include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[linux-2.6-block.git] / drivers / mfd / menelaus.c
CommitLineData
0c4a59fe
TL
1/*
2 * Copyright (C) 2004 Texas Instruments, Inc.
3 *
4 * Some parts based tps65010.c:
5 * Copyright (C) 2004 Texas Instruments and
6 * Copyright (C) 2004-2005 David Brownell
7 *
8 * Some parts based on tlv320aic24.c:
9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10 *
11 * Changes for interrupt handling and clean-up by
12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13 * Cleanup and generalized support for voltage setting by
14 * Juha Yrjola
15 * Added support for controlling VCORE and regulator sleep states,
16 * Amit Kucheria <amit.kucheria@nokia.com>
17 * Copyright (C) 2005, 2006 Nokia Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 */
33
34#include <linux/module.h>
35#include <linux/i2c.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/mutex.h>
39#include <linux/workqueue.h>
40#include <linux/delay.h>
41#include <linux/rtc.h>
42#include <linux/bcd.h>
5a0e3ad6 43#include <linux/slab.h>
0c4a59fe 44
0c4a59fe
TL
45#include <asm/mach/irq.h>
46
a09e64fb 47#include <mach/gpio.h>
ce491cf8 48#include <plat/menelaus.h>
0c4a59fe
TL
49
50#define DRIVER_NAME "menelaus"
51
0c4a59fe
TL
52#define MENELAUS_I2C_ADDRESS 0x72
53
54#define MENELAUS_REV 0x01
55#define MENELAUS_VCORE_CTRL1 0x02
56#define MENELAUS_VCORE_CTRL2 0x03
57#define MENELAUS_VCORE_CTRL3 0x04
58#define MENELAUS_VCORE_CTRL4 0x05
59#define MENELAUS_VCORE_CTRL5 0x06
60#define MENELAUS_DCDC_CTRL1 0x07
61#define MENELAUS_DCDC_CTRL2 0x08
62#define MENELAUS_DCDC_CTRL3 0x09
63#define MENELAUS_LDO_CTRL1 0x0A
64#define MENELAUS_LDO_CTRL2 0x0B
65#define MENELAUS_LDO_CTRL3 0x0C
66#define MENELAUS_LDO_CTRL4 0x0D
67#define MENELAUS_LDO_CTRL5 0x0E
68#define MENELAUS_LDO_CTRL6 0x0F
69#define MENELAUS_LDO_CTRL7 0x10
70#define MENELAUS_LDO_CTRL8 0x11
71#define MENELAUS_SLEEP_CTRL1 0x12
72#define MENELAUS_SLEEP_CTRL2 0x13
73#define MENELAUS_DEVICE_OFF 0x14
74#define MENELAUS_OSC_CTRL 0x15
75#define MENELAUS_DETECT_CTRL 0x16
76#define MENELAUS_INT_MASK1 0x17
77#define MENELAUS_INT_MASK2 0x18
78#define MENELAUS_INT_STATUS1 0x19
79#define MENELAUS_INT_STATUS2 0x1A
80#define MENELAUS_INT_ACK1 0x1B
81#define MENELAUS_INT_ACK2 0x1C
82#define MENELAUS_GPIO_CTRL 0x1D
83#define MENELAUS_GPIO_IN 0x1E
84#define MENELAUS_GPIO_OUT 0x1F
85#define MENELAUS_BBSMS 0x20
86#define MENELAUS_RTC_CTRL 0x21
87#define MENELAUS_RTC_UPDATE 0x22
88#define MENELAUS_RTC_SEC 0x23
89#define MENELAUS_RTC_MIN 0x24
90#define MENELAUS_RTC_HR 0x25
91#define MENELAUS_RTC_DAY 0x26
92#define MENELAUS_RTC_MON 0x27
93#define MENELAUS_RTC_YR 0x28
94#define MENELAUS_RTC_WKDAY 0x29
95#define MENELAUS_RTC_AL_SEC 0x2A
96#define MENELAUS_RTC_AL_MIN 0x2B
97#define MENELAUS_RTC_AL_HR 0x2C
98#define MENELAUS_RTC_AL_DAY 0x2D
99#define MENELAUS_RTC_AL_MON 0x2E
100#define MENELAUS_RTC_AL_YR 0x2F
101#define MENELAUS_RTC_COMP_MSB 0x30
102#define MENELAUS_RTC_COMP_LSB 0x31
103#define MENELAUS_S1_PULL_EN 0x32
104#define MENELAUS_S1_PULL_DIR 0x33
105#define MENELAUS_S2_PULL_EN 0x34
106#define MENELAUS_S2_PULL_DIR 0x35
107#define MENELAUS_MCT_CTRL1 0x36
108#define MENELAUS_MCT_CTRL2 0x37
109#define MENELAUS_MCT_CTRL3 0x38
110#define MENELAUS_MCT_PIN_ST 0x39
111#define MENELAUS_DEBOUNCE1 0x3A
112
113#define IH_MENELAUS_IRQS 12
114#define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
115#define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
116#define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
117#define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
118#define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
119#define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
120#define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
121#define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
