mtd: fsmc_nand: add missing DMA unmap to dma_xfer()
[linux-2.6-block.git] / drivers / misc / carma / carma-fpga.c
CommitLineData
c186f0e1
IS
1/*
2 * CARMA DATA-FPGA Access Driver
3 *
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12/*
13 * FPGA Memory Dump Format
14 *
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24 *
25 * Each correlation array consists of:
26 *
27 * Correlation Data (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30 *
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
34 */
35
36/*
37 * Basic Description:
38 *
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
43 *
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
47 *
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
50 *
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
53 *
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
57 *
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
61 *
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
66 *
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
70 */
71
72/*
73 * Notes on the IRQ masking scheme:
74 *
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
79 *
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
84 *
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89 */
90
91#include <linux/of_platform.h>
92#include <linux/dma-mapping.h>
93#include <linux/miscdevice.h>
94#include <linux/interrupt.h>
95#include <linux/dmaengine.h>
96#include <linux/seq_file.h>
97#include <linux/highmem.h>
98#include <linux/debugfs.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/poll.h>
102#include <linux/init.h>
103#include <linux/slab.h>
104#include <linux/kref.h>
105#include <linux/io.h>
106
107#include <media/videobuf-dma-sg.h>
108
109/* system controller registers */
110#define SYS_IRQ_SOURCE_CTL 0x24
111#define SYS_IRQ_OUTPUT_EN 0x28
112#define SYS_IRQ_OUTPUT_DATA 0x2C
113#define SYS_IRQ_INPUT_DATA 0x30
114#define SYS_FPGA_CONFIG_STATUS 0x44
115
116/* GPIO IRQ line assignment */
117#define IRQ_CORL_DONE 0x10
118
119/* FPGA registers */
120#define MMAP_REG_VERSION 0x00
121#define MMAP_REG_CORL_CONF1 0x08
122#define MMAP_REG_CORL_CONF2 0x0C
123#define MMAP_REG_STATUS 0x48
124
125#define SYS_FPGA_BLOCK 0xF0000000
126
127#define DATA_FPGA_START 0x400000
128#define DATA_FPGA_SIZE 0x80000
129
130static const char drv_name[] = "carma-fpga";
131
132#define NUM_FPGA 4
133
134#define MIN_DATA_BUFS 8
135#define MAX_DATA_BUFS 64
136
137struct fpga_info {
138 unsigned int num_lag_ram;
139 unsigned int blk_size;
140};
141
142struct data_buf {
143 struct list_head entry;
144 struct videobuf_dmabuf vb;
145 size_t size;
146};
147
148struct fpga_device {
149 /* character device */
150 struct miscdevice miscdev;
151 struct device *dev;
152 struct mutex mutex;
153
154 /* reference count */
155 struct kref ref;
156
157 /* FPGA registers and information */
158 struct fpga_info info[NUM_FPGA];
159 void __iomem *regs;
160 int irq;
161
162 /* FPGA Physical Address/Size Information */
163 resource_size_t phys_addr;
164 size_t phys_size;
165
166 /* DMA structures */
167 struct sg_table corl_table;
168 unsigned int corl_nents;
169 struct dma_chan *chan;
170
171 /* Protection for all members below */
172 spinlock_t lock;
173
174 /* Device enable/disable flag */
175 bool enabled;
176
177 /* Correlation data buffers */
178 wait_queue_head_t wait;
179 struct list_head free;
180 struct list_head used;
181 struct data_buf *inflight;
182
183 /* Information about data buffers */
184 unsigned int num_dropped;
185 unsigned int num_buffers;
186 size_t bufsize;
187 struct dentry *dbg_entry;
188};
189
190struct fpga_reader {
191 struct fpga_device *priv;
192 struct data_buf *buf;
193 off_t buf_start;
194};
195
196static void fpga_device_release(struct kref *ref)
197{
198 struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
199
200 /* the last reader has exited, cleanup the last bits */
201 mutex_destroy(&priv->mutex);
202 kfree(priv);
203}
204
205/*
206 * Data Buffer Allocation Helpers
207 */
208
209/**
210 * data_free_buffer() - free a single data buffer and all allocated memory
211 * @buf: the buffer to free
212 *
213 * This will free all of the pages allocated to the given data buffer, and
214 * then free the structure itself
215 */
216static void data_free_buffer(struct data_buf *buf)
217{
218 /* It is ok to free a NULL buffer */
219 if (!buf)
220 return;
221
222 /* free all memory */
223 videobuf_dma_free(&buf->vb);
224 kfree(buf);
225}
226
227/**
228 * data_alloc_buffer() - allocate and fill a data buffer with pages
229 * @bytes: the number of bytes required
230 *
231 * This allocates all space needed for a data buffer. It must be mapped before
232 * use in a DMA transaction using videobuf_dma_map().
233 *
234 * Returns NULL on failure
235 */
236static struct data_buf *data_alloc_buffer(const size_t bytes)
237{
238 unsigned int nr_pages;
239 struct data_buf *buf;
240 int ret;
241
242 /* calculate the number of pages necessary */
243 nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
244
245 /* allocate the buffer structure */
246 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
247 if (!buf)
248 goto out_return;
249
250 /* initialize internal fields */
251 INIT_LIST_HEAD(&buf->entry);
252 buf->size = bytes;
253
254 /* allocate the videobuf */
255 videobuf_dma_init(&buf->vb);
256 ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
257 if (ret)
258 goto out_free_buf;
259
260 return buf;
261
262out_free_buf:
263 kfree(buf);
264out_return:
265 return NULL;
266}
267
268/**
269 * data_free_buffers() - free all allocated buffers
270 * @priv: the driver's private data structure
271 *
272 * Free all buffers allocated by the driver (except those currently in the
273 * process of being read by userspace).
