mfd: db8500-prcmu: drop unused includes
[linux-2.6-block.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
73180f85 30#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 31#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
32#include <linux/regulator/db8500-prcmu.h>
33#include <linux/regulator/machine.h>
c280f45f 34#include <linux/cpufreq.h>
b3aac62b 35#include <linux/platform_data/ux500_wdt.h>
3df57bcf 36#include <mach/irqs.h>
73180f85 37#include "dbx500-prcmu-regs.h"
3df57bcf 38
3df57bcf
MN
39/* Index of different voltages to be used when accessing AVSData */
40#define PRCM_AVS_BASE 0x2FC
41#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
42#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
43#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
44#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
45#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
46#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
47#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
48#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
49#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
50#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
51#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
52#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
53#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
54
55#define PRCM_AVS_VOLTAGE 0
56#define PRCM_AVS_VOLTAGE_MASK 0x3f
57#define PRCM_AVS_ISSLOWSTARTUP 6
58#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
59#define PRCM_AVS_ISMODEENABLE 7
60#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
61
62#define PRCM_BOOT_STATUS 0xFFF
63#define PRCM_ROMCODE_A2P 0xFFE
64#define PRCM_ROMCODE_P2A 0xFFD
65#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
66
67#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
68
69#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
70#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
71#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
72#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
73#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
74#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
75#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
76#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
77
78/* Req Mailboxes */
79#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
80#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
81#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
82#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
83#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
84#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
85
86/* Ack Mailboxes */
87#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
88#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
89#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
90#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
91#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
92#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
93
94/* Mailbox 0 headers */
95#define MB0H_POWER_STATE_TRANS 0
96#define MB0H_CONFIG_WAKEUPS_EXE 1
97#define MB0H_READ_WAKEUP_ACK 3
98#define MB0H_CONFIG_WAKEUPS_SLEEP 4
99
100#define MB0H_WAKEUP_EXE 2
101#define MB0H_WAKEUP_SLEEP 5
102
103/* Mailbox 0 REQs */
104#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
105#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
106#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
107#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
108#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
109#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
110
111/* Mailbox 0 ACKs */
112#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
113#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
114#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
115#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
116#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
117#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
118#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
119
120/* Mailbox 1 headers */
121#define MB1H_ARM_APE_OPP 0x0
122#define MB1H_RESET_MODEM 0x2
123#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
124#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
125#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 126#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
127
128/* Mailbox 1 Requests */
129#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
130#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 131#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
132#define PLL_SOC0_OFF 0x1
133#define PLL_SOC0_ON 0x2
a592c2e2
MN
134#define PLL_SOC1_OFF 0x4
135#define PLL_SOC1_ON 0x8
3df57bcf
MN
136
137/* Mailbox 1 ACKs */
138#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
139#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
140#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
141#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
142
143/* Mailbox 2 headers */
144#define MB2H_DPS 0x0
145#define MB2H_AUTO_PWR 0x1
146
147/* Mailbox 2 REQs */
148#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
149#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
150#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
151#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
152#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
153#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
154#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
155#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
156#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
157#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
158
159/* Mailbox 2 ACKs */
160#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
161#define HWACC_PWR_ST_OK 0xFE
162
163/* Mailbox 3 headers */
164#define MB3H_ANC 0x0
165#define MB3H_SIDETONE 0x1
166#define MB3H_SYSCLK 0xE
167
168/* Mailbox 3 Requests */
169#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
170#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
171#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
172#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
173#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
174#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
175#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
176
177/* Mailbox 4 headers */
178#define MB4H_DDR_INIT 0x0
179#define MB4H_MEM_ST 0x1
180#define MB4H_HOTDOG 0x12
181#define MB4H_HOTMON 0x13
182#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
183#define MB4H_A9WDOG_CONF 0x16
184#define MB4H_A9WDOG_EN 0x17
185#define MB4H_A9WDOG_DIS 0x18
186#define MB4H_A9WDOG_LOAD 0x19
187#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
188
189/* Mailbox 4 Requests */
190#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
191#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
192#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
193#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
194#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
195#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
196#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
197#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
198#define HOTMON_CONFIG_LOW BIT(0)
199#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
200#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
201#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
202#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
203#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
204#define A9WDOG_AUTO_OFF_EN BIT(7)
205#define A9WDOG_AUTO_OFF_DIS 0
206#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
207
208/* Mailbox 5 Requests */
209#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
210#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
211#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
212#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
7a4f2609
LW
213#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
214#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
3df57bcf
MN
215#define PRCMU_I2C_STOP_EN BIT(3)
216
217/* Mailbox 5 ACKs */
218#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
219#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
220#define I2C_WR_OK 0x1
221#define I2C_RD_OK 0x2
222
223#define NUM_MB 8
224#define MBOX_BIT BIT
225#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
226
227/*
228 * Wakeups/IRQs
229 */
230
231#define WAKEUP_BIT_RTC BIT(0)
232#define WAKEUP_BIT_RTT0 BIT(1)
233#define WAKEUP_BIT_RTT1 BIT(2)
234#define WAKEUP_BIT_HSI0 BIT(3)
235#define WAKEUP_BIT_HSI1 BIT(4)
236#define WAKEUP_BIT_CA_WAKE BIT(5)
237#define WAKEUP_BIT_USB BIT(6)
238#define WAKEUP_BIT_ABB BIT(7)
239#define WAKEUP_BIT_ABB_FIFO BIT(8)
240#define WAKEUP_BIT_SYSCLK_OK BIT(9)
241#define WAKEUP_BIT_CA_SLEEP BIT(10)
242#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
243#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
244#define WAKEUP_BIT_ANC_OK BIT(13)
245#define WAKEUP_BIT_SW_ERROR BIT(14)
246#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
247#define WAKEUP_BIT_ARM BIT(17)
248#define WAKEUP_BIT_HOTMON_LOW BIT(18)
249#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
250#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
251#define WAKEUP_BIT_GPIO0 BIT(23)
252#define WAKEUP_BIT_GPIO1 BIT(24)
253#define WAKEUP_BIT_GPIO2 BIT(25)
254#define WAKEUP_BIT_GPIO3 BIT(26)
255#define WAKEUP_BIT_GPIO4 BIT(27)
256#define WAKEUP_BIT_GPIO5 BIT(28)
257#define WAKEUP_BIT_GPIO6 BIT(29)
258#define WAKEUP_BIT_GPIO7 BIT(30)
259#define WAKEUP_BIT_GPIO8 BIT(31)
260
b58d12fe
MN
261static struct {
262 bool valid;
263 struct prcmu_fw_version version;
264} fw_info;
265
f3f1f0a1
LJ
266static struct irq_domain *db8500_irq_domain;
267
3df57bcf
MN
268/*
269 * This vector maps irq numbers to the bits in the bit field used in
270 * communication with the PRCMU firmware.
271 *
272 * The reason for having this is to keep the irq numbers contiguous even though
273 * the bits in the bit field are not. (The bits also have a tendency to move
274 * around, to further complicate matters.)
275 */
276#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
277#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
278static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
279 IRQ_ENTRY(RTC),
280 IRQ_ENTRY(RTT0),
281 IRQ_ENTRY(RTT1),
282 IRQ_ENTRY(HSI0),
283 IRQ_ENTRY(HSI1),
284 IRQ_ENTRY(CA_WAKE),
285 IRQ_ENTRY(USB),
286 IRQ_ENTRY(ABB),
287 IRQ_ENTRY(ABB_FIFO),
288 IRQ_ENTRY(CA_SLEEP),
289 IRQ_ENTRY(ARM),
290 IRQ_ENTRY(HOTMON_LOW),
291 IRQ_ENTRY(HOTMON_HIGH),
292 IRQ_ENTRY(MODEM_SW_RESET_REQ),
293 IRQ_ENTRY(GPIO0),
294 IRQ_ENTRY(GPIO1),
295 IRQ_ENTRY(GPIO2),
296 IRQ_ENTRY(GPIO3),
297 IRQ_ENTRY(GPIO4),
298 IRQ_ENTRY(GPIO5),
299 IRQ_ENTRY(GPIO6),
300 IRQ_ENTRY(GPIO7),
301 IRQ_ENTRY(GPIO8)
302};
303
304#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
305#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
306static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
307 WAKEUP_ENTRY(RTC),
308 WAKEUP_ENTRY(RTT0),
309 WAKEUP_ENTRY(RTT1),
310 WAKEUP_ENTRY(HSI0),
311 WAKEUP_ENTRY(HSI1),
312 WAKEUP_ENTRY(USB),
313 WAKEUP_ENTRY(ABB),
314 WAKEUP_ENTRY(ABB_FIFO),
315 WAKEUP_ENTRY(ARM)
316};
317
318/*
319 * mb0_transfer - state needed for mailbox 0 communication.
320 * @lock: The transaction lock.
321 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
322 * the request data.
323 * @mask_work: Work structure used for (un)masking wakeup interrupts.
324 * @req: Request data that need to persist between requests.
325 */
326static struct {
327 spinlock_t lock;
328 spinlock_t dbb_irqs_lock;
329 struct work_struct mask_work;
330 struct mutex ac_wake_lock;
331 struct completion ac_wake_work;
332 struct {
333 u32 dbb_irqs;
334 u32 dbb_wakeups;
335 u32 abb_events;
336 } req;
337} mb0_transfer;
338
339/*
340 * mb1_transfer - state needed for mailbox 1 communication.
341 * @lock: The transaction lock.
342 * @work: The transaction completion structure.
4d64d2e3 343 * @ape_opp: The current APE OPP.
3df57bcf
MN
344 * @ack: Reply ("acknowledge") data.
345 */
346static struct {
347 struct mutex lock;
348 struct completion work;
4d64d2e3 349 u8 ape_opp;
3df57bcf
MN
350 struct {
351 u8 header;
352 u8 arm_opp;
353 u8 ape_opp;
354 u8 ape_voltage_status;
355 } ack;
356} mb1_transfer;
357
358/*
359 * mb2_transfer - state needed for mailbox 2 communication.
360 * @lock: The transaction lock.
361 * @work: The transaction completion structure.
362 * @auto_pm_lock: The autonomous power management configuration lock.
363 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
364 * @req: Request data that need to persist between requests.
365 * @ack: Reply ("acknowledge") data.
366 */
367static struct {
368 struct mutex lock;
369 struct completion work;
370 spinlock_t auto_pm_lock;
371 bool auto_pm_enabled;
372 struct {
373 u8 status;
374 } ack;
375} mb2_transfer;
376
377/*
378 * mb3_transfer - state needed for mailbox 3 communication.
