm_phys_pg_pack structure
265 */
266static void free_phys_pg_pack(struct hl_device *hdev,
267 struct hl_vm_phys_pg_pack *phys_pg_pack)
268{
269 struct hl_vm *vm = &hdev->vm;
270 int i;
271
272 if (!phys_pg_pack->created_from_userptr) {
273 if (phys_pg_pack->contiguous) {
274 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
275 phys_pg_pack->total_size);
276
277 for (i = 0; i < phys_pg_pack->npages ; i++)
278 kref_put(&vm->dram_pg_pool_refcount,
279 dram_pg_pool_do_release);
280 } else {
281 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
282 gen_pool_free(vm->dram_pg_pool,
283 phys_pg_pack->pages[i],
284 phys_pg_pack->page_size);
285 kref_put(&vm->dram_pg_pool_refcount,
286 dram_pg_pool_do_release);
287 }
288 }
289 }
290
291 kfree(phys_pg_pack->pages);
292 kfree(phys_pg_pack);
293}
294
295/*
296 * free_device_memory - free device memory
297 *
298 * @ctx : current context
299 * @handle : handle of the memory chunk to free
300 *
301 * This function does the following:
302 * - Free the device memory related to the given handle
303 */
304static int free_device_memory(struct hl_ctx *ctx, u32 handle)
305{
306 struct hl_device *hdev = ctx->hdev;
307 struct hl_vm *vm = &hdev->vm;
308 struct hl_vm_phys_pg_pack *phys_pg_pack;
309
310 spin_lock(&vm->idr_lock);
311 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
312 if (phys_pg_pack) {
313 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
314 dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
315 handle);
316 spin_unlock(&vm->idr_lock);
317 return -EINVAL;
318 }
319
320 /*
321 * must remove from idr before the freeing of the physical
322 * pages as the refcount of the pool is also the trigger of the
323 * idr destroy
324 */
325 idr_remove(&vm->phys_pg_pack_handles, handle);
326 spin_unlock(&vm->idr_lock);
327
328 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
329 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
330
331 free_phys_pg_pack(hdev, phys_pg_pack);
332 } else {
333 spin_unlock(&vm->idr_lock);
334 dev_err(hdev->dev,
335 "free device memory failed, no match for handle %u\n",
336 handle);
337 return -EINVAL;
338 }
339
340 return 0;
341}
342
343/*
344 * clear_va_list_locked - free virtual addresses list
345 *
346 * @hdev : habanalabs device structure
347 * @va_list : list of virtual addresses to free
348 *
349 * This function does the following:
350 * - Iterate over the list and free each virtual addresses block
351 *
352 * This function should be called only when va_list lock is taken
353 */
354static void clear_va_list_locked(struct hl_device *hdev,
355 struct list_head *va_list)
356{
357 struct hl_vm_va_block *va_block, *tmp;
358
359 list_for_each_entry_safe(va_block, tmp, va_list, node) {
360 list_del(&va_block->node);
361 kfree(va_block);
362 }
363}
364
365/*
366 * print_va_list_locked - print virtual addresses list
367 *
368 * @hdev : habanalabs device structure
369 * @va_list : list of virtual addresses to print
370 *
371 * This function does the following:
372 * - Iterate over the list and print each virtual addresses block
373 *
374 * This function should be called only when va_list lock is taken
375 */
376static void print_va_list_locked(struct hl_device *hdev,
377 struct list_head *va_list)
378{
379#if HL_MMU_DEBUG
380 struct hl_vm_va_block *va_block;
381
382 dev_dbg(hdev->dev, "print va list:\n");
383
384 list_for_each_entry(va_block, va_list, node)
385 dev_dbg(hdev->dev,
386 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
387 va_block->start, va_block->end, va_block->size);
388#endif
389}
390
391/*
392 * merge_va_blocks_locked - merge a virtual block if possible
393 *
394 * @hdev : pointer to the habanalabs device structure
395 * @va_list : pointer to the virtual addresses block list
396 * @va_block : virtual block to merge with adjacent blocks
397 *
398 * This function does the following:
399 * - Merge the given blocks with the adjacent blocks if their virtual ranges
400 * create a contiguous virtual range
401 *
402 * This Function should be called only when va_list lock is taken
403 */
404static void merge_va_blocks_locked(struct hl_device *hdev,
405 struct list_head *va_list, struct hl_vm_va_block *va_block)
406{
407 struct hl_vm_va_block *prev, *next;
408
409 prev = list_prev_entry(va_block, node);
410 if (&prev->node != va_list && prev->end + 1 == va_block->start) {
411 prev->end = va_block->end;
412 prev->size = prev->end - prev->start;
413 list_del(&va_block->node);
414 kfree(va_block);
415 va_block = prev;
416 }
417
418 next = list_next_entry(va_block, node);
419 if (&next->node != va_list && va_block->end + 1 == next->start) {
420 next->start = va_block->start;
421 next->size = next->end - next->start;
422 list_del(&va_block->node);
423 kfree(va_block);
424 }
425}
426
427/*
428 * add_va_block_locked - add a virtual block to the virtual addresses list
429 *
430 * @hdev : pointer to the habanalabs device structure
431 * @va_list : pointer to the virtual addresses block list
432 * @start : start virtual address
433 * @end : end virtual address
434 *
435 * This function does the following:
436 * - Add the given block to the virtual blocks list and merge with other