274 *
275 * LOCKING: must hold dev->mutex
276 * CONTEXT: user
277 */
278static void data_free_buffers(struct fpga_device *priv)
279{
280 struct data_buf *buf, *tmp;
281
282 /* the device should be stopped, no DMA in progress */
283 BUG_ON(priv->inflight != NULL);
284
285 list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
286 list_del_init(&buf->entry);
287 videobuf_dma_unmap(priv->dev, &buf->vb);
288 data_free_buffer(buf);
289 }
290
291 list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
292 list_del_init(&buf->entry);
293 videobuf_dma_unmap(priv->dev, &buf->vb);
294 data_free_buffer(buf);
295 }
296
297 priv->num_buffers = 0;
298 priv->bufsize = 0;
299}
300
301/**
302 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
303 * @priv: the driver's private data structure
304 *
305 * Allocate enough buffers for a whole second worth of data
306 *
307 * This routine will attempt to degrade nicely by succeeding even if a full
308 * second worth of data buffers could not be allocated, as long as a minimum
309 * number were allocated. In this case, it will print a message to the kernel
310 * log.
311 *
312 * The device must not be modifying any lists when this is called.
313 *
314 * CONTEXT: user
315 * LOCKING: must hold dev->mutex
316 *
317 * Returns 0 on success, -ERRNO otherwise
318 */
319static int data_alloc_buffers(struct fpga_device *priv)
320{
321 struct data_buf *buf;
322 int i, ret;
323
324 for (i = 0; i < MAX_DATA_BUFS; i++) {
325
326 /* allocate a buffer */
327 buf = data_alloc_buffer(priv->bufsize);
328 if (!buf)
329 break;
330
331 /* map it for DMA */
332 ret = videobuf_dma_map(priv->dev, &buf->vb);
333 if (ret) {
334 data_free_buffer(buf);
335 break;
336 }
337
338 /* add it to the list of free buffers */
339 list_add_tail(&buf->entry, &priv->free);
340 priv->num_buffers++;
341 }
342
343 /* Make sure we allocated the minimum required number of buffers */
344 if (priv->num_buffers < MIN_DATA_BUFS) {
345 dev_err(priv->dev, "Unable to allocate enough data buffers\n");
346 data_free_buffers(priv);
347 return -ENOMEM;
348 }
349
350 /* Warn if we are running in a degraded state, but do not fail */
351 if (priv->num_buffers < MAX_DATA_BUFS) {
352 dev_warn(priv->dev,
353 "Unable to allocate %d buffers, using %d buffers instead\n",
354 MAX_DATA_BUFS, i);
355 }
356
357 return 0;
358}
359
360/*
361 * DMA Operations Helpers
362 */
363
364/**
365 * fpga_start_addr() - get the physical address a DATA-FPGA
366 * @priv: the driver's private data structure
367 * @fpga: the DATA-FPGA number (zero based)
368 */
369static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
370{
371 return priv->phys_addr + 0x400000 + (0x80000 * fpga);
372}
373
374/**
375 * fpga_block_addr() - get the physical address of a correlation data block
376 * @priv: the driver's private data structure
377 * @fpga: the DATA-FPGA number (zero based)
378 * @blknum: the correlation block number (zero based)
379 */
380static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
381 unsigned int blknum)
382{
383 return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
384}
385
386#define REG_BLOCK_SIZE (32 * 4)
387
388/**
389 * data_setup_corl_table() - create the scatterlist for correlation dumps
390 * @priv: the driver's private data structure
391 *
392 * Create the scatterlist for transferring a correlation dump from the
393 * DATA FPGAs. This structure will be reused for each buffer than needs
394 * to be filled with correlation data.
