dmaengine: remove DMA unmap flags
[linux-2.6-block.git] / drivers / misc / carma / carma-fpga.c
CommitLineData
c186f0e1
IS
1/*
2 * CARMA DATA-FPGA Access Driver
3 *
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12/*
13 * FPGA Memory Dump Format
14 *
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24 *
25 * Each correlation array consists of:
26 *
27 * Correlation Data (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30 *
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
34 */
35
36/*
37 * Basic Description:
38 *
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
43 *
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
47 *
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
50 *
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
53 *
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
57 *
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
61 *
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
66 *
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
70 */
71
72/*
73 * Notes on the IRQ masking scheme:
74 *
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
79 *
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
84 *
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89 */
90
91#include <linux/of_platform.h>
92#include <linux/dma-mapping.h>
93#include <linux/miscdevice.h>
94#include <linux/interrupt.h>
95#include <linux/dmaengine.h>
96#include <linux/seq_file.h>
97#include <linux/highmem.h>
98#include <linux/debugfs.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/poll.h>
102#include <linux/init.h>
103#include <linux/slab.h>
104#include <linux/kref.h>
105#include <linux/io.h>
106
107#include <media/videobuf-dma-sg.h>
108
109/* system controller registers */
110#define SYS_IRQ_SOURCE_CTL 0x24
111#define SYS_IRQ_OUTPUT_EN 0x28
112#define SYS_IRQ_OUTPUT_DATA 0x2C
113#define SYS_IRQ_INPUT_DATA 0x30
114#define SYS_FPGA_CONFIG_STATUS 0x44
115
116/* GPIO IRQ line assignment */
117#define IRQ_CORL_DONE 0x10
118
119/* FPGA registers */
120#define MMAP_REG_VERSION 0x00
121#define MMAP_REG_CORL_CONF1 0x08
122#define MMAP_REG_CORL_CONF2 0x0C
123#define MMAP_REG_STATUS 0x48
124
125#define SYS_FPGA_BLOCK 0xF0000000
126
127#define DATA_FPGA_START 0x400000
128#define DATA_FPGA_SIZE 0x80000
129
130static const char drv_name[] = "carma-fpga";
131
132#define NUM_FPGA 4
133
134#define MIN_DATA_BUFS 8
135#define MAX_DATA_BUFS 64
136
137struct fpga_info {
138 unsigned int num_lag_ram;
139 unsigned int blk_size;
140};
141
142struct data_buf {
143 struct list_head entry;
144 struct videobuf_dmabuf vb;
145 size_t size;
146};
147
148struct fpga_device {
149 /* character device */
150 struct miscdevice miscdev;
151 struct device *dev;
152 struct mutex mutex;
153
154 /* reference count */
155 struct kref ref;
156
157 /* FPGA registers and information */
158 struct fpga_info info[NUM_FPGA];
159 void __iomem *regs;
160 int irq;
161
162 /* FPGA Physical Address/Size Information */
163 resource_size_t phys_addr;
164 size_t phys_size;
165
166 /* DMA structures */
167 struct sg_table corl_table;
168 unsigned int corl_nents;
169 struct dma_chan *chan;
170
171 /* Protection for all members below */
172 spinlock_t lock;
173
174 /* Device enable/disable flag */
175 bool enabled;
176
177 /* Correlation data buffers */
178 wait_queue_head_t wait;
179 struct list_head free;
180 struct list_head used;
181 struct data_buf *inflight;
182
183 /* Information about data buffers */
184 unsigned int num_dropped;
185 unsigned int num_buffers;
186 size_t bufsize;
187 struct dentry *dbg_entry;
188};
189
190struct fpga_reader {
191 struct fpga_device *priv;
192 struct data_buf *buf;
193 off_t buf_start;
194};
195
196static void fpga_device_release(struct kref *ref)
197{
198 struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
199
200 /* the last reader has exited, cleanup the last bits */
201 mutex_destroy(&priv->mutex);
202 kfree(priv);
203}
204
205/*
206 * Data Buffer Allocation Helpers
207 */
208
209/**
210 * data_free_buffer() - free a single data buffer and all allocated memory
211 * @buf: the buffer to free
212 *
213 * This will free all of the pages allocated to the given data buffer, and
214 * then free the structure itself
215 */
216static void data_free_buffer(struct data_buf *buf)
217{
218 /* It is ok to free a NULL buffer */
219 if (!buf)
220 return;
221
222 /* free all memory */
223 videobuf_dma_free(&buf->vb);
224 kfree(buf);
225}
226
227/**
228 * data_alloc_buffer() - allocate and fill a data buffer with pages
229 * @bytes: the number of bytes required
230 *
231 * This allocates all space needed for a data buffer. It must be mapped before
232 * use in a DMA transaction using videobuf_dma_map().
233 *
234 * Returns NULL on failure
235 */
236static struct data_buf *data_alloc_buffer(const size_t bytes)
237{
238 unsigned int nr_pages;
239 struct data_buf *buf;
240 int ret;
241
242 /* calculate the number of pages necessary */
243 nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
244
245 /* allocate the buffer structure */
246 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
247 if (!buf)
248 goto out_return;
249
250 /* initialize internal fields */
251 INIT_LIST_HEAD(&buf->entry);
252 buf->size = bytes;
253
254 /* allocate the videobuf */
255 videobuf_dma_init(&buf->vb);
256 ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
257 if (ret)
258 goto out_free_buf;
259
260 return buf;
261
262out_free_buf:
263 kfree(buf);
264out_return:
265 return NULL;
266}
267
268/**
269 * data_free_buffers() - free all allocated buffers
270 * @priv: the driver's private data structure
271 *
272 * Free all buffers allocated by the driver (except those currently in the
273 * process of being read by userspace).
