mfd: Remove db8500-prcmu U8400 legacy
[linux-2.6-block.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
73180f85 30#include <linux/mfd/dbx500-prcmu.h>
1032fbfd
BJ
31#include <linux/regulator/db8500-prcmu.h>
32#include <linux/regulator/machine.h>
3df57bcf
MN
33#include <mach/hardware.h>
34#include <mach/irqs.h>
35#include <mach/db8500-regs.h>
36#include <mach/id.h>
73180f85 37#include "dbx500-prcmu-regs.h"
3df57bcf
MN
38
39/* Offset for the firmware version within the TCPM */
40#define PRCMU_FW_VERSION_OFFSET 0xA4
41
42/* PRCMU project numbers, defined by PRCMU FW */
43#define PRCMU_PROJECT_ID_8500V1_0 1
44#define PRCMU_PROJECT_ID_8500V2_0 2
45#define PRCMU_PROJECT_ID_8400V2_0 3
46
47/* Index of different voltages to be used when accessing AVSData */
48#define PRCM_AVS_BASE 0x2FC
49#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
50#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
51#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
52#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
53#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
54#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
55#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
56#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
57#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
58#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
59#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
60#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
61#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
62
63#define PRCM_AVS_VOLTAGE 0
64#define PRCM_AVS_VOLTAGE_MASK 0x3f
65#define PRCM_AVS_ISSLOWSTARTUP 6
66#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
67#define PRCM_AVS_ISMODEENABLE 7
68#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
69
70#define PRCM_BOOT_STATUS 0xFFF
71#define PRCM_ROMCODE_A2P 0xFFE
72#define PRCM_ROMCODE_P2A 0xFFD
73#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
74
75#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76
77#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
78#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
79#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
80#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
81#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
82#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
83#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
84#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
85
86/* Req Mailboxes */
87#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
88#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
89#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
90#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
91#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
92#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
93
94/* Ack Mailboxes */
95#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
96#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
97#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
98#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
99#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
100#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101
102/* Mailbox 0 headers */
103#define MB0H_POWER_STATE_TRANS 0
104#define MB0H_CONFIG_WAKEUPS_EXE 1
105#define MB0H_READ_WAKEUP_ACK 3
106#define MB0H_CONFIG_WAKEUPS_SLEEP 4
107
108#define MB0H_WAKEUP_EXE 2
109#define MB0H_WAKEUP_SLEEP 5
110
111/* Mailbox 0 REQs */
112#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
113#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
114#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
115#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
116#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
117#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
118
119/* Mailbox 0 ACKs */
120#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
121#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
122#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
123#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
124#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
125#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
126#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
127
128/* Mailbox 1 headers */
129#define MB1H_ARM_APE_OPP 0x0
130#define MB1H_RESET_MODEM 0x2
131#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
132#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
133#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 134#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
135
136/* Mailbox 1 Requests */
137#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
138#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2
MN
139#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
140#define PLL_SOC1_OFF 0x4
141#define PLL_SOC1_ON 0x8
3df57bcf
MN
142
143/* Mailbox 1 ACKs */
144#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
145#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
146#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
148
149/* Mailbox 2 headers */
150#define MB2H_DPS 0x0
151#define MB2H_AUTO_PWR 0x1
152
153/* Mailbox 2 REQs */
154#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
155#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
156#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
157#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
158#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
159#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
160#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
161#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
162#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
163#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
164
165/* Mailbox 2 ACKs */
166#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167#define HWACC_PWR_ST_OK 0xFE
168
169/* Mailbox 3 headers */
170#define MB3H_ANC 0x0
171#define MB3H_SIDETONE 0x1
172#define MB3H_SYSCLK 0xE
173
174/* Mailbox 3 Requests */
175#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
176#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
177#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
178#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
179#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
180#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
182
183/* Mailbox 4 headers */
184#define MB4H_DDR_INIT 0x0
185#define MB4H_MEM_ST 0x1
186#define MB4H_HOTDOG 0x12
187#define MB4H_HOTMON 0x13
188#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
189#define MB4H_A9WDOG_CONF 0x16
190#define MB4H_A9WDOG_EN 0x17
191#define MB4H_A9WDOG_DIS 0x18
192#define MB4H_A9WDOG_LOAD 0x19
193#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
194
195/* Mailbox 4 Requests */
196#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
199#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
200#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
201#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
202#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
203#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
204#define HOTMON_CONFIG_LOW BIT(0)
205#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
206#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
207#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
208#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
209#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
210#define A9WDOG_AUTO_OFF_EN BIT(7)
211#define A9WDOG_AUTO_OFF_DIS 0
212#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
213
214/* Mailbox 5 Requests */
215#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
216#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
217#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
218#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
219#define PRCMU_I2C_WRITE(slave) \
220 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221#define PRCMU_I2C_READ(slave) \
222 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223#define PRCMU_I2C_STOP_EN BIT(3)
224
225/* Mailbox 5 ACKs */
226#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
228#define I2C_WR_OK 0x1
229#define I2C_RD_OK 0x2
230
231#define NUM_MB 8
232#define MBOX_BIT BIT
233#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234
235/*
236 * Wakeups/IRQs
237 */
238
239#define WAKEUP_BIT_RTC BIT(0)
240#define WAKEUP_BIT_RTT0 BIT(1)
241#define WAKEUP_BIT_RTT1 BIT(2)
242#define WAKEUP_BIT_HSI0 BIT(3)
243#define WAKEUP_BIT_HSI1 BIT(4)
244#define WAKEUP_BIT_CA_WAKE BIT(5)
245#define WAKEUP_BIT_USB BIT(6)
246#define WAKEUP_BIT_ABB BIT(7)
247#define WAKEUP_BIT_ABB_FIFO BIT(8)
248#define WAKEUP_BIT_SYSCLK_OK BIT(9)
249#define WAKEUP_BIT_CA_SLEEP BIT(10)
250#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252#define WAKEUP_BIT_ANC_OK BIT(13)
253#define WAKEUP_BIT_SW_ERROR BIT(14)
254#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255#define WAKEUP_BIT_ARM BIT(17)
256#define WAKEUP_BIT_HOTMON_LOW BIT(18)
257#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259#define WAKEUP_BIT_GPIO0 BIT(23)
260#define WAKEUP_BIT_GPIO1 BIT(24)
261#define WAKEUP_BIT_GPIO2 BIT(25)
262#define WAKEUP_BIT_GPIO3 BIT(26)
263#define WAKEUP_BIT_GPIO4 BIT(27)
264#define WAKEUP_BIT_GPIO5 BIT(28)
265#define WAKEUP_BIT_GPIO6 BIT(29)
266#define WAKEUP_BIT_GPIO7 BIT(30)
267#define WAKEUP_BIT_GPIO8 BIT(31)
268
269/*
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
272 *
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
276 */
277#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
278#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
280 IRQ_ENTRY(RTC),
281 IRQ_ENTRY(RTT0),
282 IRQ_ENTRY(RTT1),
283 IRQ_ENTRY(HSI0),
284 IRQ_ENTRY(HSI1),
285 IRQ_ENTRY(CA_WAKE),
286 IRQ_ENTRY(USB),
287 IRQ_ENTRY(ABB),
288 IRQ_ENTRY(ABB_FIFO),
289 IRQ_ENTRY(CA_SLEEP),
290 IRQ_ENTRY(ARM),
291 IRQ_ENTRY(HOTMON_LOW),
292 IRQ_ENTRY(HOTMON_HIGH),
293 IRQ_ENTRY(MODEM_SW_RESET_REQ),
294 IRQ_ENTRY(GPIO0),
295 IRQ_ENTRY(GPIO1),
296 IRQ_ENTRY(GPIO2),
297 IRQ_ENTRY(GPIO3),
298 IRQ_ENTRY(GPIO4),
299 IRQ_ENTRY(GPIO5),
300 IRQ_ENTRY(GPIO6),
301 IRQ_ENTRY(GPIO7),
302 IRQ_ENTRY(GPIO8)
303};
304
305#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
306#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
307static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
308 WAKEUP_ENTRY(RTC),
309 WAKEUP_ENTRY(RTT0),
310 WAKEUP_ENTRY(RTT1),
311 WAKEUP_ENTRY(HSI0),
312 WAKEUP_ENTRY(HSI1),
313 WAKEUP_ENTRY(USB),
314 WAKEUP_ENTRY(ABB),
315 WAKEUP_ENTRY(ABB_FIFO),
316 WAKEUP_ENTRY(ARM)
317};
318
319/*
320 * mb0_transfer - state needed for mailbox 0 communication.