122#define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
123#define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
124#define MENELAUS_RTCERR_IRQ 10 /* RTC error */
125#define MENELAUS_PSHBTN_IRQ 11 /* Push button */
126#define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
127#define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
128#define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
129#define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
130
131static void menelaus_work(struct work_struct *_menelaus);
132
133struct menelaus_chip {
134 struct mutex lock;
135 struct i2c_client *client;
136 struct work_struct work;
137#ifdef CONFIG_RTC_DRV_TWL92330
138 struct rtc_device *rtc;
139 u8 rtc_control;
140 unsigned uie:1;
141#endif
142 unsigned vcore_hw_mode:1;
143 u8 mask1, mask2;
144 void (*handlers[16])(struct menelaus_chip *);
145 void (*mmc_callback)(void *data, u8 mask);
146 void *mmc_callback_data;
147};
148
149static struct menelaus_chip *the_menelaus;
150
151static int menelaus_write_reg(int reg, u8 value)
152{
153 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
154
155 if (val < 0) {
1f7c8234 156 pr_err(DRIVER_NAME ": write error");
0c4a59fe
TL
157 return val;
158 }
159
160 return 0;
161}
162
163static int menelaus_read_reg(int reg)
164{
165 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
166
167 if (val < 0)
1f7c8234 168 pr_err(DRIVER_NAME ": read error");
0c4a59fe
TL
169
170 return val;
171}
172
173static int menelaus_enable_irq(int irq)
174{
175 if (irq > 7) {
176 irq -= 8;
177 the_menelaus->mask2 &= ~(1 << irq);
178 return menelaus_write_reg(MENELAUS_INT_MASK2,
179 the_menelaus->mask2);
180 } else {
181 the_menelaus->mask1 &= ~(1 << irq);
182 return menelaus_write_reg(MENELAUS_INT_MASK1,
183 the_menelaus->mask1);
184 }
185}
186
187static int menelaus_disable_irq(int irq)
188{
189 if (irq > 7) {
190 irq -= 8;
191 the_menelaus->mask2 |= (1 << irq);
192 return menelaus_write_reg(MENELAUS_INT_MASK2,
193 the_menelaus->mask2);
194 } else {
195 the_menelaus->mask1 |= (1 << irq);
196 return menelaus_write_reg(MENELAUS_INT_MASK1,
197 the_menelaus->mask1);
198 }
199}
200
201static int menelaus_ack_irq(int irq)
202{
203 if (irq > 7)
204 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
205 else
206 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
207}
208
209/* Adds a handler for an interrupt. Does not run in interrupt context */
210static int menelaus_add_irq_work(int irq,
211 void (*handler)(struct menelaus_chip *))
212{
213 int ret = 0;
214
215 mutex_lock(&the_menelaus->lock);
216 the_menelaus->handlers[irq] = handler;
217 ret = menelaus_enable_irq(irq);
218 mutex_unlock(&the_menelaus->lock);
219
220 return ret;
221}
222
223/* Removes handler for an interrupt */
224static int menelaus_remove_irq_work(int irq)
225{
226 int ret = 0;
227
228 mutex_lock(&the_menelaus->lock);
229 ret = menelaus_disable_irq(irq);
230 the_menelaus->handlers[irq] = NULL;
231 mutex_unlock(&the_menelaus->lock);
232
233 return ret;
234}
235
236/*
237 * Gets scheduled when a card detect interrupt happens. Note that in some cases
238 * this line is wired to card cover switch rather than the card detect switch
239 * in each slot. In this case the cards are not seen by menelaus.
240 * FIXME: Add handling for D1 too
241 */
242static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
243{
244 int reg;
245 unsigned char card_mask = 0;
246
247 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
248 if (reg < 0)
249 return;
250
251 if (!(reg & 0x1))
252 card_mask |= (1 << 0);
253
254 if (!(reg & 0x2))
255 card_mask |= (1 << 1);
256
257 if (menelaus_hw->mmc_callback)
258 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
259 card_mask);
260}
261
262/*
263 * Toggles the MMC slots between open-drain and push-pull mode.