274 *
275 * LOCKING: must hold dev->mutex
276 * CONTEXT: user
277 */
278static void data_free_buffers(struct fpga_device *priv)
279{
280 struct data_buf *buf, *tmp;
281
282 /* the device should be stopped, no DMA in progress */
283 BUG_ON(priv->inflight != NULL);
284
285 list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
286 list_del_init(&buf->entry);
287 videobuf_dma_unmap(priv->dev, &buf->vb);
288 data_free_buffer(buf);
289 }
290
291 list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
292 list_del_init(&buf->entry);
293 videobuf_dma_unmap(priv->dev, &buf->vb);
294 data_free_buffer(buf);
295 }
296
297 priv->num_buffers = 0;
298 priv->bufsize = 0;
299}
300
301/**
302 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
303 * @priv: the driver's private data structure
304 *
305 * Allocate enough buffers for a whole second worth of data
306 *
307 * This routine will attempt to degrade nicely by succeeding even if a full
308 * second worth of data buffers could not be allocated, as long as a minimum
309 * number were allocated. In this case, it will print a message to the kernel
310 * log.
311 *
312 * The device must not be modifying any lists when this is called.
313 *
314 * CONTEXT: user
315 * LOCKING: must hold dev->mutex
316 *
317 * Returns 0 on success, -ERRNO otherwise
318 */
319static int data_alloc_buffers(struct fpga_device *priv)
320{
321 struct data_buf *buf;
322 int i, ret;
323
324 for (i = 0; i < MAX_DATA_BUFS; i++) {
325
326 /* allocate a buffer */
327 buf = data_alloc_buffer(priv->bufsize);
328 if (!buf)
329 break;
330
331 /* map it for DMA */
332 ret = videobuf_dma_map(priv->dev, &buf->vb);
333 if (ret) {
334 data_free_buffer(buf);
335 break;
336 }
337
338 /* add it to the list of free buffers */
339 list_add_tail(&buf->entry, &priv->free);
340 priv->num_buffers++;
341 }
342
343 /* Make sure we allocated the minimum required number of buffers */
344 if (priv->num_buffers < MIN_DATA_BUFS) {
345 dev_err(priv->dev, "Unable to allocate enough data buffers\n");
346 data_free_buffers(priv);
347 return -ENOMEM;
348 }
349
350 /* Warn if we are running in a degraded state, but do not fail */
351 if (priv->num_buffers < MAX_DATA_BUFS) {
352 dev_warn(priv->dev,
353 "Unable to allocate %d buffers, using %d buffers instead\n",
354 MAX_DATA_BUFS, i);
355 }
356
357 return 0;
358}
359
360/*
361 * DMA Operations Helpers
362 */
363
364/**
365 * fpga_start_addr() - get the physical address a DATA-FPGA
366 * @priv: the driver's private data structure
367 * @fpga: the DATA-FPGA number (zero based)
368 */
369static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
370{
371 return priv->phys_addr + 0x400000 + (0x80000 * fpga);
372}
373
374/**
375 * fpga_block_addr() - get the physical address of a correlation data block
376 * @priv: the driver's private data structure
377 * @fpga: the DATA-FPGA number (zero based)
378 * @blknum: the correlation block number (zero based)
379 */
380static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
381 unsigned int blknum)
382{
383 return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
384}
385
386#define REG_BLOCK_SIZE (32 * 4)
387
388/**
389 * data_setup_corl_table() - create the scatterlist for correlation dumps
390 * @priv: the driver's private data structure
391 *
392 * Create the scatterlist for transferring a correlation dump from the
393 * DATA FPGAs. This structure will be reused for each buffer than needs
394 * to be filled with correlation data.