321 * @lock: The transaction lock.
322 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
323 * the request data.
324 * @mask_work: Work structure used for (un)masking wakeup interrupts.
325 * @req: Request data that need to persist between requests.
326 */
327static struct {
328 spinlock_t lock;
329 spinlock_t dbb_irqs_lock;
330 struct work_struct mask_work;
331 struct mutex ac_wake_lock;
332 struct completion ac_wake_work;
333 struct {
334 u32 dbb_irqs;
335 u32 dbb_wakeups;
336 u32 abb_events;
337 } req;
338} mb0_transfer;
339
340/*
341 * mb1_transfer - state needed for mailbox 1 communication.
342 * @lock: The transaction lock.
343 * @work: The transaction completion structure.
344 * @ack: Reply ("acknowledge") data.
345 */
346static struct {
347 struct mutex lock;
348 struct completion work;
349 struct {
350 u8 header;
351 u8 arm_opp;
352 u8 ape_opp;
353 u8 ape_voltage_status;
354 } ack;
355} mb1_transfer;
356
357/*
358 * mb2_transfer - state needed for mailbox 2 communication.
359 * @lock: The transaction lock.
360 * @work: The transaction completion structure.
361 * @auto_pm_lock: The autonomous power management configuration lock.
362 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
363 * @req: Request data that need to persist between requests.
364 * @ack: Reply ("acknowledge") data.
365 */
366static struct {
367 struct mutex lock;
368 struct completion work;
369 spinlock_t auto_pm_lock;
370 bool auto_pm_enabled;
371 struct {
372 u8 status;
373 } ack;
374} mb2_transfer;
375
376/*
377 * mb3_transfer - state needed for mailbox 3 communication.
378 * @lock: The request lock.
379 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
380 * @sysclk_work: Work structure used for sysclk requests.
381 */
382static struct {
383 spinlock_t lock;
384 struct mutex sysclk_lock;
385 struct completion sysclk_work;
386} mb3_transfer;
387
388/*
389 * mb4_transfer - state needed for mailbox 4 communication.
390 * @lock: The transaction lock.
391 * @work: The transaction completion structure.
392 */
393static struct {
394 struct mutex lock;
395 struct completion work;
396} mb4_transfer;
397
398/*
399 * mb5_transfer - state needed for mailbox 5 communication.
400 * @lock: The transaction lock.
401 * @work: The transaction completion structure.
402 * @ack: Reply ("acknowledge") data.
403 */
404static struct {
405 struct mutex lock;
406 struct completion work;
407 struct {
408 u8 status;
409 u8 value;
410 } ack;
411} mb5_transfer;
412
413static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
414
415/* Spinlocks */
416static DEFINE_SPINLOCK(clkout_lock);
417static DEFINE_SPINLOCK(gpiocr_lock);
418
419/* Global var to runtime determine TCDM base for v2 or v1 */
420static __iomem void *tcdm_base;
421
422struct clk_mgt {
423 unsigned int offset;
424 u32 pllsw;
425};
426
427static DEFINE_SPINLOCK(clk_mgt_lock);
428
c553b3ca 429#define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
3df57bcf
MN
430struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
431 CLK_MGT_ENTRY(SGACLK),
432 CLK_MGT_ENTRY(UARTCLK),
433 CLK_MGT_ENTRY(MSP02CLK),
434 CLK_MGT_ENTRY(MSP1CLK),
435 CLK_MGT_ENTRY(I2CCLK),
436 CLK_MGT_ENTRY(SDMMCCLK),
437 CLK_MGT_ENTRY(SLIMCLK),
438 CLK_MGT_ENTRY(PER1CLK),
439 CLK_MGT_ENTRY(PER2CLK),
440 CLK_MGT_ENTRY(PER3CLK),
441 CLK_MGT_ENTRY(PER5CLK),
442 CLK_MGT_ENTRY(PER6CLK),
443 CLK_MGT_ENTRY(PER7CLK),
444 CLK_MGT_ENTRY(LCDCLK),
445 CLK_MGT_ENTRY(BMLCLK),
446 CLK_MGT_ENTRY(HSITXCLK),
447 CLK_MGT_ENTRY(HSIRXCLK),
448 CLK_MGT_ENTRY(HDMICLK),
449 CLK_MGT_ENTRY(APEATCLK),
450 CLK_MGT_ENTRY(APETRACECLK),
451 CLK_MGT_ENTRY(MCDECLK),
452 CLK_MGT_ENTRY(IPI2CCLK),
453 CLK_MGT_ENTRY(DSIALTCLK),
454 CLK_MGT_ENTRY(DMACLK),
455 CLK_MGT_ENTRY(B2R2CLK),
456 CLK_MGT_ENTRY(TVCLK),
457 CLK_MGT_ENTRY(SSPCLK),
458 CLK_MGT_ENTRY(RNGCLK),
459 CLK_MGT_ENTRY(UICCCLK),
460};
461
0837bb72
MN
462static struct regulator *hwacc_regulator[NUM_HW_ACC];
463static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
464
465static bool hwacc_enabled[NUM_HW_ACC];
466static bool hwacc_ret_enabled[NUM_HW_ACC];
467
468static const char *hwacc_regulator_name[NUM_HW_ACC] = {
469 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
470 [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
471 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
472 [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
473 [HW_ACC_SGA] = "hwacc-sga",
474 [HW_ACC_B2R2] = "hwacc-b2r2",
475 [HW_ACC_MCDE] = "hwacc-mcde",
476 [HW_ACC_ESRAM1] = "hwacc-esram1",
477 [HW_ACC_ESRAM2] = "hwacc-esram2",
478 [HW_ACC_ESRAM3] = "hwacc-esram3",
479 [HW_ACC_ESRAM4] = "hwacc-esram4",
480};
481
482static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
483 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
484 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
485 [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
486 [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
487 [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
488 [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
489};
490
3df57bcf
MN
491/*
492* Used by MCDE to setup all necessary PRCMU registers
493*/
494#define PRCMU_RESET_DSIPLL 0x00004000
495#define PRCMU_UNCLAMP_DSIPLL 0x00400800
496
497#define PRCMU_CLK_PLL_DIV_SHIFT 0
498#define PRCMU_CLK_PLL_SW_SHIFT 5
499#define PRCMU_CLK_38 (1 << 9)
500#define PRCMU_CLK_38_SRC (1 << 10)
501#define PRCMU_CLK_38_DIV (1 << 11)
502
503/* PLLDIV=12, PLLSW=4 (PLLDDR) */
504#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
505
3df57bcf
MN
506/* DPI 50000000 Hz */
507#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
508 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
509#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
510
511/* D=101, N=1, R=4, SELDIV2=0 */
512#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
513
3df57bcf
MN
514#define PRCMU_ENABLE_PLLDSI 0x00000001
515#define PRCMU_DISABLE_PLLDSI 0x00000000
516#define PRCMU_RELEASE_RESET_DSS 0x0000400C
517#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
518/* ESC clk, div0=1, div1=1, div2=3 */
519#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
520#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
521#define PRCMU_DSI_RESET_SW 0x00000007
522
523#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
524
525static struct {
526 u8 project_number;
527 u8 api_version;
528 u8 func_version;
529 u8 errata;
530} prcmu_version;
531
532
73180f85 533int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
534{
535 int i;
3df57bcf
MN
536
537 /* Clear DSIPLL_RESETN */
c553b3ca 538 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 539 /* Unclamp DSIPLL in/out */
c553b3ca 540 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 541
3df57bcf 542 /* Set DSI PLL FREQ */
c72fe851 543 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 544 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 545 /* Enable Escape clocks */
c553b3ca 546 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
547
548 /* Start DSI PLL */
c553b3ca 549 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 550 /* Reset DSI PLL */
c553b3ca 551 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 552 for (i = 0; i < 10; i++) {
c553b3ca 553 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
554 == PRCMU_PLLDSI_LOCKP_LOCKED)
555 break;
556 udelay(100);
557 }
558 /* Set DSIPLL_RESETN */
c553b3ca 559 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
560 return 0;
561}
562
73180f85 563int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
564{
565 /* Disable dsi pll */
c553b3ca 566 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 567 /* Disable escapeclock */
c553b3ca 568 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
569 return 0;
570}
571
73180f85 572int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
573{
574 unsigned long flags;
3df57bcf
MN
575
576 spin_lock_irqsave(&clk_mgt_lock, flags);
577
578 /* Grab the HW semaphore. */
c553b3ca 579 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
580 cpu_relax();
581
c72fe851 582 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
c553b3ca
MN
583 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
584 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
3df57bcf
MN
585
586 /* Release the HW semaphore. */
c553b3ca 587 writel(0, PRCM_SEM);
3df57bcf
MN
588
589 spin_unlock_irqrestore(&clk_mgt_lock, flags);
590
591 return 0;
592}
593
594/**
595 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
596 */
597void prcmu_enable_spi2(void)
598{
599 u32 reg;
600 unsigned long flags;
601
602 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
603 reg = readl(PRCM_GPIOCR);
604 writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
605 spin_unlock_irqrestore(&gpiocr_lock, flags);
606}
607
608/**
609 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
610 */
611void prcmu_disable_spi2(void)
612{
613 u32 reg;
614 unsigned long flags;
615
616 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