264 */
265int menelaus_set_mmc_opendrain(int slot, int enable)
266{
267 int ret, val;
268
269 if (slot != 1 && slot != 2)
270 return -EINVAL;
271 mutex_lock(&the_menelaus->lock);
272 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
273 if (ret < 0) {
274 mutex_unlock(&the_menelaus->lock);
275 return ret;
276 }
277 val = ret;
278 if (slot == 1) {
279 if (enable)
280 val |= 1 << 2;
281 else
282 val &= ~(1 << 2);
283 } else {
284 if (enable)
285 val |= 1 << 3;
286 else
287 val &= ~(1 << 3);
288 }
289 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
290 mutex_unlock(&the_menelaus->lock);
291
292 return ret;
293}
294EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
295
296int menelaus_set_slot_sel(int enable)
297{
298 int ret;
299
300 mutex_lock(&the_menelaus->lock);
301 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
302 if (ret < 0)
303 goto out;
304 ret |= 0x02;
305 if (enable)
306 ret |= 1 << 5;
307 else
308 ret &= ~(1 << 5);
309 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
310out:
311 mutex_unlock(&the_menelaus->lock);
312 return ret;
313}
314EXPORT_SYMBOL(menelaus_set_slot_sel);
315
316int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
317{
318 int ret, val;
319
320 if (slot != 1 && slot != 2)
321 return -EINVAL;
322 if (power >= 3)
323 return -EINVAL;
324
325 mutex_lock(&the_menelaus->lock);
326
327 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
328 if (ret < 0)
329 goto out;
330 val = ret;
331 if (slot == 1) {
332 if (cd_en)
333 val |= (1 << 4) | (1 << 6);
334 else
335 val &= ~((1 << 4) | (1 << 6));
336 } else {
337 if (cd_en)
338 val |= (1 << 5) | (1 << 7);
339 else
340 val &= ~((1 << 5) | (1 << 7));
341 }
342 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
343 if (ret < 0)
344 goto out;
345
346 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
347 if (ret < 0)
348 goto out;
349 val = ret;
350 if (slot == 1) {
351 if (enable)
352 val |= 1 << 0;
353 else
354 val &= ~(1 << 0);
355 } else {
356 int b;
357
358 if (enable)
359 ret |= 1 << 1;
360 else
361 ret &= ~(1 << 1);
362 b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
363 b &= ~0x03;
364 b |= power;
365 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
366 if (ret < 0)
367 goto out;
368 }
369 /* Disable autonomous shutdown */
370 val &= ~(0x03 << 2);
371 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
372out:
373 mutex_unlock(&the_menelaus->lock);
374 return ret;
375}
376EXPORT_SYMBOL(menelaus_set_mmc_slot);
377
378int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
379 void *data)
380{
381 int ret = 0;
382
383 the_menelaus->mmc_callback_data = data;
384 the_menelaus->mmc_callback = callback;
385 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
386 menelaus_mmc_cd_work);
387 if (ret < 0)
388 return ret;
389 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
390 menelaus_mmc_cd_work);
391 if (ret < 0)
392 return ret;
393 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
394 menelaus_mmc_cd_work);
395 if (ret < 0)
396 return ret;
397 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
398 menelaus_mmc_cd_work);
399
400 return ret;
401}
402EXPORT_SYMBOL(menelaus_register_mmc_callback);
403
404void menelaus_unregister_mmc_callback(void)
405{
406 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
407 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
408 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
409 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
410
411 the_menelaus->mmc_callback = NULL;
412 the_menelaus->mmc_callback_data = 0;
413}
414EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
415
416struct menelaus_vtg {
417 const char *name;
418 u8 vtg_reg;
419 u8 vtg_shift;
420 u8 vtg_bits;
421 u8 mode_reg;
422};
423
424struct menelaus_vtg_value {
425 u16 vtg;
426 u16 val;
427};
428
429static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
430 int vtg_val, int mode)
431{
432 int val, ret;
433 struct i2c_client *c = the_menelaus->client;
434
435 mutex_lock(&the_menelaus->lock);
436 if (vtg == 0)
437 goto set_voltage;
438
439 ret = menelaus_read_reg(vtg->vtg_reg);
440 if (ret < 0)
441 goto out;
442 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
443 val |= vtg_val << vtg->vtg_shift;
444
445 dev_dbg(&c->dev, "Setting voltage '%s'"
