cpufreq: db8500: Fetch cpufreq table from platform data
[linux-2.6-block.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
73180f85 30#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 31#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
32#include <linux/regulator/db8500-prcmu.h>
33#include <linux/regulator/machine.h>
c280f45f 34#include <linux/cpufreq.h>
cc9a0f68 35#include <asm/hardware/gic.h>
3df57bcf
MN
36#include <mach/hardware.h>
37#include <mach/irqs.h>
38#include <mach/db8500-regs.h>
39#include <mach/id.h>
73180f85 40#include "dbx500-prcmu-regs.h"
3df57bcf
MN
41
42/* Offset for the firmware version within the TCPM */
43#define PRCMU_FW_VERSION_OFFSET 0xA4
44
3df57bcf
MN
45/* Index of different voltages to be used when accessing AVSData */
46#define PRCM_AVS_BASE 0x2FC
47#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
48#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
49#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
50#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
51#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
52#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
53#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
54#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
55#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
56#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
57#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
58#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
59#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
60
61#define PRCM_AVS_VOLTAGE 0
62#define PRCM_AVS_VOLTAGE_MASK 0x3f
63#define PRCM_AVS_ISSLOWSTARTUP 6
64#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
65#define PRCM_AVS_ISMODEENABLE 7
66#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
67
68#define PRCM_BOOT_STATUS 0xFFF
69#define PRCM_ROMCODE_A2P 0xFFE
70#define PRCM_ROMCODE_P2A 0xFFD
71#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
72
73#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
74
75#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
76#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
77#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
78#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
79#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
80#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
81#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
82#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
83
84/* Req Mailboxes */
85#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
86#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
87#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
88#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
89#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
90#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
91
92/* Ack Mailboxes */
93#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
94#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
95#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
96#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
97#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
98#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
99
100/* Mailbox 0 headers */
101#define MB0H_POWER_STATE_TRANS 0
102#define MB0H_CONFIG_WAKEUPS_EXE 1
103#define MB0H_READ_WAKEUP_ACK 3
104#define MB0H_CONFIG_WAKEUPS_SLEEP 4
105
106#define MB0H_WAKEUP_EXE 2
107#define MB0H_WAKEUP_SLEEP 5
108
109/* Mailbox 0 REQs */
110#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
111#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
112#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
113#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
114#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
115#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
116
117/* Mailbox 0 ACKs */
118#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
119#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
120#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
121#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
122#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
123#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
124#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
125
126/* Mailbox 1 headers */
127#define MB1H_ARM_APE_OPP 0x0
128#define MB1H_RESET_MODEM 0x2
129#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
130#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
131#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 132#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
133
134/* Mailbox 1 Requests */
135#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
136#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 137#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
138#define PLL_SOC0_OFF 0x1
139#define PLL_SOC0_ON 0x2
a592c2e2
MN
140#define PLL_SOC1_OFF 0x4
141#define PLL_SOC1_ON 0x8
3df57bcf
MN
142
143/* Mailbox 1 ACKs */
144#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
145#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
146#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
148
149/* Mailbox 2 headers */
150#define MB2H_DPS 0x0
151#define MB2H_AUTO_PWR 0x1
152
153/* Mailbox 2 REQs */
154#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
155#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
156#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
157#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
158#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
159#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
160#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
161#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
162#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
163#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
164
165/* Mailbox 2 ACKs */
166#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167#define HWACC_PWR_ST_OK 0xFE
168
169/* Mailbox 3 headers */
170#define MB3H_ANC 0x0
171#define MB3H_SIDETONE 0x1
172#define MB3H_SYSCLK 0xE
173
174/* Mailbox 3 Requests */
175#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
176#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
177#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
178#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
179#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
180#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
182
183/* Mailbox 4 headers */
184#define MB4H_DDR_INIT 0x0
185#define MB4H_MEM_ST 0x1
186#define MB4H_HOTDOG 0x12
187#define MB4H_HOTMON 0x13
188#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
189#define MB4H_A9WDOG_CONF 0x16
190#define MB4H_A9WDOG_EN 0x17
191#define MB4H_A9WDOG_DIS 0x18
192#define MB4H_A9WDOG_LOAD 0x19
193#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
194
195/* Mailbox 4 Requests */
196#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
199#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
200#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
201#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
202#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
203#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
204#define HOTMON_CONFIG_LOW BIT(0)
205#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
206#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
207#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
208#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
209#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
210#define A9WDOG_AUTO_OFF_EN BIT(7)
211#define A9WDOG_AUTO_OFF_DIS 0
212#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
213
214/* Mailbox 5 Requests */
215#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
216#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
217#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
218#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
219#define PRCMU_I2C_WRITE(slave) \
220 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221#define PRCMU_I2C_READ(slave) \
222 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223#define PRCMU_I2C_STOP_EN BIT(3)
224
225/* Mailbox 5 ACKs */
226#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
228#define I2C_WR_OK 0x1
229#define I2C_RD_OK 0x2
230
231#define NUM_MB 8
232#define MBOX_BIT BIT
233#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234
235/*
236 * Wakeups/IRQs
237 */
238
239#define WAKEUP_BIT_RTC BIT(0)
240#define WAKEUP_BIT_RTT0 BIT(1)
241#define WAKEUP_BIT_RTT1 BIT(2)
242#define WAKEUP_BIT_HSI0 BIT(3)
243#define WAKEUP_BIT_HSI1 BIT(4)
244#define WAKEUP_BIT_CA_WAKE BIT(5)
245#define WAKEUP_BIT_USB BIT(6)
246#define WAKEUP_BIT_ABB BIT(7)
247#define WAKEUP_BIT_ABB_FIFO BIT(8)
248#define WAKEUP_BIT_SYSCLK_OK BIT(9)
249#define WAKEUP_BIT_CA_SLEEP BIT(10)
250#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252#define WAKEUP_BIT_ANC_OK BIT(13)
253#define WAKEUP_BIT_SW_ERROR BIT(14)
254#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255#define WAKEUP_BIT_ARM BIT(17)
256#define WAKEUP_BIT_HOTMON_LOW BIT(18)
257#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259#define WAKEUP_BIT_GPIO0 BIT(23)
260#define WAKEUP_BIT_GPIO1 BIT(24)
261#define WAKEUP_BIT_GPIO2 BIT(25)
262#define WAKEUP_BIT_GPIO3 BIT(26)
263#define WAKEUP_BIT_GPIO4 BIT(27)
264#define WAKEUP_BIT_GPIO5 BIT(28)
265#define WAKEUP_BIT_GPIO6 BIT(29)
266#define WAKEUP_BIT_GPIO7 BIT(30)
267#define WAKEUP_BIT_GPIO8 BIT(31)
268
b58d12fe
MN
269static struct {
270 bool valid;
271 struct prcmu_fw_version version;
272} fw_info;
273
f3f1f0a1
LJ
274static struct irq_domain *db8500_irq_domain;
275
3df57bcf
MN
276/*
277 * This vector maps irq numbers to the bits in the bit field used in
278 * communication with the PRCMU firmware.
279 *
280 * The reason for having this is to keep the irq numbers contiguous even though
281 * the bits in the bit field are not. (The bits also have a tendency to move
282 * around, to further complicate matters.)
283 */
284#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
285#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
286static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
287 IRQ_ENTRY(RTC),
288 IRQ_ENTRY(RTT0),
289 IRQ_ENTRY(RTT1),
290 IRQ_ENTRY(HSI0),
291 IRQ_ENTRY(HSI1),
292 IRQ_ENTRY(CA_WAKE),
293 IRQ_ENTRY(USB),
294 IRQ_ENTRY(ABB),
295 IRQ_ENTRY(ABB_FIFO),
296 IRQ_ENTRY(CA_SLEEP),
297 IRQ_ENTRY(ARM),
298 IRQ_ENTRY(HOTMON_LOW),
299 IRQ_ENTRY(HOTMON_HIGH),
300 IRQ_ENTRY(MODEM_SW_RESET_REQ),
301 IRQ_ENTRY(GPIO0),
302 IRQ_ENTRY(GPIO1),
303 IRQ_ENTRY(GPIO2),
304 IRQ_ENTRY(GPIO3),
305 IRQ_ENTRY(GPIO4),
306 IRQ_ENTRY(GPIO5),
307 IRQ_ENTRY(GPIO6),
308 IRQ_ENTRY(GPIO7),
309 IRQ_ENTRY(GPIO8)
310};
311
312#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
313#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
314static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
315 WAKEUP_ENTRY(RTC),
316 WAKEUP_ENTRY(RTT0),
317 WAKEUP_ENTRY(RTT1),
318 WAKEUP_ENTRY(HSI0),
319 WAKEUP_ENTRY(HSI1),
320 WAKEUP_ENTRY(USB),
321 WAKEUP_ENTRY(ABB),
322 WAKEUP_ENTRY(ABB_FIFO),
323 WAKEUP_ENTRY(ARM)
324};
325
326/*
327 * mb0_transfer - state needed for mailbox 0 communication.
328 * @lock: The transaction lock.
329 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
330 * the request data.
331 * @mask_work: Work structure used for (un)masking wakeup interrupts.
332 * @req: Request data that need to persist between requests.
333 */
334static struct {
335 spinlock_t lock;
336 spinlock_t dbb_irqs_lock;
337 struct work_struct mask_work;
338 struct mutex ac_wake_lock;
339 struct completion ac_wake_work;
340 struct {
341 u32 dbb_irqs;
342 u32 dbb_wakeups;
343 u32 abb_events;
344 } req;
345} mb0_transfer;
346
347/*
348 * mb1_transfer - state needed for mailbox 1 communication.
349 * @lock: The transaction lock.
350 * @work: The transaction completion structure.
4d64d2e3 351 * @ape_opp: The current APE OPP.
3df57bcf
MN
352 * @ack: Reply ("acknowledge") data.
353 */
354static struct {
355 struct mutex lock;
356 struct completion work;
4d64d2e3 357 u8 ape_opp;
3df57bcf
MN
358 struct {
359 u8 header;
360 u8 arm_opp;
361 u8 ape_opp;
362 u8 ape_voltage_status;
363 } ack;
364} mb1_transfer;
365
366/*
367 * mb2_transfer - state needed for mailbox 2 communication.
368 * @lock: The transaction lock.
369 * @work: The transaction completion structure.
370 * @auto_pm_lock: The autonomous power management configuration lock.