395 *
396 * Returns 0 on success, -ERRNO otherwise
397 */
398static int data_setup_corl_table(struct fpga_device *priv)
399{
400 struct sg_table *table = &priv->corl_table;
401 struct scatterlist *sg;
402 struct fpga_info *info;
403 int i, j, ret;
404
405 /* Calculate the number of entries needed */
406 priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
407 for (i = 0; i < NUM_FPGA; i++)
408 priv->corl_nents += priv->info[i].num_lag_ram;
409
410 /* Allocate the scatterlist table */
411 ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
412 if (ret) {
413 dev_err(priv->dev, "unable to allocate DMA table\n");
414 return ret;
415 }
416
417 /* Add the DATA FPGA registers to the scatterlist */
418 sg = table->sgl;
419 for (i = 0; i < NUM_FPGA; i++) {
420 sg_dma_address(sg) = fpga_start_addr(priv, i);
421 sg_dma_len(sg) = REG_BLOCK_SIZE;
422 sg = sg_next(sg);
423 }
424
425 /* Add the SYS-FPGA registers to the scatterlist */
426 sg_dma_address(sg) = SYS_FPGA_BLOCK;
427 sg_dma_len(sg) = REG_BLOCK_SIZE;
428 sg = sg_next(sg);
429
430 /* Add the FPGA correlation data blocks to the scatterlist */
431 for (i = 0; i < NUM_FPGA; i++) {
432 info = &priv->info[i];
433 for (j = 0; j < info->num_lag_ram; j++) {
434 sg_dma_address(sg) = fpga_block_addr(priv, i, j);
435 sg_dma_len(sg) = info->blk_size;
436 sg = sg_next(sg);
437 }
438 }
439
440 /*
441 * All physical addresses and lengths are present in the structure
442 * now. It can be reused for every FPGA DATA interrupt
443 */
444 return 0;
445}
446
447/*
448 * FPGA Register Access Helpers
449 */
450
451static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
452 unsigned int reg, u32 val)
453{
454 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
455 iowrite32be(val, priv->regs + fpga_start + reg);
456}
457
458static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
459 unsigned int reg)
460{
461 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
462 return ioread32be(priv->regs + fpga_start + reg);
463}
464
465/**
466 * data_calculate_bufsize() - calculate the data buffer size required
467 * @priv: the driver's private data structure
468 *
469 * Calculate the total buffer size needed to hold a single block
470 * of correlation data
471 *
472 * CONTEXT: user
473 *
474 * Returns 0 on success, -ERRNO otherwise
475 */
476static int data_calculate_bufsize(struct fpga_device *priv)
477{
478 u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
479 u32 conf1, conf2, version;
480 u32 num_lag_ram, blk_size;
481 int i;
482
483 /* Each buffer starts with the 5 FPGA register areas */
484 priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
485
486 /* Read and store the configuration data for each FPGA */
487 for (i = 0; i < NUM_FPGA; i++) {
488 version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
489 conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
490 conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
491
492 /* minor version 2 and later */
493 if ((version & 0x000000FF) >= 2) {
494 num_corl = (conf1 & 0x000000F0) >> 4;
495 num_pack = (conf1 & 0x00000F00) >> 8;
496 num_lags = (conf1 & 0x00FFF000) >> 12;
497 num_meta = (conf1 & 0x7F000000) >> 24;
498 num_qcnt = (conf2 & 0x00000FFF) >> 0;
499 } else {
500 num_corl = (conf1 & 0x000000F0) >> 4;
501 num_pack = 1; /* implied */
502 num_lags = (conf1 & 0x000FFF00) >> 8;
503 num_meta = (conf1 & 0x7FF00000) >> 20;
504 num_qcnt = (conf2 & 0x00000FFF) >> 0;
505 }
506
507 num_lag_ram = (num_corl + num_pack - 1) / num_pack;
508 blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
509
510 priv->info[i].num_lag_ram = num_lag_ram;
511 priv->info[i].blk_size = blk_size;
512 priv->bufsize += num_lag_ram * blk_size;
513
514 dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
515 dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
516 dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
517 dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
518 dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
519 dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
520 }
521
522 dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
523 return 0;
524}
525
526/*
527 * Interrupt Handling
528 */
529
530/**
531 * data_disable_interrupts() - stop the device from generating interrupts
532 * @priv: the driver's private data structure
533 *
534 * Hide interrupts by switching to GPIO interrupt source
535 *
536 * LOCKING: must hold dev->lock
537 */
538static void data_disable_interrupts(struct fpga_device *priv)
539{
540 /* hide the interrupt by switching the IRQ driver to GPIO */
541 iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
542}
543
544/**
545 * data_enable_interrupts() - allow the device to generate interrupts
546 * @priv: the driver's private data structure
547 *
548 * Unhide interrupts by switching to the FPGA interrupt source. At the
549 * same time, clear the DATA-FPGA status registers.
550 *
551 * LOCKING: must hold dev->lock
552 */
553static void data_enable_interrupts(struct fpga_device *priv)
554{
555 /* clear the actual FPGA corl_done interrupt */
556 fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
557 fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
558 fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
559 fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
560
561 /* flush the writes */
562 fpga_read_reg(priv, 0, MMAP_REG_STATUS);
6c15d7af
IS
563 fpga_read_reg(priv, 1, MMAP_REG_STATUS);
564 fpga_read_reg(priv, 2, MMAP_REG_STATUS);
565 fpga_read_reg(priv, 3, MMAP_REG_STATUS);
c186f0e1
IS
566
567 /* switch back to the external interrupt source */
568 iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
569}
570
571/**
572 * data_dma_cb() - DMAEngine callback for DMA completion
573 * @data: the driver's private data structure
574 *
575 * Complete a DMA transfer from the DATA-FPGA's
576 *
577 * This is called via the DMA callback mechanism, and will handle moving the
578 * completed DMA transaction to the used list, and then wake any processes
579 * waiting for new data
580 *
581 * CONTEXT: any, softirq expected
582 */
583static void data_dma_cb(void *data)
584{
585 struct fpga_device *priv = data;
586 unsigned long flags;
587
588 spin_lock_irqsave(&priv->lock, flags);
589
590 /* If there is no inflight buffer, we've got a bug */
591 BUG_ON(priv->inflight == NULL);
592
593 /* Move the inflight buffer onto the used list */
594 list_move_tail(&priv->inflight->entry, &priv->used);
595 priv->inflight = NULL;
596
6c15d7af
IS
597 /*
598 * If data dumping is still enabled, then clear the FPGA
599 * status registers and re-enable FPGA interrupts
600 */
601 if (priv->enabled)
602 data_enable_interrupts(priv);
c186f0e1
IS
603
604 spin_unlock_irqrestore(&priv->lock, flags);
605
606 /*
607 * We've changed both the inflight and used lists, so we need
608 * to wake up any processes that are blocking for those events
609 */
610 wake_up(&priv->wait);
611}
612
613/**
614 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
615 * @priv: the driver's private data structure
616 * @buf: the data buffer
617 *
618 * Prepare and submit the necessary DMA transactions to fill a correlation
619 * data buffer.