395 *
396 * Returns 0 on success, -ERRNO otherwise
397 */
398static int data_setup_corl_table(struct fpga_device *priv)
399{
400 struct sg_table *table = &priv->corl_table;
401 struct scatterlist *sg;
402 struct fpga_info *info;
403 int i, j, ret;
404
405 /* Calculate the number of entries needed */
406 priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
407 for (i = 0; i < NUM_FPGA; i++)
408 priv->corl_nents += priv->info[i].num_lag_ram;
409
410 /* Allocate the scatterlist table */
411 ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
412 if (ret) {
413 dev_err(priv->dev, "unable to allocate DMA table\n");
414 return ret;
415 }
416
417 /* Add the DATA FPGA registers to the scatterlist */
418 sg = table->sgl;
419 for (i = 0; i < NUM_FPGA; i++) {
420 sg_dma_address(sg) = fpga_start_addr(priv, i);
421 sg_dma_len(sg) = REG_BLOCK_SIZE;
422 sg = sg_next(sg);
423 }
424
425 /* Add the SYS-FPGA registers to the scatterlist */
426 sg_dma_address(sg) = SYS_FPGA_BLOCK;
427 sg_dma_len(sg) = REG_BLOCK_SIZE;
428 sg = sg_next(sg);
429
430 /* Add the FPGA correlation data blocks to the scatterlist */
431 for (i = 0; i < NUM_FPGA; i++) {
432 info = &priv->info[i];
433 for (j = 0; j < info->num_lag_ram; j++) {
434 sg_dma_address(sg) = fpga_block_addr(priv, i, j);
435 sg_dma_len(sg) = info->blk_size;
436 sg = sg_next(sg);
437 }
438 }
439
440 /*
441 * All physical addresses and lengths are present in the structure
442 * now. It can be reused for every FPGA DATA interrupt
443 */
444 return 0;
445}
446
447/*
448 * FPGA Register Access Helpers
449 */
450
451static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
452 unsigned int reg, u32 val)
453{
454 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
455 iowrite32be(val, priv->regs + fpga_start + reg);
456}
457
458static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
459 unsigned int reg)
460{
461 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
462 return ioread32be(priv->regs + fpga_start + reg);
463}
464
465/**
466 * data_calculate_bufsize() - calculate the data buffer size required
467 * @priv: the driver's private data structure
468 *
469 * Calculate the total buffer size needed to hold a single block
470 * of correlation data
471 *
472 * CONTEXT: user
473 *
474 * Returns 0 on success, -ERRNO otherwise
475 */
476static int data_calculate_bufsize(struct fpga_device *priv)
477{
478 u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
479 u32 conf1, conf2, version;
480 u32 num_lag_ram, blk_size;
481 int i;
482
483 /* Each buffer starts with the 5 FPGA register areas */
484 priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
485
486 /* Read and store the configuration data for each FPGA */
487 for (i = 0; i < NUM_FPGA; i++) {
488 version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
489 conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
490 conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
491
492 /* minor version 2 and later */
493 if ((version & 0x000000FF) >= 2) {
494 num_corl = (conf1 & 0x000000F0) >> 4;
495 num_pack = (conf1 & 0x00000F00) >> 8;
496 num_lags = (conf1 & 0x00FFF000) >> 12;
497 num_meta = (conf1 & 0x7F000000) >> 24;
498 num_qcnt = (conf2 & 0x00000FFF) >> 0;
499 } else {
500 num_corl = (conf1 & 0x000000F0) >> 4;
501 num_pack = 1; /* implied */
502 num_lags = (conf1 & 0x000FFF00) >> 8;
503 num_meta = (conf1 & 0x7FF00000) >> 20;
504 num_qcnt = (conf2 & 0x00000FFF) >> 0;
505 }
506
507 num_lag_ram = (num_corl + num_pack - 1) / num_pack;
508 blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
509
510 priv->info[i].num_lag_ram = num_lag_ram;
511 priv->info[i].blk_size = blk_size;
512 priv->bufsize += num_lag_ram * blk_size;
513
514 dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
515 dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
516 dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
517 dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
518 dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
519 dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
520 }
521
522 dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
523 return 0;
524}
525
526/*
527 * Interrupt Handling
528 */
529
530/**
531 * data_disable_interrupts() - stop the device from generating interrupts
532 * @priv: the driver's private data structure
533 *
534 * Hide interrupts by switching to GPIO interrupt source
535 *
536 * LOCKING: must hold dev->lock
537 */
538static void data_disable_interrupts(struct fpga_device *priv)
539{
540 /* hide the interrupt by switching the IRQ driver to GPIO */
541 iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
542}
543
544/**
545 * data_enable_interrupts() - allow the device to generate interrupts
546 * @priv: the driver's private data structure
547 *
548 * Unhide interrupts by switching to the FPGA interrupt source. At the
549 * same time, clear the DATA-FPGA status registers.
550 *
551 * LOCKING: must hold dev->lock
552 */
553static void data_enable_interrupts(struct fpga_device *priv)
554{
555 /* clear the actual FPGA corl_done interrupt */
556 fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
557 fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
558 fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
559 fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
560
561 /* flush the writes */
562 fpga_read_reg(priv, 0, MMAP_REG_STATUS);
6c15d7af
IS
563 fpga_read_reg(priv, 1, MMAP_REG_STATUS);
564 fpga_read_reg(priv, 2, MMAP_REG_STATUS);
565 fpga_read_reg(priv, 3, MMAP_REG_STATUS);
c186f0e1
IS
566
567 /* switch back to the external interrupt source */
568 iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
569}
570
571/**
572 * data_dma_cb() - DMAEngine callback for DMA completion
573 * @data: the driver's private data structure
574 *
575 * Complete a DMA transfer from the DATA-FPGA's
576 *
577 * This is called via the DMA callback mechanism, and will handle moving the
578 * completed DMA transaction to the used list, and then wake any processes
579 * waiting for new data
580 *
581 * CONTEXT: any, softirq expected
582 */
583static void data_dma_cb(void *data)
584{
585 struct fpga_device *priv = data;
586 unsigned long flags;
587
588 spin_lock_irqsave(&priv->lock, flags);
589
590 /* If there is no inflight buffer, we've got a bug */
591 BUG_ON(priv->inflight == NULL);
592
593 /* Move the inflight buffer onto the used list */
594 list_move_tail(&priv->inflight->entry, &priv->used);
595 priv->inflight = NULL;
596
6c15d7af
IS
597 /*
598 * If data dumping is still enabled, then clear the FPGA
599 * status registers and re-enable FPGA interrupts
600 */
601 if (priv->enabled)
602 data_enable_interrupts(priv);
c186f0e1
IS
603
604 spin_unlock_irqrestore(&priv->lock, flags);
605
606 /*
607 * We've changed both the inflight and used lists, so we need
608 * to wake up any processes that are blocking for those events
609 */
610 wake_up(&priv->wait);
611}
612
613/**
614 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
615 * @priv: the driver's private data structure
616 * @buf: the data buffer
617 *
618 * Prepare and submit the necessary DMA transactions to fill a correlation
619 * data buffer.