371 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
372 * @req: Request data that need to persist between requests.
373 * @ack: Reply ("acknowledge") data.
374 */
375static struct {
376 struct mutex lock;
377 struct completion work;
378 spinlock_t auto_pm_lock;
379 bool auto_pm_enabled;
380 struct {
381 u8 status;
382 } ack;
383} mb2_transfer;
384
385/*
386 * mb3_transfer - state needed for mailbox 3 communication.
387 * @lock: The request lock.
388 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
389 * @sysclk_work: Work structure used for sysclk requests.
390 */
391static struct {
392 spinlock_t lock;
393 struct mutex sysclk_lock;
394 struct completion sysclk_work;
395} mb3_transfer;
396
397/*
398 * mb4_transfer - state needed for mailbox 4 communication.
399 * @lock: The transaction lock.
400 * @work: The transaction completion structure.
401 */
402static struct {
403 struct mutex lock;
404 struct completion work;
405} mb4_transfer;
406
407/*
408 * mb5_transfer - state needed for mailbox 5 communication.
409 * @lock: The transaction lock.
410 * @work: The transaction completion structure.
411 * @ack: Reply ("acknowledge") data.
412 */
413static struct {
414 struct mutex lock;
415 struct completion work;
416 struct {
417 u8 status;
418 u8 value;
419 } ack;
420} mb5_transfer;
421
422static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
423
20aee5b6
MJ
424/* Functions definition */
425static void compute_armss_rate(void);
426
3df57bcf 427/* Spinlocks */
b4a6dbd5 428static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 429static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
430
431/* Global var to runtime determine TCDM base for v2 or v1 */
432static __iomem void *tcdm_base;
433
434struct clk_mgt {
6b6fae2b 435 void __iomem *reg;
3df57bcf 436 u32 pllsw;
6b6fae2b
MN
437 int branch;
438 bool clk38div;
439};
440
441enum {
442 PLL_RAW,
443 PLL_FIX,
444 PLL_DIV
3df57bcf
MN
445};
446
447static DEFINE_SPINLOCK(clk_mgt_lock);
448
6b6fae2b
MN
449#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
450 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
3df57bcf 451struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
452 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
453 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
454 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
455 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
456 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
457 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
459 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
466 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
467 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
470 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
471 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
472 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
473 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
475 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
477 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
478 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
479 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
480 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
481};
482
483struct dsiclk {
484 u32 divsel_mask;
485 u32 divsel_shift;
486 u32 divsel;
487};
488
489static struct dsiclk dsiclk[2] = {
490 {
491 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
492 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
493 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
494 },
495 {
496 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
497 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
498 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
499 }
500};
501
502struct dsiescclk {
503 u32 en;
504 u32 div_mask;
505 u32 div_shift;
506};
507
508static struct dsiescclk dsiescclk[3] = {
509 {
510 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
511 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
512 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
513 },
514 {
515 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
516 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
517 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
518 },
519 {
520 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
521 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
522 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
523 }
3df57bcf
MN
524};
525
20aee5b6 526
3df57bcf
MN
527/*
528* Used by MCDE to setup all necessary PRCMU registers
529*/
530#define PRCMU_RESET_DSIPLL 0x00004000
531#define PRCMU_UNCLAMP_DSIPLL 0x00400800
532
533#define PRCMU_CLK_PLL_DIV_SHIFT 0
534#define PRCMU_CLK_PLL_SW_SHIFT 5
535#define PRCMU_CLK_38 (1 << 9)
536#define PRCMU_CLK_38_SRC (1 << 10)
537#define PRCMU_CLK_38_DIV (1 << 11)
538
539/* PLLDIV=12, PLLSW=4 (PLLDDR) */
540#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
541
3df57bcf
MN
542/* DPI 50000000 Hz */
543#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
544 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
545#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
546
547/* D=101, N=1, R=4, SELDIV2=0 */
548#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
549
3df57bcf
MN
550#define PRCMU_ENABLE_PLLDSI 0x00000001
551#define PRCMU_DISABLE_PLLDSI 0x00000000
552#define PRCMU_RELEASE_RESET_DSS 0x0000400C
553#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
554/* ESC clk, div0=1, div1=1, div2=3 */
555#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
556#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
557#define PRCMU_DSI_RESET_SW 0x00000007
558
559#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
560
73180f85 561int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
562{
563 int i;
3df57bcf
MN
564
565 /* Clear DSIPLL_RESETN */
c553b3ca 566 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 567 /* Unclamp DSIPLL in/out */
c553b3ca 568 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 569
3df57bcf 570 /* Set DSI PLL FREQ */
c72fe851 571 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 572 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 573 /* Enable Escape clocks */
c553b3ca 574 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
575
576 /* Start DSI PLL */
c553b3ca 577 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 578 /* Reset DSI PLL */
c553b3ca 579 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 580 for (i = 0; i < 10; i++) {
c553b3ca 581 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
582 == PRCMU_PLLDSI_LOCKP_LOCKED)
583 break;
584 udelay(100);
585 }
586 /* Set DSIPLL_RESETN */
c553b3ca 587 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
588 return 0;
589}
590
73180f85 591int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
592{
593 /* Disable dsi pll */
c553b3ca 594 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 595 /* Disable escapeclock */
c553b3ca 596 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
597 return 0;
598}
599
73180f85 600int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
601{
602 unsigned long flags;
3df57bcf
MN
603
604 spin_lock_irqsave(&clk_mgt_lock, flags);
605
606 /* Grab the HW semaphore. */
c553b3ca 607 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
608 cpu_relax();
609
c72fe851 610 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
c553b3ca
MN
611 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
612 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
3df57bcf
MN
613
614 /* Release the HW semaphore. */
c553b3ca 615 writel(0, PRCM_SEM);
3df57bcf
MN
616
617 spin_unlock_irqrestore(&clk_mgt_lock, flags);
618
619 return 0;
620}
621
b4a6dbd5
MN
622u32 db8500_prcmu_read(unsigned int reg)
623{
624 return readl(_PRCMU_BASE + reg);
625}
626
627void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 628{
3df57bcf
MN
629 unsigned long flags;
630
b4a6dbd5
MN
631 spin_lock_irqsave(&prcmu_lock, flags);
632 writel(value, (_PRCMU_BASE + reg));
633 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
634}
635
b4a6dbd5 636void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 637{
b4a6dbd5 638 u32 val;
3df57bcf
MN
639 unsigned long flags;
640
b4a6dbd5
MN
641 spin_lock_irqsave(&prcmu_lock, flags);
642 val = readl(_PRCMU_BASE + reg);
643 val = ((val & ~mask) | (value & mask));
644 writel(val, (_PRCMU_BASE + reg));
645 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
646}
647
b58d12fe
MN
648struct prcmu_fw_version *prcmu_get_fw_version(void)
649{
650 return fw_info.valid ? &fw_info.version : NULL;
651}
652
3df57bcf
MN
653bool prcmu_has_arm_maxopp(void)
654{
655 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
656 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
657}
658
3df57bcf
MN
659/**
660 * prcmu_get_boot_status - PRCMU boot status checking
661 * Returns: the current PRCMU boot status
662 */
663int prcmu_get_boot_status(void)
664{
665 return readb(tcdm_base + PRCM_BOOT_STATUS);
666}
667
668/**
669 * prcmu_set_rc_a2p - This function is used to run few power state sequences
670 * @val: Value to be set, i.e. transition requested
671 * Returns: 0 on success, -EINVAL on invalid argument
672 *
673 * This function is used to run the following power state sequences -
674 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
675 */
676int prcmu_set_rc_a2p(enum romcode_write val)
677{
678 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
679 return -EINVAL;
680 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
681 return 0;
682}
683
684/**
685 * prcmu_get_rc_p2a - This function is used to get power state sequences
686 * Returns: the power transition that has last happened
687 *
688 * This function can return the following transitions-
689 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
690 */
691enum romcode_read prcmu_get_rc_p2a(void)
692{
693 return readb(tcdm_base + PRCM_ROMCODE_P2A);
694}
695
696/**
697 * prcmu_get_current_mode - Return the current XP70 power mode
698 * Returns: Returns the current AP(ARM) power mode: init,
699 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
700 */
701enum ap_pwrst prcmu_get_xp70_current_state(void)
702{
703 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
704}
705
706/**
707 * prcmu_config_clkout - Configure one of the programmable clock outputs.
708 * @clkout: The CLKOUT number (0 or 1).
709 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
710 * @div: The divider to be applied.
711 *
712 * Configures one of the programmable clock outputs (CLKOUTs).
713 * @div should be in the range [1,63] to request a configuration, or 0 to
714 * inform that the configuration is no longer requested.
715 */
716int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
717{
718 static int requests[2];
719 int r = 0;
720 unsigned long flags;
721 u32 val;
722 u32 bits;
723 u32 mask;
724 u32 div_mask;
725
726 BUG_ON(clkout > 1);
727 BUG_ON(div > 63);
728 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
729
730 if (!div && !requests[clkout])
731 return -EINVAL;
732
733 switch (clkout) {
734 case 0:
735 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
736 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
737 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
738 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
739 break;
740 case 1:
741 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
742 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
743 PRCM_CLKOCR_CLK1TYPE);
744 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
745 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
746 break;
747 }
748 bits &= mask;
749
750 spin_lock_irqsave(&clkout_lock, flags);
751
c553b3ca 752 val = readl(PRCM_CLKOCR);
3df57bcf
MN
753 if (val & div_mask) {
754 if (div) {
755 if ((val & mask) != bits) {
756 r = -EBUSY;
757 goto unlock_and_return;
758 }
759 } else {
760 if ((val & mask & ~div_mask) != bits) {
761 r = -EINVAL;
762 goto unlock_and_return;
763 }
764 }
765 }
c553b3ca 766 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
767 requests[clkout] += (div ? 1 : -1);
768
769unlock_and_return:
770 spin_unlock_irqrestore(&clkout_lock, flags);
771
772 return r;
773}
774
73180f85 775int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
776{
777 unsigned long flags;
778
779 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
780
781 spin_lock_irqsave(&mb0_transfer.lock, flags);
782
c553b3ca 783 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
784 cpu_relax();
785
786 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
787 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
788 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
789 writeb((keep_ulp_clk ? 1 : 0),
790 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
791 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 792 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
793
794 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
795
796 return 0;
797}
798
4d64d2e3
MN
799u8 db8500_prcmu_get_power_state_result(void)
800{
801 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
802}
803
485540dc
DL
804/* This function decouple the gic from the prcmu */
805int db8500_prcmu_gic_decouple(void)
806{
801448e0 807 u32 val = readl(PRCM_A9_MASK_REQ);
485540dc
DL
808
809 /* Set bit 0 register value to 1 */
801448e0
DL
810 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
811 PRCM_A9_MASK_REQ);
485540dc
DL
812
813 /* Make sure the register is updated */
801448e0 814 readl(PRCM_A9_MASK_REQ);
485540dc
DL
815
816 /* Wait a few cycles for the gic mask completion */
801448e0 817 udelay(1);
485540dc
DL
818
819 return 0;
820}
821
822/* This function recouple the gic with the prcmu */
823int db8500_prcmu_gic_recouple(void)
824{
801448e0 825 u32 val = readl(PRCM_A9_MASK_REQ);
485540dc
DL
826
827 /* Set bit 0 register value to 0 */
801448e0 828 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
485540dc
DL
829
830 return 0;
831}
832
cc9a0f68
DL
833#define PRCMU_GIC_NUMBER_REGS 5
834
835/*
836 * This function checks if there are pending irq on the gic. It only
837 * makes sense if the gic has been decoupled before with the
838 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
839 * disables the forwarding of the interrupt to any CPU interface. It
840 * does not prevent the interrupt from changing state, for example
841 * becoming pending, or active and pending if it is already
842 * active. Hence, we have to check the interrupt is pending *and* is
843 * active.