437 * blocks if a contiguous virtual block can be created
438 *
439 * This Function should be called only when va_list lock is taken
440 */
441static int add_va_block_locked(struct hl_device *hdev,
442 struct list_head *va_list, u64 start, u64 end)
443{
444 struct hl_vm_va_block *va_block, *res = NULL;
445 u64 size = end - start;
446
447 print_va_list_locked(hdev, va_list);
448
449 list_for_each_entry(va_block, va_list, node) {
450 /* TODO: remove upon matureness */
451 if (hl_mem_area_crosses_range(start, size, va_block->start,
452 va_block->end)) {
453 dev_err(hdev->dev,
454 "block crossing ranges at start 0x%llx, end 0x%llx\n",
455 va_block->start, va_block->end);
456 return -EINVAL;
457 }
458
459 if (va_block->end < start)
460 res = va_block;
461 }
462
463 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
464 if (!va_block)
465 return -ENOMEM;
466
467 va_block->start = start;
468 va_block->end = end;
469 va_block->size = size;
470
471 if (!res)
472 list_add(&va_block->node, va_list);
473 else
474 list_add(&va_block->node, &res->node);
475
476 merge_va_blocks_locked(hdev, va_list, va_block);
477
478 print_va_list_locked(hdev, va_list);
479
480 return 0;
481}
482
483/*
484 * add_va_block - wrapper for add_va_block_locked
485 *
486 * @hdev : pointer to the habanalabs device structure
487 * @va_list : pointer to the virtual addresses block list
488 * @start : start virtual address
489 * @end : end virtual address
490 *
491 * This function does the following:
492 * - Takes the list lock and calls add_va_block_locked
493 */
494static inline int add_va_block(struct hl_device *hdev,
495 struct hl_va_range *va_range, u64 start, u64 end)
496{
497 int rc;
498
499 mutex_lock(&va_range->lock);
500 rc = add_va_block_locked(hdev, &va_range->list, start, end);
501 mutex_unlock(&va_range->lock);
502
503 return rc;
504}
505
506/*
507 * get_va_block - get a virtual block with the requested size
508 *
509 * @hdev : pointer to the habanalabs device structure
510 * @va_range : pointer to the virtual addresses range
511 * @size : requested block size
512 * @hint_addr : hint for request address by the user
513 * @is_userptr : is host or DRAM memory
514 *
515 * This function does the following:
516 * - Iterate on the virtual block list to find a suitable virtual block for the
517 * requested size
518 * - Reserve the requested block and update the list
519 * - Return the start address of the virtual block
520 */
521static u64 get_va_block(struct hl_device *hdev,
522 struct hl_va_range *va_range, u32 size, u64 hint_addr,
523 bool is_userptr)
524{
525 struct hl_vm_va_block *va_block, *new_va_block = NULL;
526 u64 valid_start, valid_size, prev_start, prev_end, page_mask,
527 res_valid_start = 0, res_valid_size = 0;
528 u32 page_size;
529 bool add_prev = false;
530
531 if (is_userptr) {
532 /*
533 * We cannot know if the user allocated memory with huge pages
534 * or not, hence we continue with the biggest possible
535 * granularity.
536 */
537 page_size = PAGE_SIZE_2MB;
538 page_mask = PAGE_MASK_2MB;
539 } else {
540 page_size = hdev->asic_prop.dram_page_size;
541 page_mask = ~((u64)page_size - 1);
542 }
543
544 mutex_lock(&va_range->lock);
545
546 print_va_list_locked(hdev, &va_range->list);
547
548 list_for_each_entry(va_block, &va_range->list, node) {
549 /* calc the first possible aligned addr */
550 valid_start = va_block->start;
551
552
553 if (valid_start & (page_size - 1)) {
554 valid_start &= page_mask;
555 valid_start += page_size;
556 if (valid_start > va_block->end)
557 continue;
558 }
559
560 valid_size = va_block->end - valid_start;
561
562 if (valid_size >= size &&
563 (!new_va_block || valid_size < res_valid_size)) {
564
565 new_va_block = va_block;
566 res_valid_start = valid_start;
567 res_valid_size = valid_size;
568 }
569
570 if (hint_addr && hint_addr >= valid_start &&
571 ((hint_addr + size) <= va_block->end)) {
572 new_va_block = va_block;
573 res_valid_start = hint_addr;
574 res_valid_size = valid_size;
575 break;
576 }
577 }
578
579 if (!new_va_block) {
580 dev_err(hdev->dev, "no available va block for size %u\n", size);
581 goto out;
582 }
583
584 if (res_valid_start > new_va_block->start) {
585 prev_start = new_va_block->start;
586 prev_end = res_valid_start - 1;
587
588 new_va_block->start = res_valid_start;
589 new_va_block->size = res_valid_size;
590
591 add_prev = true;
592 }
593
594 if (new_va_block->size > size) {
595 new_va_block->start += size;
596 new_va_block->size = new_va_block->end - new_va_block->start;
597 } else {
598 list_del(&new_va_block->node);
599 kfree(new_va_block);
600 }
601
602 if (add_prev)
603 add_va_block_locked(hdev, &va_range->list, prev_start,
604 prev_end);
605
606 print_va_list_locked(hdev, &va_range->list);
607out:
608 mutex_unlock(&va_range->lock);
609
610 return res_valid_start;
611}
612
613/*
614 * get_sg_info - get number of pages and the DMA address from SG list
615 *
616 * @sg : the SG list
617 * @dma_addr : pointer to DMA address to return
618 *
619 * Calculate the number of consecutive pages described by the SG list. Take the
620 * offset of the address in the first page, add to it the length and round it up
621 * to the number of needed pages.