446 "to %d mV (reg 0x%02x, val 0x%02x)\n",
447 vtg->name, mV, vtg->vtg_reg, val);
448
449 ret = menelaus_write_reg(vtg->vtg_reg, val);
450 if (ret < 0)
451 goto out;
452set_voltage:
453 ret = menelaus_write_reg(vtg->mode_reg, mode);
454out:
455 mutex_unlock(&the_menelaus->lock);
456 if (ret == 0) {
457 /* Wait for voltage to stabilize */
458 msleep(1);
459 }
460 return ret;
461}
462
463static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
464 int n)
465{
466 int i;
467
468 for (i = 0; i < n; i++, tbl++)
469 if (tbl->vtg == vtg)
470 return tbl->val;
471 return -EINVAL;
472}
473
474/*
475 * Vcore can be programmed in two ways:
476 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
477 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
478 * and VCORE_CTRL4
479 *
480 * Call correct 'set' function accordingly
481 */
482
483static const struct menelaus_vtg_value vcore_values[] = {
484 { 1000, 0 },
485 { 1025, 1 },
486 { 1050, 2 },
487 { 1075, 3 },
488 { 1100, 4 },
489 { 1125, 5 },
490 { 1150, 6 },
491 { 1175, 7 },
492 { 1200, 8 },
493 { 1225, 9 },
494 { 1250, 10 },
495 { 1275, 11 },
496 { 1300, 12 },
497 { 1325, 13 },
498 { 1350, 14 },
499 { 1375, 15 },
500 { 1400, 16 },
501 { 1425, 17 },
502 { 1450, 18 },
503};
504
505int menelaus_set_vcore_sw(unsigned int mV)
506{
507 int val, ret;
508 struct i2c_client *c = the_menelaus->client;
509
510 val = menelaus_get_vtg_value(mV, vcore_values,
511 ARRAY_SIZE(vcore_values));
512 if (val < 0)
513 return -EINVAL;
514
515 dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
516
517 /* Set SW mode and the voltage in one go. */
518 mutex_lock(&the_menelaus->lock);
519 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
520 if (ret == 0)
521 the_menelaus->vcore_hw_mode = 0;
522 mutex_unlock(&the_menelaus->lock);
523 msleep(1);
524
525 return ret;
526}
527
528int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
529{
530 int fval, rval, val, ret;
531 struct i2c_client *c = the_menelaus->client;
532
533 rval = menelaus_get_vtg_value(roof_mV, vcore_values,
534 ARRAY_SIZE(vcore_values));
535 if (rval < 0)
536 return -EINVAL;
537 fval = menelaus_get_vtg_value(floor_mV, vcore_values,
538 ARRAY_SIZE(vcore_values));
539 if (fval < 0)
540 return -EINVAL;
541
542 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
543 floor_mV, roof_mV);
544
545 mutex_lock(&the_menelaus->lock);
546 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
547 if (ret < 0)
548 goto out;
549 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
550 if (ret < 0)
551 goto out;
552 if (!the_menelaus->vcore_hw_mode) {
553 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
554 /* HW mode, turn OFF byte comparator */
555 val |= ((1 << 7) | (1 << 5));
556 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
557 the_menelaus->vcore_hw_mode = 1;
558 }
559 msleep(1);
560out:
561 mutex_unlock(&the_menelaus->lock);
562 return ret;
563}
564
565static const struct menelaus_vtg vmem_vtg = {
566 .name = "VMEM",
567 .vtg_reg = MENELAUS_LDO_CTRL1,
568 .vtg_shift = 0,
569 .vtg_bits = 2,
570 .mode_reg = MENELAUS_LDO_CTRL3,
571};
572
573static const struct menelaus_vtg_value vmem_values[] = {
574 { 1500, 0 },
575 { 1800, 1 },
576 { 1900, 2 },
577 { 2500, 3 },
578};
579
580int menelaus_set_vmem(unsigned int mV)
581{
582 int val;
583
584 if (mV == 0)
585 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
586
587 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
588 if (val < 0)
589 return -EINVAL;
590 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
591}
592EXPORT_SYMBOL(menelaus_set_vmem);
593
594static const struct menelaus_vtg vio_vtg = {
595 .name = "VIO",
596 .vtg_reg = MENELAUS_LDO_CTRL1,
597 .vtg_shift = 2,
598 .vtg_bits = 2,
599 .mode_reg = MENELAUS_LDO_CTRL4,
600};
601
602static const struct menelaus_vtg_value vio_values[] = {
603 { 1500, 0 },
604 { 1800, 1 },
605 { 2500, 2 },
606 { 2800, 3 },
607};
608
609int menelaus_set_vio(unsigned int mV)
610{
611 int val;
612
613 if (mV == 0)
614 return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
615
616 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
617 if (val < 0)
618 return -EINVAL;
619 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
620}
621EXPORT_SYMBOL(menelaus_set_vio);
622