844 */
845bool db8500_prcmu_gic_pending_irq(void)
846{
847 u32 pr; /* Pending register */
848 u32 er; /* Enable register */
849 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
850 int i;
851
852 /* 5 registers. STI & PPI not skipped */
853 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
854
855 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
856 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
857
858 if (pr & er)
859 return true; /* There is a pending interrupt */
860 }
861
862 return false;
863}
864
9ab492e1
DL
865/*
866 * This function checks if there are pending interrupt on the
867 * prcmu which has been delegated to monitor the irqs with the
868 * db8500_prcmu_copy_gic_settings function.
869 */
870bool db8500_prcmu_pending_irq(void)
871{
872 u32 it, im;
873 int i;
874
875 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
876 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
877 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
878 if (it & im)
879 return true; /* There is a pending interrupt */
880 }
881
882 return false;
883}
884
34fe6f10
DL
885/*
886 * This function checks if the specified cpu is in in WFI. It's usage
887 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
888 * function. Of course passing smp_processor_id() to this function will
889 * always return false...
890 */
891bool db8500_prcmu_is_cpu_in_wfi(int cpu)
892{
893 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
894 PRCM_ARM_WFI_STANDBY_WFI0;
895}
896
9f60d33e
DL
897/*
898 * This function copies the gic SPI settings to the prcmu in order to
899 * monitor them and abort/finish the retention/off sequence or state.
900 */
901int db8500_prcmu_copy_gic_settings(void)
902{
903 u32 er; /* Enable register */
904 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
905 int i;
906
907 /* We skip the STI and PPI */
908 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
909 er = readl_relaxed(dist_base +
910 GIC_DIST_ENABLE_SET + (i + 1) * 4);
911 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
912 }
913
914 return 0;
915}
916
3df57bcf
MN
917/* This function should only be called while mb0_transfer.lock is held. */
918static void config_wakeups(void)
919{
920 const u8 header[2] = {
921 MB0H_CONFIG_WAKEUPS_EXE,
922 MB0H_CONFIG_WAKEUPS_SLEEP
923 };
924 static u32 last_dbb_events;
925 static u32 last_abb_events;
926 u32 dbb_events;
927 u32 abb_events;
928 unsigned int i;
929
930 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
931 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
932
933 abb_events = mb0_transfer.req.abb_events;
934
935 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
936 return;
937
938 for (i = 0; i < 2; i++) {
c553b3ca 939 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
940 cpu_relax();
941 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
942 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
943 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 944 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
945 }
946 last_dbb_events = dbb_events;
947 last_abb_events = abb_events;
948}
949
73180f85 950void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
951{
952 unsigned long flags;
953 u32 bits;
954 int i;
955
956 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
957
958 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
959 if (wakeups & BIT(i))
960 bits |= prcmu_wakeup_bit[i];
961 }
962
963 spin_lock_irqsave(&mb0_transfer.lock, flags);
964
965 mb0_transfer.req.dbb_wakeups = bits;
966 config_wakeups();
967
968 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
969}
970
73180f85 971void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
972{
973 unsigned long flags;
974
975 spin_lock_irqsave(&mb0_transfer.lock, flags);
976
977 mb0_transfer.req.abb_events = abb_events;
978 config_wakeups();
979
980 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
981}
982
73180f85 983void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
984{
985 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
986 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
987 else
988 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
989}
990
991/**
73180f85 992 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
993 * @opp: The new ARM operating point to which transition is to be made
994 * Returns: 0 on success, non-zero on failure
995 *
996 * This function sets the the operating point of the ARM.
997 */
73180f85 998int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
999{
1000 int r;
1001
1002 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1003 return -EINVAL;
1004
1005 r = 0;
1006
1007 mutex_lock(&mb1_transfer.lock);
1008
c553b3ca 1009 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1010 cpu_relax();
1011
1012 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1015
c553b3ca 1016 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1017 wait_for_completion(&mb1_transfer.work);
1018
1019 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1020 (mb1_transfer.ack.arm_opp != opp))
1021 r = -EIO;
1022
20aee5b6 1023 compute_armss_rate();
3df57bcf
MN
1024 mutex_unlock(&mb1_transfer.lock);
1025
1026 return r;
1027}
1028
1029/**
73180f85 1030 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
1031 *
1032 * Returns: the current ARM OPP
1033 */
73180f85 1034int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
1035{
1036 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1037}
1038
1039/**
0508901c 1040 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
1041 *
1042 * Returns: the current DDR OPP
1043 */
0508901c 1044int db8500_prcmu_get_ddr_opp(void)
3df57bcf 1045{
c553b3ca 1046 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
1047}
1048
1049/**
0508901c 1050 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
1051 * @opp: The new DDR operating point to which transition is to be made
1052 * Returns: 0 on success, non-zero on failure
1053 *
1054 * This function sets the operating point of the DDR.
1055 */
0508901c 1056int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
1057{
1058 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1059 return -EINVAL;
1060 /* Changing the DDR OPP can hang the hardware pre-v21 */
1061 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
c553b3ca 1062 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
1063
1064 return 0;
1065}
6b6fae2b 1066
4d64d2e3
MN
1067/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1068static void request_even_slower_clocks(bool enable)
1069{
1070 void __iomem *clock_reg[] = {
1071 PRCM_ACLK_MGT,
1072 PRCM_DMACLK_MGT
1073 };
1074 unsigned long flags;
1075 unsigned int i;
1076
1077 spin_lock_irqsave(&clk_mgt_lock, flags);
1078
1079 /* Grab the HW semaphore. */
1080 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1081 cpu_relax();
1082
1083 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1084 u32 val;
1085 u32 div;
1086
1087 val = readl(clock_reg[i]);
1088 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1089 if (enable) {
1090 if ((div <= 1) || (div > 15)) {
1091 pr_err("prcmu: Bad clock divider %d in %s\n",
1092 div, __func__);
1093 goto unlock_and_return;
1094 }
1095 div <<= 1;
1096 } else {
1097 if (div <= 2)
1098 goto unlock_and_return;
1099 div >>= 1;
1100 }
1101 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1102 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1103 writel(val, clock_reg[i]);
1104 }
1105
1106unlock_and_return:
1107 /* Release the HW semaphore. */
1108 writel(0, PRCM_SEM);
1109
1110 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1111}
1112
3df57bcf 1113/**
0508901c 1114 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1115 * @opp: The new APE operating point to which transition is to be made
1116 * Returns: 0 on success, non-zero on failure
1117 *
1118 * This function sets the operating point of the APE.
1119 */
0508901c 1120int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1121{
1122 int r = 0;
1123
4d64d2e3
MN
1124 if (opp == mb1_transfer.ape_opp)
1125 return 0;
1126
3df57bcf
MN
1127 mutex_lock(&mb1_transfer.lock);
1128
4d64d2e3
MN
1129 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1130 request_even_slower_clocks(false);
1131
1132 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1133 goto skip_message;
1134
c553b3ca 1135 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1136 cpu_relax();
1137
1138 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1140 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1141 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1142
c553b3ca 1143 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1144 wait_for_completion(&mb1_transfer.work);
1145
1146 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1147 (mb1_transfer.ack.ape_opp != opp))
1148 r = -EIO;
1149
4d64d2e3
MN
1150skip_message:
1151 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1152 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1153 request_even_slower_clocks(true);
1154 if (!r)
1155 mb1_transfer.ape_opp = opp;
1156
3df57bcf
MN
1157 mutex_unlock(&mb1_transfer.lock);
1158
1159 return r;
1160}
1161
1162/**
0508901c 1163 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1164 *
1165 * Returns: the current APE OPP
1166 */
0508901c 1167int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1168{
1169 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1170}
1171
1172/**
686f871b 1173 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1174 * @enable: true to request the higher voltage, false to drop a request.
1175 *
1176 * Calls to this function to enable and disable requests must be balanced.
1177 */
686f871b 1178int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1179{
1180 int r = 0;
1181 u8 header;
1182 static unsigned int requests;
1183
1184 mutex_lock(&mb1_transfer.lock);
1185
1186 if (enable) {
1187 if (0 != requests++)
1188 goto unlock_and_return;
1189 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1190 } else {
1191 if (requests == 0) {
1192 r = -EIO;
1193 goto unlock_and_return;
1194 } else if (1 != requests--) {
1195 goto unlock_and_return;
1196 }
1197 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1198 }
1199
c553b3ca 1200 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1201 cpu_relax();
1202
1203 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1204
c553b3ca 1205 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1206 wait_for_completion(&mb1_transfer.work);
1207
1208 if ((mb1_transfer.ack.header != header) ||
1209 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1210 r = -EIO;
1211
1212unlock_and_return:
1213 mutex_unlock(&mb1_transfer.lock);
1214
1215 return r;
1216}
1217
1218/**
1219 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1220 *
1221 * This function releases the power state requirements of a USB wakeup.