379 * @lock: The request lock.
380 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
381 * @sysclk_work: Work structure used for sysclk requests.
382 */
383static struct {
384 spinlock_t lock;
385 struct mutex sysclk_lock;
386 struct completion sysclk_work;
387} mb3_transfer;
388
389/*
390 * mb4_transfer - state needed for mailbox 4 communication.
391 * @lock: The transaction lock.
392 * @work: The transaction completion structure.
393 */
394static struct {
395 struct mutex lock;
396 struct completion work;
397} mb4_transfer;
398
399/*
400 * mb5_transfer - state needed for mailbox 5 communication.
401 * @lock: The transaction lock.
402 * @work: The transaction completion structure.
403 * @ack: Reply ("acknowledge") data.
404 */
405static struct {
406 struct mutex lock;
407 struct completion work;
408 struct {
409 u8 status;
410 u8 value;
411 } ack;
412} mb5_transfer;
413
414static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
415
416/* Spinlocks */
b4a6dbd5 417static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 418static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
419
420/* Global var to runtime determine TCDM base for v2 or v1 */
421static __iomem void *tcdm_base;
b047d981 422static __iomem void *prcmu_base;
3df57bcf
MN
423
424struct clk_mgt {
b047d981 425 u32 offset;
3df57bcf 426 u32 pllsw;
6b6fae2b
MN
427 int branch;
428 bool clk38div;
429};
430
431enum {
432 PLL_RAW,
433 PLL_FIX,
434 PLL_DIV
3df57bcf
MN
435};
436
437static DEFINE_SPINLOCK(clk_mgt_lock);
438
6b6fae2b
MN
439#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
440 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
3df57bcf 441struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
442 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
443 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
444 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
445 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
446 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
447 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
448 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
449 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
450 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
451 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
452 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
453 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
454 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
456 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
460 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
464 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
465 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
467 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
468 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
469 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
470 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
471};
472
473struct dsiclk {
474 u32 divsel_mask;
475 u32 divsel_shift;
476 u32 divsel;
477};
478
479static struct dsiclk dsiclk[2] = {
480 {
481 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
482 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
483 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
484 },
485 {
486 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
487 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
488 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
489 }
490};
491
492struct dsiescclk {
493 u32 en;
494 u32 div_mask;
495 u32 div_shift;
496};
497
498static struct dsiescclk dsiescclk[3] = {
499 {
500 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
501 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
502 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
503 },
504 {
505 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
506 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
507 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
508 },
509 {
510 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
511 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
512 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
513 }
3df57bcf
MN
514};
515
20aee5b6 516
3df57bcf
MN
517/*
518* Used by MCDE to setup all necessary PRCMU registers
519*/
520#define PRCMU_RESET_DSIPLL 0x00004000
521#define PRCMU_UNCLAMP_DSIPLL 0x00400800
522
523#define PRCMU_CLK_PLL_DIV_SHIFT 0
524#define PRCMU_CLK_PLL_SW_SHIFT 5
525#define PRCMU_CLK_38 (1 << 9)
526#define PRCMU_CLK_38_SRC (1 << 10)
527#define PRCMU_CLK_38_DIV (1 << 11)
528
529/* PLLDIV=12, PLLSW=4 (PLLDDR) */
530#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
531
3df57bcf
MN
532/* DPI 50000000 Hz */
533#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
534 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
535#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
536
537/* D=101, N=1, R=4, SELDIV2=0 */
538#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
539
3df57bcf
MN
540#define PRCMU_ENABLE_PLLDSI 0x00000001
541#define PRCMU_DISABLE_PLLDSI 0x00000000
542#define PRCMU_RELEASE_RESET_DSS 0x0000400C
543#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
544/* ESC clk, div0=1, div1=1, div2=3 */
545#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
546#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
547#define PRCMU_DSI_RESET_SW 0x00000007
548
549#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
550
73180f85 551int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
552{
553 int i;
3df57bcf
MN
554
555 /* Clear DSIPLL_RESETN */
c553b3ca 556 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 557 /* Unclamp DSIPLL in/out */
c553b3ca 558 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 559
3df57bcf 560 /* Set DSI PLL FREQ */
c72fe851 561 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 562 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 563 /* Enable Escape clocks */
c553b3ca 564 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
565
566 /* Start DSI PLL */
c553b3ca 567 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 568 /* Reset DSI PLL */
c553b3ca 569 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 570 for (i = 0; i < 10; i++) {
c553b3ca 571 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
572 == PRCMU_PLLDSI_LOCKP_LOCKED)
573 break;
574 udelay(100);
575 }
576 /* Set DSIPLL_RESETN */
c553b3ca 577 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
578 return 0;
579}
580
73180f85 581int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
582{
583 /* Disable dsi pll */
c553b3ca 584 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 585 /* Disable escapeclock */
c553b3ca 586 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
587 return 0;
588}
589
73180f85 590int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
591{
592 unsigned long flags;
3df57bcf
MN
593
594 spin_lock_irqsave(&clk_mgt_lock, flags);
595
596 /* Grab the HW semaphore. */
c553b3ca 597 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
598 cpu_relax();
599
b047d981
LW
600 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
601 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
602 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
3df57bcf
MN
603
604 /* Release the HW semaphore. */
c553b3ca 605 writel(0, PRCM_SEM);
3df57bcf
MN
606
607 spin_unlock_irqrestore(&clk_mgt_lock, flags);
608
609 return 0;
610}
611
b4a6dbd5
MN
612u32 db8500_prcmu_read(unsigned int reg)
613{
b047d981 614 return readl(prcmu_base + reg);
b4a6dbd5
MN
615}
616
617void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 618{
3df57bcf
MN
619 unsigned long flags;
620
b4a6dbd5 621 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 622 writel(value, (prcmu_base + reg));
b4a6dbd5 623 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
624}
625
b4a6dbd5 626void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 627{
b4a6dbd5 628 u32 val;
3df57bcf
MN
629 unsigned long flags;
630
b4a6dbd5 631 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 632 val = readl(prcmu_base + reg);
b4a6dbd5 633 val = ((val & ~mask) | (value & mask));
b047d981 634 writel(val, (prcmu_base + reg));
b4a6dbd5 635 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
636}
637
b58d12fe
MN
638struct prcmu_fw_version *prcmu_get_fw_version(void)
639{
640 return fw_info.valid ? &fw_info.version : NULL;
641}
642
3df57bcf
MN
643bool prcmu_has_arm_maxopp(void)
644{
645 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
646 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
647}
648
3df57bcf
MN
649/**
650 * prcmu_get_boot_status - PRCMU boot status checking
651 * Returns: the current PRCMU boot status
652 */
653int prcmu_get_boot_status(void)
654{
655 return readb(tcdm_base + PRCM_BOOT_STATUS);
656}
657
658/**
659 * prcmu_set_rc_a2p - This function is used to run few power state sequences
660 * @val: Value to be set, i.e. transition requested
661 * Returns: 0 on success, -EINVAL on invalid argument
662 *
663 * This function is used to run the following power state sequences -
664 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
665 */
666int prcmu_set_rc_a2p(enum romcode_write val)
667{
668 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
669 return -EINVAL;
670 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
671 return 0;
672}
673
674/**
675 * prcmu_get_rc_p2a - This function is used to get power state sequences
676 * Returns: the power transition that has last happened
677 *
678 * This function can return the following transitions-
679 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
680 */
681enum romcode_read prcmu_get_rc_p2a(void)
682{
683 return readb(tcdm_base + PRCM_ROMCODE_P2A);
684}
685
686/**
687 * prcmu_get_current_mode - Return the current XP70 power mode
688 * Returns: Returns the current AP(ARM) power mode: init,
689 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
690 */
691enum ap_pwrst prcmu_get_xp70_current_state(void)
692{
693 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
694}
695
696/**
697 * prcmu_config_clkout - Configure one of the programmable clock outputs.
698 * @clkout: The CLKOUT number (0 or 1).
699 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
700 * @div: The divider to be applied.
701 *
702 * Configures one of the programmable clock outputs (CLKOUTs).
703 * @div should be in the range [1,63] to request a configuration, or 0 to
704 * inform that the configuration is no longer requested.
705 */
706int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
707{
708 static int requests[2];
709 int r = 0;
710 unsigned long flags;
711 u32 val;
712 u32 bits;
713 u32 mask;
714 u32 div_mask;
715
716 BUG_ON(clkout > 1);
717 BUG_ON(div > 63);
718 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
719
720 if (!div && !requests[clkout])
721 return -EINVAL;
722
723 switch (clkout) {
724 case 0:
725 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
726 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
727 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
728 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
729 break;
730 case 1:
731 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
732 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
733 PRCM_CLKOCR_CLK1TYPE);
734 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
735 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
736 break;
737 }
738 bits &= mask;
739
740 spin_lock_irqsave(&clkout_lock, flags);
741
c553b3ca 742 val = readl(PRCM_CLKOCR);
3df57bcf
MN
743 if (val & div_mask) {
744 if (div) {
745 if ((val & mask) != bits) {
746 r = -EBUSY;
747 goto unlock_and_return;
748 }
749 } else {
750 if ((val & mask & ~div_mask) != bits) {
751 r = -EINVAL;
752 goto unlock_and_return;
753 }
754 }
755 }
c553b3ca 756 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
757 requests[clkout] += (div ? 1 : -1);
758
759unlock_and_return:
760 spin_unlock_irqrestore(&clkout_lock, flags);
761
762 return r;
763}
764
73180f85 765int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
766{
767 unsigned long flags;
768
769 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
770
771 spin_lock_irqsave(&mb0_transfer.lock, flags);
772
c553b3ca 773 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
774 cpu_relax();
775
776 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
777 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
778 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
779 writeb((keep_ulp_clk ? 1 : 0),
780 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
781 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 782 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
783
784 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
785
786 return 0;
787}
788
4d64d2e3
MN
789u8 db8500_prcmu_get_power_state_result(void)
790{
791 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
792}
793
3df57bcf
MN
794/* This function should only be called while mb0_transfer.lock is held. */
795static void config_wakeups(void)
796{
797 const u8 header[2] = {
798 MB0H_CONFIG_WAKEUPS_EXE,
799 MB0H_CONFIG_WAKEUPS_SLEEP
800 };
801 static u32 last_dbb_events;
802 static u32 last_abb_events;
803 u32 dbb_events;
804 u32 abb_events;
805 unsigned int i;
806
807 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
808 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
809
810 abb_events = mb0_transfer.req.abb_events;
811
812 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
813 return;
814
815 for (i = 0; i < 2; i++) {
c553b3ca 816 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
817 cpu_relax();
818 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
819 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
820 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 821 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
822 }
823 last_dbb_events = dbb_events;
824 last_abb_events = abb_events;
825}
826
73180f85 827void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
828{
829 unsigned long flags;
830 u32 bits;
831 int i;
832
833 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
834
835 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
836 if (wakeups & BIT(i))
837 bits |= prcmu_wakeup_bit[i];
838 }
839
840 spin_lock_irqsave(&mb0_transfer.lock, flags);
841
842 mb0_transfer.req.dbb_wakeups = bits;
843 config_wakeups();
844
845 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
846}
847
73180f85 848void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
849{
850 unsigned long flags;
851
852 spin_lock_irqsave(&mb0_transfer.lock, flags);
853
854 mb0_transfer.req.abb_events = abb_events;
855 config_wakeups();
856
857 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
858}
859
73180f85 860void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
861{
862 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
863 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
864 else
865 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
866}
867
868/**
73180f85 869 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
870 * @opp: The new ARM operating point to which transition is to be made
871 * Returns: 0 on success, non-zero on failure
872 *
873 * This function sets the the operating point of the ARM.