617 reg = readl(PRCM_GPIOCR);
618 writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
619 spin_unlock_irqrestore(&gpiocr_lock, flags);
620}
621
622bool prcmu_has_arm_maxopp(void)
623{
624 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
625 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
626}
627
3df57bcf
MN
628/**
629 * prcmu_get_boot_status - PRCMU boot status checking
630 * Returns: the current PRCMU boot status
631 */
632int prcmu_get_boot_status(void)
633{
634 return readb(tcdm_base + PRCM_BOOT_STATUS);
635}
636
637/**
638 * prcmu_set_rc_a2p - This function is used to run few power state sequences
639 * @val: Value to be set, i.e. transition requested
640 * Returns: 0 on success, -EINVAL on invalid argument
641 *
642 * This function is used to run the following power state sequences -
643 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
644 */
645int prcmu_set_rc_a2p(enum romcode_write val)
646{
647 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
648 return -EINVAL;
649 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
650 return 0;
651}
652
653/**
654 * prcmu_get_rc_p2a - This function is used to get power state sequences
655 * Returns: the power transition that has last happened
656 *
657 * This function can return the following transitions-
658 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
659 */
660enum romcode_read prcmu_get_rc_p2a(void)
661{
662 return readb(tcdm_base + PRCM_ROMCODE_P2A);
663}
664
665/**
666 * prcmu_get_current_mode - Return the current XP70 power mode
667 * Returns: Returns the current AP(ARM) power mode: init,
668 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
669 */
670enum ap_pwrst prcmu_get_xp70_current_state(void)
671{
672 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
673}
674
675/**
676 * prcmu_config_clkout - Configure one of the programmable clock outputs.
677 * @clkout: The CLKOUT number (0 or 1).
678 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
679 * @div: The divider to be applied.
680 *
681 * Configures one of the programmable clock outputs (CLKOUTs).
682 * @div should be in the range [1,63] to request a configuration, or 0 to
683 * inform that the configuration is no longer requested.
684 */
685int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
686{
687 static int requests[2];
688 int r = 0;
689 unsigned long flags;
690 u32 val;
691 u32 bits;
692 u32 mask;
693 u32 div_mask;
694
695 BUG_ON(clkout > 1);
696 BUG_ON(div > 63);
697 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
698
699 if (!div && !requests[clkout])
700 return -EINVAL;
701
702 switch (clkout) {
703 case 0:
704 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
705 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
706 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
707 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
708 break;
709 case 1:
710 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
711 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
712 PRCM_CLKOCR_CLK1TYPE);
713 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
714 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
715 break;
716 }
717 bits &= mask;
718
719 spin_lock_irqsave(&clkout_lock, flags);
720
c553b3ca 721 val = readl(PRCM_CLKOCR);
3df57bcf
MN
722 if (val & div_mask) {
723 if (div) {
724 if ((val & mask) != bits) {
725 r = -EBUSY;
726 goto unlock_and_return;
727 }
728 } else {
729 if ((val & mask & ~div_mask) != bits) {
730 r = -EINVAL;
731 goto unlock_and_return;
732 }
733 }
734 }
c553b3ca 735 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
736 requests[clkout] += (div ? 1 : -1);
737
738unlock_and_return:
739 spin_unlock_irqrestore(&clkout_lock, flags);
740
741 return r;
742}
743
73180f85 744int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
745{
746 unsigned long flags;
747
748 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
749
750 spin_lock_irqsave(&mb0_transfer.lock, flags);
751
c553b3ca 752 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
753 cpu_relax();
754
755 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
756 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
757 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
758 writeb((keep_ulp_clk ? 1 : 0),
759 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
760 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 761 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
762
763 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
764
765 return 0;
766}
767
768/* This function should only be called while mb0_transfer.lock is held. */
769static void config_wakeups(void)
770{
771 const u8 header[2] = {
772 MB0H_CONFIG_WAKEUPS_EXE,
773 MB0H_CONFIG_WAKEUPS_SLEEP
774 };
775 static u32 last_dbb_events;
776 static u32 last_abb_events;
777 u32 dbb_events;
778 u32 abb_events;
779 unsigned int i;
780
781 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
782 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
783
784 abb_events = mb0_transfer.req.abb_events;
785
786 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
787 return;
788
789 for (i = 0; i < 2; i++) {
c553b3ca 790 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
791 cpu_relax();
792 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
793 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
794 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 795 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
796 }
797 last_dbb_events = dbb_events;
798 last_abb_events = abb_events;
799}
800
73180f85 801void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
802{
803 unsigned long flags;
804 u32 bits;
805 int i;
806
807 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
808
809 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
810 if (wakeups & BIT(i))
811 bits |= prcmu_wakeup_bit[i];
812 }
813
814 spin_lock_irqsave(&mb0_transfer.lock, flags);
815
816 mb0_transfer.req.dbb_wakeups = bits;
817 config_wakeups();
818
819 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
820}
821
73180f85 822void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
823{
824 unsigned long flags;
825
826 spin_lock_irqsave(&mb0_transfer.lock, flags);
827
828 mb0_transfer.req.abb_events = abb_events;
829 config_wakeups();
830
831 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
832}
833
73180f85 834void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
835{
836 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
837 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
838 else
839 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
840}
841
842/**
73180f85 843 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
844 * @opp: The new ARM operating point to which transition is to be made
845 * Returns: 0 on success, non-zero on failure
846 *
847 * This function sets the the operating point of the ARM.
848 */
73180f85 849int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
850{
851 int r;
852
853 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
854 return -EINVAL;
855
856 r = 0;
857
858 mutex_lock(&mb1_transfer.lock);
859
c553b3ca 860 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
861 cpu_relax();
862
863 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
864 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
865 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
866
c553b3ca 867 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
868 wait_for_completion(&mb1_transfer.work);
869
870 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
871 (mb1_transfer.ack.arm_opp != opp))
872 r = -EIO;
873
874 mutex_unlock(&mb1_transfer.lock);
875
876 return r;
877}
878
879/**
73180f85 880 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
881 *
882 * Returns: the current ARM OPP
883 */
73180f85 884int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
885{
886 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
887}
888
889/**
890 * prcmu_get_ddr_opp - get the current DDR OPP
891 *
892 * Returns: the current DDR OPP
893 */
894int prcmu_get_ddr_opp(void)
895{
c553b3ca 896 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
897}
898
899/**
900 * set_ddr_opp - set the appropriate DDR OPP
901 * @opp: The new DDR operating point to which transition is to be made
902 * Returns: 0 on success, non-zero on failure
903 *
904 * This function sets the operating point of the DDR.
905 */
906int prcmu_set_ddr_opp(u8 opp)
907{
908 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
909 return -EINVAL;
910 /* Changing the DDR OPP can hang the hardware pre-v21 */
911 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
c553b3ca 912 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
913
914 return 0;
915}
916/**
917 * set_ape_opp - set the appropriate APE OPP
918 * @opp: The new APE operating point to which transition is to be made
919 * Returns: 0 on success, non-zero on failure
920 *
921 * This function sets the operating point of the APE.