1222 */
1223int prcmu_release_usb_wakeup_state(void)
1224{
1225 int r = 0;
1226
1227 mutex_lock(&mb1_transfer.lock);
1228
c553b3ca 1229 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1230 cpu_relax();
1231
1232 writeb(MB1H_RELEASE_USB_WAKEUP,
1233 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1234
c553b3ca 1235 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1236 wait_for_completion(&mb1_transfer.work);
1237
1238 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1239 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1240 r = -EIO;
1241
1242 mutex_unlock(&mb1_transfer.lock);
1243
1244 return r;
1245}
1246
0837bb72
MN
1247static int request_pll(u8 clock, bool enable)
1248{
1249 int r = 0;
1250
6b6fae2b
MN
1251 if (clock == PRCMU_PLLSOC0)
1252 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1253 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1254 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1255 else
1256 return -EINVAL;
1257
1258 mutex_lock(&mb1_transfer.lock);
1259
1260 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1261 cpu_relax();
1262
1263 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1264 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1265
1266 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1267 wait_for_completion(&mb1_transfer.work);
1268
1269 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1270 r = -EIO;
1271
1272 mutex_unlock(&mb1_transfer.lock);
1273
1274 return r;
1275}
1276
3df57bcf 1277/**
73180f85 1278 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1279 * @epod_id: The EPOD to set
1280 * @epod_state: The new EPOD state
1281 *
1282 * This function sets the state of a EPOD (power domain). It may not be called
1283 * from interrupt context.
1284 */
73180f85 1285int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1286{
1287 int r = 0;
1288 bool ram_retention = false;
1289 int i;
1290
1291 /* check argument */
1292 BUG_ON(epod_id >= NUM_EPOD_ID);
1293
1294 /* set flag if retention is possible */
1295 switch (epod_id) {
1296 case EPOD_ID_SVAMMDSP:
1297 case EPOD_ID_SIAMMDSP:
1298 case EPOD_ID_ESRAM12:
1299 case EPOD_ID_ESRAM34:
1300 ram_retention = true;
1301 break;
1302 }
1303
1304 /* check argument */
1305 BUG_ON(epod_state > EPOD_STATE_ON);
1306 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1307
1308 /* get lock */
1309 mutex_lock(&mb2_transfer.lock);
1310
1311 /* wait for mailbox */
c553b3ca 1312 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1313 cpu_relax();
1314
1315 /* fill in mailbox */
1316 for (i = 0; i < NUM_EPOD_ID; i++)
1317 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1318 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1319
1320 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1321
c553b3ca 1322 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1323
1324 /*
1325 * The current firmware version does not handle errors correctly,
1326 * and we cannot recover if there is an error.
1327 * This is expected to change when the firmware is updated.
1328 */
1329 if (!wait_for_completion_timeout(&mb2_transfer.work,
1330 msecs_to_jiffies(20000))) {
1331 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1332 __func__);
1333 r = -EIO;
1334 goto unlock_and_return;
1335 }
1336
1337 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1338 r = -EIO;
1339
1340unlock_and_return:
1341 mutex_unlock(&mb2_transfer.lock);
1342 return r;
1343}
1344
1345/**
1346 * prcmu_configure_auto_pm - Configure autonomous power management.
1347 * @sleep: Configuration for ApSleep.
1348 * @idle: Configuration for ApIdle.
1349 */
1350void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1351 struct prcmu_auto_pm_config *idle)
1352{
1353 u32 sleep_cfg;
1354 u32 idle_cfg;
1355 unsigned long flags;
e3726fcf 1356
3df57bcf 1357 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1358
3df57bcf
MN
1359 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1360 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1361 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1362 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1363 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1364 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1365
3df57bcf
MN
1366 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1367 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1368 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1369 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1370 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1371 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1372
3df57bcf 1373 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1374
3df57bcf
MN
1375 /*
1376 * The autonomous power management configuration is done through
1377 * fields in mailbox 2, but these fields are only used as shared
1378 * variables - i.e. there is no need to send a message.
1379 */
1380 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1381 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1382
3df57bcf
MN
1383 mb2_transfer.auto_pm_enabled =
1384 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1385 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1386 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1387 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1388
3df57bcf
MN
1389 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1390}
1391EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1392
3df57bcf
MN
1393bool prcmu_is_auto_pm_enabled(void)
1394{
1395 return mb2_transfer.auto_pm_enabled;
1396}
e0befb23 1397
3df57bcf
MN
1398static int request_sysclk(bool enable)
1399{
1400 int r;
1401 unsigned long flags;
e3726fcf 1402
3df57bcf 1403 r = 0;
e3726fcf 1404
3df57bcf 1405 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1406
3df57bcf 1407 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1408
c553b3ca 1409 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1410 cpu_relax();
e0befb23 1411
3df57bcf 1412 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1413
3df57bcf 1414 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1415 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1416
3df57bcf
MN
1417 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1418
1419 /*
1420 * The firmware only sends an ACK if we want to enable the
1421 * SysClk, and it succeeds.
1422 */
1423 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1424 msecs_to_jiffies(20000))) {
1425 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1426 __func__);
1427 r = -EIO;
1428 }
1429
1430 mutex_unlock(&mb3_transfer.sysclk_lock);
1431
1432 return r;
1433}
1434
1435static int request_timclk(bool enable)
1436{
1437 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1438
1439 if (!enable)
1440 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1441 writel(val, PRCM_TCR);
3df57bcf
MN
1442
1443 return 0;
1444}
1445
6b6fae2b 1446static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1447{
1448 u32 val;
1449 unsigned long flags;
1450
1451 spin_lock_irqsave(&clk_mgt_lock, flags);
1452
1453 /* Grab the HW semaphore. */
c553b3ca 1454 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1455 cpu_relax();
1456
6b6fae2b 1457 val = readl(clk_mgt[clock].reg);
3df57bcf
MN
1458 if (enable) {
1459 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1460 } else {
1461 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1462 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1463 }
6b6fae2b 1464 writel(val, clk_mgt[clock].reg);
3df57bcf
MN
1465
1466 /* Release the HW semaphore. */
c553b3ca 1467 writel(0, PRCM_SEM);
3df57bcf
MN
1468
1469 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1470
1471 return 0;
1472}
1473
0837bb72
MN
1474static int request_sga_clock(u8 clock, bool enable)
1475{
1476 u32 val;
1477 int ret;
1478
1479 if (enable) {
1480 val = readl(PRCM_CGATING_BYPASS);
1481 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1482 }
1483
6b6fae2b 1484 ret = request_clock(clock, enable);
0837bb72
MN
1485
1486 if (!ret && !enable) {
1487 val = readl(PRCM_CGATING_BYPASS);
1488 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1489 }
1490
1491 return ret;
1492}
1493
6b6fae2b
MN
1494static inline bool plldsi_locked(void)
1495{
1496 return (readl(PRCM_PLLDSI_LOCKP) &
1497 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1498 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1499 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1500 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1501}
1502
1503static int request_plldsi(bool enable)
1504{
1505 int r = 0;
1506 u32 val;
1507
1508 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1509 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1510 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1511
1512 val = readl(PRCM_PLLDSI_ENABLE);
1513 if (enable)
1514 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1515 else
1516 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1517 writel(val, PRCM_PLLDSI_ENABLE);
1518
1519 if (enable) {
1520 unsigned int i;
1521 bool locked = plldsi_locked();
1522
1523 for (i = 10; !locked && (i > 0); --i) {
1524 udelay(100);
1525 locked = plldsi_locked();
1526 }
1527 if (locked) {
1528 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1529 PRCM_APE_RESETN_SET);
1530 } else {
1531 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1532 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1533 PRCM_MMIP_LS_CLAMP_SET);
1534 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1535 writel(val, PRCM_PLLDSI_ENABLE);
1536 r = -EAGAIN;
1537 }
1538 } else {
1539 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1540 }
1541 return r;
1542}
1543
1544static int request_dsiclk(u8 n, bool enable)
1545{
1546 u32 val;
1547
1548 val = readl(PRCM_DSI_PLLOUT_SEL);
1549 val &= ~dsiclk[n].divsel_mask;
1550 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1551 dsiclk[n].divsel_shift);
1552 writel(val, PRCM_DSI_PLLOUT_SEL);
1553 return 0;
1554}
1555
1556static int request_dsiescclk(u8 n, bool enable)
1557{
1558 u32 val;
1559
1560 val = readl(PRCM_DSITVCLK_DIV);
1561 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1562 writel(val, PRCM_DSITVCLK_DIV);
1563 return 0;
1564}
1565
3df57bcf 1566/**
73180f85 1567 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1568 * @clock: The clock for which the request is made.
1569 * @enable: Whether the clock should be enabled (true) or disabled (false).
1570 *
1571 * This function should only be used by the clock implementation.
1572 * Do not use it from any other place!