874 */
73180f85 875int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
876{
877 int r;
878
879 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
880 return -EINVAL;
881
882 r = 0;
883
884 mutex_lock(&mb1_transfer.lock);
885
c553b3ca 886 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
887 cpu_relax();
888
889 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
890 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
891 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
892
c553b3ca 893 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
894 wait_for_completion(&mb1_transfer.work);
895
896 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
897 (mb1_transfer.ack.arm_opp != opp))
898 r = -EIO;
899
900 mutex_unlock(&mb1_transfer.lock);
901
902 return r;
903}
904
905/**
73180f85 906 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
907 *
908 * Returns: the current ARM OPP
909 */
73180f85 910int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
911{
912 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
913}
914
915/**
0508901c 916 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
917 *
918 * Returns: the current DDR OPP
919 */
0508901c 920int db8500_prcmu_get_ddr_opp(void)
3df57bcf 921{
c553b3ca 922 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
923}
924
925/**
0508901c 926 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
927 * @opp: The new DDR operating point to which transition is to be made
928 * Returns: 0 on success, non-zero on failure
929 *
930 * This function sets the operating point of the DDR.
931 */
7a4f2609 932static bool enable_set_ddr_opp;
0508901c 933int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
934{
935 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
936 return -EINVAL;
937 /* Changing the DDR OPP can hang the hardware pre-v21 */
7a4f2609 938 if (enable_set_ddr_opp)
c553b3ca 939 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
940
941 return 0;
942}
6b6fae2b 943
4d64d2e3
MN
944/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
945static void request_even_slower_clocks(bool enable)
946{
b047d981 947 u32 clock_reg[] = {
4d64d2e3
MN
948 PRCM_ACLK_MGT,
949 PRCM_DMACLK_MGT
950 };
951 unsigned long flags;
952 unsigned int i;
953
954 spin_lock_irqsave(&clk_mgt_lock, flags);
955
956 /* Grab the HW semaphore. */
957 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
958 cpu_relax();
959
960 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
961 u32 val;
962 u32 div;
963
b047d981 964 val = readl(prcmu_base + clock_reg[i]);
4d64d2e3
MN
965 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
966 if (enable) {
967 if ((div <= 1) || (div > 15)) {
968 pr_err("prcmu: Bad clock divider %d in %s\n",
969 div, __func__);
970 goto unlock_and_return;
971 }
972 div <<= 1;
973 } else {
974 if (div <= 2)
975 goto unlock_and_return;
976 div >>= 1;
977 }
978 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
979 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
b047d981 980 writel(val, prcmu_base + clock_reg[i]);
4d64d2e3
MN
981 }
982
983unlock_and_return:
984 /* Release the HW semaphore. */
985 writel(0, PRCM_SEM);
986
987 spin_unlock_irqrestore(&clk_mgt_lock, flags);
988}
989
3df57bcf 990/**
0508901c 991 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
992 * @opp: The new APE operating point to which transition is to be made
993 * Returns: 0 on success, non-zero on failure
994 *
995 * This function sets the operating point of the APE.
996 */
0508901c 997int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
998{
999 int r = 0;
1000
4d64d2e3
MN
1001 if (opp == mb1_transfer.ape_opp)
1002 return 0;
1003
3df57bcf
MN
1004 mutex_lock(&mb1_transfer.lock);
1005
4d64d2e3
MN
1006 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1007 request_even_slower_clocks(false);
1008
1009 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1010 goto skip_message;
1011
c553b3ca 1012 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1013 cpu_relax();
1014
1015 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1016 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1017 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1018 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1019
c553b3ca 1020 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1021 wait_for_completion(&mb1_transfer.work);
1022
1023 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1024 (mb1_transfer.ack.ape_opp != opp))
1025 r = -EIO;
1026
4d64d2e3
MN
1027skip_message:
1028 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1029 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1030 request_even_slower_clocks(true);
1031 if (!r)
1032 mb1_transfer.ape_opp = opp;
1033
3df57bcf
MN
1034 mutex_unlock(&mb1_transfer.lock);
1035
1036 return r;
1037}
1038
1039/**
0508901c 1040 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1041 *
1042 * Returns: the current APE OPP
1043 */
0508901c 1044int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1045{
1046 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1047}
1048
1049/**
686f871b 1050 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1051 * @enable: true to request the higher voltage, false to drop a request.
1052 *
1053 * Calls to this function to enable and disable requests must be balanced.
1054 */
686f871b 1055int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1056{
1057 int r = 0;
1058 u8 header;
1059 static unsigned int requests;
1060
1061 mutex_lock(&mb1_transfer.lock);
1062
1063 if (enable) {
1064 if (0 != requests++)
1065 goto unlock_and_return;
1066 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1067 } else {
1068 if (requests == 0) {
1069 r = -EIO;
1070 goto unlock_and_return;
1071 } else if (1 != requests--) {
1072 goto unlock_and_return;
1073 }
1074 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1075 }
1076
c553b3ca 1077 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1078 cpu_relax();
1079
1080 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1081
c553b3ca 1082 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1083 wait_for_completion(&mb1_transfer.work);
1084
1085 if ((mb1_transfer.ack.header != header) ||
1086 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1087 r = -EIO;
1088
1089unlock_and_return:
1090 mutex_unlock(&mb1_transfer.lock);
1091
1092 return r;
1093}
1094
1095/**
1096 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1097 *
1098 * This function releases the power state requirements of a USB wakeup.
1099 */
1100int prcmu_release_usb_wakeup_state(void)
1101{
1102 int r = 0;
1103
1104 mutex_lock(&mb1_transfer.lock);
1105
c553b3ca 1106 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1107 cpu_relax();
1108
1109 writeb(MB1H_RELEASE_USB_WAKEUP,
1110 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1111
c553b3ca 1112 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1113 wait_for_completion(&mb1_transfer.work);
1114
1115 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1116 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1117 r = -EIO;
1118
1119 mutex_unlock(&mb1_transfer.lock);
1120
1121 return r;
1122}
1123
0837bb72
MN
1124static int request_pll(u8 clock, bool enable)
1125{
1126 int r = 0;
1127
6b6fae2b
MN
1128 if (clock == PRCMU_PLLSOC0)
1129 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1130 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1131 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1132 else
1133 return -EINVAL;
1134
1135 mutex_lock(&mb1_transfer.lock);
1136
1137 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1138 cpu_relax();
1139
1140 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1141 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1142
1143 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1144 wait_for_completion(&mb1_transfer.work);
1145
1146 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1147 r = -EIO;
1148
1149 mutex_unlock(&mb1_transfer.lock);
1150
1151 return r;
1152}
1153
3df57bcf 1154/**
73180f85 1155 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1156 * @epod_id: The EPOD to set
1157 * @epod_state: The new EPOD state
1158 *
1159 * This function sets the state of a EPOD (power domain). It may not be called
1160 * from interrupt context.
1161 */
73180f85 1162int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1163{
1164 int r = 0;
1165 bool ram_retention = false;
1166 int i;
1167
1168 /* check argument */
1169 BUG_ON(epod_id >= NUM_EPOD_ID);
1170
1171 /* set flag if retention is possible */
1172 switch (epod_id) {
1173 case EPOD_ID_SVAMMDSP:
1174 case EPOD_ID_SIAMMDSP:
1175 case EPOD_ID_ESRAM12:
1176 case EPOD_ID_ESRAM34:
1177 ram_retention = true;
1178 break;
1179 }
1180
1181 /* check argument */
1182 BUG_ON(epod_state > EPOD_STATE_ON);
1183 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1184
1185 /* get lock */
1186 mutex_lock(&mb2_transfer.lock);
1187
1188 /* wait for mailbox */
c553b3ca 1189 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1190 cpu_relax();
1191
1192 /* fill in mailbox */
1193 for (i = 0; i < NUM_EPOD_ID; i++)
1194 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1195 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1196
1197 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1198
c553b3ca 1199 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1200
1201 /*
1202 * The current firmware version does not handle errors correctly,
1203 * and we cannot recover if there is an error.
1204 * This is expected to change when the firmware is updated.
1205 */
1206 if (!wait_for_completion_timeout(&mb2_transfer.work,
1207 msecs_to_jiffies(20000))) {
1208 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1209 __func__);
1210 r = -EIO;
1211 goto unlock_and_return;
1212 }
1213
1214 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1215 r = -EIO;
1216
1217unlock_and_return:
1218 mutex_unlock(&mb2_transfer.lock);
1219 return r;
1220}
1221
1222/**
1223 * prcmu_configure_auto_pm - Configure autonomous power management.
1224 * @sleep: Configuration for ApSleep.
1225 * @idle: Configuration for ApIdle.
1226 */
1227void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1228 struct prcmu_auto_pm_config *idle)
1229{
1230 u32 sleep_cfg;
1231 u32 idle_cfg;
1232 unsigned long flags;
e3726fcf 1233
3df57bcf 1234 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1235
3df57bcf
MN
1236 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1237 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1238 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1239 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1240 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1241 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1242
3df57bcf
MN
1243 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1244 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1245 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1246 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1247 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1248 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1249
3df57bcf 1250 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1251
3df57bcf
MN
1252 /*
1253 * The autonomous power management configuration is done through
1254 * fields in mailbox 2, but these fields are only used as shared
1255 * variables - i.e. there is no need to send a message.