622 */
623static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
624{
625 *dma_addr = sg_dma_address(sg);
626
627 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
628 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
629}
630
631/*
632 * init_phys_pg_pack_from_userptr - initialize physical page pack from host
633 * memory
634 *
635 * @ctx : current context
636 * @userptr : userptr to initialize from
637 * @pphys_pg_pack : res pointer
638 *
639 * This function does the following:
640 * - Pin the physical pages related to the given virtual block
641 * - Create a physical page pack from the physical pages related to the given
642 * virtual block
643 */
644static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
645 struct hl_userptr *userptr,
646 struct hl_vm_phys_pg_pack **pphys_pg_pack)
647{
648 struct hl_vm_phys_pg_pack *phys_pg_pack;
649 struct scatterlist *sg;
650 dma_addr_t dma_addr;
651 u64 page_mask;
652 u32 npages, total_npages, page_size = PAGE_SIZE;
653 bool first = true, is_huge_page_opt = true;
654 int rc, i, j;
655
656 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
657 if (!phys_pg_pack)
658 return -ENOMEM;
659
660 phys_pg_pack->vm_type = userptr->vm_type;
661 phys_pg_pack->created_from_userptr = true;
662 phys_pg_pack->asid = ctx->asid;
663 atomic_set(&phys_pg_pack->mapping_cnt, 1);
664
665 /* Only if all dma_addrs are aligned to 2MB and their
666 * sizes is at least 2MB, we can use huge page mapping.
667 * We limit the 2MB optimization to this condition,
668 * since later on we acquire the related VA range as one
669 * consecutive block.
670 */
671 total_npages = 0;
672 for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
673 npages = get_sg_info(sg, &dma_addr);
674
675 total_npages += npages;
676
677 if (first) {
678 first = false;
679 dma_addr &= PAGE_MASK_2MB;
680 }
681
682 if ((npages % PGS_IN_2MB_PAGE) ||
683 (dma_addr & (PAGE_SIZE_2MB - 1)))
684 is_huge_page_opt = false;
685 }
686
687 if (is_huge_page_opt) {
688 page_size = PAGE_SIZE_2MB;
689 total_npages /= PGS_IN_2MB_PAGE;
690 }
691
692 page_mask = ~(((u64) page_size) - 1);
693
694 phys_pg_pack->pages = kcalloc(total_npages, sizeof(u64), GFP_KERNEL);
695 if (!phys_pg_pack->pages) {
696 rc = -ENOMEM;
697 goto page_pack_arr_mem_err;
698 }
699
700 phys_pg_pack->npages = total_npages;
701 phys_pg_pack->page_size = page_size;
702 phys_pg_pack->total_size = total_npages * page_size;
703
704 j = 0;
705 first = true;
706 for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
707 npages = get_sg_info(sg, &dma_addr);
708
709 /* align down to physical page size and save the offset */
710 if (first) {
711 first = false;
712 phys_pg_pack->offset = dma_addr & (page_size - 1);
713 dma_addr &= page_mask;
714 }
715
716 while (npages) {
717 phys_pg_pack->pages[j++] = dma_addr;
718 dma_addr += page_size;
719
720 if (is_huge_page_opt)
721 npages -= PGS_IN_2MB_PAGE;
722 else
723 npages--;
724 }
725 }
726
727 *pphys_pg_pack = phys_pg_pack;
728
729 return 0;
730
731page_pack_arr_mem_err:
732 kfree(phys_pg_pack);
733
734 return rc;
735}
736
737/*
738 * map_phys_page_pack - maps the physical page pack
739 *
740 * @ctx : current context
741 * @vaddr : start address of the virtual area to map from
742 * @phys_pg_pack : the pack of physical pages to map to
743 *
744 * This function does the following:
745 * - Maps each chunk of virtual memory to matching physical chunk
746 * - Stores number of successful mappings in the given argument
747 * - Returns 0 on success, error code otherwise.
748 */
749static int map_phys_page_pack(struct hl_ctx *ctx, u64 vaddr,
750 struct hl_vm_phys_pg_pack *phys_pg_pack)
751{
752 struct hl_device *hdev = ctx->hdev;
753 u64 next_vaddr = vaddr, paddr;
754 u32 page_size = phys_pg_pack->page_size;
755 int i, rc = 0, mapped_pg_cnt = 0;
756
757 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
758 paddr = phys_pg_pack->pages[i];
759
760 /* For accessing the host we need to turn on bit 39 */
761 if (phys_pg_pack->created_from_userptr)
762 paddr += hdev->asic_prop.host_phys_base_address;
763
764 rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size);
765 if (rc) {
766 dev_err(hdev->dev,
767 "map failed for handle %u, npages: %d, mapped: %d",
768 phys_pg_pack->handle, phys_pg_pack->npages,
769 mapped_pg_cnt);
770 goto err;
771 }
772
773 mapped_pg_cnt++;
774 next_vaddr += page_size;
775 }
776
777 return 0;
778
779err:
780 next_vaddr = vaddr;
781 for (i = 0 ; i < mapped_pg_cnt ; i++) {
782 if (hl_mmu_unmap(ctx, next_vaddr, page_size))
783 dev_warn_ratelimited(hdev->dev,
784 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
785 phys_pg_pack->handle, next_vaddr,
786 phys_pg_pack->pages[i], page_size);
787
788 next_vaddr += page_size;
789 }
790
791 return rc;
792}
793
794static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
795 u64 *paddr)
796{
797 struct hl_device *hdev = ctx->hdev;
798 struct hl_vm *vm = &hdev->vm;
799 struct hl_vm_phys_pg_pack *phys_pg_pack;
800 u32 handle;
801
802 handle = lower_32_bits(args->map_device.handle);
803 spin_lock(&vm->idr_lock);
804 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
805 if (!phys_pg_pack) {
806 spin_unlock(&vm->idr_lock);
807 dev_err(hdev->dev, "no match for handle %u\n", handle);
808 return -EINVAL;
809 }
810
811 *paddr = phys_pg_pack->pages[0];
812
813 spin_unlock(&vm->idr_lock);
814
815 return 0;
816}
817
818/*
819 * map_device_va - map the given memory
820 *
821 * @ctx : current context
822 * @args : host parameters with handle/host virtual address
