mfd: db8500 clock handling update
[linux-2.6-block.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
73180f85 30#include <linux/mfd/dbx500-prcmu.h>
1032fbfd
BJ
31#include <linux/regulator/db8500-prcmu.h>
32#include <linux/regulator/machine.h>
3df57bcf
MN
33#include <mach/hardware.h>
34#include <mach/irqs.h>
35#include <mach/db8500-regs.h>
36#include <mach/id.h>
73180f85 37#include "dbx500-prcmu-regs.h"
3df57bcf
MN
38
39/* Offset for the firmware version within the TCPM */
40#define PRCMU_FW_VERSION_OFFSET 0xA4
41
3df57bcf
MN
42/* Index of different voltages to be used when accessing AVSData */
43#define PRCM_AVS_BASE 0x2FC
44#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
45#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
46#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
47#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
48#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
49#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
50#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
51#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
52#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
53#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
54#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
55#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
56#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57
58#define PRCM_AVS_VOLTAGE 0
59#define PRCM_AVS_VOLTAGE_MASK 0x3f
60#define PRCM_AVS_ISSLOWSTARTUP 6
61#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
62#define PRCM_AVS_ISMODEENABLE 7
63#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64
65#define PRCM_BOOT_STATUS 0xFFF
66#define PRCM_ROMCODE_A2P 0xFFE
67#define PRCM_ROMCODE_P2A 0xFFD
68#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69
70#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
73#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
74#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
75#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
76#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
77#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
78#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
79#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80
81/* Req Mailboxes */
82#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
83#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
84#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
85#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
86#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
87#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88
89/* Ack Mailboxes */
90#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
91#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97/* Mailbox 0 headers */
98#define MB0H_POWER_STATE_TRANS 0
99#define MB0H_CONFIG_WAKEUPS_EXE 1
100#define MB0H_READ_WAKEUP_ACK 3
101#define MB0H_CONFIG_WAKEUPS_SLEEP 4
102
103#define MB0H_WAKEUP_EXE 2
104#define MB0H_WAKEUP_SLEEP 5
105
106/* Mailbox 0 REQs */
107#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
108#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
109#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
110#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
111#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
112#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113
114/* Mailbox 0 ACKs */
115#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
116#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
117#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
118#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
119#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
120#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
121#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123/* Mailbox 1 headers */
124#define MB1H_ARM_APE_OPP 0x0
125#define MB1H_RESET_MODEM 0x2
126#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 129#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
130
131/* Mailbox 1 Requests */
132#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
133#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 134#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
135#define PLL_SOC0_OFF 0x1
136#define PLL_SOC0_ON 0x2
a592c2e2
MN
137#define PLL_SOC1_OFF 0x4
138#define PLL_SOC1_ON 0x8
3df57bcf
MN
139
140/* Mailbox 1 ACKs */
141#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
142#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
143#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145
146/* Mailbox 2 headers */
147#define MB2H_DPS 0x0
148#define MB2H_AUTO_PWR 0x1
149
150/* Mailbox 2 REQs */
151#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
152#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
153#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
154#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
155#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
156#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
157#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
158#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
159#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
160#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161
162/* Mailbox 2 ACKs */
163#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164#define HWACC_PWR_ST_OK 0xFE