1256 */
1257 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1258 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1259
3df57bcf
MN
1260 mb2_transfer.auto_pm_enabled =
1261 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1262 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1263 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1264 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1265
3df57bcf
MN
1266 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1267}
1268EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1269
3df57bcf
MN
1270bool prcmu_is_auto_pm_enabled(void)
1271{
1272 return mb2_transfer.auto_pm_enabled;
1273}
e0befb23 1274
3df57bcf
MN
1275static int request_sysclk(bool enable)
1276{
1277 int r;
1278 unsigned long flags;
e3726fcf 1279
3df57bcf 1280 r = 0;
e3726fcf 1281
3df57bcf 1282 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1283
3df57bcf 1284 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1285
c553b3ca 1286 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1287 cpu_relax();
e0befb23 1288
3df57bcf 1289 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1290
3df57bcf 1291 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1292 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1293
3df57bcf
MN
1294 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1295
1296 /*
1297 * The firmware only sends an ACK if we want to enable the
1298 * SysClk, and it succeeds.
1299 */
1300 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1301 msecs_to_jiffies(20000))) {
1302 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1303 __func__);
1304 r = -EIO;
1305 }
1306
1307 mutex_unlock(&mb3_transfer.sysclk_lock);
1308
1309 return r;
1310}
1311
1312static int request_timclk(bool enable)
1313{
1314 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1315
1316 if (!enable)
1317 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1318 writel(val, PRCM_TCR);
3df57bcf
MN
1319
1320 return 0;
1321}
1322
6b6fae2b 1323static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1324{
1325 u32 val;
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(&clk_mgt_lock, flags);
1329
1330 /* Grab the HW semaphore. */
c553b3ca 1331 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1332 cpu_relax();
1333
b047d981 1334 val = readl(prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1335 if (enable) {
1336 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1337 } else {
1338 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1339 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1340 }
b047d981 1341 writel(val, prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1342
1343 /* Release the HW semaphore. */
c553b3ca 1344 writel(0, PRCM_SEM);
3df57bcf
MN
1345
1346 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1347
1348 return 0;
1349}
1350
0837bb72
MN
1351static int request_sga_clock(u8 clock, bool enable)
1352{
1353 u32 val;
1354 int ret;
1355
1356 if (enable) {
1357 val = readl(PRCM_CGATING_BYPASS);
1358 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1359 }
1360
6b6fae2b 1361 ret = request_clock(clock, enable);
0837bb72
MN
1362
1363 if (!ret && !enable) {
1364 val = readl(PRCM_CGATING_BYPASS);
1365 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1366 }
1367
1368 return ret;
1369}
1370
6b6fae2b
MN
1371static inline bool plldsi_locked(void)
1372{
1373 return (readl(PRCM_PLLDSI_LOCKP) &
1374 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1375 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1376 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1377 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1378}
1379
1380static int request_plldsi(bool enable)
1381{
1382 int r = 0;
1383 u32 val;
1384
1385 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1386 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1387 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1388
1389 val = readl(PRCM_PLLDSI_ENABLE);
1390 if (enable)
1391 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1392 else
1393 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1394 writel(val, PRCM_PLLDSI_ENABLE);
1395
1396 if (enable) {
1397 unsigned int i;
1398 bool locked = plldsi_locked();
1399
1400 for (i = 10; !locked && (i > 0); --i) {
1401 udelay(100);
1402 locked = plldsi_locked();
1403 }
1404 if (locked) {
1405 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1406 PRCM_APE_RESETN_SET);
1407 } else {
1408 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1409 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1410 PRCM_MMIP_LS_CLAMP_SET);
1411 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1412 writel(val, PRCM_PLLDSI_ENABLE);
1413 r = -EAGAIN;
1414 }
1415 } else {
1416 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1417 }
1418 return r;
1419}
1420
1421static int request_dsiclk(u8 n, bool enable)
1422{
1423 u32 val;
1424
1425 val = readl(PRCM_DSI_PLLOUT_SEL);
1426 val &= ~dsiclk[n].divsel_mask;
1427 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1428 dsiclk[n].divsel_shift);
1429 writel(val, PRCM_DSI_PLLOUT_SEL);
1430 return 0;
1431}
1432
1433static int request_dsiescclk(u8 n, bool enable)
1434{
1435 u32 val;
1436
1437 val = readl(PRCM_DSITVCLK_DIV);
1438 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1439 writel(val, PRCM_DSITVCLK_DIV);
1440 return 0;
1441}
1442
3df57bcf 1443/**
73180f85 1444 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1445 * @clock: The clock for which the request is made.
1446 * @enable: Whether the clock should be enabled (true) or disabled (false).
1447 *
1448 * This function should only be used by the clock implementation.
1449 * Do not use it from any other place!
1450 */
73180f85 1451int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1452{
6b6fae2b 1453 if (clock == PRCMU_SGACLK)
0837bb72 1454 return request_sga_clock(clock, enable);
6b6fae2b
MN
1455 else if (clock < PRCMU_NUM_REG_CLOCKS)
1456 return request_clock(clock, enable);
1457 else if (clock == PRCMU_TIMCLK)
3df57bcf 1458 return request_timclk(enable);
6b6fae2b
MN
1459 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1460 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1461 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1462 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1463 else if (clock == PRCMU_PLLDSI)
1464 return request_plldsi(enable);
1465 else if (clock == PRCMU_SYSCLK)
3df57bcf 1466 return request_sysclk(enable);
6b6fae2b 1467 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1468 return request_pll(clock, enable);
6b6fae2b
MN
1469 else
1470 return -EINVAL;
1471}
1472
1473static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1474 int branch)
1475{
1476 u64 rate;
1477 u32 val;
1478 u32 d;
1479 u32 div = 1;
1480
1481 val = readl(reg);
1482
1483 rate = src_rate;
1484 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1485
1486 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1487 if (d > 1)
1488 div *= d;
1489
1490 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1491 if (d > 1)
1492 div *= d;
1493
1494 if (val & PRCM_PLL_FREQ_SELDIV2)
1495 div *= 2;
1496
1497 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1498 (val & PRCM_PLL_FREQ_DIV2EN) &&
1499 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1500 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1501 (reg == PRCM_PLLDDR_FREQ))))
1502 div *= 2;
1503
1504 (void)do_div(rate, div);
1505
1506 return (unsigned long)rate;
1507}
1508
1509#define ROOT_CLOCK_RATE 38400000
1510
1511static unsigned long clock_rate(u8 clock)
1512{
1513 u32 val;
1514 u32 pllsw;
1515 unsigned long rate = ROOT_CLOCK_RATE;
1516
b047d981 1517 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1518
1519 if (val & PRCM_CLK_MGT_CLK38) {
1520 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1521 rate /= 2;
1522 return rate;
1523 }
1524
1525 val |= clk_mgt[clock].pllsw;
1526 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1527
1528 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1529 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1530 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1531 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1532 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1533 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1534 else
1535 return 0;
1536
1537 if ((clock == PRCMU_SGACLK) &&
1538 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1539 u64 r = (rate * 10);
1540
1541 (void)do_div(r, 25);
1542 return (unsigned long)r;
1543 }
1544 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1545 if (val)
1546 return rate / val;
1547 else
1548 return 0;
1549}
20aee5b6 1550
b2302c87 1551static unsigned long armss_rate(void)
20aee5b6
MJ
1552{
1553 u32 r;
1554 unsigned long rate;
1555
1556 r = readl(PRCM_ARM_CHGCLKREQ);
1557
1558 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1559 /* External ARMCLKFIX clock */
1560
1561 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1562
1563 /* Check PRCM_ARM_CHGCLKREQ divider */
1564 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1565 rate /= 2;
1566
1567 /* Check PRCM_ARMCLKFIX_MGT divider */
1568 r = readl(PRCM_ARMCLKFIX_MGT);
1569 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1570 rate /= r;
1571
1572 } else {/* ARM PLL */
1573 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1574 }
1575
b2302c87 1576 return rate;
20aee5b6 1577}
6b6fae2b
MN
1578
1579static unsigned long dsiclk_rate(u8 n)
1580{
1581 u32 divsel;
1582 u32 div = 1;
1583
1584 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1585 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1586
1587 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1588 divsel = dsiclk[n].divsel;
1589
1590 switch (divsel) {
1591 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1592 div *= 2;
1593 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1594 div *= 2;
1595 case PRCM_DSI_PLLOUT_SEL_PHI:
1596 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1597 PLL_RAW) / div;
e62ccf3a 1598 default:
6b6fae2b 1599 return 0;
e62ccf3a 1600 }
6b6fae2b
MN
1601}
1602
1603static unsigned long dsiescclk_rate(u8 n)
1604{
1605 u32 div;
1606
1607 div = readl(PRCM_DSITVCLK_DIV);
1608 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1609 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1610}
1611
1612unsigned long prcmu_clock_rate(u8 clock)
1613{
e62ccf3a 1614 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1615 return clock_rate(clock);
1616 else if (clock == PRCMU_TIMCLK)
1617 return ROOT_CLOCK_RATE / 16;
1618 else if (clock == PRCMU_SYSCLK)
1619 return ROOT_CLOCK_RATE;
1620 else if (clock == PRCMU_PLLSOC0)
1621 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1622 else if (clock == PRCMU_PLLSOC1)
1623 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1624 else if (clock == PRCMU_ARMSS)
1625 return armss_rate();
6b6fae2b
MN
1626 else if (clock == PRCMU_PLLDDR)
1627 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1628 else if (clock == PRCMU_PLLDSI)
1629 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1630 PLL_RAW);
1631 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1632 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1633 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1634 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1635 else
1636 return 0;
1637}
1638
1639static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1640{
1641 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1642 return ROOT_CLOCK_RATE;
1643 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1644 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1645 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1646 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1647 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1648 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1649 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1650 else
1651 return 0;
1652}
1653
1654static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1655{
1656 u32 div;
1657
1658 div = (src_rate / rate);
1659 if (div == 0)
1660 return 1;
1661 if (rate < (src_rate / div))
1662 div++;
1663 return div;
1664}
1665
1666static long round_clock_rate(u8 clock, unsigned long rate)
1667{
1668 u32 val;
1669 u32 div;
1670 unsigned long src_rate;
1671 long rounded_rate;
1672
b047d981 1673 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1674 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1675 clk_mgt[clock].branch);
1676 div = clock_divider(src_rate, rate);
1677 if (val & PRCM_CLK_MGT_CLK38) {
1678 if (clk_mgt[clock].clk38div) {