823 * @device_addr : pointer to result device virtual address
824 *
825 * This function does the following:
826 * - If given a physical device memory handle, map to a device virtual block
827 * and return the start address of this block
828 * - If given a host virtual address and size, find the related physical pages,
829 * map a device virtual block to this pages and return the start address of
830 * this block
831 */
832static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
833 u64 *device_addr)
834{
835 struct hl_device *hdev = ctx->hdev;
836 struct hl_vm *vm = &hdev->vm;
837 struct hl_vm_phys_pg_pack *phys_pg_pack;
838 struct hl_userptr *userptr = NULL;
839 struct hl_vm_hash_node *hnode;
840 enum vm_type_t *vm_type;
841 u64 ret_vaddr, hint_addr;
842 u32 handle = 0;
843 int rc;
844 bool is_userptr = args->flags & HL_MEM_USERPTR;
845
846 /* Assume failure */
847 *device_addr = 0;
848
849 if (is_userptr) {
850 rc = get_userptr_from_host_va(hdev, args, &userptr);
851 if (rc) {
852 dev_err(hdev->dev, "failed to get userptr from va\n");
853 return rc;
854 }
855
856 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
857 &phys_pg_pack);
858 if (rc) {
859 dev_err(hdev->dev,
860 "unable to init page pack for vaddr 0x%llx\n",
861 args->map_host.host_virt_addr);
862 goto init_page_pack_err;
863 }
864
865 vm_type = (enum vm_type_t *) userptr;
866 hint_addr = args->map_host.hint_addr;
867 } else {
868 handle = lower_32_bits(args->map_device.handle);
869
870 spin_lock(&vm->idr_lock);
871 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
872 if (!phys_pg_pack) {
873 spin_unlock(&vm->idr_lock);
874 dev_err(hdev->dev,
875 "no match for handle %u\n", handle);
876 return -EINVAL;
877 }
878
879 /* increment now to avoid freeing device memory while mapping */
880 atomic_inc(&phys_pg_pack->mapping_cnt);
881
882 spin_unlock(&vm->idr_lock);
883
884 vm_type = (enum vm_type_t *) phys_pg_pack;
885
886 hint_addr = args->map_device.hint_addr;
887 }
888
889 /*
890 * relevant for mapping device physical memory only, as host memory is
891 * implicitly shared
892 */
893 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
894 phys_pg_pack->asid != ctx->asid) {
895 dev_err(hdev->dev,
896 "Failed to map memory, handle %u is not shared\n",
897 handle);
898 rc = -EPERM;
899 goto shared_err;
900 }
901
902 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
903 if (!hnode) {
904 rc = -ENOMEM;
905 goto hnode_err;
906 }
907
908 ret_vaddr = get_va_block(hdev,
909 is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
910 phys_pg_pack->total_size, hint_addr, is_userptr);
911 if (!ret_vaddr) {
912 dev_err(hdev->dev, "no available va block for handle %u\n",
913 handle);
914 rc = -ENOMEM;
915 goto va_block_err;
916 }
917
918 mutex_lock(&ctx->mmu_lock);
919
920 rc = map_phys_page_pack(ctx, ret_vaddr, phys_pg_pack);
921 if (rc) {
922 mutex_unlock(&ctx->mmu_lock);
923 dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
924 handle);
925 goto map_err;
926 }
927
928 hdev->asic_funcs->mmu_invalidate_cache_range(hdev, false, ctx->asid,
929 ret_vaddr, phys_pg_pack->total_size);
930
931 mutex_unlock(&ctx->mmu_lock);
932
933 ret_vaddr += phys_pg_pack->offset;
934
935 hnode->ptr = vm_type;
936 hnode->vaddr = ret_vaddr;
937
938 mutex_lock(&ctx->mem_hash_lock);
939 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
940 mutex_unlock(&ctx->mem_hash_lock);
941
942 *device_addr = ret_vaddr;
943
944 if (is_userptr)
945 free_phys_pg_pack(hdev, phys_pg_pack);
946
947 return 0;
948
949map_err:
950 if (add_va_block(hdev,
951 is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
952 ret_vaddr,
953 ret_vaddr + phys_pg_pack->total_size - 1))
954 dev_warn(hdev->dev,
955 "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
956 handle, ret_vaddr);
957
958va_block_err:
959 kfree(hnode);
960hnode_err:
961shared_err:
962 atomic_dec(&phys_pg_pack->mapping_cnt);
963 if (is_userptr)
964 free_phys_pg_pack(hdev, phys_pg_pack);
965init_page_pack_err:
966 if (is_userptr)
967 free_userptr(hdev, userptr);
968
969 return rc;
970}
971
972/*
973 * unmap_device_va - unmap the given device virtual address
974 *
975 * @ctx : current context
976 * @vaddr : device virtual address to unmap
977 *
978 * This function does the following:
979 * - Unmap the physical pages related to the given virtual address
980 * - return the device virtual block to the virtual block list
981 */
982static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr)
983{
984 struct hl_device *hdev = ctx->hdev;
985 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
986 struct hl_vm_hash_node *hnode = NULL;
987 struct hl_userptr *userptr = NULL;
988 enum vm_type_t *vm_type;
989 u64 next_vaddr;
990 u32 page_size;
991 bool is_userptr;
992 int i, rc;
993
994 /* protect from double entrance */
995 mutex_lock(&ctx->mem_hash_lock);
996 hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
997 if (vaddr == hnode->vaddr)
998 break;
999
1000 if (!hnode) {
1001 mutex_unlock(&ctx->mem_hash_lock);
1002 dev_err(hdev->dev,
1003 "unmap failed, no mem hnode for vaddr 0x%llx\n",
1004 vaddr);
1005 return -EINVAL;
1006 }
1007
1008 hash_del(&hnode->node);
1009 mutex_unlock(&ctx->mem_hash_lock);
1010
1011 vm_type = hnode->ptr;
1012
1013 if (*vm_type == VM_TYPE_USERPTR) {
1014 is_userptr = true;
1015 userptr = hnode->ptr;
1016 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1017 &phys_pg_pack);
1018 if (rc) {
1019 dev_err(hdev->dev,
1020 "unable to init page pack for vaddr 0x%llx\n",
1021 vaddr);
1022 goto vm_type_err;
1023 }