165
166/* Mailbox 3 headers */
167#define MB3H_ANC 0x0
168#define MB3H_SIDETONE 0x1
169#define MB3H_SYSCLK 0xE
170
171/* Mailbox 3 Requests */
172#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
173#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
174#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
175#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
176#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
177#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179
180/* Mailbox 4 headers */
181#define MB4H_DDR_INIT 0x0
182#define MB4H_MEM_ST 0x1
183#define MB4H_HOTDOG 0x12
184#define MB4H_HOTMON 0x13
185#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
186#define MB4H_A9WDOG_CONF 0x16
187#define MB4H_A9WDOG_EN 0x17
188#define MB4H_A9WDOG_DIS 0x18
189#define MB4H_A9WDOG_LOAD 0x19
190#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
191
192/* Mailbox 4 Requests */
193#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
194#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
195#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
196#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
198#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
199#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
200#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
201#define HOTMON_CONFIG_LOW BIT(0)
202#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
203#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
204#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
205#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
206#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
207#define A9WDOG_AUTO_OFF_EN BIT(7)
208#define A9WDOG_AUTO_OFF_DIS 0
209#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
210
211/* Mailbox 5 Requests */
212#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
213#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
214#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
215#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
216#define PRCMU_I2C_WRITE(slave) \
217 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
218#define PRCMU_I2C_READ(slave) \
219 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
220#define PRCMU_I2C_STOP_EN BIT(3)
221
222/* Mailbox 5 ACKs */
223#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
224#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
225#define I2C_WR_OK 0x1
226#define I2C_RD_OK 0x2
227
228#define NUM_MB 8
229#define MBOX_BIT BIT
230#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
231
232/*
233 * Wakeups/IRQs
234 */
235
236#define WAKEUP_BIT_RTC BIT(0)
237#define WAKEUP_BIT_RTT0 BIT(1)
238#define WAKEUP_BIT_RTT1 BIT(2)
239#define WAKEUP_BIT_HSI0 BIT(3)
240#define WAKEUP_BIT_HSI1 BIT(4)
241#define WAKEUP_BIT_CA_WAKE BIT(5)
242#define WAKEUP_BIT_USB BIT(6)
243#define WAKEUP_BIT_ABB BIT(7)
244#define WAKEUP_BIT_ABB_FIFO BIT(8)
245#define WAKEUP_BIT_SYSCLK_OK BIT(9)
246#define WAKEUP_BIT_CA_SLEEP BIT(10)
247#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
248#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
249#define WAKEUP_BIT_ANC_OK BIT(13)
250#define WAKEUP_BIT_SW_ERROR BIT(14)
251#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
252#define WAKEUP_BIT_ARM BIT(17)
253#define WAKEUP_BIT_HOTMON_LOW BIT(18)
254#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
255#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
256#define WAKEUP_BIT_GPIO0 BIT(23)
257#define WAKEUP_BIT_GPIO1 BIT(24)
258#define WAKEUP_BIT_GPIO2 BIT(25)
259#define WAKEUP_BIT_GPIO3 BIT(26)
260#define WAKEUP_BIT_GPIO4 BIT(27)
261#define WAKEUP_BIT_GPIO5 BIT(28)
262#define WAKEUP_BIT_GPIO6 BIT(29)
263#define WAKEUP_BIT_GPIO7 BIT(30)
264#define WAKEUP_BIT_GPIO8 BIT(31)
265
b58d12fe
MN
266static struct {
267 bool valid;
268 struct prcmu_fw_version version;
269} fw_info;
270
3df57bcf
MN
271/*
272 * This vector maps irq numbers to the bits in the bit field used in
273 * communication with the PRCMU firmware.
274 *
275 * The reason for having this is to keep the irq numbers contiguous even though
276 * the bits in the bit field are not. (The bits also have a tendency to move
277 * around, to further complicate matters.)
278 */
279#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
280#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
282 IRQ_ENTRY(RTC),
283 IRQ_ENTRY(RTT0),
284 IRQ_ENTRY(RTT1),
285 IRQ_ENTRY(HSI0),
286 IRQ_ENTRY(HSI1),
287 IRQ_ENTRY(CA_WAKE),
288 IRQ_ENTRY(USB),
289 IRQ_ENTRY(ABB),
290 IRQ_ENTRY(ABB_FIFO),
291 IRQ_ENTRY(CA_SLEEP),
292 IRQ_ENTRY(ARM),
293 IRQ_ENTRY(HOTMON_LOW),
294 IRQ_ENTRY(HOTMON_HIGH),
295 IRQ_ENTRY(MODEM_SW_RESET_REQ),
296 IRQ_ENTRY(GPIO0),
297 IRQ_ENTRY(GPIO1),
298 IRQ_ENTRY(GPIO2),
299 IRQ_ENTRY(GPIO3),
300 IRQ_ENTRY(GPIO4),
301 IRQ_ENTRY(GPIO5),
302 IRQ_ENTRY(GPIO6),
303 IRQ_ENTRY(GPIO7),
304 IRQ_ENTRY(GPIO8)
305};
306
307#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
308#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
309static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
310 WAKEUP_ENTRY(RTC),
311 WAKEUP_ENTRY(RTT0),
312 WAKEUP_ENTRY(RTT1),
313 WAKEUP_ENTRY(HSI0),
314 WAKEUP_ENTRY(HSI1),
315 WAKEUP_ENTRY(USB),
316 WAKEUP_ENTRY(ABB),
317 WAKEUP_ENTRY(ABB_FIFO),
318 WAKEUP_ENTRY(ARM)
319};
320
321/*
322 * mb0_transfer - state needed for mailbox 0 communication.