922 */
923int prcmu_set_ape_opp(u8 opp)
924{
925 int r = 0;
926
927 mutex_lock(&mb1_transfer.lock);
928
c553b3ca 929 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
930 cpu_relax();
931
932 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
933 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
934 writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
935
c553b3ca 936 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
937 wait_for_completion(&mb1_transfer.work);
938
939 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
940 (mb1_transfer.ack.ape_opp != opp))
941 r = -EIO;
942
943 mutex_unlock(&mb1_transfer.lock);
944
945 return r;
946}
947
948/**
949 * prcmu_get_ape_opp - get the current APE OPP
950 *
951 * Returns: the current APE OPP
952 */
953int prcmu_get_ape_opp(void)
954{
955 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
956}
957
958/**
959 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960 * @enable: true to request the higher voltage, false to drop a request.
961 *
962 * Calls to this function to enable and disable requests must be balanced.
963 */
964int prcmu_request_ape_opp_100_voltage(bool enable)
965{
966 int r = 0;
967 u8 header;
968 static unsigned int requests;
969
970 mutex_lock(&mb1_transfer.lock);
971
972 if (enable) {
973 if (0 != requests++)
974 goto unlock_and_return;
975 header = MB1H_REQUEST_APE_OPP_100_VOLT;
976 } else {
977 if (requests == 0) {
978 r = -EIO;
979 goto unlock_and_return;
980 } else if (1 != requests--) {
981 goto unlock_and_return;
982 }
983 header = MB1H_RELEASE_APE_OPP_100_VOLT;
984 }
985
c553b3ca 986 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
987 cpu_relax();
988
989 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
990
c553b3ca 991 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
992 wait_for_completion(&mb1_transfer.work);
993
994 if ((mb1_transfer.ack.header != header) ||
995 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
996 r = -EIO;
997
998unlock_and_return:
999 mutex_unlock(&mb1_transfer.lock);
1000
1001 return r;
1002}
1003
1004/**
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006 *
1007 * This function releases the power state requirements of a USB wakeup.
1008 */
1009int prcmu_release_usb_wakeup_state(void)
1010{
1011 int r = 0;
1012
1013 mutex_lock(&mb1_transfer.lock);
1014
c553b3ca 1015 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1016 cpu_relax();
1017
1018 writeb(MB1H_RELEASE_USB_WAKEUP,
1019 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
c553b3ca 1021 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1022 wait_for_completion(&mb1_transfer.work);
1023
1024 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026 r = -EIO;
1027
1028 mutex_unlock(&mb1_transfer.lock);
1029
1030 return r;
1031}
1032
0837bb72
MN
1033static int request_pll(u8 clock, bool enable)
1034{
1035 int r = 0;
1036
1037 if (clock == PRCMU_PLLSOC1)
1038 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1039 else
1040 return -EINVAL;
1041
1042 mutex_lock(&mb1_transfer.lock);
1043
1044 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1045 cpu_relax();
1046
1047 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1048 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1049
1050 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1051 wait_for_completion(&mb1_transfer.work);
1052
1053 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1054 r = -EIO;
1055
1056 mutex_unlock(&mb1_transfer.lock);
1057
1058 return r;
1059}
1060
0b9199e3
BJ
1061/**
1062 * prcmu_set_hwacc - set the power state of a h/w accelerator
1063 * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
1064 * @state: The new power state (enum hw_acc_state).
1065 *
1066 * This function sets the power state of a hardware accelerator.
1067 * This function should not be called from interrupt context.
1068 *
1069 * NOTE! Deprecated, to be removed when all users switched over to use the
1070 * regulator framework API.
1071 */
1072int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
1073{
1074 int r = 0;
1075 bool ram_retention = false;
1076 bool enable, enable_ret;
1077
1078 /* check argument */
1079 BUG_ON(hwacc_dev >= NUM_HW_ACC);
1080
1081 /* get state of switches */
1082 enable = hwacc_enabled[hwacc_dev];
1083 enable_ret = hwacc_ret_enabled[hwacc_dev];
1084
1085 /* set flag if retention is possible */
1086 switch (hwacc_dev) {
1087 case HW_ACC_SVAMMDSP:
1088 case HW_ACC_SIAMMDSP:
1089 case HW_ACC_ESRAM1:
1090 case HW_ACC_ESRAM2:
1091 case HW_ACC_ESRAM3:
1092 case HW_ACC_ESRAM4:
1093 ram_retention = true;
1094 break;
1095 }
1096
1097 /* check argument */
1098 BUG_ON(state > HW_ON);
1099 BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
1100
1101 /* modify enable flags */
1102 switch (state) {
1103 case HW_OFF:
1104 enable_ret = false;
1105 enable = false;
1106 break;
1107 case HW_ON:
1108 enable = true;
1109 break;
1110 case HW_OFF_RAMRET:
1111 enable_ret = true;
1112 enable = false;
1113 break;
1114 }
1115
1116 /* get regulator (lazy) */
1117 if (hwacc_regulator[hwacc_dev] == NULL) {
1118 hwacc_regulator[hwacc_dev] = regulator_get(NULL,
1119 hwacc_regulator_name[hwacc_dev]);
1120 if (IS_ERR(hwacc_regulator[hwacc_dev])) {
1121 pr_err("prcmu: failed to get supply %s\n",
1122 hwacc_regulator_name[hwacc_dev]);
1123 r = PTR_ERR(hwacc_regulator[hwacc_dev]);
1124 goto out;
1125 }
1126 }
1127
1128 if (ram_retention) {
1129 if (hwacc_ret_regulator[hwacc_dev] == NULL) {
1130 hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
1131 hwacc_ret_regulator_name[hwacc_dev]);
1132 if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
1133 pr_err("prcmu: failed to get supply %s\n",
1134 hwacc_ret_regulator_name[hwacc_dev]);
1135 r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
1136 goto out;
1137 }
1138 }
1139 }
1140
1141 /* set regulators */
1142 if (ram_retention) {
1143 if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
1144 r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
1145 if (r < 0) {
1146 pr_err("prcmu_set_hwacc: ret enable failed\n");
1147 goto out;
1148 }
1149 hwacc_ret_enabled[hwacc_dev] = true;
1150 }
1151 }
1152
1153 if (enable && !hwacc_enabled[hwacc_dev]) {
1154 r = regulator_enable(hwacc_regulator[hwacc_dev]);
1155 if (r < 0) {
1156 pr_err("prcmu_set_hwacc: enable failed\n");
1157 goto out;
1158 }
1159 hwacc_enabled[hwacc_dev] = true;
1160 }
1161
1162 if (!enable && hwacc_enabled[hwacc_dev]) {
1163 r = regulator_disable(hwacc_regulator[hwacc_dev]);
1164 if (r < 0) {
1165 pr_err("prcmu_set_hwacc: disable failed\n");
1166 goto out;
1167 }
1168 hwacc_enabled[hwacc_dev] = false;
1169 }
1170
1171 if (ram_retention) {
1172 if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
1173 r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
1174 if (r < 0) {
1175 pr_err("prcmu_set_hwacc: ret disable failed\n");
1176 goto out;
1177 }
1178 hwacc_ret_enabled[hwacc_dev] = false;
1179 }
1180 }
1181
1182out:
1183 return r;
1184}
1185EXPORT_SYMBOL(prcmu_set_hwacc);
1186
3df57bcf 1187/**
73180f85 1188 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1189 * @epod_id: The EPOD to set
1190 * @epod_state: The new EPOD state
1191 *
1192 * This function sets the state of a EPOD (power domain). It may not be called
1193 * from interrupt context.
1194 */
73180f85 1195int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1196{
1197 int r = 0;
1198 bool ram_retention = false;
1199 int i;
1200
1201 /* check argument */
1202 BUG_ON(epod_id >= NUM_EPOD_ID);
1203
1204 /* set flag if retention is possible */
1205 switch (epod_id) {
1206 case EPOD_ID_SVAMMDSP:
1207 case EPOD_ID_SIAMMDSP:
1208 case EPOD_ID_ESRAM12:
1209 case EPOD_ID_ESRAM34:
1210 ram_retention = true;
1211 break;
1212 }
1213
1214 /* check argument */
1215 BUG_ON(epod_state > EPOD_STATE_ON);
1216 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1217
1218 /* get lock */
1219 mutex_lock(&mb2_transfer.lock);
1220
1221 /* wait for mailbox */
c553b3ca 1222 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1223 cpu_relax();
1224
1225 /* fill in mailbox */
1226 for (i = 0; i < NUM_EPOD_ID; i++)
1227 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1228 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1229
1230 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1231
c553b3ca 1232 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1233
1234 /*
1235 * The current firmware version does not handle errors correctly,
1236 * and we cannot recover if there is an error.