1024 } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1025 is_userptr = false;
1026 phys_pg_pack = hnode->ptr;
1027 } else {
1028 dev_warn(hdev->dev,
1029 "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1030 vaddr);
1031 rc = -EFAULT;
1032 goto vm_type_err;
1033 }
1034
1035 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1036 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1037 rc = -EINVAL;
1038 goto mapping_cnt_err;
1039 }
1040
1041 page_size = phys_pg_pack->page_size;
1042 vaddr &= ~(((u64) page_size) - 1);
1043
1044 next_vaddr = vaddr;
1045
1046 mutex_lock(&ctx->mmu_lock);
1047
1048 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size)
1049 if (hl_mmu_unmap(ctx, next_vaddr, page_size))
1050 dev_warn_ratelimited(hdev->dev,
1051 "unmap failed for vaddr: 0x%llx\n", next_vaddr);
1052
1053 hdev->asic_funcs->mmu_invalidate_cache_range(hdev, true, ctx->asid,
1054 vaddr, phys_pg_pack->total_size);
1055
1056 mutex_unlock(&ctx->mmu_lock);
1057
1058 if (add_va_block(hdev,
1059 is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
1060 vaddr,
1061 vaddr + phys_pg_pack->total_size - 1))
1062 dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n",
1063 vaddr);
1064
1065 atomic_dec(&phys_pg_pack->mapping_cnt);
1066 kfree(hnode);
1067
1068 if (is_userptr) {
1069 free_phys_pg_pack(hdev, phys_pg_pack);
1070 free_userptr(hdev, userptr);
1071 }
1072
1073 return 0;
1074
1075mapping_cnt_err:
1076 if (is_userptr)
1077 free_phys_pg_pack(hdev, phys_pg_pack);
1078vm_type_err:
1079 mutex_lock(&ctx->mem_hash_lock);
1080 hash_add(ctx->mem_hash, &hnode->node, vaddr);
1081 mutex_unlock(&ctx->mem_hash_lock);
1082
1083 return rc;
1084}
1085
1086int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1087{
1088 union hl_mem_args *args = data;
1089 struct hl_device *hdev = hpriv->hdev;
1090 struct hl_ctx *ctx = hpriv->ctx;
1091 u64 device_addr = 0;
1092 u32 handle = 0;
1093 int rc;
1094
1095 if (hl_device_disabled_or_in_reset(hdev)) {
1096 dev_warn_ratelimited(hdev->dev,
1097 "Device is disabled or in reset. Can't execute memory IOCTL\n");
1098 return -EBUSY;
1099 }
1100
1101 if (hdev->mmu_enable) {
1102 switch (args->in.op) {
1103 case HL_MEM_OP_ALLOC:
1104 if (!hdev->dram_supports_virtual_memory) {
1105 dev_err(hdev->dev,
1106 "DRAM alloc is not supported\n");
1107 rc = -EINVAL;
1108 goto out;
1109 }
1110 if (args->in.alloc.mem_size == 0) {
1111 dev_err(hdev->dev,
1112 "alloc size must be larger than 0\n");
1113 rc = -EINVAL;
1114 goto out;
1115 }
1116 rc = alloc_device_memory(ctx, &args->in, &handle);
1117
1118 memset(args, 0, sizeof(*args));
1119 args->out.handle = (__u64) handle;
1120 break;
1121
1122 case HL_MEM_OP_FREE:
1123 if (!hdev->dram_supports_virtual_memory) {
1124 dev_err(hdev->dev,
1125 "DRAM free is not supported\n");
1126 rc = -EINVAL;
1127 goto out;
1128 }
1129 rc = free_device_memory(ctx, args->in.free.handle);
1130 break;
1131
1132 case HL_MEM_OP_MAP:
1133 rc = map_device_va(ctx, &args->in, &device_addr);
1134
1135 memset(args, 0, sizeof(*args));
1136 args->out.device_virt_addr = device_addr;
1137 break;
1138
1139 case HL_MEM_OP_UNMAP:
1140 rc = unmap_device_va(ctx,
1141 args->in.unmap.device_virt_addr);
1142 break;
1143
1144 default:
1145 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1146 rc = -ENOTTY;
1147 break;
1148 }
1149 } else {
1150 switch (args->in.op) {
1151 case HL_MEM_OP_ALLOC:
1152 if (args->in.alloc.mem_size == 0) {
1153 dev_err(hdev->dev,
1154 "alloc size must be larger than 0\n");
1155 rc = -EINVAL;
1156 goto out;
1157 }
1158
1159 /* Force contiguous as there are no real MMU
1160 * translations to overcome physical memory gaps
1161 */
1162 args->in.flags |= HL_MEM_CONTIGUOUS;
1163 rc = alloc_device_memory(ctx, &args->in, &handle);
1164
1165 memset(args, 0, sizeof(*args));
1166 args->out.handle = (__u64) handle;
1167 break;
1168
1169 case HL_MEM_OP_FREE:
1170 rc = free_device_memory(ctx, args->in.free.handle);
1171 break;
1172
1173 case HL_MEM_OP_MAP:
1174 if (args->in.flags & HL_MEM_USERPTR) {
1175 device_addr = args->in.map_host.host_virt_addr;
1176 rc = 0;
1177 } else {
1178 rc = get_paddr_from_handle(ctx, &args->in,
1179 &device_addr);
1180 }
1181
1182 memset(args, 0, sizeof(*args));
1183 args->out.device_virt_addr = device_addr;
1184 break;
1185
1186 case HL_MEM_OP_UNMAP:
1187 rc = 0;
1188 break;
1189
1190 default:
1191 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1192 rc = -ENOTTY;
1193 break;
1194 }
1195 }
1196
1197out:
1198 return rc;
1199}
eff6f4a0
OG
1200
1201/*
1202 * hl_pin_host_memory - pins a chunk of host memory
1203 *
1204 * @hdev : pointer to the habanalabs device structure
1205 * @addr : the user-space virtual address of the memory area
1206 * @size : the size of the memory area
1207 * @userptr : pointer to hl_userptr structure
1208 *
1209 * This function does the following:
1210 * - Pins the physical pages
1211 * - Create a SG list from those pages
1212 */
1213int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u32 size,
1214 struct hl_userptr *userptr)
1215{
1216 u64 start, end;
1217 u32 npages, offset;
1218 int rc;
1219
1220 if (!size) {
1221 dev_err(hdev->dev, "size to pin is invalid - %d\n",
1222 size);
1223 return -EINVAL;
1224 }
1225
1226 if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1227 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n",
1228 addr);
1229 return -EFAULT;
1230 }
1231
1232 /*
1233 * If the combination of the address and size requested for this memory
1234 * region causes an integer overflow, return error.