1679 if (div > 2)
1680 div = 2;
1681 } else {
1682 div = 1;
1683 }
1684 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1685 u64 r = (src_rate * 10);
1686
1687 (void)do_div(r, 25);
1688 if (r <= rate)
1689 return (unsigned long)r;
1690 }
1691 rounded_rate = (src_rate / min(div, (u32)31));
1692
1693 return rounded_rate;
1694}
1695
b2302c87
UH
1696/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1697static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1698 { .frequency = 200000, .index = ARM_EXTCLK,},
1699 { .frequency = 400000, .index = ARM_50_OPP,},
1700 { .frequency = 800000, .index = ARM_100_OPP,},
1701 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1702 { .frequency = CPUFREQ_TABLE_END,},
1703};
1704
1705static long round_armss_rate(unsigned long rate)
1706{
1707 long freq = 0;
1708 int i = 0;
1709
1710 /* cpufreq table frequencies is in KHz. */
1711 rate = rate / 1000;
1712
1713 /* Find the corresponding arm opp from the cpufreq table. */
1714 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1715 freq = db8500_cpufreq_table[i].frequency;
1716 if (freq == rate)
1717 break;
1718 i++;
1719 }
1720
1721 /* Return the last valid value, even if a match was not found. */
1722 return freq * 1000;
1723}
1724
6b6fae2b
MN
1725#define MIN_PLL_VCO_RATE 600000000ULL
1726#define MAX_PLL_VCO_RATE 1680640000ULL
1727
1728static long round_plldsi_rate(unsigned long rate)
1729{
1730 long rounded_rate = 0;
1731 unsigned long src_rate;
1732 unsigned long rem;
1733 u32 r;
1734
1735 src_rate = clock_rate(PRCMU_HDMICLK);
1736 rem = rate;
1737
1738 for (r = 7; (rem > 0) && (r > 0); r--) {
1739 u64 d;
1740
1741 d = (r * rate);
1742 (void)do_div(d, src_rate);
1743 if (d < 6)
1744 d = 6;
1745 else if (d > 255)
1746 d = 255;
1747 d *= src_rate;
1748 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1749 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1750 continue;
1751 (void)do_div(d, r);
1752 if (rate < d) {
1753 if (rounded_rate == 0)
1754 rounded_rate = (long)d;
1755 break;
1756 }
1757 if ((rate - d) < rem) {
1758 rem = (rate - d);
1759 rounded_rate = (long)d;
1760 }
1761 }
1762 return rounded_rate;
1763}
1764
1765static long round_dsiclk_rate(unsigned long rate)
1766{
1767 u32 div;
1768 unsigned long src_rate;
1769 long rounded_rate;
1770
1771 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1772 PLL_RAW);
1773 div = clock_divider(src_rate, rate);
1774 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1775
1776 return rounded_rate;
1777}
1778
1779static long round_dsiescclk_rate(unsigned long rate)
1780{
1781 u32 div;
1782 unsigned long src_rate;
1783 long rounded_rate;
1784
1785 src_rate = clock_rate(PRCMU_TVCLK);
1786 div = clock_divider(src_rate, rate);
1787 rounded_rate = (src_rate / min(div, (u32)255));
1788
1789 return rounded_rate;
1790}
1791
1792long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1793{
1794 if (clock < PRCMU_NUM_REG_CLOCKS)
1795 return round_clock_rate(clock, rate);
b2302c87
UH
1796 else if (clock == PRCMU_ARMSS)
1797 return round_armss_rate(rate);
6b6fae2b
MN
1798 else if (clock == PRCMU_PLLDSI)
1799 return round_plldsi_rate(rate);
1800 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1801 return round_dsiclk_rate(rate);
1802 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1803 return round_dsiescclk_rate(rate);
1804 else
1805 return (long)prcmu_clock_rate(clock);
1806}
1807
1808static void set_clock_rate(u8 clock, unsigned long rate)
1809{
1810 u32 val;
1811 u32 div;
1812 unsigned long src_rate;
1813 unsigned long flags;
1814
1815 spin_lock_irqsave(&clk_mgt_lock, flags);
1816
1817 /* Grab the HW semaphore. */
1818 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1819 cpu_relax();
1820
b047d981 1821 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1822 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1823 clk_mgt[clock].branch);
1824 div = clock_divider(src_rate, rate);
1825 if (val & PRCM_CLK_MGT_CLK38) {
1826 if (clk_mgt[clock].clk38div) {
1827 if (div > 1)
1828 val |= PRCM_CLK_MGT_CLK38DIV;
1829 else
1830 val &= ~PRCM_CLK_MGT_CLK38DIV;
1831 }
1832 } else if (clock == PRCMU_SGACLK) {
1833 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1834 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1835 if (div == 3) {
1836 u64 r = (src_rate * 10);
1837
1838 (void)do_div(r, 25);
1839 if (r <= rate) {
1840 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1841 div = 0;
1842 }
1843 }
1844 val |= min(div, (u32)31);
1845 } else {
1846 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1847 val |= min(div, (u32)31);
1848 }
b047d981 1849 writel(val, prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1850
1851 /* Release the HW semaphore. */
1852 writel(0, PRCM_SEM);
1853
1854 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1855}
1856
b2302c87
UH
1857static int set_armss_rate(unsigned long rate)
1858{
1859 int i = 0;
1860
1861 /* cpufreq table frequencies is in KHz. */
1862 rate = rate / 1000;
1863
1864 /* Find the corresponding arm opp from the cpufreq table. */
1865 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1866 if (db8500_cpufreq_table[i].frequency == rate)
1867 break;
1868 i++;
1869 }
1870
1871 if (db8500_cpufreq_table[i].frequency != rate)
1872 return -EINVAL;
1873
1874 /* Set the new arm opp. */
1875 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1876}
1877
6b6fae2b
MN
1878static int set_plldsi_rate(unsigned long rate)
1879{
1880 unsigned long src_rate;
1881 unsigned long rem;
1882 u32 pll_freq = 0;
1883 u32 r;
1884
1885 src_rate = clock_rate(PRCMU_HDMICLK);
1886 rem = rate;
1887
1888 for (r = 7; (rem > 0) && (r > 0); r--) {
1889 u64 d;
1890 u64 hwrate;
1891
1892 d = (r * rate);
1893 (void)do_div(d, src_rate);
1894 if (d < 6)
1895 d = 6;
1896 else if (d > 255)
1897 d = 255;
1898 hwrate = (d * src_rate);
1899 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1900 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1901 continue;
1902 (void)do_div(hwrate, r);
1903 if (rate < hwrate) {
1904 if (pll_freq == 0)
1905 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1906 (r << PRCM_PLL_FREQ_R_SHIFT));
1907 break;
1908 }
1909 if ((rate - hwrate) < rem) {
1910 rem = (rate - hwrate);
1911 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1912 (r << PRCM_PLL_FREQ_R_SHIFT));
1913 }
1914 }
1915 if (pll_freq == 0)
1916 return -EINVAL;
1917
1918 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1919 writel(pll_freq, PRCM_PLLDSI_FREQ);
1920
1921 return 0;
1922}
1923
1924static void set_dsiclk_rate(u8 n, unsigned long rate)
1925{
1926 u32 val;
1927 u32 div;
1928
1929 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1930 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1931
1932 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1933 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1934 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1935
1936 val = readl(PRCM_DSI_PLLOUT_SEL);
1937 val &= ~dsiclk[n].divsel_mask;
1938 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1939 writel(val, PRCM_DSI_PLLOUT_SEL);
1940}
1941
1942static void set_dsiescclk_rate(u8 n, unsigned long rate)
1943{
1944 u32 val;
1945 u32 div;
1946
1947 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1948 val = readl(PRCM_DSITVCLK_DIV);
1949 val &= ~dsiescclk[n].div_mask;
1950 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1951 writel(val, PRCM_DSITVCLK_DIV);
1952}
1953
1954int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1955{
1956 if (clock < PRCMU_NUM_REG_CLOCKS)
1957 set_clock_rate(clock, rate);
b2302c87
UH
1958 else if (clock == PRCMU_ARMSS)
1959 return set_armss_rate(rate);
6b6fae2b
MN
1960 else if (clock == PRCMU_PLLDSI)
1961 return set_plldsi_rate(rate);
1962 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1963 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1964 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1965 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1966 return 0;
3df57bcf
MN
1967}
1968
73180f85 1969int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
1970{
1971 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1972 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1973 return -EINVAL;
1974
1975 mutex_lock(&mb4_transfer.lock);
1976
c553b3ca 1977 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1978 cpu_relax();
1979
1980 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1981 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1982 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1983 writeb(DDR_PWR_STATE_ON,
1984 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1985 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1986
c553b3ca 1987 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1988 wait_for_completion(&mb4_transfer.work);
1989
1990 mutex_unlock(&mb4_transfer.lock);
1991
1992 return 0;
1993}
1994
0508901c 1995int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
1996{
1997 mutex_lock(&mb4_transfer.lock);
1998
c553b3ca 1999 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2000 cpu_relax();
2001
2002 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2003 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2004
c553b3ca 2005 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2006 wait_for_completion(&mb4_transfer.work);
2007
2008 mutex_unlock(&mb4_transfer.lock);
2009
2010 return 0;
2011}
2012
0508901c 2013int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2014{
2015 mutex_lock(&mb4_transfer.lock);
2016
c553b3ca 2017 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2018 cpu_relax();
2019
2020 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2021 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2022 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2023 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2024 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2025
c553b3ca 2026 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2027 wait_for_completion(&mb4_transfer.work);
2028
2029 mutex_unlock(&mb4_transfer.lock);
2030
2031 return 0;
2032}
2033
2034static int config_hot_period(u16 val)
2035{
2036 mutex_lock(&mb4_transfer.lock);
2037
c553b3ca 2038 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2039 cpu_relax();
2040
2041 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2042 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2043
c553b3ca 2044 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2045 wait_for_completion(&mb4_transfer.work);
2046
2047 mutex_unlock(&mb4_transfer.lock);
2048
2049 return 0;
2050}
2051
0508901c 2052int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2053{
2054 if (cycles32k == 0xFFFF)
2055 return -EINVAL;
2056
2057 return config_hot_period(cycles32k);
2058}
2059
0508901c 2060int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2061{
2062 return config_hot_period(0xFFFF);
2063}
2064
84165b80
JA
2065static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2066{
2067
2068 mutex_lock(&mb4_transfer.lock);
2069
2070 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2071 cpu_relax();
2072
2073 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2074 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2075 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2076 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2077
2078 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2079
2080 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2081 wait_for_completion(&mb4_transfer.work);
2082
2083 mutex_unlock(&mb4_transfer.lock);
2084
2085 return 0;
2086
2087}
2088
0508901c 2089int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2090{
2091 BUG_ON(num == 0 || num > 0xf);
2092 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2093 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2094 A9WDOG_AUTO_OFF_DIS);
2095}
6f8cfa99 2096EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
84165b80 2097
0508901c 2098int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2099{
2100 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2101}
6f8cfa99 2102EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
84165b80 2103
0508901c 2104int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2105{
2106 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2107}
6f8cfa99 2108EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
84165b80 2109
0508901c 2110int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2111{
2112 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2113}
6f8cfa99 2114EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
84165b80
JA
2115
2116/*
2117 * timeout is 28 bit, in ms.