623static const struct menelaus_vtg_value vdcdc_values[] = {
624 { 1500, 0 },
625 { 1800, 1 },
626 { 2000, 2 },
627 { 2200, 3 },
628 { 2400, 4 },
629 { 2800, 5 },
630 { 3000, 6 },
631 { 3300, 7 },
632};
633
634static const struct menelaus_vtg vdcdc2_vtg = {
635 .name = "VDCDC2",
636 .vtg_reg = MENELAUS_DCDC_CTRL1,
637 .vtg_shift = 0,
638 .vtg_bits = 3,
639 .mode_reg = MENELAUS_DCDC_CTRL2,
640};
641
642static const struct menelaus_vtg vdcdc3_vtg = {
643 .name = "VDCDC3",
644 .vtg_reg = MENELAUS_DCDC_CTRL1,
645 .vtg_shift = 3,
646 .vtg_bits = 3,
647 .mode_reg = MENELAUS_DCDC_CTRL3,
648};
649
650int menelaus_set_vdcdc(int dcdc, unsigned int mV)
651{
652 const struct menelaus_vtg *vtg;
653 int val;
654
655 if (dcdc != 2 && dcdc != 3)
656 return -EINVAL;
657 if (dcdc == 2)
658 vtg = &vdcdc2_vtg;
659 else
660 vtg = &vdcdc3_vtg;
661
662 if (mV == 0)
663 return menelaus_set_voltage(vtg, 0, 0, 0);
664
665 val = menelaus_get_vtg_value(mV, vdcdc_values,
666 ARRAY_SIZE(vdcdc_values));
667 if (val < 0)
668 return -EINVAL;
669 return menelaus_set_voltage(vtg, mV, val, 0x03);
670}
671
672static const struct menelaus_vtg_value vmmc_values[] = {
673 { 1850, 0 },
674 { 2800, 1 },
675 { 3000, 2 },
676 { 3100, 3 },
677};
678
679static const struct menelaus_vtg vmmc_vtg = {
680 .name = "VMMC",
681 .vtg_reg = MENELAUS_LDO_CTRL1,
682 .vtg_shift = 6,
683 .vtg_bits = 2,
684 .mode_reg = MENELAUS_LDO_CTRL7,
685};
686
687int menelaus_set_vmmc(unsigned int mV)
688{
689 int val;
690
691 if (mV == 0)
692 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
693
694 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
695 if (val < 0)
696 return -EINVAL;
697 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
698}
699EXPORT_SYMBOL(menelaus_set_vmmc);
700
701
702static const struct menelaus_vtg_value vaux_values[] = {
703 { 1500, 0 },
704 { 1800, 1 },
705 { 2500, 2 },
706 { 2800, 3 },
707};
708
709static const struct menelaus_vtg vaux_vtg = {
710 .name = "VAUX",
711 .vtg_reg = MENELAUS_LDO_CTRL1,
712 .vtg_shift = 4,
713 .vtg_bits = 2,
714 .mode_reg = MENELAUS_LDO_CTRL6,
715};
716
717int menelaus_set_vaux(unsigned int mV)
718{
719 int val;
720
721 if (mV == 0)
722 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
723
724 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
725 if (val < 0)
726 return -EINVAL;
727 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
728}
729EXPORT_SYMBOL(menelaus_set_vaux);
730
731int menelaus_get_slot_pin_states(void)
732{
733 return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
734}
735EXPORT_SYMBOL(menelaus_get_slot_pin_states);
736
737int menelaus_set_regulator_sleep(int enable, u32 val)
738{
739 int t, ret;
740 struct i2c_client *c = the_menelaus->client;
741
742 mutex_lock(&the_menelaus->lock);
743 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
744 if (ret < 0)
745 goto out;
746
747 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
748
749 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
750 if (ret < 0)
751 goto out;
752 t = ((1 << 6) | 0x04);
753 if (enable)
754 ret |= t;
755 else
756 ret &= ~t;
757 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
758out:
759 mutex_unlock(&the_menelaus->lock);
760 return ret;
761}
762
763/*-----------------------------------------------------------------------*/
764
765/* Handles Menelaus interrupts. Does not run in interrupt context */
766static void menelaus_work(struct work_struct *_menelaus)
767{
768 struct menelaus_chip *menelaus =
769 container_of(_menelaus, struct menelaus_chip, work);
770 void (*handler)(struct menelaus_chip *menelaus);
771
772 while (1) {
773 unsigned isr;
774
775 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
776 & ~menelaus->mask2) << 8;
777 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
778 & ~menelaus->mask1;
779 if (!isr)
780 break;
781
782 while (isr) {
783 int irq = fls(isr) - 1;
784 isr &= ~(1 << irq);
785
786 mutex_lock(&menelaus->lock);
787 menelaus_disable_irq(irq);
788 menelaus_ack_irq(irq);
789 handler = menelaus->handlers[irq];
790 if (handler)
791 handler(menelaus);
792 menelaus_enable_irq(irq);
793 mutex_unlock(&menelaus->lock);
794 }
795 }
796 enable_irq(menelaus->client->irq);
797}
798
799/*
800 * We cannot use I2C in interrupt context, so we just schedule work.