620 *
621 * LOCKING: must hold dev->lock
622 * CONTEXT: hardirq only
623 *
624 * Returns 0 on success, -ERRNO otherwise
625 */
626static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
627{
628 struct scatterlist *dst_sg, *src_sg;
629 unsigned int dst_nents, src_nents;
630 struct dma_chan *chan = priv->chan;
631 struct dma_async_tx_descriptor *tx;
632 dma_cookie_t cookie;
633 dma_addr_t dst, src;
634
635 dst_sg = buf->vb.sglist;
636 dst_nents = buf->vb.sglen;
637
638 src_sg = priv->corl_table.sgl;
639 src_nents = priv->corl_nents;
640
641 /*
642 * All buffers passed to this function should be ready and mapped
643 * for DMA already. Therefore, we don't need to do anything except
644 * submit it to the Freescale DMA Engine for processing
645 */
646
647 /* setup the scatterlist to scatterlist transfer */
648 tx = chan->device->device_prep_dma_sg(chan,
649 dst_sg, dst_nents,
650 src_sg, src_nents,
651 0);
652 if (!tx) {
653 dev_err(priv->dev, "unable to prep scatterlist DMA\n");
654 return -ENOMEM;
655 }
656
657 /* submit the transaction to the DMA controller */
658 cookie = tx->tx_submit(tx);
659 if (dma_submit_error(cookie)) {
660 dev_err(priv->dev, "unable to submit scatterlist DMA\n");
661 return -ENOMEM;
662 }
663
664 /* Prepare the re-read of the SYS-FPGA block */
665 dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
666 src = SYS_FPGA_BLOCK;
667 tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
668 REG_BLOCK_SIZE,
567fd1d4 669 0);
c186f0e1
IS
670 if (!tx) {
671 dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
672 return -ENOMEM;
673 }
674
675 /* Setup the callback */
676 tx->callback = data_dma_cb;
677 tx->callback_param = priv;
678
679 /* submit the transaction to the DMA controller */
680 cookie = tx->tx_submit(tx);
681 if (dma_submit_error(cookie)) {
682 dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
683 return -ENOMEM;
684 }
685
686 return 0;
687}
688
689#define CORL_DONE 0x1
690#define CORL_ERR 0x2
691
692static irqreturn_t data_irq(int irq, void *dev_id)
693{
694 struct fpga_device *priv = dev_id;
695 bool submitted = false;
696 struct data_buf *buf;
697 u32 status;
698 int i;
699
700 /* detect spurious interrupts via FPGA status */
701 for (i = 0; i < 4; i++) {
702 status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
703 if (!(status & (CORL_DONE | CORL_ERR))) {
704 dev_err(priv->dev, "spurious irq detected (FPGA)\n");
705 return IRQ_NONE;
706 }
707 }
708
709 /* detect spurious interrupts via raw IRQ pin readback */
710 status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
711 if (status & IRQ_CORL_DONE) {
712 dev_err(priv->dev, "spurious irq detected (IRQ)\n");
713 return IRQ_NONE;
714 }
715
716 spin_lock(&priv->lock);
717
6c15d7af
IS
718 /*
719 * This is an error case that should never happen.
720 *
721 * If this driver has a bug and manages to re-enable interrupts while
722 * a DMA is in progress, then we will hit this statement and should
723 * start paying attention immediately.
724 */
725 BUG_ON(priv->inflight != NULL);
726
c186f0e1
IS
727 /* hide the interrupt by switching the IRQ driver to GPIO */
728 data_disable_interrupts(priv);
729
730 /* If there are no free buffers, drop this data */
731 if (list_empty(&priv->free)) {
732 priv->num_dropped++;
733 goto out;
734 }
735
736 buf = list_first_entry(&priv->free, struct data_buf, entry);
737 list_del_init(&buf->entry);
738 BUG_ON(buf->size != priv->bufsize);
739
740 /* Submit a DMA transfer to get the correlation data */
741 if (data_submit_dma(priv, buf)) {
742 dev_err(priv->dev, "Unable to setup DMA transfer\n");
743 list_move_tail(&buf->entry, &priv->free);
744 goto out;
745 }
746
747 /* Save the buffer for the DMA callback */
748 priv->inflight = buf;
749 submitted = true;
750
751 /* Start the DMA Engine */
752 dma_async_memcpy_issue_pending(priv->chan);
753
754out:
755 /* If no DMA was submitted, re-enable interrupts */
756 if (!submitted)
757 data_enable_interrupts(priv);
758
759 spin_unlock(&priv->lock);
760 return IRQ_HANDLED;
761}
762
763/*
764 * Realtime Device Enable Helpers
765 */
766
767/**
768 * data_device_enable() - enable the device for buffered dumping
769 * @priv: the driver's private data structure
770 *
771 * Enable the device for buffered dumping. Allocates buffers and hooks up
772 * the interrupt handler. When this finishes, data will come pouring in.