1573 */
73180f85 1574int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1575{
6b6fae2b 1576 if (clock == PRCMU_SGACLK)
0837bb72 1577 return request_sga_clock(clock, enable);
6b6fae2b
MN
1578 else if (clock < PRCMU_NUM_REG_CLOCKS)
1579 return request_clock(clock, enable);
1580 else if (clock == PRCMU_TIMCLK)
3df57bcf 1581 return request_timclk(enable);
6b6fae2b
MN
1582 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1583 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1584 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1585 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1586 else if (clock == PRCMU_PLLDSI)
1587 return request_plldsi(enable);
1588 else if (clock == PRCMU_SYSCLK)
3df57bcf 1589 return request_sysclk(enable);
6b6fae2b 1590 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1591 return request_pll(clock, enable);
6b6fae2b
MN
1592 else
1593 return -EINVAL;
1594}
1595
1596static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1597 int branch)
1598{
1599 u64 rate;
1600 u32 val;
1601 u32 d;
1602 u32 div = 1;
1603
1604 val = readl(reg);
1605
1606 rate = src_rate;
1607 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1608
1609 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1610 if (d > 1)
1611 div *= d;
1612
1613 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1614 if (d > 1)
1615 div *= d;
1616
1617 if (val & PRCM_PLL_FREQ_SELDIV2)
1618 div *= 2;
1619
1620 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1621 (val & PRCM_PLL_FREQ_DIV2EN) &&
1622 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1623 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1624 (reg == PRCM_PLLDDR_FREQ))))
1625 div *= 2;
1626
1627 (void)do_div(rate, div);
1628
1629 return (unsigned long)rate;
1630}
1631
1632#define ROOT_CLOCK_RATE 38400000
1633
1634static unsigned long clock_rate(u8 clock)
1635{
1636 u32 val;
1637 u32 pllsw;
1638 unsigned long rate = ROOT_CLOCK_RATE;
1639
1640 val = readl(clk_mgt[clock].reg);
1641
1642 if (val & PRCM_CLK_MGT_CLK38) {
1643 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1644 rate /= 2;
1645 return rate;
1646 }
1647
1648 val |= clk_mgt[clock].pllsw;
1649 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1650
1651 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1652 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1653 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1654 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1655 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1656 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1657 else
1658 return 0;
1659
1660 if ((clock == PRCMU_SGACLK) &&
1661 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1662 u64 r = (rate * 10);
1663
1664 (void)do_div(r, 25);
1665 return (unsigned long)r;
1666 }
1667 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1668 if (val)
1669 return rate / val;
1670 else
1671 return 0;
1672}
20aee5b6
MJ
1673static unsigned long latest_armss_rate;
1674static unsigned long armss_rate(void)
1675{
1676 return latest_armss_rate;
1677}
1678
1679static void compute_armss_rate(void)
1680{
1681 u32 r;
1682 unsigned long rate;
1683
1684 r = readl(PRCM_ARM_CHGCLKREQ);
1685
1686 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1687 /* External ARMCLKFIX clock */
1688
1689 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1690
1691 /* Check PRCM_ARM_CHGCLKREQ divider */
1692 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1693 rate /= 2;
1694
1695 /* Check PRCM_ARMCLKFIX_MGT divider */
1696 r = readl(PRCM_ARMCLKFIX_MGT);
1697 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1698 rate /= r;
1699
1700 } else {/* ARM PLL */
1701 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1702 }
1703
1704 latest_armss_rate = rate;
1705}
6b6fae2b
MN
1706
1707static unsigned long dsiclk_rate(u8 n)
1708{
1709 u32 divsel;
1710 u32 div = 1;
1711
1712 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1713 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1714
1715 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1716 divsel = dsiclk[n].divsel;
1717
1718 switch (divsel) {
1719 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1720 div *= 2;
1721 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1722 div *= 2;
1723 case PRCM_DSI_PLLOUT_SEL_PHI:
1724 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1725 PLL_RAW) / div;
e62ccf3a 1726 default:
6b6fae2b 1727 return 0;
e62ccf3a 1728 }
6b6fae2b
MN
1729}
1730
1731static unsigned long dsiescclk_rate(u8 n)
1732{
1733 u32 div;
1734
1735 div = readl(PRCM_DSITVCLK_DIV);
1736 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1737 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1738}
1739
1740unsigned long prcmu_clock_rate(u8 clock)
1741{
e62ccf3a 1742 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1743 return clock_rate(clock);
1744 else if (clock == PRCMU_TIMCLK)
1745 return ROOT_CLOCK_RATE / 16;
1746 else if (clock == PRCMU_SYSCLK)
1747 return ROOT_CLOCK_RATE;
1748 else if (clock == PRCMU_PLLSOC0)
1749 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1750 else if (clock == PRCMU_PLLSOC1)
1751 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1752 else if (clock == PRCMU_ARMSS)
1753 return armss_rate();
6b6fae2b
MN
1754 else if (clock == PRCMU_PLLDDR)
1755 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1756 else if (clock == PRCMU_PLLDSI)
1757 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1758 PLL_RAW);
1759 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1760 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1761 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1762 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1763 else
1764 return 0;
1765}
1766
1767static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1768{
1769 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1770 return ROOT_CLOCK_RATE;
1771 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1772 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1773 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1774 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1775 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1776 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1777 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1778 else
1779 return 0;
1780}
1781
1782static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1783{
1784 u32 div;
1785
1786 div = (src_rate / rate);
1787 if (div == 0)
1788 return 1;
1789 if (rate < (src_rate / div))
1790 div++;
1791 return div;
1792}
1793
1794static long round_clock_rate(u8 clock, unsigned long rate)
1795{
1796 u32 val;
1797 u32 div;
1798 unsigned long src_rate;
1799 long rounded_rate;
1800
1801 val = readl(clk_mgt[clock].reg);
1802 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1803 clk_mgt[clock].branch);
1804 div = clock_divider(src_rate, rate);
1805 if (val & PRCM_CLK_MGT_CLK38) {
1806 if (clk_mgt[clock].clk38div) {
1807 if (div > 2)
1808 div = 2;
1809 } else {
1810 div = 1;
1811 }
1812 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1813 u64 r = (src_rate * 10);
1814
1815 (void)do_div(r, 25);
1816 if (r <= rate)
1817 return (unsigned long)r;
1818 }
1819 rounded_rate = (src_rate / min(div, (u32)31));
1820
1821 return rounded_rate;
1822}
1823
1824#define MIN_PLL_VCO_RATE 600000000ULL
1825#define MAX_PLL_VCO_RATE 1680640000ULL
1826
1827static long round_plldsi_rate(unsigned long rate)
1828{
1829 long rounded_rate = 0;
1830 unsigned long src_rate;
1831 unsigned long rem;
1832 u32 r;
1833
1834 src_rate = clock_rate(PRCMU_HDMICLK);
1835 rem = rate;
1836
1837 for (r = 7; (rem > 0) && (r > 0); r--) {
1838 u64 d;
1839
1840 d = (r * rate);
1841 (void)do_div(d, src_rate);
1842 if (d < 6)
1843 d = 6;
1844 else if (d > 255)
1845 d = 255;
1846 d *= src_rate;
1847 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1848 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1849 continue;
1850 (void)do_div(d, r);
1851 if (rate < d) {
1852 if (rounded_rate == 0)
1853 rounded_rate = (long)d;
1854 break;
1855 }
1856 if ((rate - d) < rem) {
1857 rem = (rate - d);
1858 rounded_rate = (long)d;
1859 }
1860 }
1861 return rounded_rate;
1862}
1863
1864static long round_dsiclk_rate(unsigned long rate)
1865{
1866 u32 div;
1867 unsigned long src_rate;
1868 long rounded_rate;
1869
1870 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1871 PLL_RAW);
1872 div = clock_divider(src_rate, rate);
1873 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1874
1875 return rounded_rate;
1876}
1877
1878static long round_dsiescclk_rate(unsigned long rate)
1879{
1880 u32 div;
1881 unsigned long src_rate;
1882 long rounded_rate;
1883
1884 src_rate = clock_rate(PRCMU_TVCLK);
1885 div = clock_divider(src_rate, rate);
1886 rounded_rate = (src_rate / min(div, (u32)255));
1887
1888 return rounded_rate;
1889}
1890
1891long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1892{
1893 if (clock < PRCMU_NUM_REG_CLOCKS)
1894 return round_clock_rate(clock, rate);
1895 else if (clock == PRCMU_PLLDSI)
1896 return round_plldsi_rate(rate);
1897 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1898 return round_dsiclk_rate(rate);
1899 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1900 return round_dsiescclk_rate(rate);
1901 else
1902 return (long)prcmu_clock_rate(clock);
1903}
1904
1905static void set_clock_rate(u8 clock, unsigned long rate)
1906{
1907 u32 val;
1908 u32 div;
1909 unsigned long src_rate;
1910 unsigned long flags;
1911
1912 spin_lock_irqsave(&clk_mgt_lock, flags);
1913
1914 /* Grab the HW semaphore. */
1915 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1916 cpu_relax();
1917
1918 val = readl(clk_mgt[clock].reg);
1919 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1920 clk_mgt[clock].branch);
1921 div = clock_divider(src_rate, rate);
1922 if (val & PRCM_CLK_MGT_CLK38) {
1923 if (clk_mgt[clock].clk38div) {
1924 if (div > 1)
1925 val |= PRCM_CLK_MGT_CLK38DIV;
1926 else
1927 val &= ~PRCM_CLK_MGT_CLK38DIV;
1928 }
1929 } else if (clock == PRCMU_SGACLK) {
1930 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1931 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1932 if (div == 3) {
1933 u64 r = (src_rate * 10);
1934
1935 (void)do_div(r, 25);
1936 if (r <= rate) {
1937 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1938 div = 0;
1939 }
1940 }
1941 val |= min(div, (u32)31);
1942 } else {
1943 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1944 val |= min(div, (u32)31);
1945 }
1946 writel(val, clk_mgt[clock].reg);
1947
1948 /* Release the HW semaphore. */
1949 writel(0, PRCM_SEM);
1950
1951 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1952}
1953
1954static int set_plldsi_rate(unsigned long rate)
1955{
1956 unsigned long src_rate;
1957 unsigned long rem;
1958 u32 pll_freq = 0;
1959 u32 r;
1960
1961 src_rate = clock_rate(PRCMU_HDMICLK);
1962 rem = rate;
1963
1964 for (r = 7; (rem > 0) && (r > 0); r--) {
1965 u64 d;
1966 u64 hwrate;
1967
1968 d = (r * rate);
1969 (void)do_div(d, src_rate);
1970 if (d < 6)
1971 d = 6;
1972 else if (d > 255)
1973 d = 255;
1974 hwrate = (d * src_rate);
1975 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1976 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1977 continue;
1978 (void)do_div(hwrate, r);
1979 if (rate < hwrate) {
1980 if (pll_freq == 0)
1981 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1982 (r << PRCM_PLL_FREQ_R_SHIFT));
1983 break;
1984 }
1985 if ((rate - hwrate) < rem) {
1986 rem = (rate - hwrate);
1987 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1988 (r << PRCM_PLL_FREQ_R_SHIFT));
1989 }
1990 }
1991 if (pll_freq == 0)
1992 return -EINVAL;
1993
1994 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1995 writel(pll_freq, PRCM_PLLDSI_FREQ);
1996
1997 return 0;
1998}
1999
2000static void set_dsiclk_rate(u8 n, unsigned long rate)
2001{
2002 u32 val;
2003 u32 div;
2004
2005 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2006 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2007
2008 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2009 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2010 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2011
2012 val = readl(PRCM_DSI_PLLOUT_SEL);
2013 val &= ~dsiclk[n].divsel_mask;
2014 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2015 writel(val, PRCM_DSI_PLLOUT_SEL);