1235 */
1236 if (((addr + size) < addr) ||
1237 PAGE_ALIGN(addr + size) < (addr + size)) {
1238 dev_err(hdev->dev,
1239 "user pointer 0x%llx + %u causes integer overflow\n",
1240 addr, size);
1241 return -EINVAL;
1242 }
1243
1244 start = addr & PAGE_MASK;
1245 offset = addr & ~PAGE_MASK;
1246 end = PAGE_ALIGN(addr + size);
1247 npages = (end - start) >> PAGE_SHIFT;
1248
1249 userptr->size = size;
1250 userptr->addr = addr;
1251 userptr->dma_mapped = false;
1252 INIT_LIST_HEAD(&userptr->job_node);
1253
1254 userptr->vec = frame_vector_create(npages);
1255 if (!userptr->vec) {
1256 dev_err(hdev->dev, "Failed to create frame vector\n");
1257 return -ENOMEM;
1258 }
1259
1260 rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1261 userptr->vec);
1262
1263 if (rc != npages) {
1264 dev_err(hdev->dev,
1265 "Failed to map host memory, user ptr probably wrong\n");
1266 if (rc < 0)
1267 goto destroy_framevec;
1268 rc = -EFAULT;
1269 goto put_framevec;
1270 }
1271
1272 if (frame_vector_to_pages(userptr->vec) < 0) {
1273 dev_err(hdev->dev,
1274 "Failed to translate frame vector to pages\n");
1275 rc = -EFAULT;
1276 goto put_framevec;
1277 }
1278
1279 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1280 if (!userptr->sgt) {
1281 rc = -ENOMEM;
1282 goto put_framevec;
1283 }
1284
1285 rc = sg_alloc_table_from_pages(userptr->sgt,
1286 frame_vector_pages(userptr->vec),
1287 npages, offset, size, GFP_ATOMIC);
1288 if (rc < 0) {
1289 dev_err(hdev->dev, "failed to create SG table from pages\n");
1290 goto free_sgt;
1291 }
1292
1293 return 0;
1294
1295free_sgt:
1296 kfree(userptr->sgt);
1297put_framevec:
1298 put_vaddr_frames(userptr->vec);
1299destroy_framevec:
1300 frame_vector_destroy(userptr->vec);
1301 return rc;
1302}
1303
1304/*
1305 * hl_unpin_host_memory - unpins a chunk of host memory
1306 *
1307 * @hdev : pointer to the habanalabs device structure
1308 * @userptr : pointer to hl_userptr structure
1309 *
1310 * This function does the following:
1311 * - Unpins the physical pages related to the host memory
1312 * - Free the SG list
1313 */
1314int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1315{
1316 struct page **pages;
1317
1318 if (userptr->dma_mapped)
1319 hdev->asic_funcs->hl_dma_unmap_sg(hdev,
1320 userptr->sgt->sgl,
1321 userptr->sgt->nents,
1322 userptr->dir);
1323
1324 pages = frame_vector_pages(userptr->vec);
1325 if (!IS_ERR(pages)) {
1326 int i;
1327
1328 for (i = 0; i < frame_vector_count(userptr->vec); i++)
1329 set_page_dirty_lock(pages[i]);
1330 }
1331 put_vaddr_frames(userptr->vec);
1332 frame_vector_destroy(userptr->vec);
1333
1334 list_del(&userptr->job_node);
1335
1336 sg_free_table(userptr->sgt);
1337 kfree(userptr->sgt);
1338
1339 return 0;
1340}
1341
1342/*
1343 * hl_userptr_delete_list - clear userptr list
1344 *
1345 * @hdev : pointer to the habanalabs device structure
1346 * @userptr_list : pointer to the list to clear
1347 *
1348 * This function does the following:
1349 * - Iterates over the list and unpins the host memory and frees the userptr
1350 * structure.
1351 */
1352void hl_userptr_delete_list(struct hl_device *hdev,
1353 struct list_head *userptr_list)
1354{
1355 struct hl_userptr *userptr, *tmp;
1356
1357 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1358 hl_unpin_host_memory(hdev, userptr);
1359 kfree(userptr);
1360 }
1361
1362 INIT_LIST_HEAD(userptr_list);
1363}
1364
1365/*
1366 * hl_userptr_is_pinned - returns whether the given userptr is pinned
1367 *
1368 * @hdev : pointer to the habanalabs device structure
1369 * @userptr_list : pointer to the list to clear
1370 * @userptr : pointer to userptr to check
1371 *
1372 * This function does the following:
1373 * - Iterates over the list and checks if the given userptr is in it, means is
1374 * pinned. If so, returns true, otherwise returns false.