1237 * This is expected to change when the firmware is updated.
1238 */
1239 if (!wait_for_completion_timeout(&mb2_transfer.work,
1240 msecs_to_jiffies(20000))) {
1241 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1242 __func__);
1243 r = -EIO;
1244 goto unlock_and_return;
1245 }
1246
1247 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1248 r = -EIO;
1249
1250unlock_and_return:
1251 mutex_unlock(&mb2_transfer.lock);
1252 return r;
1253}
1254
1255/**
1256 * prcmu_configure_auto_pm - Configure autonomous power management.
1257 * @sleep: Configuration for ApSleep.
1258 * @idle: Configuration for ApIdle.
1259 */
1260void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1261 struct prcmu_auto_pm_config *idle)
1262{
1263 u32 sleep_cfg;
1264 u32 idle_cfg;
1265 unsigned long flags;
e3726fcf 1266
3df57bcf 1267 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1268
3df57bcf
MN
1269 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1270 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1271 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1272 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1273 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1274 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1275
3df57bcf
MN
1276 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1277 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1278 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1279 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1280 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1281 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1282
3df57bcf 1283 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1284
3df57bcf
MN
1285 /*
1286 * The autonomous power management configuration is done through
1287 * fields in mailbox 2, but these fields are only used as shared
1288 * variables - i.e. there is no need to send a message.
1289 */
1290 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1291 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1292
3df57bcf
MN
1293 mb2_transfer.auto_pm_enabled =
1294 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1295 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1296 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1297 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1298
3df57bcf
MN
1299 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1300}
1301EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1302
3df57bcf
MN
1303bool prcmu_is_auto_pm_enabled(void)
1304{
1305 return mb2_transfer.auto_pm_enabled;
1306}
e0befb23 1307
3df57bcf
MN
1308static int request_sysclk(bool enable)
1309{
1310 int r;
1311 unsigned long flags;
e3726fcf 1312
3df57bcf 1313 r = 0;
e3726fcf 1314
3df57bcf 1315 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1316
3df57bcf 1317 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1318
c553b3ca 1319 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1320 cpu_relax();
e0befb23 1321
3df57bcf 1322 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1323
3df57bcf 1324 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1325 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1326
3df57bcf
MN
1327 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1328
1329 /*
1330 * The firmware only sends an ACK if we want to enable the
1331 * SysClk, and it succeeds.
1332 */
1333 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1334 msecs_to_jiffies(20000))) {
1335 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1336 __func__);
1337 r = -EIO;
1338 }
1339
1340 mutex_unlock(&mb3_transfer.sysclk_lock);
1341
1342 return r;
1343}
1344
1345static int request_timclk(bool enable)
1346{
1347 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1348
1349 if (!enable)
1350 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1351 writel(val, PRCM_TCR);
3df57bcf
MN
1352
1353 return 0;
1354}
1355
1356static int request_reg_clock(u8 clock, bool enable)
1357{
1358 u32 val;
1359 unsigned long flags;
1360
1361 spin_lock_irqsave(&clk_mgt_lock, flags);
1362
1363 /* Grab the HW semaphore. */
c553b3ca 1364 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1365 cpu_relax();
1366
1367 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1368 if (enable) {
1369 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1370 } else {
1371 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1372 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1373 }
1374 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1375
1376 /* Release the HW semaphore. */
c553b3ca 1377 writel(0, PRCM_SEM);
3df57bcf
MN
1378
1379 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1380
1381 return 0;
1382}
1383
0837bb72
MN
1384static int request_sga_clock(u8 clock, bool enable)
1385{
1386 u32 val;
1387 int ret;
1388
1389 if (enable) {
1390 val = readl(PRCM_CGATING_BYPASS);
1391 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1392 }
1393
1394 ret = request_reg_clock(clock, enable);
1395
1396 if (!ret && !enable) {
1397 val = readl(PRCM_CGATING_BYPASS);
1398 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1399 }
1400
1401 return ret;
1402}
1403
3df57bcf 1404/**
73180f85 1405 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1406 * @clock: The clock for which the request is made.
1407 * @enable: Whether the clock should be enabled (true) or disabled (false).
1408 *
1409 * This function should only be used by the clock implementation.
1410 * Do not use it from any other place!
1411 */
73180f85 1412int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1413{
e62ccf3a
LW
1414 switch(clock) {
1415 case PRCMU_SGACLK:
0837bb72 1416 return request_sga_clock(clock, enable);
e62ccf3a 1417 case PRCMU_TIMCLK:
3df57bcf 1418 return request_timclk(enable);
e62ccf3a 1419 case PRCMU_SYSCLK:
3df57bcf 1420 return request_sysclk(enable);
e62ccf3a 1421 case PRCMU_PLLSOC1:
0837bb72 1422 return request_pll(clock, enable);
e62ccf3a
LW
1423 default:
1424 break;
1425 }
1426 if (clock < PRCMU_NUM_REG_CLOCKS)
1427 return request_reg_clock(clock, enable);
1428 return -EINVAL;
3df57bcf
MN
1429}
1430
73180f85 1431int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
1432{
1433 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1434 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1435 return -EINVAL;
1436
1437 mutex_lock(&mb4_transfer.lock);
1438
c553b3ca 1439 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1440 cpu_relax();
1441
1442 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1443 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1444 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1445 writeb(DDR_PWR_STATE_ON,
1446 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1447 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1448
c553b3ca 1449 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1450 wait_for_completion(&mb4_transfer.work);
1451
1452 mutex_unlock(&mb4_transfer.lock);
1453
1454 return 0;
1455}
1456
1457int prcmu_config_hotdog(u8 threshold)
1458{
1459 mutex_lock(&mb4_transfer.lock);
1460
c553b3ca 1461 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1462 cpu_relax();
1463
1464 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1465 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1466
c553b3ca 1467 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1468 wait_for_completion(&mb4_transfer.work);
1469
1470 mutex_unlock(&mb4_transfer.lock);
1471
1472 return 0;
1473}
1474
1475int prcmu_config_hotmon(u8 low, u8 high)
1476{
1477 mutex_lock(&mb4_transfer.lock);
1478
c553b3ca 1479 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1480 cpu_relax();
1481
1482 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1483 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1484 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1485 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1486 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1487
c553b3ca 1488 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1489 wait_for_completion(&mb4_transfer.work);
1490
1491 mutex_unlock(&mb4_transfer.lock);
1492
1493 return 0;
1494}
1495
1496static int config_hot_period(u16 val)
1497{
1498 mutex_lock(&mb4_transfer.lock);
1499
c553b3ca 1500 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1501 cpu_relax();
1502
1503 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1504 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1505
c553b3ca 1506 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1507 wait_for_completion(&mb4_transfer.work);
1508
1509 mutex_unlock(&mb4_transfer.lock);
1510
1511 return 0;
1512}
1513
1514int prcmu_start_temp_sense(u16 cycles32k)
1515{
1516 if (cycles32k == 0xFFFF)
1517 return -EINVAL;
1518
1519 return config_hot_period(cycles32k);
1520}
1521
1522int prcmu_stop_temp_sense(void)
1523{
1524 return config_hot_period(0xFFFF);
1525}
1526
84165b80
JA
1527static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
1528{
1529
1530 mutex_lock(&mb4_transfer.lock);
1531
1532 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1533 cpu_relax();
1534
1535 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
1536 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
1537 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
1538 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
1539
1540 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1541
1542 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1543 wait_for_completion(&mb4_transfer.work);
1544
1545 mutex_unlock(&mb4_transfer.lock);
1546
1547 return 0;
1548
1549}
1550
1551int prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
1552{
1553 BUG_ON(num == 0 || num > 0xf);
1554 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
1555 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
1556 A9WDOG_AUTO_OFF_DIS);
1557}
1558
1559int prcmu_enable_a9wdog(u8 id)
1560{
1561 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
1562}
1563
1564int prcmu_disable_a9wdog(u8 id)
1565{
1566 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
1567}
1568
1569int prcmu_kick_a9wdog(u8 id)
1570{
1571 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
1572}
1573
1574/*
1575 * timeout is 28 bit, in ms.