2016}
2017
2018static void set_dsiescclk_rate(u8 n, unsigned long rate)
2019{
2020 u32 val;
2021 u32 div;
2022
2023 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2024 val = readl(PRCM_DSITVCLK_DIV);
2025 val &= ~dsiescclk[n].div_mask;
2026 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2027 writel(val, PRCM_DSITVCLK_DIV);
2028}
2029
2030int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2031{
2032 if (clock < PRCMU_NUM_REG_CLOCKS)
2033 set_clock_rate(clock, rate);
2034 else if (clock == PRCMU_PLLDSI)
2035 return set_plldsi_rate(rate);
2036 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2037 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2038 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2039 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2040 return 0;
3df57bcf
MN
2041}
2042
73180f85 2043int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
2044{
2045 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2046 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2047 return -EINVAL;
2048
2049 mutex_lock(&mb4_transfer.lock);
2050
c553b3ca 2051 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2052 cpu_relax();
2053
2054 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2055 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2056 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2057 writeb(DDR_PWR_STATE_ON,
2058 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2059 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2060
c553b3ca 2061 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2062 wait_for_completion(&mb4_transfer.work);
2063
2064 mutex_unlock(&mb4_transfer.lock);
2065
2066 return 0;
2067}
2068
0508901c 2069int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2070{
2071 mutex_lock(&mb4_transfer.lock);
2072
c553b3ca 2073 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2074 cpu_relax();
2075
2076 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2077 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2078
c553b3ca 2079 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2080 wait_for_completion(&mb4_transfer.work);
2081
2082 mutex_unlock(&mb4_transfer.lock);
2083
2084 return 0;
2085}
2086
0508901c 2087int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2088{
2089 mutex_lock(&mb4_transfer.lock);
2090
c553b3ca 2091 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2092 cpu_relax();
2093
2094 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2095 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2096 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2097 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2098 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2099
c553b3ca 2100 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2101 wait_for_completion(&mb4_transfer.work);
2102
2103 mutex_unlock(&mb4_transfer.lock);
2104
2105 return 0;
2106}
2107
2108static int config_hot_period(u16 val)
2109{
2110 mutex_lock(&mb4_transfer.lock);
2111
c553b3ca 2112 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2113 cpu_relax();
2114
2115 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2116 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2117
c553b3ca 2118 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2119 wait_for_completion(&mb4_transfer.work);
2120
2121 mutex_unlock(&mb4_transfer.lock);
2122
2123 return 0;
2124}
2125
0508901c 2126int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2127{
2128 if (cycles32k == 0xFFFF)
2129 return -EINVAL;
2130
2131 return config_hot_period(cycles32k);
2132}
2133
0508901c 2134int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2135{
2136 return config_hot_period(0xFFFF);
2137}
2138
84165b80
JA
2139static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2140{
2141
2142 mutex_lock(&mb4_transfer.lock);
2143
2144 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2145 cpu_relax();
2146
2147 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2148 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2149 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2150 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2151
2152 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2153
2154 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2155 wait_for_completion(&mb4_transfer.work);
2156
2157 mutex_unlock(&mb4_transfer.lock);
2158
2159 return 0;
2160
2161}
2162
0508901c 2163int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2164{
2165 BUG_ON(num == 0 || num > 0xf);
2166 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2167 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2168 A9WDOG_AUTO_OFF_DIS);
2169}
2170
0508901c 2171int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2172{
2173 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2174}
2175
0508901c 2176int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2177{
2178 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2179}
2180
0508901c 2181int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2182{
2183 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2184}
2185
2186/*
2187 * timeout is 28 bit, in ms.
2188 */
0508901c 2189int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2190{
84165b80
JA
2191 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2192 (id & A9WDOG_ID_MASK) |
2193 /*
2194 * Put the lowest 28 bits of timeout at
2195 * offset 4. Four first bits are used for id.
2196 */
2197 (u8)((timeout << 4) & 0xf0),
2198 (u8)((timeout >> 4) & 0xff),
2199 (u8)((timeout >> 12) & 0xff),
2200 (u8)((timeout >> 20) & 0xff));
2201}
2202
e3726fcf
LW
2203/**
2204 * prcmu_abb_read() - Read register value(s) from the ABB.
2205 * @slave: The I2C slave address.
2206 * @reg: The (start) register address.
2207 * @value: The read out value(s).
2208 * @size: The number of registers to read.
2209 *
2210 * Reads register value(s) from the ABB.
2211 * @size has to be 1 for the current firmware version.
2212 */
2213int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2214{
2215 int r;
2216
2217 if (size != 1)
2218 return -EINVAL;
2219
3df57bcf 2220 mutex_lock(&mb5_transfer.lock);
e3726fcf 2221
c553b3ca 2222 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2223 cpu_relax();
2224
3c3e4898 2225 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2226 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2227 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2228 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2229 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2230
c553b3ca 2231 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2232
e3726fcf 2233 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2234 msecs_to_jiffies(20000))) {
2235 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2236 __func__);
e3726fcf 2237 r = -EIO;
3df57bcf
MN
2238 } else {
2239 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2240 }
3df57bcf 2241
e3726fcf
LW
2242 if (!r)
2243 *value = mb5_transfer.ack.value;
2244
e3726fcf 2245 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2246
e3726fcf
LW
2247 return r;
2248}
e3726fcf
LW
2249
2250/**
3c3e4898 2251 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2252 * @slave: The I2C slave address.
2253 * @reg: The (start) register address.
2254 * @value: The value(s) to write.
3c3e4898 2255 * @mask: The mask(s) to use.
e3726fcf
LW
2256 * @size: The number of registers to write.
2257 *
3c3e4898
MN
2258 * Writes masked register value(s) to the ABB.
2259 * For each @value, only the bits set to 1 in the corresponding @mask
2260 * will be written. The other bits are not changed.
e3726fcf
LW
2261 * @size has to be 1 for the current firmware version.
2262 */
3c3e4898 2263int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2264{
2265 int r;
2266
2267 if (size != 1)
2268 return -EINVAL;
2269
3df57bcf 2270 mutex_lock(&mb5_transfer.lock);
e3726fcf 2271
c553b3ca 2272 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2273 cpu_relax();
2274
3c3e4898 2275 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2276 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2277 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2278 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2279 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2280
c553b3ca 2281 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2282
e3726fcf 2283 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2284 msecs_to_jiffies(20000))) {
2285 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2286 __func__);
e3726fcf 2287 r = -EIO;
3df57bcf
MN
2288 } else {
2289 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2290 }
e3726fcf 2291
e3726fcf 2292 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2293
e3726fcf
LW
2294 return r;
2295}
e3726fcf 2296
3c3e4898
MN
2297/**
2298 * prcmu_abb_write() - Write register value(s) to the ABB.
2299 * @slave: The I2C slave address.
2300 * @reg: The (start) register address.
2301 * @value: The value(s) to write.
2302 * @size: The number of registers to write.
2303 *
2304 * Writes register value(s) to the ABB.
2305 * @size has to be 1 for the current firmware version.
2306 */
2307int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2308{
2309 u8 mask = ~0;
2310
2311 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2312}
2313
3df57bcf
MN
2314/**
2315 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2316 */
5261e101 2317int prcmu_ac_wake_req(void)
e0befb23 2318{
3df57bcf 2319 u32 val;
5261e101 2320 int ret = 0;
e0befb23 2321
3df57bcf 2322 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2323
c553b3ca 2324 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2325 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2326 goto unlock_and_return;
e0befb23 2327
3df57bcf 2328 atomic_set(&ac_wake_req_state, 1);
e0befb23 2329
5261e101
AM
2330 /*
2331 * Force Modem Wake-up before hostaccess_req ping-pong.
2332 * It prevents Modem to enter in Sleep while acking the hostaccess
2333 * request. The 31us delay has been calculated by HWI.
2334 */
2335 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2336 writel(val, PRCM_HOSTACCESS_REQ);
2337
2338 udelay(31);
2339
2340 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2341 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2342
3df57bcf 2343 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2344 msecs_to_jiffies(5000))) {
5261e101
AM
2345#if defined(CONFIG_DBX500_PRCMU_DEBUG)
2346 db8500_prcmu_debug_dump(__func__, true, true);
2347#endif
57265bc1 2348 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2349 __func__);
5261e101 2350 ret = -EFAULT;
3df57bcf 2351 }
e0befb23 2352
3df57bcf
MN
2353unlock_and_return:
2354 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2355 return ret;
e0befb23
MP
2356}
2357
2358/**
3df57bcf 2359 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2360 */
3df57bcf 2361void prcmu_ac_sleep_req()
e0befb23 2362{
3df57bcf
MN
2363 u32 val;
2364
2365 mutex_lock(&mb0_transfer.ac_wake_lock);
2366
c553b3ca 2367 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2368 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2369 goto unlock_and_return;
2370
2371 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2372 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2373
2374 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2375 msecs_to_jiffies(5000))) {
57265bc1 2376 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2377 __func__);
2378 }
2379
2380 atomic_set(&ac_wake_req_state, 0);
2381
2382unlock_and_return:
2383 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2384}
e0befb23 2385
73180f85 2386bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2387{
3df57bcf 2388 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2389}
e0befb23
MP
2390
2391/**
73180f85 2392 * db8500_prcmu_system_reset - System reset
e0befb23 2393 *
73180f85 2394 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2395 * fires interrupt to fw
e0befb23 2396 */
73180f85 2397void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2398{
3df57bcf 2399 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2400 writel(1, PRCM_APE_SOFTRST);
e0befb23 2401}
e0befb23 2402
597045de
SR
2403/**
2404 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2405 *
2406 * Retrieves the reset reason code stored by prcmu_system_reset() before
2407 * last restart.