1375 */
1376bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1377 u32 size, struct list_head *userptr_list,
1378 struct hl_userptr **userptr)
1379{
1380 list_for_each_entry((*userptr), userptr_list, job_node) {
1381 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1382 return true;
1383 }
1384
1385 return false;
1386}
0feaf86d
OS
1387
1388/*
1389 * hl_va_range_init - initialize virtual addresses range
1390 *
1391 * @hdev : pointer to the habanalabs device structure
1392 * @va_range : pointer to the range to initialize
1393 * @start : range start address
1394 * @end : range end address
1395 *
1396 * This function does the following:
1397 * - Initializes the virtual addresses list of the given range with the given
1398 * addresses.
1399 */
1400static int hl_va_range_init(struct hl_device *hdev,
1401 struct hl_va_range *va_range, u64 start, u64 end)
1402{
1403 int rc;
1404
1405 INIT_LIST_HEAD(&va_range->list);
1406
1407 /* PAGE_SIZE alignment */
1408
1409 if (start & (PAGE_SIZE - 1)) {
1410 start &= PAGE_MASK;
1411 start += PAGE_SIZE;
1412 }
1413
1414 if (end & (PAGE_SIZE - 1))
1415 end &= PAGE_MASK;
1416
1417 if (start >= end) {
1418 dev_err(hdev->dev, "too small vm range for va list\n");
1419 return -EFAULT;
1420 }
1421
1422 rc = add_va_block(hdev, va_range, start, end);
1423
1424 if (rc) {
1425 dev_err(hdev->dev, "Failed to init host va list\n");
1426 return rc;
1427 }
1428
1429 va_range->start_addr = start;
1430 va_range->end_addr = end;
1431
1432 return 0;
1433}
1434
1435/*
1436 * hl_vm_ctx_init_with_ranges - initialize virtual memory for context
1437 *
1438 * @ctx : pointer to the habanalabs context structure
1439 * @host_range_start : host virtual addresses range start
1440 * @host_range_end : host virtual addresses range end
1441 * @dram_range_start : dram virtual addresses range start
1442 * @dram_range_end : dram virtual addresses range end
1443 *
1444 * This function initializes the following:
1445 * - MMU for context
1446 * - Virtual address to area descriptor hashtable
1447 * - Virtual block list of available virtual memory
1448 */
1449int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
1450 u64 host_range_end, u64 dram_range_start,
1451 u64 dram_range_end)
1452{
1453 struct hl_device *hdev = ctx->hdev;
1454 int rc;
1455
1456 hl_mmu_ctx_init(ctx);
1457
1458 mutex_init(&ctx->mem_hash_lock);
1459 hash_init(ctx->mem_hash);
1460
1461 mutex_init(&ctx->host_va_range.lock);
1462
1463 rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start,
1464 host_range_end);
1465 if (rc) {
1466 dev_err(hdev->dev, "failed to init host vm range\n");
1467 goto host_vm_err;
1468 }
1469
1470 mutex_init(&ctx->dram_va_range.lock);
1471
1472 rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start,
1473 dram_range_end);
1474 if (rc) {
1475 dev_err(hdev->dev, "failed to init dram vm range\n");
1476 goto dram_vm_err;
1477 }
1478
1479 return 0;
1480
1481dram_vm_err:
1482 mutex_destroy(&ctx->dram_va_range.lock);
1483
1484 mutex_lock(&ctx->host_va_range.lock);
1485 clear_va_list_locked(hdev, &ctx->host_va_range.list);
1486 mutex_unlock(&ctx->host_va_range.lock);
1487host_vm_err:
1488 mutex_destroy(&ctx->host_va_range.lock);
1489 mutex_destroy(&ctx->mem_hash_lock);
1490 hl_mmu_ctx_fini(ctx);
1491
1492 return rc;
1493}
1494
1495int hl_vm_ctx_init(struct hl_ctx *ctx)
1496{
1497 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1498 u64 host_range_start, host_range_end, dram_range_start,
1499 dram_range_end;
1500
1501 atomic64_set(&ctx->dram_phys_mem, 0);
1502
1503 /*
1504 * - If MMU is enabled, init the ranges as usual.
1505 * - If MMU is disabled, in case of host mapping, the returned address
1506 * is the given one.
1507 * In case of DRAM mapping, the returned address is the physical
1508 * address of the memory related to the given handle.