1576 */
1577#define MAX_WATCHDOG_TIMEOUT 131000
1578int prcmu_load_a9wdog(u8 id, u32 timeout)
1579{
1580 if (timeout > MAX_WATCHDOG_TIMEOUT)
1581 /*
1582 * Due to calculation bug in prcmu fw, timeouts
1583 * can't be bigger than 131 seconds.
1584 */
1585 return -EINVAL;
1586
1587 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
1588 (id & A9WDOG_ID_MASK) |
1589 /*
1590 * Put the lowest 28 bits of timeout at
1591 * offset 4. Four first bits are used for id.
1592 */
1593 (u8)((timeout << 4) & 0xf0),
1594 (u8)((timeout >> 4) & 0xff),
1595 (u8)((timeout >> 12) & 0xff),
1596 (u8)((timeout >> 20) & 0xff));
1597}
1598
3df57bcf
MN
1599/**
1600 * prcmu_set_clock_divider() - Configure the clock divider.
1601 * @clock: The clock for which the request is made.
1602 * @divider: The clock divider. (< 32)
1603 *
1604 * This function should only be used by the clock implementation.
1605 * Do not use it from any other place!
1606 */
1607int prcmu_set_clock_divider(u8 clock, u8 divider)
1608{
1609 u32 val;
1610 unsigned long flags;
1611
1612 if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1613 return -EINVAL;
1614
1615 spin_lock_irqsave(&clk_mgt_lock, flags);
1616
1617 /* Grab the HW semaphore. */
c553b3ca 1618 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1619 cpu_relax();
1620
1621 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1622 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1623 val |= (u32)divider;
1624 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1625
1626 /* Release the HW semaphore. */
c553b3ca 1627 writel(0, PRCM_SEM);
3df57bcf
MN
1628
1629 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1630
1631 return 0;
1632}
e3726fcf
LW
1633
1634/**
1635 * prcmu_abb_read() - Read register value(s) from the ABB.
1636 * @slave: The I2C slave address.
1637 * @reg: The (start) register address.
1638 * @value: The read out value(s).
1639 * @size: The number of registers to read.
1640 *
1641 * Reads register value(s) from the ABB.
1642 * @size has to be 1 for the current firmware version.
1643 */
1644int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1645{
1646 int r;
1647
1648 if (size != 1)
1649 return -EINVAL;
1650
3df57bcf 1651 mutex_lock(&mb5_transfer.lock);
e3726fcf 1652
c553b3ca 1653 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
1654 cpu_relax();
1655
3df57bcf
MN
1656 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1657 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1658 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1659 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1660
c553b3ca 1661 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 1662
e3726fcf 1663 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
1664 msecs_to_jiffies(20000))) {
1665 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1666 __func__);
e3726fcf 1667 r = -EIO;
3df57bcf
MN
1668 } else {
1669 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 1670 }
3df57bcf 1671
e3726fcf
LW
1672 if (!r)
1673 *value = mb5_transfer.ack.value;
1674
e3726fcf 1675 mutex_unlock(&mb5_transfer.lock);
3df57bcf 1676
e3726fcf
LW
1677 return r;
1678}
e3726fcf
LW
1679
1680/**
1681 * prcmu_abb_write() - Write register value(s) to the ABB.
1682 * @slave: The I2C slave address.
1683 * @reg: The (start) register address.
1684 * @value: The value(s) to write.
1685 * @size: The number of registers to write.
1686 *
1687 * Reads register value(s) from the ABB.
1688 * @size has to be 1 for the current firmware version.
1689 */
1690int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1691{
1692 int r;
1693
1694 if (size != 1)
1695 return -EINVAL;
1696
3df57bcf 1697 mutex_lock(&mb5_transfer.lock);
e3726fcf 1698
c553b3ca 1699 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
1700 cpu_relax();
1701
3df57bcf
MN
1702 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1703 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1704 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1705 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1706
c553b3ca 1707 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 1708
e3726fcf 1709 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
1710 msecs_to_jiffies(20000))) {
1711 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1712 __func__);
e3726fcf 1713 r = -EIO;
3df57bcf
MN
1714 } else {
1715 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 1716 }
e3726fcf 1717
e3726fcf 1718 mutex_unlock(&mb5_transfer.lock);
3df57bcf 1719
e3726fcf
LW
1720 return r;
1721}
e3726fcf 1722
3df57bcf
MN
1723/**
1724 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1725 */
1726void prcmu_ac_wake_req(void)
e0befb23 1727{
3df57bcf 1728 u32 val;
d6e3002e 1729 u32 status;
e0befb23 1730
3df57bcf 1731 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 1732
c553b3ca 1733 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
1734 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1735 goto unlock_and_return;
e0befb23 1736
3df57bcf 1737 atomic_set(&ac_wake_req_state, 1);
e0befb23 1738
d6e3002e 1739retry:
c553b3ca 1740 writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
e0befb23 1741
3df57bcf 1742 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 1743 msecs_to_jiffies(5000))) {
57265bc1 1744 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e
MN
1745 __func__);
1746 goto unlock_and_return;
1747 }
1748
1749 /*
1750 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
1751 * As a workaround, we wait, and then check that the modem is indeed
1752 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
1753 * register, which may not be the whole truth).
1754 */
1755 udelay(400);
1756 status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
1757 if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
1758 PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
1759 pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
1760 __func__, status);
1761 udelay(1200);
1762 writel(val, PRCM_HOSTACCESS_REQ);
1763 if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1764 msecs_to_jiffies(5000)))
1765 goto retry;
57265bc1 1766 pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
3df57bcf
MN
1767 __func__);
1768 }
e0befb23 1769
3df57bcf
MN
1770unlock_and_return:
1771 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23
MP
1772}
1773
1774/**
3df57bcf 1775 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 1776 */
3df57bcf 1777void prcmu_ac_sleep_req()
e0befb23 1778{
3df57bcf
MN
1779 u32 val;
1780
1781 mutex_lock(&mb0_transfer.ac_wake_lock);
1782
c553b3ca 1783 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
1784 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1785 goto unlock_and_return;
1786
1787 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 1788 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
1789
1790 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 1791 msecs_to_jiffies(5000))) {
57265bc1 1792 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
1793 __func__);
1794 }
1795
1796 atomic_set(&ac_wake_req_state, 0);
1797
1798unlock_and_return:
1799 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 1800}
e0befb23 1801
73180f85 1802bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 1803{
3df57bcf 1804 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 1805}
e0befb23
MP
1806
1807/**
73180f85 1808 * db8500_prcmu_system_reset - System reset
e0befb23 1809 *
73180f85 1810 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 1811 * fires interrupt to fw
e0befb23 1812 */
73180f85 1813void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 1814{
3df57bcf 1815 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 1816 writel(1, PRCM_APE_SOFTRST);
e0befb23 1817}
e0befb23 1818
597045de
SR
1819/**
1820 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
1821 *
1822 * Retrieves the reset reason code stored by prcmu_system_reset() before
1823 * last restart.