2118 */
0508901c 2119int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2120{
84165b80
JA
2121 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2122 (id & A9WDOG_ID_MASK) |
2123 /*
2124 * Put the lowest 28 bits of timeout at
2125 * offset 4. Four first bits are used for id.
2126 */
2127 (u8)((timeout << 4) & 0xf0),
2128 (u8)((timeout >> 4) & 0xff),
2129 (u8)((timeout >> 12) & 0xff),
2130 (u8)((timeout >> 20) & 0xff));
2131}
6f8cfa99 2132EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
84165b80 2133
e3726fcf
LW
2134/**
2135 * prcmu_abb_read() - Read register value(s) from the ABB.
2136 * @slave: The I2C slave address.
2137 * @reg: The (start) register address.
2138 * @value: The read out value(s).
2139 * @size: The number of registers to read.
2140 *
2141 * Reads register value(s) from the ABB.
2142 * @size has to be 1 for the current firmware version.
2143 */
2144int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2145{
2146 int r;
2147
2148 if (size != 1)
2149 return -EINVAL;
2150
3df57bcf 2151 mutex_lock(&mb5_transfer.lock);
e3726fcf 2152
c553b3ca 2153 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2154 cpu_relax();
2155
3c3e4898 2156 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2157 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2158 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2159 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2160 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2161
c553b3ca 2162 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2163
e3726fcf 2164 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2165 msecs_to_jiffies(20000))) {
2166 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2167 __func__);
e3726fcf 2168 r = -EIO;
3df57bcf
MN
2169 } else {
2170 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2171 }
3df57bcf 2172
e3726fcf
LW
2173 if (!r)
2174 *value = mb5_transfer.ack.value;
2175
e3726fcf 2176 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2177
e3726fcf
LW
2178 return r;
2179}
e3726fcf
LW
2180
2181/**
3c3e4898 2182 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2183 * @slave: The I2C slave address.
2184 * @reg: The (start) register address.
2185 * @value: The value(s) to write.
3c3e4898 2186 * @mask: The mask(s) to use.
e3726fcf
LW
2187 * @size: The number of registers to write.
2188 *
3c3e4898
MN
2189 * Writes masked register value(s) to the ABB.
2190 * For each @value, only the bits set to 1 in the corresponding @mask
2191 * will be written. The other bits are not changed.
e3726fcf
LW
2192 * @size has to be 1 for the current firmware version.
2193 */
3c3e4898 2194int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2195{
2196 int r;
2197
2198 if (size != 1)
2199 return -EINVAL;
2200
3df57bcf 2201 mutex_lock(&mb5_transfer.lock);
e3726fcf 2202
c553b3ca 2203 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2204 cpu_relax();
2205
3c3e4898 2206 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2207 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2208 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2209 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2210 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2211
c553b3ca 2212 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2213
e3726fcf 2214 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2215 msecs_to_jiffies(20000))) {
2216 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2217 __func__);
e3726fcf 2218 r = -EIO;
3df57bcf
MN
2219 } else {
2220 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2221 }
e3726fcf 2222
e3726fcf 2223 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2224
e3726fcf
LW
2225 return r;
2226}
e3726fcf 2227
3c3e4898
MN
2228/**
2229 * prcmu_abb_write() - Write register value(s) to the ABB.
2230 * @slave: The I2C slave address.
2231 * @reg: The (start) register address.
2232 * @value: The value(s) to write.
2233 * @size: The number of registers to write.
2234 *
2235 * Writes register value(s) to the ABB.
2236 * @size has to be 1 for the current firmware version.
2237 */
2238int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2239{
2240 u8 mask = ~0;
2241
2242 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2243}
2244
3df57bcf
MN
2245/**
2246 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2247 */
5261e101 2248int prcmu_ac_wake_req(void)
e0befb23 2249{
3df57bcf 2250 u32 val;
5261e101 2251 int ret = 0;
e0befb23 2252
3df57bcf 2253 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2254
c553b3ca 2255 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2256 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2257 goto unlock_and_return;
e0befb23 2258
3df57bcf 2259 atomic_set(&ac_wake_req_state, 1);
e0befb23 2260
5261e101
AM
2261 /*
2262 * Force Modem Wake-up before hostaccess_req ping-pong.
2263 * It prevents Modem to enter in Sleep while acking the hostaccess
2264 * request. The 31us delay has been calculated by HWI.
2265 */
2266 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2267 writel(val, PRCM_HOSTACCESS_REQ);
2268
2269 udelay(31);
2270
2271 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2272 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2273
3df57bcf 2274 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2275 msecs_to_jiffies(5000))) {
5261e101
AM
2276#if defined(CONFIG_DBX500_PRCMU_DEBUG)
2277 db8500_prcmu_debug_dump(__func__, true, true);
2278#endif
57265bc1 2279 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2280 __func__);
5261e101 2281 ret = -EFAULT;
3df57bcf 2282 }
e0befb23 2283
3df57bcf
MN
2284unlock_and_return:
2285 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2286 return ret;
e0befb23
MP
2287}
2288
2289/**
3df57bcf 2290 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2291 */
3df57bcf 2292void prcmu_ac_sleep_req()
e0befb23 2293{
3df57bcf
MN
2294 u32 val;
2295
2296 mutex_lock(&mb0_transfer.ac_wake_lock);
2297
c553b3ca 2298 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2299 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2300 goto unlock_and_return;
2301
2302 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2303 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2304
2305 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2306 msecs_to_jiffies(5000))) {
57265bc1 2307 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2308 __func__);
2309 }
2310
2311 atomic_set(&ac_wake_req_state, 0);
2312
2313unlock_and_return:
2314 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2315}
e0befb23 2316
73180f85 2317bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2318{
3df57bcf 2319 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2320}
e0befb23
MP
2321
2322/**
73180f85 2323 * db8500_prcmu_system_reset - System reset
e0befb23 2324 *
73180f85 2325 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2326 * fires interrupt to fw
e0befb23 2327 */
73180f85 2328void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2329{
3df57bcf 2330 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2331 writel(1, PRCM_APE_SOFTRST);
e0befb23 2332}
e0befb23 2333
597045de
SR
2334/**
2335 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2336 *
2337 * Retrieves the reset reason code stored by prcmu_system_reset() before
2338 * last restart.
2339 */
2340u16 db8500_prcmu_get_reset_code(void)
2341{
2342 return readw(tcdm_base + PRCM_SW_RST_REASON);
2343}
2344
e0befb23 2345/**
0508901c 2346 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2347 */
0508901c 2348void db8500_prcmu_modem_reset(void)
e0befb23 2349{
3df57bcf
MN
2350 mutex_lock(&mb1_transfer.lock);
2351
c553b3ca 2352 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2353 cpu_relax();
2354
2355 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2356 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2357 wait_for_completion(&mb1_transfer.work);
2358
2359 /*
2360 * No need to check return from PRCMU as modem should go in reset state
2361 * This state is already managed by upper layer
2362 */
2363
2364 mutex_unlock(&mb1_transfer.lock);
e0befb23 2365}
e0befb23 2366
3df57bcf 2367static void ack_dbb_wakeup(void)
e0befb23 2368{
3df57bcf
MN
2369 unsigned long flags;
2370
2371 spin_lock_irqsave(&mb0_transfer.lock, flags);
2372
c553b3ca 2373 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2374 cpu_relax();
2375
2376 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2377 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2378
2379 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2380}
e0befb23 2381
3df57bcf 2382static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2383{
3df57bcf
MN
2384 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2385 header, n);
e0befb23
MP
2386}
2387
3df57bcf 2388static bool read_mailbox_0(void)
e3726fcf 2389{
3df57bcf
MN
2390 bool r;
2391 u32 ev;
2392 unsigned int n;
2393 u8 header;
2394
2395 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2396 switch (header) {
2397 case MB0H_WAKEUP_EXE:
2398 case MB0H_WAKEUP_SLEEP:
2399 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2400 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2401 else
2402 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2403
2404 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2405 complete(&mb0_transfer.ac_wake_work);
2406 if (ev & WAKEUP_BIT_SYSCLK_OK)