620 *
621 * LOCKING: must hold dev->lock
622 * CONTEXT: hardirq only
623 *
624 * Returns 0 on success, -ERRNO otherwise
625 */
626static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
627{
628 struct scatterlist *dst_sg, *src_sg;
629 unsigned int dst_nents, src_nents;
630 struct dma_chan *chan = priv->chan;
631 struct dma_async_tx_descriptor *tx;
632 dma_cookie_t cookie;
633 dma_addr_t dst, src;
0776ae7b 634 unsigned long dma_flags = 0;
c186f0e1
IS
635
636 dst_sg = buf->vb.sglist;
637 dst_nents = buf->vb.sglen;
638
639 src_sg = priv->corl_table.sgl;
640 src_nents = priv->corl_nents;
641
642 /*
643 * All buffers passed to this function should be ready and mapped
644 * for DMA already. Therefore, we don't need to do anything except
645 * submit it to the Freescale DMA Engine for processing
646 */
647
648 /* setup the scatterlist to scatterlist transfer */
649 tx = chan->device->device_prep_dma_sg(chan,
650 dst_sg, dst_nents,
651 src_sg, src_nents,
652 0);
653 if (!tx) {
654 dev_err(priv->dev, "unable to prep scatterlist DMA\n");
655 return -ENOMEM;
656 }
657
658 /* submit the transaction to the DMA controller */
659 cookie = tx->tx_submit(tx);
660 if (dma_submit_error(cookie)) {
661 dev_err(priv->dev, "unable to submit scatterlist DMA\n");
662 return -ENOMEM;
663 }
664
665 /* Prepare the re-read of the SYS-FPGA block */
666 dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
667 src = SYS_FPGA_BLOCK;
668 tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
669 REG_BLOCK_SIZE,
bfc191ea 670 dma_flags);
c186f0e1
IS
671 if (!tx) {
672 dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
673 return -ENOMEM;
674 }
675
676 /* Setup the callback */
677 tx->callback = data_dma_cb;
678 tx->callback_param = priv;
679
680 /* submit the transaction to the DMA controller */
681 cookie = tx->tx_submit(tx);
682 if (dma_submit_error(cookie)) {
683 dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
684 return -ENOMEM;
685 }
686
687 return 0;
688}
689
690#define CORL_DONE 0x1
691#define CORL_ERR 0x2
692
693static irqreturn_t data_irq(int irq, void *dev_id)
694{
695 struct fpga_device *priv = dev_id;
696 bool submitted = false;
697 struct data_buf *buf;
698 u32 status;
699 int i;
700
701 /* detect spurious interrupts via FPGA status */
702 for (i = 0; i < 4; i++) {
703 status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
704 if (!(status & (CORL_DONE | CORL_ERR))) {
705 dev_err(priv->dev, "spurious irq detected (FPGA)\n");
706 return IRQ_NONE;
707 }
708 }
709
710 /* detect spurious interrupts via raw IRQ pin readback */
711 status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
712 if (status & IRQ_CORL_DONE) {
713 dev_err(priv->dev, "spurious irq detected (IRQ)\n");
714 return IRQ_NONE;
715 }
716
717 spin_lock(&priv->lock);
718
6c15d7af
IS
719 /*
720 * This is an error case that should never happen.
721 *
722 * If this driver has a bug and manages to re-enable interrupts while
723 * a DMA is in progress, then we will hit this statement and should
724 * start paying attention immediately.
725 */
726 BUG_ON(priv->inflight != NULL);
727
c186f0e1
IS
728 /* hide the interrupt by switching the IRQ driver to GPIO */
729 data_disable_interrupts(priv);
730
731 /* If there are no free buffers, drop this data */
732 if (list_empty(&priv->free)) {
733 priv->num_dropped++;
734 goto out;
735 }
736
737 buf = list_first_entry(&priv->free, struct data_buf, entry);
738 list_del_init(&buf->entry);
739 BUG_ON(buf->size != priv->bufsize);
740
741 /* Submit a DMA transfer to get the correlation data */
742 if (data_submit_dma(priv, buf)) {
743 dev_err(priv->dev, "Unable to setup DMA transfer\n");
744 list_move_tail(&buf->entry, &priv->free);
745 goto out;
746 }
747
748 /* Save the buffer for the DMA callback */
749 priv->inflight = buf;
750 submitted = true;
751
752 /* Start the DMA Engine */
b9ee8683 753 dma_async_issue_pending(priv->chan);
c186f0e1
IS
754
755out:
756 /* If no DMA was submitted, re-enable interrupts */
757 if (!submitted)
758 data_enable_interrupts(priv);
759
760 spin_unlock(&priv->lock);
761 return IRQ_HANDLED;
762}
763
764/*
765 * Realtime Device Enable Helpers
766 */
767
768/**
769 * data_device_enable() - enable the device for buffered dumping
770 * @priv: the driver's private data structure
771 *
772 * Enable the device for buffered dumping. Allocates buffers and hooks up
773 * the interrupt handler. When this finishes, data will come pouring in.