801 */
802static irqreturn_t menelaus_irq(int irq, void *_menelaus)
803{
804 struct menelaus_chip *menelaus = _menelaus;
805
806 disable_irq_nosync(irq);
807 (void)schedule_work(&menelaus->work);
808
809 return IRQ_HANDLED;
810}
811
812/*-----------------------------------------------------------------------*/
813
814/*
815 * The RTC needs to be set once, then it runs on backup battery power.
816 * It supports alarms, including system wake alarms (from some modes);
817 * and 1/second IRQs if requested.
818 */
819#ifdef CONFIG_RTC_DRV_TWL92330
820
821#define RTC_CTRL_RTC_EN (1 << 0)
822#define RTC_CTRL_AL_EN (1 << 1)
823#define RTC_CTRL_MODE12 (1 << 2)
824#define RTC_CTRL_EVERY_MASK (3 << 3)
825#define RTC_CTRL_EVERY_SEC (0 << 3)
826#define RTC_CTRL_EVERY_MIN (1 << 3)
827#define RTC_CTRL_EVERY_HR (2 << 3)
828#define RTC_CTRL_EVERY_DAY (3 << 3)
829
830#define RTC_UPDATE_EVERY 0x08
831
832#define RTC_HR_PM (1 << 7)
833
834static void menelaus_to_time(char *regs, struct rtc_time *t)
835{
e4d33969
AB
836 t->tm_sec = bcd2bin(regs[0]);
837 t->tm_min = bcd2bin(regs[1]);
0c4a59fe 838 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
e4d33969 839 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
0c4a59fe
TL
840 if (regs[2] & RTC_HR_PM)
841 t->tm_hour += 12;
842 } else
e4d33969
AB
843 t->tm_hour = bcd2bin(regs[2] & 0x3f);
844 t->tm_mday = bcd2bin(regs[3]);
845 t->tm_mon = bcd2bin(regs[4]) - 1;
846 t->tm_year = bcd2bin(regs[5]) + 100;
0c4a59fe
TL
847}
848
849static int time_to_menelaus(struct rtc_time *t, int regnum)
850{
851 int hour, status;
852
e4d33969 853 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
0c4a59fe
TL
854 if (status < 0)
855 goto fail;
856
e4d33969 857 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
0c4a59fe
TL
858 if (status < 0)
859 goto fail;
860
861 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
862 hour = t->tm_hour + 1;
863 if (hour > 12)
e4d33969 864 hour = RTC_HR_PM | bin2bcd(hour - 12);
0c4a59fe 865 else
e4d33969 866 hour = bin2bcd(hour);
0c4a59fe 867 } else
e4d33969 868 hour = bin2bcd(t->tm_hour);
0c4a59fe
TL
869 status = menelaus_write_reg(regnum++, hour);
870 if (status < 0)
871 goto fail;
872
e4d33969 873 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
0c4a59fe
TL
874 if (status < 0)
875 goto fail;
876
e4d33969 877 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
0c4a59fe
TL
878 if (status < 0)
879 goto fail;
880
e4d33969 881 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
0c4a59fe
TL
882 if (status < 0)
883 goto fail;
884
885 return 0;
886fail:
887 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
888 --regnum, status);
889 return status;
890}
891
892static int menelaus_read_time(struct device *dev, struct rtc_time *t)
893{
894 struct i2c_msg msg[2];
895 char regs[7];
896 int status;
897
898 /* block read date and time registers */
899 regs[0] = MENELAUS_RTC_SEC;
900
901 msg[0].addr = MENELAUS_I2C_ADDRESS;
902 msg[0].flags = 0;
903 msg[0].len = 1;
904 msg[0].buf = regs;
905
906 msg[1].addr = MENELAUS_I2C_ADDRESS;
907 msg[1].flags = I2C_M_RD;
908 msg[1].len = sizeof(regs);
909 msg[1].buf = regs;
910
911 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
912 if (status != 2) {
913 dev_err(dev, "%s error %d\n", "read", status);
914 return -EIO;
915 }
916
917 menelaus_to_time(regs, t);
e4d33969 918 t->tm_wday = bcd2bin(regs[6]);
0c4a59fe
TL
919
920 return 0;
921}
922
923static int menelaus_set_time(struct device *dev, struct rtc_time *t)
924{
925 int status;
926
927 /* write date and time registers */
928 status = time_to_menelaus(t, MENELAUS_RTC_SEC);
929 if (status < 0)
930 return status;
e4d33969 931 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
0c4a59fe 932 if (status < 0) {
c1147cc6 933 dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
0c4a59fe
TL
934 "err %d\n", MENELAUS_RTC_WKDAY, status);
935 return status;
936 }
937
938 /* now commit the write */
939 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
940 if (status < 0)
941 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
942 status);
943
944 return 0;
945}
946
947static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
948{
949 struct i2c_msg msg[2];
950 char regs[6];
951 int status;
952
953 /* block read alarm registers */
954 regs[0] = MENELAUS_RTC_AL_SEC;
955
956 msg[0].addr = MENELAUS_I2C_ADDRESS;
957 msg[0].flags = 0;
958 msg[0].len = 1;
959 msg[0].buf = regs;
960
961 msg[1].addr = MENELAUS_I2C_ADDRESS;
962 msg[1].flags = I2C_M_RD;