2407 complete(&mb3_transfer.sysclk_work);
2408
2409 ev &= mb0_transfer.req.dbb_irqs;
2410
2411 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2412 if (ev & prcmu_irq_bit[n])
89d9b1c9 2413 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
3df57bcf
MN
2414 }
2415 r = true;
2416 break;
2417 default:
2418 print_unknown_header_warning(0, header);
2419 r = false;
2420 break;
2421 }
c553b3ca 2422 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2423 return r;
e3726fcf
LW
2424}
2425
3df57bcf 2426static bool read_mailbox_1(void)
e3726fcf 2427{
3df57bcf
MN
2428 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2429 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2430 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2431 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2432 PRCM_ACK_MB1_CURRENT_APE_OPP);
2433 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2434 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2435 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2436 complete(&mb1_transfer.work);
3df57bcf 2437 return false;
e3726fcf
LW
2438}
2439
3df57bcf 2440static bool read_mailbox_2(void)
e3726fcf 2441{
3df57bcf 2442 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2443 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2444 complete(&mb2_transfer.work);
2445 return false;
e3726fcf
LW
2446}
2447
3df57bcf 2448static bool read_mailbox_3(void)
e3726fcf 2449{
c553b3ca 2450 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2451 return false;
e3726fcf
LW
2452}
2453
3df57bcf 2454static bool read_mailbox_4(void)
e3726fcf 2455{
3df57bcf
MN
2456 u8 header;
2457 bool do_complete = true;
2458
2459 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2460 switch (header) {
2461 case MB4H_MEM_ST:
2462 case MB4H_HOTDOG:
2463 case MB4H_HOTMON:
2464 case MB4H_HOT_PERIOD:
a592c2e2
MN
2465 case MB4H_A9WDOG_CONF:
2466 case MB4H_A9WDOG_EN:
2467 case MB4H_A9WDOG_DIS:
2468 case MB4H_A9WDOG_LOAD:
2469 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2470 break;
2471 default:
2472 print_unknown_header_warning(4, header);
2473 do_complete = false;
2474 break;
2475 }
2476
c553b3ca 2477 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2478
2479 if (do_complete)
2480 complete(&mb4_transfer.work);
2481
2482 return false;
e3726fcf
LW
2483}
2484
3df57bcf 2485static bool read_mailbox_5(void)
e3726fcf 2486{
3df57bcf
MN
2487 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2488 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2489 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2490 complete(&mb5_transfer.work);
3df57bcf 2491 return false;
e3726fcf
LW
2492}
2493
3df57bcf 2494static bool read_mailbox_6(void)
e3726fcf 2495{
c553b3ca 2496 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2497 return false;
e3726fcf
LW
2498}
2499
3df57bcf 2500static bool read_mailbox_7(void)
e3726fcf 2501{
c553b3ca 2502 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2503 return false;
e3726fcf
LW
2504}
2505
3df57bcf 2506static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2507 read_mailbox_0,
2508 read_mailbox_1,
2509 read_mailbox_2,
2510 read_mailbox_3,
2511 read_mailbox_4,
2512 read_mailbox_5,
2513 read_mailbox_6,
2514 read_mailbox_7
2515};
2516
2517static irqreturn_t prcmu_irq_handler(int irq, void *data)
2518{
2519 u32 bits;
2520 u8 n;
3df57bcf 2521 irqreturn_t r;
e3726fcf 2522
c553b3ca 2523 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2524 if (unlikely(!bits))
2525 return IRQ_NONE;
2526
3df57bcf 2527 r = IRQ_HANDLED;
e3726fcf
LW
2528 for (n = 0; bits; n++) {
2529 if (bits & MBOX_BIT(n)) {
2530 bits -= MBOX_BIT(n);
3df57bcf
MN
2531 if (read_mailbox[n]())
2532 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2533 }
2534 }
3df57bcf
MN
2535 return r;
2536}
2537
2538static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2539{
2540 ack_dbb_wakeup();
e3726fcf
LW
2541 return IRQ_HANDLED;
2542}
2543
3df57bcf
MN
2544static void prcmu_mask_work(struct work_struct *work)
2545{
2546 unsigned long flags;
2547
2548 spin_lock_irqsave(&mb0_transfer.lock, flags);
2549
2550 config_wakeups();
2551
2552 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2553}
2554
2555static void prcmu_irq_mask(struct irq_data *d)
2556{
2557 unsigned long flags;
2558
2559 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2560
f3f1f0a1 2561 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2562
2563 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2564
2565 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2566 schedule_work(&mb0_transfer.mask_work);
2567}
2568
2569static void prcmu_irq_unmask(struct irq_data *d)
2570{
2571 unsigned long flags;
2572
2573 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2574
f3f1f0a1 2575 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2576
2577 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2578
2579 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2580 schedule_work(&mb0_transfer.mask_work);
2581}
2582
2583static void noop(struct irq_data *d)
2584{
2585}
2586
2587static struct irq_chip prcmu_irq_chip = {
2588 .name = "prcmu",
2589 .irq_disable = prcmu_irq_mask,
2590 .irq_ack = noop,
2591 .irq_mask = prcmu_irq_mask,
2592 .irq_unmask = prcmu_irq_unmask,
2593};
2594
05ec260e 2595static __init char *fw_project_name(u32 project)
b58d12fe
MN
2596{
2597 switch (project) {
2598 case PRCMU_FW_PROJECT_U8500:
2599 return "U8500";
05ec260e
LW
2600 case PRCMU_FW_PROJECT_U8400:
2601 return "U8400";
b58d12fe
MN
2602 case PRCMU_FW_PROJECT_U9500:
2603 return "U9500";
05ec260e
LW
2604 case PRCMU_FW_PROJECT_U8500_MBB:
2605 return "U8500 MBB";
2606 case PRCMU_FW_PROJECT_U8500_C1:
2607 return "U8500 C1";
2608 case PRCMU_FW_PROJECT_U8500_C2:
2609 return "U8500 C2";
2610 case PRCMU_FW_PROJECT_U8500_C3:
2611 return "U8500 C3";
2612 case PRCMU_FW_PROJECT_U8500_C4:
2613 return "U8500 C4";
2614 case PRCMU_FW_PROJECT_U9500_MBL:
2615 return "U9500 MBL";
2616 case PRCMU_FW_PROJECT_U8500_MBL:
2617 return "U8500 MBL";
2618 case PRCMU_FW_PROJECT_U8500_MBL2:
2619 return "U8500 MBL2";
5f96a1a6 2620 case PRCMU_FW_PROJECT_U8520:
05ec260e 2621 return "U8520 MBL";
1927ddf6
BJ
2622 case PRCMU_FW_PROJECT_U8420:
2623 return "U8420";
05ec260e
LW
2624 case PRCMU_FW_PROJECT_U9540:
2625 return "U9540";
2626 case PRCMU_FW_PROJECT_A9420:
2627 return "A9420";
2628 case PRCMU_FW_PROJECT_L8540:
2629 return "L8540";
2630 case PRCMU_FW_PROJECT_L8580:
2631 return "L8580";
b58d12fe
MN
2632 default:
2633 return "Unknown";
2634 }
2635}
2636
f3f1f0a1
LJ
2637static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2638 irq_hw_number_t hwirq)
2639{
2640 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2641 handle_simple_irq);
2642 set_irq_flags(virq, IRQF_VALID);
2643
2644 return 0;
2645}
2646
2647static struct irq_domain_ops db8500_irq_ops = {
89d9b1c9
LW
2648 .map = db8500_irq_map,
2649 .xlate = irq_domain_xlate_twocell,
f3f1f0a1
LJ
2650};
2651
2652static int db8500_irq_init(struct device_node *np)
2653{
89d9b1c9
LW
2654 int irq_base = 0;
2655 int i;
a7238e43
LW
2656
2657 /* In the device tree case, just take some IRQs */
2658 if (!np)
2659 irq_base = IRQ_PRCMU_BASE;
2660
2661 db8500_irq_domain = irq_domain_add_simple(
2662 np, NUM_PRCMU_WAKEUPS, irq_base,
2663 &db8500_irq_ops, NULL);
f3f1f0a1
LJ
2664
2665 if (!db8500_irq_domain) {
2666 pr_err("Failed to create irqdomain\n");
2667 return -ENOSYS;
2668 }
2669
89d9b1c9
LW
2670 /* All wakeups will be used, so create mappings for all */
2671 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2672 irq_create_mapping(db8500_irq_domain, i);
2673
f3f1f0a1
LJ
2674 return 0;
2675}
2676
05ec260e
LW
2677static void dbx500_fw_version_init(struct platform_device *pdev,
2678 u32 version_offset)
fcbd458e 2679{
05ec260e
LW
2680 struct resource *res;
2681 void __iomem *tcpm_base;
3df57bcf 2682
05ec260e
LW
2683 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2684 "prcmu-tcpm");
2685 if (!res) {
2686 dev_err(&pdev->dev,
2687 "Error: no prcmu tcpm memory region provided\n");
2688 return;
2689 }
2690 tcpm_base = ioremap(res->start, resource_size(res));
2691 if (tcpm_base != NULL) {
2692 u32 version;
2693
2694 version = readl(tcpm_base + version_offset);
2695 fw_info.version.project = (version & 0xFF);
2696 fw_info.version.api_version = (version >> 8) & 0xFF;
2697 fw_info.version.func_version = (version >> 16) & 0xFF;
2698 fw_info.version.errata = (version >> 24) & 0xFF;
2699 strncpy(fw_info.version.project_name,
2700 fw_project_name(fw_info.version.project),
2701 PRCMU_FW_PROJECT_NAME_LEN);
2702 fw_info.valid = true;
2703 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2704 fw_info.version.project_name,
2705 fw_info.version.project,
2706 fw_info.version.api_version,
2707 fw_info.version.func_version,
2708 fw_info.version.errata);
2709 iounmap(tcpm_base);
fcbd458e 2710 }
05ec260e 2711}
e0befb23 2712
9a47a8dc 2713void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
05ec260e 2714{
9a47a8dc
LW
2715 /*
2716 * This is a temporary remap to bring up the clocks. It is
2717 * subsequently replaces with a real remap. After the merge of
2718 * the mailbox subsystem all of this early code goes away, and the
2719 * clock driver can probe independently. An early initcall will
2720 * still be needed, but it can be diverted into drivers/clk/ux500.