774 *
775 * LOCKING: must hold dev->mutex
776 * CONTEXT: user context only
777 *
778 * Returns 0 on success, -ERRNO otherwise
779 */
780static int data_device_enable(struct fpga_device *priv)
781{
6c15d7af 782 bool enabled;
c186f0e1
IS
783 u32 val;
784 int ret;
785
786 /* multiple enables are safe: they do nothing */
6c15d7af
IS
787 spin_lock_irq(&priv->lock);
788 enabled = priv->enabled;
789 spin_unlock_irq(&priv->lock);
790 if (enabled)
c186f0e1
IS
791 return 0;
792
793 /* check that the FPGAs are programmed */
794 val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
795 if (!(val & (1 << 18))) {
796 dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
797 return -ENODATA;
798 }
799
800 /* read the FPGAs to calculate the buffer size */
801 ret = data_calculate_bufsize(priv);
802 if (ret) {
803 dev_err(priv->dev, "unable to calculate buffer size\n");
804 goto out_error;
805 }
806
807 /* allocate the correlation data buffers */
808 ret = data_alloc_buffers(priv);
809 if (ret) {
810 dev_err(priv->dev, "unable to allocate buffers\n");
811 goto out_error;
812 }
813
814 /* setup the source scatterlist for dumping correlation data */
815 ret = data_setup_corl_table(priv);
816 if (ret) {
817 dev_err(priv->dev, "unable to setup correlation DMA table\n");
818 goto out_error;
819 }
820
6c15d7af
IS
821 /* prevent the FPGAs from generating interrupts */
822 data_disable_interrupts(priv);
823
c186f0e1
IS
824 /* hookup the irq handler */
825 ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
826 if (ret) {
827 dev_err(priv->dev, "unable to request IRQ handler\n");
828 goto out_error;
829 }
830
6c15d7af
IS
831 /* allow the DMA callback to re-enable FPGA interrupts */
832 spin_lock_irq(&priv->lock);
c186f0e1 833 priv->enabled = true;
6c15d7af
IS
834 spin_unlock_irq(&priv->lock);
835
836 /* allow the FPGAs to generate interrupts */
837 data_enable_interrupts(priv);
c186f0e1
IS
838 return 0;
839
840out_error:
841 sg_free_table(&priv->corl_table);
842 priv->corl_nents = 0;
843
844 data_free_buffers(priv);
845 return ret;
846}
847
848/**
849 * data_device_disable() - disable the device for buffered dumping
850 * @priv: the driver's private data structure
851 *
852 * Disable the device for buffered dumping. Stops new DMA transactions from
853 * being generated, waits for all outstanding DMA to complete, and then frees
854 * all buffers.
855 *
856 * LOCKING: must hold dev->mutex
857 * CONTEXT: user only
858 *
859 * Returns 0 on success, -ERRNO otherwise
860 */
861static int data_device_disable(struct fpga_device *priv)
862{
6c15d7af 863 spin_lock_irq(&priv->lock);
c186f0e1
IS
864
865 /* allow multiple disable */
6c15d7af
IS
866 if (!priv->enabled) {
867 spin_unlock_irq(&priv->lock);
c186f0e1 868 return 0;
6c15d7af
IS
869 }
870
871 /*
872 * Mark the device disabled
873 *
874 * This stops DMA callbacks from re-enabling interrupts
875 */
876 priv->enabled = false;
c186f0e1 877
6c15d7af 878 /* prevent the FPGAs from generating interrupts */
c186f0e1
IS
879 data_disable_interrupts(priv);
880
6c15d7af
IS
881 /* wait until all ongoing DMA has finished */
882 while (priv->inflight != NULL) {
883 spin_unlock_irq(&priv->lock);
884 wait_event(priv->wait, priv->inflight == NULL);
885 spin_lock_irq(&priv->lock);
886 }
887
888 spin_unlock_irq(&priv->lock);
889
c186f0e1
IS
890 /* unhook the irq handler */
891 free_irq(priv->irq, priv);
892
c186f0e1
IS
893 /* free the correlation table */
894 sg_free_table(&priv->corl_table);
895 priv->corl_nents = 0;
896
c186f0e1
IS
897 /* free all buffers: the free and used lists are not being changed */
898 data_free_buffers(priv);
899 return 0;
900}
901
902/*
903 * DEBUGFS Interface
904 */
905#ifdef CONFIG_DEBUG_FS
906
907/*
908 * Count the number of entries in the given list
909 */
910static unsigned int list_num_entries(struct list_head *list)
911{
912 struct list_head *entry;
913 unsigned int ret = 0;
914
915 list_for_each(entry, list)
916 ret++;
917
918 return ret;
919}
920
921static int data_debug_show(struct seq_file *f, void *offset)
922{
923 struct fpga_device *priv = f->private;
c186f0e1
IS
924
925 spin_lock_irq(&priv->lock);
926
927 seq_printf(f, "enabled: %d\n", priv->enabled);
928 seq_printf(f, "bufsize: %d\n", priv->bufsize);
929 seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
930 seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
931 seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
932 seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
933 seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
934
935 spin_unlock_irq(&priv->lock);
c186f0e1
IS
936 return 0;
937}
938
939static int data_debug_open(struct inode *inode, struct file *file)
940{