963 msg[1].len = sizeof(regs);
964 msg[1].buf = regs;
965
966 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
967 if (status != 2) {
968 dev_err(dev, "%s error %d\n", "alarm read", status);
969 return -EIO;
970 }
971
972 menelaus_to_time(regs, &w->time);
973
974 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
975
976 /* NOTE we *could* check if actually pending... */
977 w->pending = 0;
978
979 return 0;
980}
981
982static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
983{
984 int status;
985
986 if (the_menelaus->client->irq <= 0 && w->enabled)
987 return -ENODEV;
988
989 /* clear previous alarm enable */
990 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
991 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
992 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
993 the_menelaus->rtc_control);
994 if (status < 0)
995 return status;
996 }
997
998 /* write alarm registers */
999 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
1000 if (status < 0)
1001 return status;
1002
1003 /* enable alarm if requested */
1004 if (w->enabled) {
1005 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1006 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1007 the_menelaus->rtc_control);
1008 }
1009
1010 return status;
1011}
1012
1013#ifdef CONFIG_RTC_INTF_DEV
1014
1015static void menelaus_rtc_update_work(struct menelaus_chip *m)
1016{
1017 /* report 1/sec update */
1018 local_irq_disable();
1019 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1020 local_irq_enable();
1021}
1022
1023static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1024{
1025 int status;
1026
1027 if (the_menelaus->client->irq <= 0)
1028 return -ENOIOCTLCMD;
1029
1030 switch (cmd) {
1031 /* alarm IRQ */
1032 case RTC_AIE_ON:
1033 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1034 return 0;
1035 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1036 break;
1037 case RTC_AIE_OFF:
1038 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1039 return 0;
1040 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1041 break;
1042 /* 1/second "update" IRQ */
1043 case RTC_UIE_ON:
1044 if (the_menelaus->uie)
1045 return 0;
1046 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1047 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1048 menelaus_rtc_update_work);
1049 if (status == 0)
1050 the_menelaus->uie = 1;
1051 return status;
1052 case RTC_UIE_OFF:
1053 if (!the_menelaus->uie)
1054 return 0;
1055 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1056 if (status == 0)
1057 the_menelaus->uie = 0;
1058 return status;
1059 default:
1060 return -ENOIOCTLCMD;
1061 }
1062 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1063}
1064
1065#else
1066#define menelaus_ioctl NULL
1067#endif
1068
1069/* REVISIT no compensation register support ... */
1070
1071static const struct rtc_class_ops menelaus_rtc_ops = {
1072 .ioctl = menelaus_ioctl,
1073 .read_time = menelaus_read_time,
1074 .set_time = menelaus_set_time,
1075 .read_alarm = menelaus_read_alarm,
1076 .set_alarm = menelaus_set_alarm,
1077};
1078
1079static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1080{
1081 /* report alarm */
1082 local_irq_disable();
1083 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1084 local_irq_enable();
1085
1086 /* then disable it; alarms are oneshot */
1087 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1088 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1089}
1090
1091static inline void menelaus_rtc_init(struct menelaus_chip *m)
1092{
1093 int alarm = (m->client->irq > 0);
1094
1095 /* assume 32KDETEN pin is pulled high */
1096 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1097 dev_dbg(&m->client->dev, "no 32k oscillator\n");
1098 return;
1099 }
1100
1101 /* support RTC alarm; it can issue wakeups */
1102 if (alarm) {
1103 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1104 menelaus_rtc_alarm_work) < 0) {
1105 dev_err(&m->client->dev, "can't handle RTC alarm\n");
1106 return;
1107 }
1108 device_init_wakeup(&m->client->dev, 1);
1109 }
1110
1111 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1112 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1113 if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1114 || (m->rtc_control & RTC_CTRL_AL_EN)
1115 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1116 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1117 dev_warn(&m->client->dev, "rtc clock needs setting\n");
1118 m->rtc_control |= RTC_CTRL_RTC_EN;
1119 }