1824 */
1825u16 db8500_prcmu_get_reset_code(void)
1826{
1827 return readw(tcdm_base + PRCM_SW_RST_REASON);
1828}
1829
e0befb23 1830/**
3df57bcf 1831 * prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 1832 */
3df57bcf 1833void prcmu_modem_reset(void)
e0befb23 1834{
3df57bcf
MN
1835 mutex_lock(&mb1_transfer.lock);
1836
c553b3ca 1837 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1838 cpu_relax();
1839
1840 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 1841 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1842 wait_for_completion(&mb1_transfer.work);
1843
1844 /*
1845 * No need to check return from PRCMU as modem should go in reset state
1846 * This state is already managed by upper layer
1847 */
1848
1849 mutex_unlock(&mb1_transfer.lock);
e0befb23 1850}
e0befb23 1851
3df57bcf 1852static void ack_dbb_wakeup(void)
e0befb23 1853{
3df57bcf
MN
1854 unsigned long flags;
1855
1856 spin_lock_irqsave(&mb0_transfer.lock, flags);
1857
c553b3ca 1858 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
1859 cpu_relax();
1860
1861 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 1862 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1863
1864 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 1865}
e0befb23 1866
3df57bcf 1867static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 1868{
3df57bcf
MN
1869 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1870 header, n);
e0befb23
MP
1871}
1872
3df57bcf 1873static bool read_mailbox_0(void)
e3726fcf 1874{
3df57bcf
MN
1875 bool r;
1876 u32 ev;
1877 unsigned int n;
1878 u8 header;
1879
1880 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1881 switch (header) {
1882 case MB0H_WAKEUP_EXE:
1883 case MB0H_WAKEUP_SLEEP:
1884 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1885 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1886 else
1887 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1888
1889 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1890 complete(&mb0_transfer.ac_wake_work);
1891 if (ev & WAKEUP_BIT_SYSCLK_OK)
1892 complete(&mb3_transfer.sysclk_work);
1893
1894 ev &= mb0_transfer.req.dbb_irqs;
1895
1896 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1897 if (ev & prcmu_irq_bit[n])
1898 generic_handle_irq(IRQ_PRCMU_BASE + n);
1899 }
1900 r = true;
1901 break;
1902 default:
1903 print_unknown_header_warning(0, header);
1904 r = false;
1905 break;
1906 }
c553b3ca 1907 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 1908 return r;
e3726fcf
LW
1909}
1910
3df57bcf 1911static bool read_mailbox_1(void)
e3726fcf 1912{
3df57bcf
MN
1913 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1914 mb1_transfer.ack.arm_opp = readb(tcdm_base +
1915 PRCM_ACK_MB1_CURRENT_ARM_OPP);
1916 mb1_transfer.ack.ape_opp = readb(tcdm_base +
1917 PRCM_ACK_MB1_CURRENT_APE_OPP);
1918 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1919 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 1920 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 1921 complete(&mb1_transfer.work);
3df57bcf 1922 return false;
e3726fcf
LW
1923}
1924
3df57bcf 1925static bool read_mailbox_2(void)
e3726fcf 1926{
3df57bcf 1927 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 1928 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
1929 complete(&mb2_transfer.work);
1930 return false;
e3726fcf
LW
1931}
1932
3df57bcf 1933static bool read_mailbox_3(void)
e3726fcf 1934{
c553b3ca 1935 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 1936 return false;
e3726fcf
LW
1937}
1938
3df57bcf 1939static bool read_mailbox_4(void)
e3726fcf 1940{
3df57bcf
MN
1941 u8 header;
1942 bool do_complete = true;
1943
1944 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1945 switch (header) {
1946 case MB4H_MEM_ST:
1947 case MB4H_HOTDOG:
1948 case MB4H_HOTMON:
1949 case MB4H_HOT_PERIOD:
a592c2e2
MN
1950 case MB4H_A9WDOG_CONF:
1951 case MB4H_A9WDOG_EN:
1952 case MB4H_A9WDOG_DIS:
1953 case MB4H_A9WDOG_LOAD:
1954 case MB4H_A9WDOG_KICK:
3df57bcf
MN
1955 break;
1956 default:
1957 print_unknown_header_warning(4, header);
1958 do_complete = false;
1959 break;
1960 }
1961
c553b3ca 1962 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
1963
1964 if (do_complete)
1965 complete(&mb4_transfer.work);
1966
1967 return false;
e3726fcf
LW
1968}
1969
3df57bcf 1970static bool read_mailbox_5(void)
e3726fcf 1971{
3df57bcf
MN
1972 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1973 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 1974 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 1975 complete(&mb5_transfer.work);
3df57bcf 1976 return false;
e3726fcf
LW
1977}
1978
3df57bcf 1979static bool read_mailbox_6(void)
e3726fcf 1980{
c553b3ca 1981 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 1982 return false;
e3726fcf
LW
1983}
1984
3df57bcf 1985static bool read_mailbox_7(void)
e3726fcf 1986{
c553b3ca 1987 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 1988 return false;
e3726fcf
LW
1989}
1990
3df57bcf 1991static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
1992 read_mailbox_0,
1993 read_mailbox_1,
1994 read_mailbox_2,
1995 read_mailbox_3,
1996 read_mailbox_4,
1997 read_mailbox_5,
1998 read_mailbox_6,
1999 read_mailbox_7
2000};
2001
2002static irqreturn_t prcmu_irq_handler(int irq, void *data)
2003{
2004 u32 bits;
2005 u8 n;
3df57bcf 2006 irqreturn_t r;
e3726fcf 2007
c553b3ca 2008 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2009 if (unlikely(!bits))
2010 return IRQ_NONE;
2011
3df57bcf 2012 r = IRQ_HANDLED;
e3726fcf
LW
2013 for (n = 0; bits; n++) {
2014 if (bits & MBOX_BIT(n)) {
2015 bits -= MBOX_BIT(n);
3df57bcf
MN
2016 if (read_mailbox[n]())
2017 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2018 }
2019 }
3df57bcf
MN
2020 return r;
2021}
2022
2023static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2024{
2025 ack_dbb_wakeup();
e3726fcf
LW
2026 return IRQ_HANDLED;
2027}
2028
3df57bcf
MN
2029static void prcmu_mask_work(struct work_struct *work)
2030{
2031 unsigned long flags;
2032
2033 spin_lock_irqsave(&mb0_transfer.lock, flags);
2034
2035 config_wakeups();
2036
2037 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2038}
2039
2040static void prcmu_irq_mask(struct irq_data *d)
2041{
2042 unsigned long flags;
2043
2044 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2045
2046 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2047
2048 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2049
2050 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2051 schedule_work(&mb0_transfer.mask_work);
2052}
2053
2054static void prcmu_irq_unmask(struct irq_data *d)
2055{
2056 unsigned long flags;
2057
2058 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2059
2060 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2061
2062 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2063
2064 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2065 schedule_work(&mb0_transfer.mask_work);
2066}
2067
2068static void noop(struct irq_data *d)
2069{
2070}
2071
2072static struct irq_chip prcmu_irq_chip = {
2073 .name = "prcmu",
2074 .irq_disable = prcmu_irq_mask,
2075 .irq_ack = noop,
2076 .irq_mask = prcmu_irq_mask,
2077 .irq_unmask = prcmu_irq_unmask,
2078};
2079
73180f85 2080void __init db8500_prcmu_early_init(void)
fcbd458e 2081{
3df57bcf 2082 unsigned int i;
3e2762c8 2083 if (cpu_is_u8500v2()) {
3df57bcf
MN
2084 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2085
2086 if (tcpm_base != NULL) {
3e2762c8 2087 u32 version;
3df57bcf
MN
2088 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2089 prcmu_version.project_number = version & 0xFF;
2090 prcmu_version.api_version = (version >> 8) & 0xFF;
2091 prcmu_version.func_version = (version >> 16) & 0xFF;
2092 prcmu_version.errata = (version >> 24) & 0xFF;
2093 pr_info("PRCMU firmware version %d.%d.%d\n",
2094 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2095 (version >> 24) & 0xFF);
2096 iounmap(tcpm_base);
2097 }
2098
fcbd458e
MW
2099 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2100 } else {
2101 pr_err("prcmu: Unsupported chip version\n");
2102 BUG();
2103 }
e0befb23 2104
3df57bcf
MN
2105 spin_lock_init(&mb0_transfer.lock);
2106 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2107 mutex_init(&mb0_transfer.ac_wake_lock);
2108 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2109 mutex_init(&mb1_transfer.lock);
2110 init_completion(&mb1_transfer.work);
3df57bcf
MN
2111 mutex_init(&mb2_transfer.lock);
2112 init_completion(&mb2_transfer.work);
2113 spin_lock_init(&mb2_transfer.auto_pm_lock);
2114 spin_lock_init(&mb3_transfer.lock);
2115 mutex_init(&mb3_transfer.sysclk_lock);
2116 init_completion(&mb3_transfer.sysclk_work);
2117 mutex_init(&mb4_transfer.lock);
2118 init_completion(&mb4_transfer.work);
e3726fcf
LW
2119 mutex_init(&mb5_transfer.lock);
2120 init_completion(&mb5_transfer.work);
2121
3df57bcf
MN
2122 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2123
2124 /* Initalize irqs. */
2125 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2126 unsigned int irq;
2127
2128 irq = IRQ_PRCMU_BASE + i;
2129 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2130 handle_simple_irq);
2131 set_irq_flags(irq, IRQF_VALID);
2132 }
2133}
2134
1934dae2 2135static void __init db8500_prcmu_init_clkforce(void)
d65e12d7
MN
2136{
2137 u32 val;
2138
2139 val = readl(PRCM_A9PL_FORCE_CLKEN);
2140 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2141 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2142 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2143}
2144
1032fbfd
BJ
2145/*
2146 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2147 */
2148static struct regulator_consumer_supply db8500_vape_consumers[] = {