941 return single_open(file, data_debug_show, inode->i_private);
942}
943
944static const struct file_operations data_debug_fops = {
945 .owner = THIS_MODULE,
946 .open = data_debug_open,
947 .read = seq_read,
948 .llseek = seq_lseek,
949 .release = single_release,
950};
951
952static int data_debugfs_init(struct fpga_device *priv)
953{
954 priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
955 &data_debug_fops);
956 if (IS_ERR(priv->dbg_entry))
957 return PTR_ERR(priv->dbg_entry);
958
959 return 0;
960}
961
962static void data_debugfs_exit(struct fpga_device *priv)
963{
964 debugfs_remove(priv->dbg_entry);
965}
966
967#else
968
969static inline int data_debugfs_init(struct fpga_device *priv)
970{
971 return 0;
972}
973
974static inline void data_debugfs_exit(struct fpga_device *priv)
975{
976}
977
978#endif /* CONFIG_DEBUG_FS */
979
980/*
981 * SYSFS Attributes
982 */
983
984static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
985 char *buf)
986{
987 struct fpga_device *priv = dev_get_drvdata(dev);
6c15d7af
IS
988 int ret;
989
990 spin_lock_irq(&priv->lock);
991 ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
992 spin_unlock_irq(&priv->lock);
993
994 return ret;
c186f0e1
IS
995}
996
997static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
998 const char *buf, size_t count)
999{
1000 struct fpga_device *priv = dev_get_drvdata(dev);
1001 unsigned long enable;
1002 int ret;
1003
f7b41276 1004 ret = kstrtoul(buf, 0, &enable);
c186f0e1
IS
1005 if (ret) {
1006 dev_err(priv->dev, "unable to parse enable input\n");
f7b41276 1007 return ret;
c186f0e1
IS
1008 }
1009
6c15d7af 1010 /* protect against concurrent enable/disable */
c186f0e1
IS
1011 ret = mutex_lock_interruptible(&priv->mutex);
1012 if (ret)
1013 return ret;
1014
1015 if (enable)
1016 ret = data_device_enable(priv);
1017 else
1018 ret = data_device_disable(priv);
1019
1020 if (ret) {
1021 dev_err(priv->dev, "device %s failed\n",
1022 enable ? "enable" : "disable");
1023 count = ret;
1024 goto out_unlock;
1025 }
1026
1027out_unlock:
1028 mutex_unlock(&priv->mutex);
1029 return count;
1030}
1031
1032static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1033
1034static struct attribute *data_sysfs_attrs[] = {
1035 &dev_attr_enable.attr,
1036 NULL,
1037};
1038
1039static const struct attribute_group rt_sysfs_attr_group = {
1040 .attrs = data_sysfs_attrs,
1041};
1042
1043/*
1044 * FPGA Realtime Data Character Device
1045 */
1046
1047static int data_open(struct inode *inode, struct file *filp)
1048{
1049 /*
1050 * The miscdevice layer puts our struct miscdevice into the
1051 * filp->private_data field. We use this to find our private
1052 * data and then overwrite it with our own private structure.
1053 */
1054 struct fpga_device *priv = container_of(filp->private_data,
1055 struct fpga_device, miscdev);
1056 struct fpga_reader *reader;
1057 int ret;
1058
1059 /* allocate private data */
1060 reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1061 if (!reader)
1062 return -ENOMEM;
1063
1064 reader->priv = priv;
1065 reader->buf = NULL;
1066
1067 filp->private_data = reader;
1068 ret = nonseekable_open(inode, filp);
1069 if (ret) {
1070 dev_err(priv->dev, "nonseekable-open failed\n");
1071 kfree(reader);
1072 return ret;
1073 }
1074
1075 /*
1076 * success, increase the reference count of the private data structure
1077 * so that it doesn't disappear if the device is unbound
1078 */
1079 kref_get(&priv->ref);
1080 return 0;
1081}
1082
1083static int data_release(struct inode *inode, struct file *filp)
1084{
1085 struct fpga_reader *reader = filp->private_data;
1086 struct fpga_device *priv = reader->priv;
1087
1088 /* free the per-reader structure */
1089 data_free_buffer(reader->buf);
1090 kfree(reader);
1091 filp->private_data = NULL;
1092
1093 /* decrement our reference count to the private data */
1094 kref_put(&priv->ref, fpga_device_release);
1095 return 0;
1096}
1097
1098static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1099 loff_t *f_pos)
1100{
1101 struct fpga_reader *reader = filp->private_data;
1102 struct fpga_device *priv = reader->priv;
1103 struct list_head *used = &priv->used;
75ff85a8 1104 bool drop_buffer = false;
c186f0e1
IS
1105 struct data_buf *dbuf;
1106 size_t avail;
1107 void *data;
1108 int ret;
1109
1110 /* check if we already have a partial buffer */
1111 if (reader->buf) {
1112 dbuf = reader->buf;
1113 goto have_buffer;
1114 }
1115
1116 spin_lock_irq(&priv->lock);
1117
1118 /* Block until there is at least one buffer on the used list */
1119 while (list_empty(used)) {
1120 spin_unlock_irq(&priv->lock);
1121
1122 if (filp->f_flags & O_NONBLOCK)
1123 return -EAGAIN;
1124