773 *
774 * LOCKING: must hold dev->mutex
775 * CONTEXT: user context only
776 *
777 * Returns 0 on success, -ERRNO otherwise
778 */
779static int data_device_enable(struct fpga_device *priv)
780{
6c15d7af 781 bool enabled;
c186f0e1
IS
782 u32 val;
783 int ret;
784
785 /* multiple enables are safe: they do nothing */
6c15d7af
IS
786 spin_lock_irq(&priv->lock);
787 enabled = priv->enabled;
788 spin_unlock_irq(&priv->lock);
789 if (enabled)
c186f0e1
IS
790 return 0;
791
792 /* check that the FPGAs are programmed */
793 val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
794 if (!(val & (1 << 18))) {
795 dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
796 return -ENODATA;
797 }
798
799 /* read the FPGAs to calculate the buffer size */
800 ret = data_calculate_bufsize(priv);
801 if (ret) {
802 dev_err(priv->dev, "unable to calculate buffer size\n");
803 goto out_error;
804 }
805
806 /* allocate the correlation data buffers */
807 ret = data_alloc_buffers(priv);
808 if (ret) {
809 dev_err(priv->dev, "unable to allocate buffers\n");
810 goto out_error;
811 }
812
813 /* setup the source scatterlist for dumping correlation data */
814 ret = data_setup_corl_table(priv);
815 if (ret) {
816 dev_err(priv->dev, "unable to setup correlation DMA table\n");
817 goto out_error;
818 }
819
6c15d7af
IS
820 /* prevent the FPGAs from generating interrupts */
821 data_disable_interrupts(priv);
822
c186f0e1
IS
823 /* hookup the irq handler */
824 ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
825 if (ret) {
826 dev_err(priv->dev, "unable to request IRQ handler\n");
827 goto out_error;
828 }
829
6c15d7af
IS
830 /* allow the DMA callback to re-enable FPGA interrupts */
831 spin_lock_irq(&priv->lock);
c186f0e1 832 priv->enabled = true;
6c15d7af
IS
833 spin_unlock_irq(&priv->lock);
834
835 /* allow the FPGAs to generate interrupts */
836 data_enable_interrupts(priv);
c186f0e1
IS
837 return 0;
838
839out_error:
840 sg_free_table(&priv->corl_table);
841 priv->corl_nents = 0;
842
843 data_free_buffers(priv);
844 return ret;
845}
846
847/**
848 * data_device_disable() - disable the device for buffered dumping
849 * @priv: the driver's private data structure
850 *
851 * Disable the device for buffered dumping. Stops new DMA transactions from
852 * being generated, waits for all outstanding DMA to complete, and then frees
853 * all buffers.
854 *
855 * LOCKING: must hold dev->mutex
856 * CONTEXT: user only
857 *
858 * Returns 0 on success, -ERRNO otherwise
859 */
860static int data_device_disable(struct fpga_device *priv)
861{
6c15d7af 862 spin_lock_irq(&priv->lock);
c186f0e1
IS
863
864 /* allow multiple disable */
6c15d7af
IS
865 if (!priv->enabled) {
866 spin_unlock_irq(&priv->lock);
c186f0e1 867 return 0;
6c15d7af
IS
868 }
869
870 /*
871 * Mark the device disabled
872 *
873 * This stops DMA callbacks from re-enabling interrupts
874 */
875 priv->enabled = false;
c186f0e1 876
6c15d7af 877 /* prevent the FPGAs from generating interrupts */
c186f0e1
IS
878 data_disable_interrupts(priv);
879
6c15d7af
IS
880 /* wait until all ongoing DMA has finished */
881 while (priv->inflight != NULL) {
882 spin_unlock_irq(&priv->lock);
883 wait_event(priv->wait, priv->inflight == NULL);
884 spin_lock_irq(&priv->lock);
885 }
886
887 spin_unlock_irq(&priv->lock);
888
c186f0e1
IS
889 /* unhook the irq handler */
890 free_irq(priv->irq, priv);
891
c186f0e1
IS
892 /* free the correlation table */
893 sg_free_table(&priv->corl_table);
894 priv->corl_nents = 0;
895
c186f0e1
IS
896 /* free all buffers: the free and used lists are not being changed */
897 data_free_buffers(priv);
898 return 0;
899}
900
901/*
902 * DEBUGFS Interface
903 */
904#ifdef CONFIG_DEBUG_FS
905
906/*
907 * Count the number of entries in the given list
908 */
909static unsigned int list_num_entries(struct list_head *list)
910{
911 struct list_head *entry;
912 unsigned int ret = 0;
913
914 list_for_each(entry, list)
915 ret++;
916
917 return ret;
918}
919
920static int data_debug_show(struct seq_file *f, void *offset)
921{
922 struct fpga_device *priv = f->private;
c186f0e1
IS
923
924 spin_lock_irq(&priv->lock);
925
926 seq_printf(f, "enabled: %d\n", priv->enabled);
927 seq_printf(f, "bufsize: %d\n", priv->bufsize);
928 seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
929 seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
930 seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
931 seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
932 seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
933
934 spin_unlock_irq(&priv->lock);
c186f0e1
IS
935 return 0;
936}
937
938static int data_debug_open(struct inode *inode, struct file *file)