1509 */
1510 if (ctx->hdev->mmu_enable) {
1511 dram_range_start = prop->va_space_dram_start_address;
1512 dram_range_end = prop->va_space_dram_end_address;
1513 host_range_start = prop->va_space_host_start_address;
1514 host_range_end = prop->va_space_host_end_address;
1515 } else {
1516 dram_range_start = prop->dram_user_base_address;
1517 dram_range_end = prop->dram_end_address;
1518 host_range_start = prop->dram_user_base_address;
1519 host_range_end = prop->dram_end_address;
1520 }
1521
1522 return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1523 dram_range_start, dram_range_end);
1524}
1525
1526/*
1527 * hl_va_range_fini - clear a virtual addresses range
1528 *
1529 * @hdev : pointer to the habanalabs structure
1530 * va_range : pointer to virtual addresses range
1531 *
1532 * This function initializes the following:
1533 * - Checks that the given range contains the whole initial range
1534 * - Frees the virtual addresses block list and its lock
1535 */
1536static void hl_va_range_fini(struct hl_device *hdev,
1537 struct hl_va_range *va_range)
1538{
1539 struct hl_vm_va_block *va_block;
1540
1541 if (list_empty(&va_range->list)) {
1542 dev_warn(hdev->dev,
1543 "va list should not be empty on cleanup!\n");
1544 goto out;
1545 }
1546
1547 if (!list_is_singular(&va_range->list)) {
1548 dev_warn(hdev->dev,
1549 "va list should not contain multiple blocks on cleanup!\n");
1550 goto free_va_list;
1551 }
1552
1553 va_block = list_first_entry(&va_range->list, typeof(*va_block), node);
1554
1555 if (va_block->start != va_range->start_addr ||
1556 va_block->end != va_range->end_addr) {
1557 dev_warn(hdev->dev,
1558 "wrong va block on cleanup, from 0x%llx to 0x%llx\n",
1559 va_block->start, va_block->end);
1560 goto free_va_list;
1561 }
1562
1563free_va_list:
1564 mutex_lock(&va_range->lock);
1565 clear_va_list_locked(hdev, &va_range->list);
1566 mutex_unlock(&va_range->lock);
1567
1568out:
1569 mutex_destroy(&va_range->lock);
1570}
1571
1572/*
1573 * hl_vm_ctx_fini - virtual memory teardown of context
1574 *
1575 * @ctx : pointer to the habanalabs context structure
1576 *
1577 * This function perform teardown the following:
1578 * - Virtual block list of available virtual memory
1579 * - Virtual address to area descriptor hashtable
1580 * - MMU for context
1581 *
1582 * In addition this function does the following:
1583 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1584 * hashtable should be empty as no valid mappings should exist at this
1585 * point.
1586 * - Frees any existing physical page list from the idr which relates to the
1587 * current context asid.
1588 * - This function checks the virtual block list for correctness. At this point
1589 * the list should contain one element which describes the whole virtual
1590 * memory range of the context. Otherwise, a warning is printed.
1591 */
1592void hl_vm_ctx_fini(struct hl_ctx *ctx)
1593{
1594 struct hl_device *hdev = ctx->hdev;
1595 struct hl_vm *vm = &hdev->vm;
1596 struct hl_vm_phys_pg_pack *phys_pg_list;
1597 struct hl_vm_hash_node *hnode;
1598 struct hlist_node *tmp_node;
1599 int i;
1600
1601 if (!hash_empty(ctx->mem_hash))
1602 dev_notice(hdev->dev, "ctx is freed while it has va in use\n");
1603
1604 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1605 dev_dbg(hdev->dev,
1606 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1607 hnode->vaddr, ctx->asid);
1608 unmap_device_va(ctx, hnode->vaddr);
1609 }
1610
1611 spin_lock(&vm->idr_lock);
1612 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1613 if (phys_pg_list->asid == ctx->asid) {
1614 dev_dbg(hdev->dev,
1615 "page list 0x%p of asid %d is still alive\n",
1616 phys_pg_list, ctx->asid);
1617 free_phys_pg_pack(hdev, phys_pg_list);
1618 idr_remove(&vm->phys_pg_pack_handles, i);
1619 }
1620 spin_unlock(&vm->idr_lock);
1621
1622 hl_va_range_fini(hdev, &ctx->dram_va_range);
1623 hl_va_range_fini(hdev, &ctx->host_va_range);
1624
1625 mutex_destroy(&ctx->mem_hash_lock);
1626 hl_mmu_ctx_fini(ctx);
1627}
1628
1629/*
1630 * hl_vm_init - initialize virtual memory module
1631 *
1632 * @hdev : pointer to the habanalabs device structure
1633 *
1634 * This function initializes the following:
1635 * - MMU module
1636 * - DRAM physical pages pool of 2MB
1637 * - Idr for device memory allocation handles
1638 */
1639int hl_vm_init(struct hl_device *hdev)
1640{
1641 struct asic_fixed_properties *prop = &hdev->asic_prop;
1642 struct hl_vm *vm = &hdev->vm;
1643 int rc;
1644
1645 rc = hl_mmu_init(hdev);
1646 if (rc) {
1647 dev_err(hdev->dev, "Failed to init MMU\n");
1648 return rc;
1649 }
1650
1651 vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1652 if (!vm->dram_pg_pool) {
1653 dev_err(hdev->dev, "Failed to create dram page pool\n");
1654 rc = -ENOMEM;
1655 goto pool_create_err;
1656 }
1657
1658 kref_init(&vm->dram_pg_pool_refcount);
1659
1660 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1661 prop->dram_end_address - prop->dram_user_base_address,
1662 -1);
1663
1664 if (rc) {
1665 dev_err(hdev->dev,
1666 "Failed to add memory to dram page pool %d\n", rc);
1667 goto pool_add_err;
1668 }
1669
1670 spin_lock_init(&vm->idr_lock);
1671 idr_init(&vm->phys_pg_pack_handles);
1672
1673 atomic64_set(&hdev->dram_used_mem, 0);
1674
1675 vm->init_done = true;
1676
1677 return 0;
1678
1679pool_add_err:
1680 gen_pool_destroy(vm->dram_pg_pool);
1681pool_create_err:
1682 hl_mmu_fini(hdev);
1683
1684 return rc;
1685}
1686
1687/*
1688 * hl_vm_fini - virtual memory module teardown
1689 *
1690 * @hdev : pointer to the habanalabs device structure
1691 *
1692 * This function perform teardown to the following:
1693 * - Idr for device memory allocation handles
1694 * - DRAM physical pages pool of 2MB
1695 * - MMU module
1696 */
1697void hl_vm_fini(struct hl_device *hdev)
1698{
1699 struct hl_vm *vm = &hdev->vm;
1700
1701 if (!vm->init_done)
1702 return;
1703
1704 /*
1705 * At this point all the contexts should be freed and hence no DRAM
1706 * memory should be in use. Hence the DRAM pool should be freed here.
1707 */
1708 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1709 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1710 __func__);
1711
1712 hl_mmu_fini(hdev);
1713
1714 vm->init_done = false;
1715}