1125 ret = wait_event_interruptible(priv->wait, !list_empty(used));
1126 if (ret)
1127 return ret;
1128
1129 spin_lock_irq(&priv->lock);
1130 }
1131
1132 /* Grab the first buffer off of the used list */
1133 dbuf = list_first_entry(used, struct data_buf, entry);
1134 list_del_init(&dbuf->entry);
1135
1136 spin_unlock_irq(&priv->lock);
1137
1138 /* Buffers are always mapped: unmap it */
1139 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1140
1141 /* save the buffer for later */
1142 reader->buf = dbuf;
1143 reader->buf_start = 0;
1144
1145have_buffer:
1146 /* Get the number of bytes available */
1147 avail = dbuf->size - reader->buf_start;
1148 data = dbuf->vb.vaddr + reader->buf_start;
1149
1150 /* Get the number of bytes we can transfer */
1151 count = min(count, avail);
1152
1153 /* Copy the data to the userspace buffer */
1154 if (copy_to_user(ubuf, data, count))
1155 return -EFAULT;
1156
1157 /* Update the amount of available space */
1158 avail -= count;
1159
1160 /*
1161 * If there is still some data available, save the buffer for the
1162 * next userspace call to read() and return
1163 */
1164 if (avail > 0) {
1165 reader->buf_start += count;
1166 reader->buf = dbuf;
1167 return count;
1168 }
1169
1170 /*
1171 * Get the buffer ready to be reused for DMA
1172 *
1173 * If it fails, we pretend that the read never happed and return
1174 * -EFAULT to userspace. The read will be retried.
1175 */
1176 ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1177 if (ret) {
1178 dev_err(priv->dev, "unable to remap buffer for DMA\n");
1179 return -EFAULT;
1180 }
1181
1182 /* Lock against concurrent enable/disable */
1183 spin_lock_irq(&priv->lock);
1184
1185 /* the reader is finished with this buffer */
1186 reader->buf = NULL;
1187
1188 /*
1189 * One of two things has happened, the device is disabled, or the
1190 * device has been reconfigured underneath us. In either case, we
1191 * should just throw away the buffer.
75ff85a8
IS
1192 *
1193 * Lockdep complains if this is done under the spinlock, so we
1194 * handle it during the unlock path.
c186f0e1
IS
1195 */
1196 if (!priv->enabled || dbuf->size != priv->bufsize) {
75ff85a8 1197 drop_buffer = true;
c186f0e1
IS
1198 goto out_unlock;
1199 }
1200
1201 /* The buffer is safe to reuse, so add it back to the free list */
1202 list_add_tail(&dbuf->entry, &priv->free);
1203
1204out_unlock:
1205 spin_unlock_irq(&priv->lock);
75ff85a8
IS
1206
1207 if (drop_buffer) {
1208 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1209 data_free_buffer(dbuf);
1210 }
1211
c186f0e1
IS
1212 return count;
1213}
1214
1215static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1216{
1217 struct fpga_reader *reader = filp->private_data;
1218 struct fpga_device *priv = reader->priv;
1219 unsigned int mask = 0;
1220
1221 poll_wait(filp, &priv->wait, tbl);
1222
1223 if (!list_empty(&priv->used))
1224 mask |= POLLIN | POLLRDNORM;
1225
1226 return mask;
1227}
1228
1229static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1230{
1231 struct fpga_reader *reader = filp->private_data;
1232 struct fpga_device *priv = reader->priv;
1233 unsigned long offset, vsize, psize, addr;
1234
1235 /* VMA properties */
1236 offset = vma->vm_pgoff << PAGE_SHIFT;
1237 vsize = vma->vm_end - vma->vm_start;
1238 psize = priv->phys_size - offset;
1239 addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1240
1241 /* Check against the FPGA region's physical memory size */
1242 if (vsize > psize) {
1243 dev_err(priv->dev, "requested mmap mapping too large\n");
1244 return -EINVAL;
1245 }
1246
c186f0e1
IS
1247 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1248
1249 return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1250 vma->vm_page_prot);
1251}
1252
1253static const struct file_operations data_fops = {
1254 .owner = THIS_MODULE,
1255 .open = data_open,
1256 .release = data_release,
1257 .read = data_read,
1258 .poll = data_poll,
1259 .mmap = data_mmap,
1260 .llseek = no_llseek,
1261};
1262
1263/*
1264 * OpenFirmware Device Subsystem
1265 */
1266
1267static bool dma_filter(struct dma_chan *chan, void *data)
1268{
1269 /*
1270 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1271 *
1272 * This probably won't survive an unload/load cycle of the Freescale
1273 * DMAEngine driver, but that won't be a problem
1274 */
1275 if (chan->chan_id == 0 && chan->device->dev_id == 0)
1276 return false;
1277
1278 return true;
1279}
1280
49334020 1281static int data_of_probe(struct platform_device *op)
c186f0e1
IS
1282{
1283 struct device_node *of_node = op->dev.of_node;
1284 struct device *this_device;
1285 struct fpga_device *priv;
1286 struct resource res;
1287 dma_cap_mask_t mask;
1288 int ret;
1289