2408 */
2409u16 db8500_prcmu_get_reset_code(void)
2410{
2411 return readw(tcdm_base + PRCM_SW_RST_REASON);
2412}
2413
e0befb23 2414/**
0508901c 2415 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2416 */
0508901c 2417void db8500_prcmu_modem_reset(void)
e0befb23 2418{
3df57bcf
MN
2419 mutex_lock(&mb1_transfer.lock);
2420
c553b3ca 2421 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2422 cpu_relax();
2423
2424 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2425 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2426 wait_for_completion(&mb1_transfer.work);
2427
2428 /*
2429 * No need to check return from PRCMU as modem should go in reset state
2430 * This state is already managed by upper layer
2431 */
2432
2433 mutex_unlock(&mb1_transfer.lock);
e0befb23 2434}
e0befb23 2435
3df57bcf 2436static void ack_dbb_wakeup(void)
e0befb23 2437{
3df57bcf
MN
2438 unsigned long flags;
2439
2440 spin_lock_irqsave(&mb0_transfer.lock, flags);
2441
c553b3ca 2442 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2443 cpu_relax();
2444
2445 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2446 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2447
2448 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2449}
e0befb23 2450
3df57bcf 2451static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2452{
3df57bcf
MN
2453 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2454 header, n);
e0befb23
MP
2455}
2456
3df57bcf 2457static bool read_mailbox_0(void)
e3726fcf 2458{
3df57bcf
MN
2459 bool r;
2460 u32 ev;
2461 unsigned int n;
2462 u8 header;
2463
2464 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2465 switch (header) {
2466 case MB0H_WAKEUP_EXE:
2467 case MB0H_WAKEUP_SLEEP:
2468 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2469 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2470 else
2471 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2472
2473 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2474 complete(&mb0_transfer.ac_wake_work);
2475 if (ev & WAKEUP_BIT_SYSCLK_OK)
2476 complete(&mb3_transfer.sysclk_work);
2477
2478 ev &= mb0_transfer.req.dbb_irqs;
2479
2480 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2481 if (ev & prcmu_irq_bit[n])
2482 generic_handle_irq(IRQ_PRCMU_BASE + n);
2483 }
2484 r = true;
2485 break;
2486 default:
2487 print_unknown_header_warning(0, header);
2488 r = false;
2489 break;
2490 }
c553b3ca 2491 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2492 return r;
e3726fcf
LW
2493}
2494
3df57bcf 2495static bool read_mailbox_1(void)
e3726fcf 2496{
3df57bcf
MN
2497 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2498 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2499 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2500 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2501 PRCM_ACK_MB1_CURRENT_APE_OPP);
2502 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2503 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2504 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2505 complete(&mb1_transfer.work);
3df57bcf 2506 return false;
e3726fcf
LW
2507}
2508
3df57bcf 2509static bool read_mailbox_2(void)
e3726fcf 2510{
3df57bcf 2511 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2512 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2513 complete(&mb2_transfer.work);
2514 return false;
e3726fcf
LW
2515}
2516
3df57bcf 2517static bool read_mailbox_3(void)
e3726fcf 2518{
c553b3ca 2519 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2520 return false;
e3726fcf
LW
2521}
2522
3df57bcf 2523static bool read_mailbox_4(void)
e3726fcf 2524{
3df57bcf
MN
2525 u8 header;
2526 bool do_complete = true;
2527
2528 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2529 switch (header) {
2530 case MB4H_MEM_ST:
2531 case MB4H_HOTDOG:
2532 case MB4H_HOTMON:
2533 case MB4H_HOT_PERIOD:
a592c2e2
MN
2534 case MB4H_A9WDOG_CONF:
2535 case MB4H_A9WDOG_EN:
2536 case MB4H_A9WDOG_DIS:
2537 case MB4H_A9WDOG_LOAD:
2538 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2539 break;
2540 default:
2541 print_unknown_header_warning(4, header);
2542 do_complete = false;
2543 break;
2544 }
2545
c553b3ca 2546 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2547
2548 if (do_complete)
2549 complete(&mb4_transfer.work);
2550
2551 return false;
e3726fcf
LW
2552}
2553
3df57bcf 2554static bool read_mailbox_5(void)
e3726fcf 2555{
3df57bcf
MN
2556 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2557 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2558 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2559 complete(&mb5_transfer.work);
3df57bcf 2560 return false;
e3726fcf
LW
2561}
2562
3df57bcf 2563static bool read_mailbox_6(void)
e3726fcf 2564{
c553b3ca 2565 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2566 return false;
e3726fcf
LW
2567}
2568
3df57bcf 2569static bool read_mailbox_7(void)
e3726fcf 2570{
c553b3ca 2571 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2572 return false;
e3726fcf
LW
2573}
2574
3df57bcf 2575static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2576 read_mailbox_0,
2577 read_mailbox_1,
2578 read_mailbox_2,
2579 read_mailbox_3,
2580 read_mailbox_4,
2581 read_mailbox_5,
2582 read_mailbox_6,
2583 read_mailbox_7
2584};
2585
2586static irqreturn_t prcmu_irq_handler(int irq, void *data)
2587{
2588 u32 bits;
2589 u8 n;
3df57bcf 2590 irqreturn_t r;
e3726fcf 2591
c553b3ca 2592 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2593 if (unlikely(!bits))
2594 return IRQ_NONE;
2595
3df57bcf 2596 r = IRQ_HANDLED;
e3726fcf
LW
2597 for (n = 0; bits; n++) {
2598 if (bits & MBOX_BIT(n)) {
2599 bits -= MBOX_BIT(n);
3df57bcf
MN
2600 if (read_mailbox[n]())
2601 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2602 }
2603 }
3df57bcf
MN
2604 return r;
2605}
2606
2607static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2608{
2609 ack_dbb_wakeup();
e3726fcf
LW
2610 return IRQ_HANDLED;
2611}
2612
3df57bcf
MN
2613static void prcmu_mask_work(struct work_struct *work)
2614{
2615 unsigned long flags;
2616
2617 spin_lock_irqsave(&mb0_transfer.lock, flags);
2618
2619 config_wakeups();
2620
2621 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2622}
2623
2624static void prcmu_irq_mask(struct irq_data *d)
2625{
2626 unsigned long flags;
2627
2628 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2629
f3f1f0a1 2630 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2631
2632 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2633
2634 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2635 schedule_work(&mb0_transfer.mask_work);
2636}
2637
2638static void prcmu_irq_unmask(struct irq_data *d)
2639{
2640 unsigned long flags;
2641
2642 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2643
f3f1f0a1 2644 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2645
2646 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2647
2648 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2649 schedule_work(&mb0_transfer.mask_work);
2650}
2651
2652static void noop(struct irq_data *d)
2653{
2654}
2655
2656static struct irq_chip prcmu_irq_chip = {
2657 .name = "prcmu",
2658 .irq_disable = prcmu_irq_mask,
2659 .irq_ack = noop,
2660 .irq_mask = prcmu_irq_mask,
2661 .irq_unmask = prcmu_irq_unmask,
2662};
2663
b58d12fe
MN
2664static char *fw_project_name(u8 project)
2665{
2666 switch (project) {
2667 case PRCMU_FW_PROJECT_U8500:
2668 return "U8500";
2669 case PRCMU_FW_PROJECT_U8500_C2:
2670 return "U8500 C2";
2671 case PRCMU_FW_PROJECT_U9500:
2672 return "U9500";
2673 case PRCMU_FW_PROJECT_U9500_C2:
2674 return "U9500 C2";
5f96a1a6
BJ
2675 case PRCMU_FW_PROJECT_U8520:
2676 return "U8520";
1927ddf6
BJ
2677 case PRCMU_FW_PROJECT_U8420:
2678 return "U8420";
b58d12fe
MN
2679 default:
2680 return "Unknown";
2681 }
2682}
2683
f3f1f0a1
LJ
2684static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2685 irq_hw_number_t hwirq)
2686{
2687 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2688 handle_simple_irq);
2689 set_irq_flags(virq, IRQF_VALID);
2690
2691 return 0;
2692}
2693
2694static struct irq_domain_ops db8500_irq_ops = {
2695 .map = db8500_irq_map,
2696 .xlate = irq_domain_xlate_twocell,
2697};
2698
2699static int db8500_irq_init(struct device_node *np)
2700{
2701 db8500_irq_domain = irq_domain_add_legacy(
2702 np, NUM_PRCMU_WAKEUPS, IRQ_PRCMU_BASE,
2703 0, &db8500_irq_ops, NULL);
2704
2705 if (!db8500_irq_domain) {
2706 pr_err("Failed to create irqdomain\n");
2707 return -ENOSYS;
2708 }
2709
2710 return 0;
2711}
2712
73180f85 2713void __init db8500_prcmu_early_init(void)
fcbd458e 2714{
3e2762c8 2715 if (cpu_is_u8500v2()) {
3df57bcf
MN
2716 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2717
2718 if (tcpm_base != NULL) {
3e2762c8 2719 u32 version;
3df57bcf 2720 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
b58d12fe
MN
2721 fw_info.version.project = version & 0xFF;
2722 fw_info.version.api_version = (version >> 8) & 0xFF;
2723 fw_info.version.func_version = (version >> 16) & 0xFF;
2724 fw_info.version.errata = (version >> 24) & 0xFF;
2725 fw_info.valid = true;
2726 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2727 fw_project_name(fw_info.version.project),
3df57bcf
MN
2728 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2729 (version >> 24) & 0xFF);
2730 iounmap(tcpm_base);
2731 }
2732
fcbd458e
MW
2733 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2734 } else {
2735 pr_err("prcmu: Unsupported chip version\n");
2736 BUG();
2737 }
e0befb23 2738
3df57bcf
MN
2739 spin_lock_init(&mb0_transfer.lock);
2740 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2741 mutex_init(&mb0_transfer.ac_wake_lock);
2742 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2743 mutex_init(&mb1_transfer.lock);
2744 init_completion(&mb1_transfer.work);
4d64d2e3 2745 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2746 mutex_init(&mb2_transfer.lock);
2747 init_completion(&mb2_transfer.work);
2748 spin_lock_init(&mb2_transfer.auto_pm_lock);
2749 spin_lock_init(&mb3_transfer.lock);
2750 mutex_init(&mb3_transfer.sysclk_lock);
2751 init_completion(&mb3_transfer.sysclk_work);
2752 mutex_init(&mb4_transfer.lock);
2753 init_completion(&mb4_transfer.work);
e3726fcf
LW
2754 mutex_init(&mb5_transfer.lock);
2755 init_completion(&mb5_transfer.work);
2756
3df57bcf
MN
2757 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2758
20aee5b6 2759 compute_armss_rate();
3df57bcf
MN
2760}
2761
0508901c 2762static void __init init_prcm_registers(void)
d65e12d7
MN
2763{
2764 u32 val;
2765
2766 val = readl(PRCM_A9PL_FORCE_CLKEN);
2767 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2768 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2769 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2770}
2771
1032fbfd
BJ
2772/*
2773 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2774 */
2775static struct regulator_consumer_supply db8500_vape_consumers[] = {
2776 REGULATOR_SUPPLY("v-ape", NULL),
2777 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2778 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2779 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2780 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2781 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2782 /* "v-mmc" changed to "vcore" in the mainline kernel */
2783 REGULATOR_SUPPLY("vcore", "sdi0"),
2784 REGULATOR_SUPPLY("vcore", "sdi1"),
2785 REGULATOR_SUPPLY("vcore", "sdi2"),
2786 REGULATOR_SUPPLY("vcore", "sdi3"),
2787 REGULATOR_SUPPLY("vcore", "sdi4"),
2788 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2789 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2790 /* "v-uart" changed to "vcore" in the mainline kernel */