939{
940 return single_open(file, data_debug_show, inode->i_private);
941}
942
943static const struct file_operations data_debug_fops = {
944 .owner = THIS_MODULE,
945 .open = data_debug_open,
946 .read = seq_read,
947 .llseek = seq_lseek,
948 .release = single_release,
949};
950
951static int data_debugfs_init(struct fpga_device *priv)
952{
953 priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
954 &data_debug_fops);
955 if (IS_ERR(priv->dbg_entry))
956 return PTR_ERR(priv->dbg_entry);
957
958 return 0;
959}
960
961static void data_debugfs_exit(struct fpga_device *priv)
962{
963 debugfs_remove(priv->dbg_entry);
964}
965
966#else
967
968static inline int data_debugfs_init(struct fpga_device *priv)
969{
970 return 0;
971}
972
973static inline void data_debugfs_exit(struct fpga_device *priv)
974{
975}
976
977#endif /* CONFIG_DEBUG_FS */
978
979/*
980 * SYSFS Attributes
981 */
982
983static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
984 char *buf)
985{
986 struct fpga_device *priv = dev_get_drvdata(dev);
6c15d7af
IS
987 int ret;
988
989 spin_lock_irq(&priv->lock);
990 ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
991 spin_unlock_irq(&priv->lock);
992
993 return ret;
c186f0e1
IS
994}
995
996static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
997 const char *buf, size_t count)
998{
999 struct fpga_device *priv = dev_get_drvdata(dev);
1000 unsigned long enable;
1001 int ret;
1002
1003 ret = strict_strtoul(buf, 0, &enable);
1004 if (ret) {
1005 dev_err(priv->dev, "unable to parse enable input\n");
1006 return -EINVAL;
1007 }
1008
6c15d7af 1009 /* protect against concurrent enable/disable */
c186f0e1
IS
1010 ret = mutex_lock_interruptible(&priv->mutex);
1011 if (ret)
1012 return ret;
1013
1014 if (enable)
1015 ret = data_device_enable(priv);
1016 else
1017 ret = data_device_disable(priv);
1018
1019 if (ret) {
1020 dev_err(priv->dev, "device %s failed\n",
1021 enable ? "enable" : "disable");
1022 count = ret;
1023 goto out_unlock;
1024 }
1025
1026out_unlock:
1027 mutex_unlock(&priv->mutex);
1028 return count;
1029}
1030
1031static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1032
1033static struct attribute *data_sysfs_attrs[] = {
1034 &dev_attr_enable.attr,
1035 NULL,
1036};
1037
1038static const struct attribute_group rt_sysfs_attr_group = {
1039 .attrs = data_sysfs_attrs,
1040};
1041
1042/*
1043 * FPGA Realtime Data Character Device
1044 */
1045
1046static int data_open(struct inode *inode, struct file *filp)
1047{
1048 /*
1049 * The miscdevice layer puts our struct miscdevice into the
1050 * filp->private_data field. We use this to find our private
1051 * data and then overwrite it with our own private structure.
1052 */
1053 struct fpga_device *priv = container_of(filp->private_data,
1054 struct fpga_device, miscdev);
1055 struct fpga_reader *reader;
1056 int ret;
1057
1058 /* allocate private data */
1059 reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1060 if (!reader)
1061 return -ENOMEM;
1062
1063 reader->priv = priv;
1064 reader->buf = NULL;
1065
1066 filp->private_data = reader;
1067 ret = nonseekable_open(inode, filp);
1068 if (ret) {
1069 dev_err(priv->dev, "nonseekable-open failed\n");
1070 kfree(reader);
1071 return ret;
1072 }
1073
1074 /*
1075 * success, increase the reference count of the private data structure
1076 * so that it doesn't disappear if the device is unbound
1077 */
1078 kref_get(&priv->ref);
1079 return 0;
1080}
1081
1082static int data_release(struct inode *inode, struct file *filp)
1083{
1084 struct fpga_reader *reader = filp->private_data;
1085 struct fpga_device *priv = reader->priv;
1086
1087 /* free the per-reader structure */
1088 data_free_buffer(reader->buf);
1089 kfree(reader);
1090 filp->private_data = NULL;
1091
1092 /* decrement our reference count to the private data */
1093 kref_put(&priv->ref, fpga_device_release);
1094 return 0;
1095}
1096
1097static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1098 loff_t *f_pos)
1099{
1100 struct fpga_reader *reader = filp->private_data;
1101 struct fpga_device *priv = reader->priv;
1102 struct list_head *used = &priv->used;
75ff85a8 1103 bool drop_buffer = false;
c186f0e1
IS
1104 struct data_buf *dbuf;
1105 size_t avail;
1106 void *data;
1107 int ret;
1108
1109 /* check if we already have a partial buffer */
1110 if (reader->buf) {
1111 dbuf = reader->buf;
1112 goto have_buffer;
1113 }
1114
1115 spin_lock_irq(&priv->lock);
1116
1117 /* Block until there is at least one buffer on the used list */
1118 while (list_empty(used)) {
1119 spin_unlock_irq(&priv->lock);
1120
1121 if (filp->f_flags & O_NONBLOCK)
1122 return -EAGAIN;
1123