1290 /* Allocate private data */
1291 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1292 if (!priv) {
1293 dev_err(&op->dev, "Unable to allocate device private data\n");
1294 ret = -ENOMEM;
1295 goto out_return;
1296 }
1297
9093ca88 1298 platform_set_drvdata(op, priv);
c186f0e1
IS
1299 priv->dev = &op->dev;
1300 kref_init(&priv->ref);
1301 mutex_init(&priv->mutex);
1302
1303 dev_set_drvdata(priv->dev, priv);
1304 spin_lock_init(&priv->lock);
1305 INIT_LIST_HEAD(&priv->free);
1306 INIT_LIST_HEAD(&priv->used);
1307 init_waitqueue_head(&priv->wait);
1308
1309 /* Setup the misc device */
1310 priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1311 priv->miscdev.name = drv_name;
1312 priv->miscdev.fops = &data_fops;
1313
1314 /* Get the physical address of the FPGA registers */
1315 ret = of_address_to_resource(of_node, 0, &res);
1316 if (ret) {
1317 dev_err(&op->dev, "Unable to find FPGA physical address\n");
1318 ret = -ENODEV;
1319 goto out_free_priv;
1320 }
1321
1322 priv->phys_addr = res.start;
1323 priv->phys_size = resource_size(&res);
1324
1325 /* ioremap the registers for use */
1326 priv->regs = of_iomap(of_node, 0);
1327 if (!priv->regs) {
1328 dev_err(&op->dev, "Unable to ioremap registers\n");
1329 ret = -ENOMEM;
1330 goto out_free_priv;
1331 }
1332
1333 dma_cap_zero(mask);
1334 dma_cap_set(DMA_MEMCPY, mask);
1335 dma_cap_set(DMA_INTERRUPT, mask);
1336 dma_cap_set(DMA_SLAVE, mask);
1337 dma_cap_set(DMA_SG, mask);
1338
1339 /* Request a DMA channel */
1340 priv->chan = dma_request_channel(mask, dma_filter, NULL);
1341 if (!priv->chan) {
1342 dev_err(&op->dev, "Unable to request DMA channel\n");
1343 ret = -ENODEV;
1344 goto out_unmap_regs;
1345 }
1346
1347 /* Find the correct IRQ number */
1348 priv->irq = irq_of_parse_and_map(of_node, 0);
1349 if (priv->irq == NO_IRQ) {
1350 dev_err(&op->dev, "Unable to find IRQ line\n");
1351 ret = -ENODEV;
1352 goto out_release_dma;
1353 }
1354
1355 /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1356 iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1357
1358 /* Register the miscdevice */
1359 ret = misc_register(&priv->miscdev);
1360 if (ret) {
1361 dev_err(&op->dev, "Unable to register miscdevice\n");
1362 goto out_irq_dispose_mapping;
1363 }
1364
1365 /* Create the debugfs files */
1366 ret = data_debugfs_init(priv);
1367 if (ret) {
1368 dev_err(&op->dev, "Unable to create debugfs files\n");
1369 goto out_misc_deregister;
1370 }
1371
1372 /* Create the sysfs files */
1373 this_device = priv->miscdev.this_device;
1374 dev_set_drvdata(this_device, priv);
1375 ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1376 if (ret) {
1377 dev_err(&op->dev, "Unable to create sysfs files\n");
1378 goto out_data_debugfs_exit;
1379 }
1380
1381 dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1382 return 0;
1383
1384out_data_debugfs_exit:
1385 data_debugfs_exit(priv);
1386out_misc_deregister:
1387 misc_deregister(&priv->miscdev);
1388out_irq_dispose_mapping:
1389 irq_dispose_mapping(priv->irq);
1390out_release_dma:
1391 dma_release_channel(priv->chan);
1392out_unmap_regs:
1393 iounmap(priv->regs);
1394out_free_priv:
1395 kref_put(&priv->ref, fpga_device_release);
1396out_return:
1397 return ret;
1398}
1399
1400static int data_of_remove(struct platform_device *op)
1401{
9093ca88 1402 struct fpga_device *priv = platform_get_drvdata(op);
c186f0e1
IS
1403 struct device *this_device = priv->miscdev.this_device;
1404
1405 /* remove all sysfs files, now the device cannot be re-enabled */
1406 sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1407
1408 /* remove all debugfs files */
1409 data_debugfs_exit(priv);
1410
1411 /* disable the device from generating data */
1412 data_device_disable(priv);
1413
1414 /* remove the character device to stop new readers from appearing */
1415 misc_deregister(&priv->miscdev);
1416
1417 /* cleanup everything not needed by readers */
1418 irq_dispose_mapping(priv->irq);
1419 dma_release_channel(priv->chan);
1420 iounmap(priv->regs);
1421
1422 /* release our reference */
1423 kref_put(&priv->ref, fpga_device_release);
1424 return 0;
1425}
1426
1427static struct of_device_id data_of_match[] = {
1428 { .compatible = "carma,carma-fpga", },
1429 {},
1430};
1431
49334020 1432static struct platform_driver data_of_driver = {
c186f0e1
IS
1433 .probe = data_of_probe,
1434 .remove = data_of_remove,
1435 .driver = {
1436 .name = drv_name,
1437 .of_match_table = data_of_match,
1438 .owner = THIS_MODULE,
1439 },
1440};
1441
b00e126f 1442module_platform_driver(data_of_driver);
c186f0e1
IS
1443
1444MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1445MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1446MODULE_LICENSE("GPL");