2721 */
2722 prcmu_base = ioremap(phy_base, size);
2723 if (!prcmu_base)
2724 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2725
3df57bcf
MN
2726 spin_lock_init(&mb0_transfer.lock);
2727 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2728 mutex_init(&mb0_transfer.ac_wake_lock);
2729 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2730 mutex_init(&mb1_transfer.lock);
2731 init_completion(&mb1_transfer.work);
4d64d2e3 2732 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2733 mutex_init(&mb2_transfer.lock);
2734 init_completion(&mb2_transfer.work);
2735 spin_lock_init(&mb2_transfer.auto_pm_lock);
2736 spin_lock_init(&mb3_transfer.lock);
2737 mutex_init(&mb3_transfer.sysclk_lock);
2738 init_completion(&mb3_transfer.sysclk_work);
2739 mutex_init(&mb4_transfer.lock);
2740 init_completion(&mb4_transfer.work);
e3726fcf
LW
2741 mutex_init(&mb5_transfer.lock);
2742 init_completion(&mb5_transfer.work);
2743
3df57bcf 2744 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
3df57bcf
MN
2745}
2746
0508901c 2747static void __init init_prcm_registers(void)
d65e12d7
MN
2748{
2749 u32 val;
2750
2751 val = readl(PRCM_A9PL_FORCE_CLKEN);
2752 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2753 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2754 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2755}
2756
1032fbfd
BJ
2757/*
2758 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2759 */
2760static struct regulator_consumer_supply db8500_vape_consumers[] = {
2761 REGULATOR_SUPPLY("v-ape", NULL),
2762 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2763 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2764 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2765 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2766 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2767 /* "v-mmc" changed to "vcore" in the mainline kernel */
2768 REGULATOR_SUPPLY("vcore", "sdi0"),
2769 REGULATOR_SUPPLY("vcore", "sdi1"),
2770 REGULATOR_SUPPLY("vcore", "sdi2"),
2771 REGULATOR_SUPPLY("vcore", "sdi3"),
2772 REGULATOR_SUPPLY("vcore", "sdi4"),
2773 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2774 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2775 /* "v-uart" changed to "vcore" in the mainline kernel */
2776 REGULATOR_SUPPLY("vcore", "uart0"),
2777 REGULATOR_SUPPLY("vcore", "uart1"),
2778 REGULATOR_SUPPLY("vcore", "uart2"),
2779 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2780 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2781 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2782};
2783
2784static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2785 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2786 /* AV8100 regulator */
2787 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2788};
2789
2790static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2791 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2792 REGULATOR_SUPPLY("vsupply", "mcde"),
2793};
2794
2795/* SVA MMDSP regulator switch */
2796static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2797 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2798};
2799
2800/* SVA pipe regulator switch */
2801static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2802 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2803};
2804
2805/* SIA MMDSP regulator switch */
2806static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2807 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2808};
2809
2810/* SIA pipe regulator switch */
2811static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2812 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2813};
2814
2815static struct regulator_consumer_supply db8500_sga_consumers[] = {
2816 REGULATOR_SUPPLY("v-mali", NULL),
2817};
2818
2819/* ESRAM1 and 2 regulator switch */
2820static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2821 REGULATOR_SUPPLY("esram12", "cm_control"),
2822};
2823
2824/* ESRAM3 and 4 regulator switch */
2825static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2826 REGULATOR_SUPPLY("v-esram34", "mcde"),
2827 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2828 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2829};
2830
2831static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2832 [DB8500_REGULATOR_VAPE] = {
2833 .constraints = {
2834 .name = "db8500-vape",
2835 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2836 .always_on = true,
1032fbfd
BJ
2837 },
2838 .consumer_supplies = db8500_vape_consumers,
2839 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2840 },
2841 [DB8500_REGULATOR_VARM] = {
2842 .constraints = {
2843 .name = "db8500-varm",
2844 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2845 },
2846 },
2847 [DB8500_REGULATOR_VMODEM] = {
2848 .constraints = {
2849 .name = "db8500-vmodem",
2850 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2851 },
2852 },
2853 [DB8500_REGULATOR_VPLL] = {
2854 .constraints = {
2855 .name = "db8500-vpll",
2856 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 },
2858 },
2859 [DB8500_REGULATOR_VSMPS1] = {
2860 .constraints = {
2861 .name = "db8500-vsmps1",
2862 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2863 },
2864 },
2865 [DB8500_REGULATOR_VSMPS2] = {
2866 .constraints = {
2867 .name = "db8500-vsmps2",
2868 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869 },
2870 .consumer_supplies = db8500_vsmps2_consumers,
2871 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2872 },
2873 [DB8500_REGULATOR_VSMPS3] = {
2874 .constraints = {
2875 .name = "db8500-vsmps3",
2876 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877 },
2878 },
2879 [DB8500_REGULATOR_VRF1] = {
2880 .constraints = {
2881 .name = "db8500-vrf1",
2882 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883 },
2884 },
2885 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2886 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2887 .constraints = {
2888 .name = "db8500-sva-mmdsp",
2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 },
624e87c2
BJ
2891 .consumer_supplies = db8500_svammdsp_consumers,
2892 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2893 },
2894 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2895 .constraints = {
2896 /* "ret" means "retention" */
2897 .name = "db8500-sva-mmdsp-ret",
2898 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 },
2900 },
2901 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2902 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2903 .constraints = {
2904 .name = "db8500-sva-pipe",
2905 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2906 },
624e87c2
BJ
2907 .consumer_supplies = db8500_svapipe_consumers,
2908 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2909 },
2910 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2911 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2912 .constraints = {
2913 .name = "db8500-sia-mmdsp",
2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 },
624e87c2
BJ
2916 .consumer_supplies = db8500_siammdsp_consumers,
2917 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2918 },
2919 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2920 .constraints = {
2921 .name = "db8500-sia-mmdsp-ret",
2922 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2923 },
2924 },
2925 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2926 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2927 .constraints = {
2928 .name = "db8500-sia-pipe",
2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 },
624e87c2
BJ
2931 .consumer_supplies = db8500_siapipe_consumers,
2932 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2933 },
2934 [DB8500_REGULATOR_SWITCH_SGA] = {
2935 .supply_regulator = "db8500-vape",
2936 .constraints = {
2937 .name = "db8500-sga",
2938 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2939 },
624e87c2
BJ
2940 .consumer_supplies = db8500_sga_consumers,
2941 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2942
1032fbfd
BJ
2943 },
2944 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2945 .supply_regulator = "db8500-vape",
2946 .constraints = {
2947 .name = "db8500-b2r2-mcde",
2948 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949 },
2950 .consumer_supplies = db8500_b2r2_mcde_consumers,
2951 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2952 },
2953 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2954 /*
2955 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2956 * no need to hold Vape
2957 */
1032fbfd
BJ
2958 .constraints = {
2959 .name = "db8500-esram12",
2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 },
624e87c2
BJ
2962 .consumer_supplies = db8500_esram12_consumers,
2963 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2964 },
2965 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2966 .constraints = {
2967 .name = "db8500-esram12-ret",
2968 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2969 },
2970 },
2971 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2972 /*
2973 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2974 * no need to hold Vape
2975 */
1032fbfd
BJ
2976 .constraints = {
2977 .name = "db8500-esram34",
2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979 },
624e87c2
BJ
2980 .consumer_supplies = db8500_esram34_consumers,
2981 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2982 },
2983 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2984 .constraints = {
2985 .name = "db8500-esram34-ret",
2986 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2987 },
2988 },
2989};
2990
6d11d135
LJ
2991static struct resource ab8500_resources[] = {
2992 [0] = {
2993 .start = IRQ_DB8500_AB8500,
2994 .end = IRQ_DB8500_AB8500,
2995 .flags = IORESOURCE_IRQ
2996 }
2997};
2998
b3aac62b
FB
2999static struct ux500_wdt_data db8500_wdt_pdata = {
3000 .timeout = 600, /* 10 minutes */
3001 .has_28_bits_resolution = true,
3002};
3003
3df57bcf
MN
3004static struct mfd_cell db8500_prcmu_devs[] = {
3005 {
3006 .name = "db8500-prcmu-regulators",
5d90322b 3007 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3008 .platform_data = &db8500_regulators,
3009 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
3010 },
3011 {
84c7c20f
LJ
3012 .name = "cpufreq-ux500",
3013 .of_compatible = "stericsson,cpufreq-ux500",
c280f45f
UH
3014 .platform_data = &db8500_cpufreq_table,
3015 .pdata_size = sizeof(db8500_cpufreq_table),
3df57bcf 3016 },
b3aac62b
FB
3017 {
3018 .name = "ux500_wdt",
3019 .platform_data = &db8500_wdt_pdata,
3020 .pdata_size = sizeof(db8500_wdt_pdata),
3021 .id = -1,
3022 },
6d11d135
LJ
3023 {
3024 .name = "ab8500-core",
3025 .of_compatible = "stericsson,ab8500",
3026 .num_resources = ARRAY_SIZE(ab8500_resources),
3027 .resources = ab8500_resources,
3028 .id = AB8500_VERSION_AB8500,
3029 },
3df57bcf
MN
3030};
3031
c280f45f
UH
3032static void db8500_prcmu_update_cpufreq(void)
3033{
3034 if (prcmu_has_arm_maxopp()) {
3035 db8500_cpufreq_table[3].frequency = 1000000;
3036 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3037 }
3038}
3039
3df57bcf
MN
3040/**
3041 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3042 *
3043 */
f791be49 3044static int db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3045{
ca7edd16 3046 struct device_node *np = pdev->dev.of_node;
05ec260e 3047 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3a8e39c9 3048 int irq = 0, err = 0, i;
05ec260e 3049 struct resource *res;
3df57bcf 3050
b047d981
LW
3051 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3052 if (!res) {
3053 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3054 return -ENOENT;
3055 }
3056 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3057 if (!prcmu_base) {
3058 dev_err(&pdev->dev,
3059 "failed to ioremap prcmu register memory\n");
3060 return -ENOENT;
3061 }
0508901c 3062 init_prcm_registers();
05ec260e
LW
3063 dbx500_fw_version_init(pdev, pdata->version_offset);
3064 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3065 if (!res) {
3066 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3067 return -ENOENT;
3068 }
3069 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3070 resource_size(res));
3071
e3726fcf 3072 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3073 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3074
05ec260e
LW
3075 irq = platform_get_irq(pdev, 0);
3076 if (irq <= 0) {
3077 dev_err(&pdev->dev, "no prcmu irq provided\n");
3078 return -ENOENT;
3079 }
ca7edd16
LJ
3080
3081 err = request_threaded_irq(irq, prcmu_irq_handler,
3082 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3083 if (err < 0) {
3084 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3085 err = -EBUSY;
3086 goto no_irq_return;
3087 }
3088
f3f1f0a1
LJ
3089 db8500_irq_init(np);
3090
3a8e39c9
LJ
3091 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3092 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
05ec260e 3093 db8500_prcmu_devs[i].platform_data = pdata->ab_platdata;
3c1534c7 3094 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3a8e39c9
LJ
3095 }
3096 }
3097
7a4f2609 3098 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3df57bcf 3099
c280f45f
UH
3100 db8500_prcmu_update_cpufreq();
3101
5d90322b 3102 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
0848c94f 3103 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
5d90322b
LJ
3104 if (err) {
3105 pr_err("prcmu: Failed to add subdevices\n");
3106 return err;
ca7edd16 3107 }
e3726fcf 3108
ca7edd16 3109 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3110
3111no_irq_return:
3112 return err;
3113}
3c144762
LJ
3114static const struct of_device_id db8500_prcmu_match[] = {
3115 { .compatible = "stericsson,db8500-prcmu"},
3116 { },
3117};
3df57bcf
MN
3118
3119static struct platform_driver db8500_prcmu_driver = {
3120 .driver = {
3121 .name = "db8500-prcmu",
3122 .owner = THIS_MODULE,
3c144762 3123 .of_match_table = db8500_prcmu_match,
3df57bcf 3124 },
9fc63f67 3125 .probe = db8500_prcmu_probe,
3df57bcf
MN
3126};
3127
3128static int __init db8500_prcmu_init(void)
3129{
9fc63f67 3130 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3131}
3132
a661aca4 3133core_initcall(db8500_prcmu_init);
3df57bcf
MN
3134
3135MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3136MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3137MODULE_LICENSE("GPL v2");