1124 ret = wait_event_interruptible(priv->wait, !list_empty(used));
1125 if (ret)
1126 return ret;
1127
1128 spin_lock_irq(&priv->lock);
1129 }
1130
1131 /* Grab the first buffer off of the used list */
1132 dbuf = list_first_entry(used, struct data_buf, entry);
1133 list_del_init(&dbuf->entry);
1134
1135 spin_unlock_irq(&priv->lock);
1136
1137 /* Buffers are always mapped: unmap it */
1138 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1139
1140 /* save the buffer for later */
1141 reader->buf = dbuf;
1142 reader->buf_start = 0;
1143
1144have_buffer:
1145 /* Get the number of bytes available */
1146 avail = dbuf->size - reader->buf_start;
1147 data = dbuf->vb.vaddr + reader->buf_start;
1148
1149 /* Get the number of bytes we can transfer */
1150 count = min(count, avail);
1151
1152 /* Copy the data to the userspace buffer */
1153 if (copy_to_user(ubuf, data, count))
1154 return -EFAULT;
1155
1156 /* Update the amount of available space */
1157 avail -= count;
1158
1159 /*
1160 * If there is still some data available, save the buffer for the
1161 * next userspace call to read() and return
1162 */
1163 if (avail > 0) {
1164 reader->buf_start += count;
1165 reader->buf = dbuf;
1166 return count;
1167 }
1168
1169 /*
1170 * Get the buffer ready to be reused for DMA
1171 *
1172 * If it fails, we pretend that the read never happed and return
1173 * -EFAULT to userspace. The read will be retried.
1174 */
1175 ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1176 if (ret) {
1177 dev_err(priv->dev, "unable to remap buffer for DMA\n");
1178 return -EFAULT;
1179 }
1180
1181 /* Lock against concurrent enable/disable */
1182 spin_lock_irq(&priv->lock);
1183
1184 /* the reader is finished with this buffer */
1185 reader->buf = NULL;
1186
1187 /*
1188 * One of two things has happened, the device is disabled, or the
1189 * device has been reconfigured underneath us. In either case, we
1190 * should just throw away the buffer.
75ff85a8
IS
1191 *
1192 * Lockdep complains if this is done under the spinlock, so we
1193 * handle it during the unlock path.
c186f0e1
IS
1194 */
1195 if (!priv->enabled || dbuf->size != priv->bufsize) {
75ff85a8 1196 drop_buffer = true;
c186f0e1
IS
1197 goto out_unlock;
1198 }
1199
1200 /* The buffer is safe to reuse, so add it back to the free list */
1201 list_add_tail(&dbuf->entry, &priv->free);
1202
1203out_unlock:
1204 spin_unlock_irq(&priv->lock);
75ff85a8
IS
1205
1206 if (drop_buffer) {
1207 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1208 data_free_buffer(dbuf);
1209 }
1210
c186f0e1
IS
1211 return count;
1212}
1213
1214static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1215{
1216 struct fpga_reader *reader = filp->private_data;
1217 struct fpga_device *priv = reader->priv;
1218 unsigned int mask = 0;
1219
1220 poll_wait(filp, &priv->wait, tbl);
1221
1222 if (!list_empty(&priv->used))
1223 mask |= POLLIN | POLLRDNORM;
1224
1225 return mask;
1226}
1227
1228static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1229{
1230 struct fpga_reader *reader = filp->private_data;
1231 struct fpga_device *priv = reader->priv;
1232 unsigned long offset, vsize, psize, addr;
1233
1234 /* VMA properties */
1235 offset = vma->vm_pgoff << PAGE_SHIFT;
1236 vsize = vma->vm_end - vma->vm_start;
1237 psize = priv->phys_size - offset;
1238 addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1239
1240 /* Check against the FPGA region's physical memory size */
1241 if (vsize > psize) {
1242 dev_err(priv->dev, "requested mmap mapping too large\n");
1243 return -EINVAL;
1244 }
1245
c186f0e1
IS
1246 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1247
1248 return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1249 vma->vm_page_prot);
1250}
1251
1252static const struct file_operations data_fops = {
1253 .owner = THIS_MODULE,
1254 .open = data_open,
1255 .release = data_release,
1256 .read = data_read,
1257 .poll = data_poll,
1258 .mmap = data_mmap,
1259 .llseek = no_llseek,
1260};
1261
1262/*
1263 * OpenFirmware Device Subsystem
1264 */
1265
1266static bool dma_filter(struct dma_chan *chan, void *data)
1267{
1268 /*
1269 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1270 *
1271 * This probably won't survive an unload/load cycle of the Freescale
1272 * DMAEngine driver, but that won't be a problem
1273 */
1274 if (chan->chan_id == 0 && chan->device->dev_id == 0)
1275 return false;
1276
1277 return true;
1278}
1279
49334020 1280static int data_of_probe(struct platform_device *op)
c186f0e1
IS
1281{
1282 struct device_node *of_node = op->dev.of_node;
1283 struct device *this_device;
1284 struct fpga_device *priv;
1285 struct resource res;
1286 dma_cap_mask_t mask;
1287 int ret;