2791 REGULATOR_SUPPLY("vcore", "uart0"),
2792 REGULATOR_SUPPLY("vcore", "uart1"),
2793 REGULATOR_SUPPLY("vcore", "uart2"),
2794 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2795 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2796 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2797};
2798
2799static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2800 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2801 /* AV8100 regulator */
2802 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2803};
2804
2805static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2806 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2807 REGULATOR_SUPPLY("vsupply", "mcde"),
2808};
2809
2810/* SVA MMDSP regulator switch */
2811static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2812 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2813};
2814
2815/* SVA pipe regulator switch */
2816static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2817 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2818};
2819
2820/* SIA MMDSP regulator switch */
2821static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2822 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2823};
2824
2825/* SIA pipe regulator switch */
2826static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2827 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2828};
2829
2830static struct regulator_consumer_supply db8500_sga_consumers[] = {
2831 REGULATOR_SUPPLY("v-mali", NULL),
2832};
2833
2834/* ESRAM1 and 2 regulator switch */
2835static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2836 REGULATOR_SUPPLY("esram12", "cm_control"),
2837};
2838
2839/* ESRAM3 and 4 regulator switch */
2840static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2841 REGULATOR_SUPPLY("v-esram34", "mcde"),
2842 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2843 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2844};
2845
2846static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2847 [DB8500_REGULATOR_VAPE] = {
2848 .constraints = {
2849 .name = "db8500-vape",
2850 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2851 .always_on = true,
1032fbfd
BJ
2852 },
2853 .consumer_supplies = db8500_vape_consumers,
2854 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2855 },
2856 [DB8500_REGULATOR_VARM] = {
2857 .constraints = {
2858 .name = "db8500-varm",
2859 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2860 },
2861 },
2862 [DB8500_REGULATOR_VMODEM] = {
2863 .constraints = {
2864 .name = "db8500-vmodem",
2865 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 },
2867 },
2868 [DB8500_REGULATOR_VPLL] = {
2869 .constraints = {
2870 .name = "db8500-vpll",
2871 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2872 },
2873 },
2874 [DB8500_REGULATOR_VSMPS1] = {
2875 .constraints = {
2876 .name = "db8500-vsmps1",
2877 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878 },
2879 },
2880 [DB8500_REGULATOR_VSMPS2] = {
2881 .constraints = {
2882 .name = "db8500-vsmps2",
2883 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2884 },
2885 .consumer_supplies = db8500_vsmps2_consumers,
2886 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2887 },
2888 [DB8500_REGULATOR_VSMPS3] = {
2889 .constraints = {
2890 .name = "db8500-vsmps3",
2891 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2892 },
2893 },
2894 [DB8500_REGULATOR_VRF1] = {
2895 .constraints = {
2896 .name = "db8500-vrf1",
2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 },
2899 },
2900 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2901 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2902 .constraints = {
2903 .name = "db8500-sva-mmdsp",
2904 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2905 },
624e87c2
BJ
2906 .consumer_supplies = db8500_svammdsp_consumers,
2907 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2908 },
2909 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2910 .constraints = {
2911 /* "ret" means "retention" */
2912 .name = "db8500-sva-mmdsp-ret",
2913 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2914 },
2915 },
2916 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2917 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2918 .constraints = {
2919 .name = "db8500-sva-pipe",
2920 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2921 },
624e87c2
BJ
2922 .consumer_supplies = db8500_svapipe_consumers,
2923 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2924 },
2925 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2926 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2927 .constraints = {
2928 .name = "db8500-sia-mmdsp",
2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 },
624e87c2
BJ
2931 .consumer_supplies = db8500_siammdsp_consumers,
2932 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2933 },
2934 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2935 .constraints = {
2936 .name = "db8500-sia-mmdsp-ret",
2937 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938 },
2939 },
2940 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2941 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2942 .constraints = {
2943 .name = "db8500-sia-pipe",
2944 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2945 },
624e87c2
BJ
2946 .consumer_supplies = db8500_siapipe_consumers,
2947 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2948 },
2949 [DB8500_REGULATOR_SWITCH_SGA] = {
2950 .supply_regulator = "db8500-vape",
2951 .constraints = {
2952 .name = "db8500-sga",
2953 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2954 },
624e87c2
BJ
2955 .consumer_supplies = db8500_sga_consumers,
2956 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2957
1032fbfd
BJ
2958 },
2959 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2960 .supply_regulator = "db8500-vape",
2961 .constraints = {
2962 .name = "db8500-b2r2-mcde",
2963 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2964 },
2965 .consumer_supplies = db8500_b2r2_mcde_consumers,
2966 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2967 },
2968 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2969 /*
2970 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2971 * no need to hold Vape
2972 */
1032fbfd
BJ
2973 .constraints = {
2974 .name = "db8500-esram12",
2975 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2976 },
624e87c2
BJ
2977 .consumer_supplies = db8500_esram12_consumers,
2978 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2979 },
2980 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2981 .constraints = {
2982 .name = "db8500-esram12-ret",
2983 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2984 },
2985 },
2986 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2987 /*
2988 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2989 * no need to hold Vape
2990 */
1032fbfd
BJ
2991 .constraints = {
2992 .name = "db8500-esram34",
2993 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994 },
624e87c2
BJ
2995 .consumer_supplies = db8500_esram34_consumers,
2996 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2997 },
2998 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2999 .constraints = {
3000 .name = "db8500-esram34-ret",
3001 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3002 },
3003 },
3004};
3005
c280f45f
UH
3006/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
3007static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
3008 { .frequency = 200000, .index = ARM_EXTCLK,},
3009 { .frequency = 400000, .index = ARM_50_OPP,},
3010 { .frequency = 800000, .index = ARM_100_OPP,},
3011 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
3012 { .frequency = CPUFREQ_TABLE_END,},
3013};
3014
6d11d135
LJ
3015static struct resource ab8500_resources[] = {
3016 [0] = {
3017 .start = IRQ_DB8500_AB8500,
3018 .end = IRQ_DB8500_AB8500,
3019 .flags = IORESOURCE_IRQ
3020 }
3021};
3022
3df57bcf
MN
3023static struct mfd_cell db8500_prcmu_devs[] = {
3024 {
3025 .name = "db8500-prcmu-regulators",
5d90322b 3026 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3027 .platform_data = &db8500_regulators,
3028 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
3029 },
3030 {
3031 .name = "cpufreq-u8500",
5d90322b 3032 .of_compatible = "stericsson,cpufreq-u8500",
c280f45f
UH
3033 .platform_data = &db8500_cpufreq_table,
3034 .pdata_size = sizeof(db8500_cpufreq_table),
3df57bcf 3035 },
6d11d135
LJ
3036 {
3037 .name = "ab8500-core",
3038 .of_compatible = "stericsson,ab8500",
3039 .num_resources = ARRAY_SIZE(ab8500_resources),
3040 .resources = ab8500_resources,
3041 .id = AB8500_VERSION_AB8500,
3042 },
3df57bcf
MN
3043};
3044
c280f45f
UH
3045static void db8500_prcmu_update_cpufreq(void)
3046{
3047 if (prcmu_has_arm_maxopp()) {
3048 db8500_cpufreq_table[3].frequency = 1000000;
3049 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3050 }
3051}
3052
3df57bcf
MN
3053/**
3054 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3055 *
3056 */
9fc63f67 3057static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3058{
3a8e39c9 3059 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
ca7edd16 3060 struct device_node *np = pdev->dev.of_node;
3a8e39c9 3061 int irq = 0, err = 0, i;
3df57bcf
MN
3062
3063 if (ux500_is_svp())
3064 return -ENODEV;
3065
0508901c 3066 init_prcm_registers();
d65e12d7 3067
e3726fcf 3068 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3069 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3070
ca7edd16
LJ
3071 if (np)
3072 irq = platform_get_irq(pdev, 0);
3073
3074 if (!np || irq <= 0)
3075 irq = IRQ_DB8500_PRCMU1;
3076
3077 err = request_threaded_irq(irq, prcmu_irq_handler,
3078 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3079 if (err < 0) {
3080 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3081 err = -EBUSY;
3082 goto no_irq_return;
3083 }
3084
f3f1f0a1
LJ
3085 db8500_irq_init(np);
3086
3a8e39c9
LJ
3087 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3088 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3089 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3c1534c7 3090 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3a8e39c9
LJ
3091 }
3092 }
3093
3df57bcf
MN
3094 if (cpu_is_u8500v20_or_later())
3095 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3096
c280f45f
UH
3097 db8500_prcmu_update_cpufreq();
3098
5d90322b 3099 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
0848c94f 3100 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
5d90322b
LJ
3101 if (err) {
3102 pr_err("prcmu: Failed to add subdevices\n");
3103 return err;
ca7edd16 3104 }
e3726fcf 3105
ca7edd16 3106 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3107
3108no_irq_return:
3109 return err;
3110}
3c144762
LJ
3111static const struct of_device_id db8500_prcmu_match[] = {
3112 { .compatible = "stericsson,db8500-prcmu"},
3113 { },
3114};
3df57bcf
MN
3115
3116static struct platform_driver db8500_prcmu_driver = {
3117 .driver = {
3118 .name = "db8500-prcmu",
3119 .owner = THIS_MODULE,
3c144762 3120 .of_match_table = db8500_prcmu_match,
3df57bcf 3121 },
9fc63f67 3122 .probe = db8500_prcmu_probe,
3df57bcf
MN
3123};
3124
3125static int __init db8500_prcmu_init(void)
3126{
9fc63f67 3127 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3128}
3129
a661aca4 3130core_initcall(db8500_prcmu_init);
3df57bcf
MN
3131
3132MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3133MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3134MODULE_LICENSE("GPL v2");