1120 m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1121 m->rtc_control &= ~RTC_CTRL_AL_EN;
1122 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1123 }
1124
1125 m->rtc = rtc_device_register(DRIVER_NAME,
1126 &m->client->dev,
1127 &menelaus_rtc_ops, THIS_MODULE);
1128 if (IS_ERR(m->rtc)) {
1129 if (alarm) {
1130 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1131 device_init_wakeup(&m->client->dev, 0);
1132 }
1133 dev_err(&m->client->dev, "can't register RTC: %d\n",
1134 (int) PTR_ERR(m->rtc));
1135 the_menelaus->rtc = NULL;
1136 }
1137}
1138
1139#else
1140
1141static inline void menelaus_rtc_init(struct menelaus_chip *m)
1142{
1143 /* nothing */
1144}
1145
1146#endif
1147
1148/*-----------------------------------------------------------------------*/
1149
1150static struct i2c_driver menelaus_i2c_driver;
1151
d2653e92
JD
1152static int menelaus_probe(struct i2c_client *client,
1153 const struct i2c_device_id *id)
0c4a59fe
TL
1154{
1155 struct menelaus_chip *menelaus;
1156 int rev = 0, val;
1157 int err = 0;
1158 struct menelaus_platform_data *menelaus_pdata =
1159 client->dev.platform_data;
1160
1161 if (the_menelaus) {
1162 dev_dbg(&client->dev, "only one %s for now\n",
1163 DRIVER_NAME);
1164 return -ENODEV;
1165 }
1166
1167 menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL);
1168 if (!menelaus)
1169 return -ENOMEM;
1170
1171 i2c_set_clientdata(client, menelaus);
1172
1173 the_menelaus = menelaus;
1174 menelaus->client = client;
1175
1176 /* If a true probe check the device */
1177 rev = menelaus_read_reg(MENELAUS_REV);
1178 if (rev < 0) {
1f7c8234 1179 pr_err(DRIVER_NAME ": device not found");
0c4a59fe
TL
1180 err = -ENODEV;
1181 goto fail1;
1182 }
1183
1184 /* Ack and disable all Menelaus interrupts */
1185 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1186 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1187 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1188 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1189 menelaus->mask1 = 0xff;
1190 menelaus->mask2 = 0xff;
1191
1192 /* Set output buffer strengths */
1193 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1194
1195 if (client->irq > 0) {
1196 err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED,
1197 DRIVER_NAME, menelaus);
1198 if (err) {
898eb71c 1199 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
0c4a59fe
TL
1200 client->irq, err);
1201 goto fail1;
1202 }
1203 }
1204
1205 mutex_init(&menelaus->lock);
1206 INIT_WORK(&menelaus->work, menelaus_work);
1207
1208 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1209
1210 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1211 if (val < 0)
1212 goto fail2;
1213 if (val & (1 << 7))
1214 menelaus->vcore_hw_mode = 1;
1215 else
1216 menelaus->vcore_hw_mode = 0;
1217
1218 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1219 err = menelaus_pdata->late_init(&client->dev);
1220 if (err < 0)
1221 goto fail2;
1222 }
1223
1224 menelaus_rtc_init(menelaus);
1225
1226 return 0;
1227fail2:
1228 free_irq(client->irq, menelaus);
1229 flush_scheduled_work();
1230fail1:
1231 kfree(menelaus);
1232 return err;
1233}
1234
1235static int __exit menelaus_remove(struct i2c_client *client)
1236{
1237 struct menelaus_chip *menelaus = i2c_get_clientdata(client);
1238
1239 free_irq(client->irq, menelaus);
1240 kfree(menelaus);
1241 i2c_set_clientdata(client, NULL);
1242 the_menelaus = NULL;
1243 return 0;
1244}
1245
3760f736
JD
1246static const struct i2c_device_id menelaus_id[] = {
1247 { "menelaus", 0 },
1248 { }
1249};
1250MODULE_DEVICE_TABLE(i2c, menelaus_id);
1251
0c4a59fe
TL
1252static struct i2c_driver menelaus_i2c_driver = {
1253 .driver = {
1254 .name = DRIVER_NAME,
1255 },
1256 .probe = menelaus_probe,
1257 .remove = __exit_p(menelaus_remove),
3760f736 1258 .id_table = menelaus_id,
0c4a59fe
TL
1259};
1260
1261static int __init menelaus_init(void)
1262{
1263 int res;
1264
1265 res = i2c_add_driver(&menelaus_i2c_driver);
1266 if (res < 0) {
1f7c8234 1267 pr_err(DRIVER_NAME ": driver registration failed\n");
0c4a59fe
TL
1268 return res;
1269 }
1270
1271 return 0;
1272}
1273
1274static void __exit menelaus_exit(void)
1275{
1276 i2c_del_driver(&menelaus_i2c_driver);
1277
1278 /* FIXME: Shutdown menelaus parts that can be shut down */
1279}
1280
1281MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1282MODULE_DESCRIPTION("I2C interface for Menelaus.");
1283MODULE_LICENSE("GPL");
1284
1285module_init(menelaus_init);
1286module_exit(menelaus_exit);