1288
1289 /* Allocate private data */
1290 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1291 if (!priv) {
1292 dev_err(&op->dev, "Unable to allocate device private data\n");
1293 ret = -ENOMEM;
1294 goto out_return;
1295 }
1296
1297 dev_set_drvdata(&op->dev, priv);
1298 priv->dev = &op->dev;
1299 kref_init(&priv->ref);
1300 mutex_init(&priv->mutex);
1301
1302 dev_set_drvdata(priv->dev, priv);
1303 spin_lock_init(&priv->lock);
1304 INIT_LIST_HEAD(&priv->free);
1305 INIT_LIST_HEAD(&priv->used);
1306 init_waitqueue_head(&priv->wait);
1307
1308 /* Setup the misc device */
1309 priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1310 priv->miscdev.name = drv_name;
1311 priv->miscdev.fops = &data_fops;
1312
1313 /* Get the physical address of the FPGA registers */
1314 ret = of_address_to_resource(of_node, 0, &res);
1315 if (ret) {
1316 dev_err(&op->dev, "Unable to find FPGA physical address\n");
1317 ret = -ENODEV;
1318 goto out_free_priv;
1319 }
1320
1321 priv->phys_addr = res.start;
1322 priv->phys_size = resource_size(&res);
1323
1324 /* ioremap the registers for use */
1325 priv->regs = of_iomap(of_node, 0);
1326 if (!priv->regs) {
1327 dev_err(&op->dev, "Unable to ioremap registers\n");
1328 ret = -ENOMEM;
1329 goto out_free_priv;
1330 }
1331
1332 dma_cap_zero(mask);
1333 dma_cap_set(DMA_MEMCPY, mask);
1334 dma_cap_set(DMA_INTERRUPT, mask);
1335 dma_cap_set(DMA_SLAVE, mask);
1336 dma_cap_set(DMA_SG, mask);
1337
1338 /* Request a DMA channel */
1339 priv->chan = dma_request_channel(mask, dma_filter, NULL);
1340 if (!priv->chan) {
1341 dev_err(&op->dev, "Unable to request DMA channel\n");
1342 ret = -ENODEV;
1343 goto out_unmap_regs;
1344 }
1345
1346 /* Find the correct IRQ number */
1347 priv->irq = irq_of_parse_and_map(of_node, 0);
1348 if (priv->irq == NO_IRQ) {
1349 dev_err(&op->dev, "Unable to find IRQ line\n");
1350 ret = -ENODEV;
1351 goto out_release_dma;
1352 }
1353
1354 /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1355 iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1356
1357 /* Register the miscdevice */
1358 ret = misc_register(&priv->miscdev);
1359 if (ret) {
1360 dev_err(&op->dev, "Unable to register miscdevice\n");
1361 goto out_irq_dispose_mapping;
1362 }
1363
1364 /* Create the debugfs files */
1365 ret = data_debugfs_init(priv);
1366 if (ret) {
1367 dev_err(&op->dev, "Unable to create debugfs files\n");
1368 goto out_misc_deregister;
1369 }
1370
1371 /* Create the sysfs files */
1372 this_device = priv->miscdev.this_device;
1373 dev_set_drvdata(this_device, priv);
1374 ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1375 if (ret) {
1376 dev_err(&op->dev, "Unable to create sysfs files\n");
1377 goto out_data_debugfs_exit;
1378 }
1379
1380 dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1381 return 0;
1382
1383out_data_debugfs_exit:
1384 data_debugfs_exit(priv);
1385out_misc_deregister:
1386 misc_deregister(&priv->miscdev);
1387out_irq_dispose_mapping:
1388 irq_dispose_mapping(priv->irq);
1389out_release_dma:
1390 dma_release_channel(priv->chan);
1391out_unmap_regs:
1392 iounmap(priv->regs);
1393out_free_priv:
1394 kref_put(&priv->ref, fpga_device_release);
1395out_return:
1396 return ret;
1397}
1398
1399static int data_of_remove(struct platform_device *op)
1400{
1401 struct fpga_device *priv = dev_get_drvdata(&op->dev);
1402 struct device *this_device = priv->miscdev.this_device;
1403
1404 /* remove all sysfs files, now the device cannot be re-enabled */
1405 sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1406
1407 /* remove all debugfs files */
1408 data_debugfs_exit(priv);
1409
1410 /* disable the device from generating data */
1411 data_device_disable(priv);
1412
1413 /* remove the character device to stop new readers from appearing */
1414 misc_deregister(&priv->miscdev);
1415
1416 /* cleanup everything not needed by readers */
1417 irq_dispose_mapping(priv->irq);
1418 dma_release_channel(priv->chan);
1419 iounmap(priv->regs);
1420
1421 /* release our reference */
1422 kref_put(&priv->ref, fpga_device_release);
1423 return 0;
1424}
1425
1426static struct of_device_id data_of_match[] = {
1427 { .compatible = "carma,carma-fpga", },
1428 {},
1429};
1430
49334020 1431static struct platform_driver data_of_driver = {
c186f0e1
IS
1432 .probe = data_of_probe,
1433 .remove = data_of_remove,
1434 .driver = {
1435 .name = drv_name,
1436 .of_match_table = data_of_match,
1437 .owner = THIS_MODULE,
1438 },
1439};
1440
b00e126f 1441module_platform_driver(data_of_driver);
c186f0e1
IS
1442
1443MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1444MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1445MODULE_LICENSE("GPL");