2149 REGULATOR_SUPPLY("v-ape", NULL),
2150 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2151 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2152 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2153 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2154 /* "v-mmc" changed to "vcore" in the mainline kernel */
2155 REGULATOR_SUPPLY("vcore", "sdi0"),
2156 REGULATOR_SUPPLY("vcore", "sdi1"),
2157 REGULATOR_SUPPLY("vcore", "sdi2"),
2158 REGULATOR_SUPPLY("vcore", "sdi3"),
2159 REGULATOR_SUPPLY("vcore", "sdi4"),
2160 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2161 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2162 /* "v-uart" changed to "vcore" in the mainline kernel */
2163 REGULATOR_SUPPLY("vcore", "uart0"),
2164 REGULATOR_SUPPLY("vcore", "uart1"),
2165 REGULATOR_SUPPLY("vcore", "uart2"),
2166 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2167};
2168
2169static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2170 /* CG2900 and CW1200 power to off-chip peripherals */
2171 REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
2172 REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
2173 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2174 /* AV8100 regulator */
2175 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2176};
2177
2178static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2179 REGULATOR_SUPPLY("vsupply", "b2r2.0"),
624e87c2
BJ
2180 REGULATOR_SUPPLY("vsupply", "mcde"),
2181};
2182
2183/* SVA MMDSP regulator switch */
2184static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2185 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2186};
2187
2188/* SVA pipe regulator switch */
2189static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2190 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2191};
2192
2193/* SIA MMDSP regulator switch */
2194static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2195 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2196};
2197
2198/* SIA pipe regulator switch */
2199static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2200 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2201};
2202
2203static struct regulator_consumer_supply db8500_sga_consumers[] = {
2204 REGULATOR_SUPPLY("v-mali", NULL),
2205};
2206
2207/* ESRAM1 and 2 regulator switch */
2208static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2209 REGULATOR_SUPPLY("esram12", "cm_control"),
2210};
2211
2212/* ESRAM3 and 4 regulator switch */
2213static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2214 REGULATOR_SUPPLY("v-esram34", "mcde"),
2215 REGULATOR_SUPPLY("esram34", "cm_control"),
1032fbfd
BJ
2216};
2217
2218static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2219 [DB8500_REGULATOR_VAPE] = {
2220 .constraints = {
2221 .name = "db8500-vape",
2222 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2223 },
2224 .consumer_supplies = db8500_vape_consumers,
2225 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2226 },
2227 [DB8500_REGULATOR_VARM] = {
2228 .constraints = {
2229 .name = "db8500-varm",
2230 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2231 },
2232 },
2233 [DB8500_REGULATOR_VMODEM] = {
2234 .constraints = {
2235 .name = "db8500-vmodem",
2236 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2237 },
2238 },
2239 [DB8500_REGULATOR_VPLL] = {
2240 .constraints = {
2241 .name = "db8500-vpll",
2242 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2243 },
2244 },
2245 [DB8500_REGULATOR_VSMPS1] = {
2246 .constraints = {
2247 .name = "db8500-vsmps1",
2248 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2249 },
2250 },
2251 [DB8500_REGULATOR_VSMPS2] = {
2252 .constraints = {
2253 .name = "db8500-vsmps2",
2254 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2255 },
2256 .consumer_supplies = db8500_vsmps2_consumers,
2257 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2258 },
2259 [DB8500_REGULATOR_VSMPS3] = {
2260 .constraints = {
2261 .name = "db8500-vsmps3",
2262 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2263 },
2264 },
2265 [DB8500_REGULATOR_VRF1] = {
2266 .constraints = {
2267 .name = "db8500-vrf1",
2268 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2269 },
2270 },
2271 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2272 .supply_regulator = "db8500-vape",
2273 .constraints = {
2274 .name = "db8500-sva-mmdsp",
2275 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2276 },
624e87c2
BJ
2277 .consumer_supplies = db8500_svammdsp_consumers,
2278 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2279 },
2280 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2281 .constraints = {
2282 /* "ret" means "retention" */
2283 .name = "db8500-sva-mmdsp-ret",
2284 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2285 },
2286 },
2287 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2288 .supply_regulator = "db8500-vape",
2289 .constraints = {
2290 .name = "db8500-sva-pipe",
2291 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2292 },
624e87c2
BJ
2293 .consumer_supplies = db8500_svapipe_consumers,
2294 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2295 },
2296 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2297 .supply_regulator = "db8500-vape",
2298 .constraints = {
2299 .name = "db8500-sia-mmdsp",
2300 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2301 },
624e87c2
BJ
2302 .consumer_supplies = db8500_siammdsp_consumers,
2303 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2304 },
2305 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2306 .constraints = {
2307 .name = "db8500-sia-mmdsp-ret",
2308 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2309 },
2310 },
2311 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2312 .supply_regulator = "db8500-vape",
2313 .constraints = {
2314 .name = "db8500-sia-pipe",
2315 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2316 },
624e87c2
BJ
2317 .consumer_supplies = db8500_siapipe_consumers,
2318 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2319 },
2320 [DB8500_REGULATOR_SWITCH_SGA] = {
2321 .supply_regulator = "db8500-vape",
2322 .constraints = {
2323 .name = "db8500-sga",
2324 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2325 },
624e87c2
BJ
2326 .consumer_supplies = db8500_sga_consumers,
2327 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2328
1032fbfd
BJ
2329 },
2330 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2331 .supply_regulator = "db8500-vape",
2332 .constraints = {
2333 .name = "db8500-b2r2-mcde",
2334 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2335 },
2336 .consumer_supplies = db8500_b2r2_mcde_consumers,
2337 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2338 },
2339 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2340 .supply_regulator = "db8500-vape",
2341 .constraints = {
2342 .name = "db8500-esram12",
2343 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2344 },
624e87c2
BJ
2345 .consumer_supplies = db8500_esram12_consumers,
2346 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2347 },
2348 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2349 .constraints = {
2350 .name = "db8500-esram12-ret",
2351 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2352 },
2353 },
2354 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2355 .supply_regulator = "db8500-vape",
2356 .constraints = {
2357 .name = "db8500-esram34",
2358 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2359 },
624e87c2
BJ
2360 .consumer_supplies = db8500_esram34_consumers,
2361 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2362 },
2363 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2364 .constraints = {
2365 .name = "db8500-esram34-ret",
2366 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2367 },
2368 },
2369};
2370
3df57bcf
MN
2371static struct mfd_cell db8500_prcmu_devs[] = {
2372 {
2373 .name = "db8500-prcmu-regulators",
1ed7891f
MW
2374 .platform_data = &db8500_regulators,
2375 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
2376 },
2377 {
2378 .name = "cpufreq-u8500",
2379 },
2380};
2381
2382/**
2383 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2384 *
2385 */
2386static int __init db8500_prcmu_probe(struct platform_device *pdev)
2387{
2388 int err = 0;
2389
2390 if (ux500_is_svp())
2391 return -ENODEV;
2392
1934dae2 2393 db8500_prcmu_init_clkforce();
d65e12d7 2394
e3726fcf 2395 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 2396 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf
MN
2397
2398 err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2399 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2400 if (err < 0) {
2401 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2402 err = -EBUSY;
2403 goto no_irq_return;
2404 }
2405
2406 if (cpu_is_u8500v20_or_later())
2407 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2408
2409 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2410 ARRAY_SIZE(db8500_prcmu_devs), NULL,
2411 0);
e3726fcf 2412
3df57bcf
MN
2413 if (err)
2414 pr_err("prcmu: Failed to add subdevices\n");
2415 else
2416 pr_info("DB8500 PRCMU initialized\n");
2417
2418no_irq_return:
2419 return err;
2420}
2421
2422static struct platform_driver db8500_prcmu_driver = {
2423 .driver = {
2424 .name = "db8500-prcmu",
2425 .owner = THIS_MODULE,
2426 },
2427};
2428
2429static int __init db8500_prcmu_init(void)
2430{
2431 return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
e3726fcf
LW
2432}
2433
3df57bcf
MN
2434arch_initcall(db8500_prcmu_init);
2435
2436MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2437MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2438MODULE_LICENSE("GPL v2");