323 * @lock: The transaction lock.
324 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
325 * the request data.
326 * @mask_work: Work structure used for (un)masking wakeup interrupts.
327 * @req: Request data that need to persist between requests.
328 */
329static struct {
330 spinlock_t lock;
331 spinlock_t dbb_irqs_lock;
332 struct work_struct mask_work;
333 struct mutex ac_wake_lock;
334 struct completion ac_wake_work;
335 struct {
336 u32 dbb_irqs;
337 u32 dbb_wakeups;
338 u32 abb_events;
339 } req;
340} mb0_transfer;
341
342/*
343 * mb1_transfer - state needed for mailbox 1 communication.
344 * @lock: The transaction lock.
345 * @work: The transaction completion structure.
346 * @ack: Reply ("acknowledge") data.
347 */
348static struct {
349 struct mutex lock;
350 struct completion work;
351 struct {
352 u8 header;
353 u8 arm_opp;
354 u8 ape_opp;
355 u8 ape_voltage_status;
356 } ack;
357} mb1_transfer;
358
359/*
360 * mb2_transfer - state needed for mailbox 2 communication.
361 * @lock: The transaction lock.
362 * @work: The transaction completion structure.
363 * @auto_pm_lock: The autonomous power management configuration lock.
364 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
365 * @req: Request data that need to persist between requests.
366 * @ack: Reply ("acknowledge") data.
367 */
368static struct {
369 struct mutex lock;
370 struct completion work;
371 spinlock_t auto_pm_lock;
372 bool auto_pm_enabled;
373 struct {
374 u8 status;
375 } ack;
376} mb2_transfer;
377
378/*
379 * mb3_transfer - state needed for mailbox 3 communication.
380 * @lock: The request lock.
381 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
382 * @sysclk_work: Work structure used for sysclk requests.
383 */
384static struct {
385 spinlock_t lock;
386 struct mutex sysclk_lock;
387 struct completion sysclk_work;
388} mb3_transfer;
389
390/*
391 * mb4_transfer - state needed for mailbox 4 communication.
392 * @lock: The transaction lock.
393 * @work: The transaction completion structure.
394 */
395static struct {
396 struct mutex lock;
397 struct completion work;
398} mb4_transfer;
399
400/*
401 * mb5_transfer - state needed for mailbox 5 communication.
402 * @lock: The transaction lock.
403 * @work: The transaction completion structure.
404 * @ack: Reply ("acknowledge") data.
405 */
406static struct {
407 struct mutex lock;
408 struct completion work;
409 struct {
410 u8 status;
411 u8 value;
412 } ack;
413} mb5_transfer;
414
415static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
416
417/* Spinlocks */
418static DEFINE_SPINLOCK(clkout_lock);
419static DEFINE_SPINLOCK(gpiocr_lock);
420
421/* Global var to runtime determine TCDM base for v2 or v1 */
422static __iomem void *tcdm_base;
423
424struct clk_mgt {
6b6fae2b 425 void __iomem *reg;
3df57bcf 426 u32 pllsw;
6b6fae2b
MN
427 int branch;
428 bool clk38div;
429};
430
431enum {
432 PLL_RAW,
433 PLL_FIX,
434 PLL_DIV
3df57bcf
MN
435};
436
437static DEFINE_SPINLOCK(clk_mgt_lock);
438
6b6fae2b
MN
439#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
440 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
3df57bcf 441struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
442 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
443 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
444 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
445 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
446 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
447 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
448 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
449 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
450 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
451 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
452 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
453 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
454 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
456 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
460 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
464 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
465 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
467 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
468 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
469 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
470 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
471};
472
473struct dsiclk {
474 u32 divsel_mask;
475 u32 divsel_shift;
476 u32 divsel;
477};
478
479static struct dsiclk dsiclk[2] = {
480 {
481 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
482 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
483 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
484 },
485 {
486 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
487 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
488 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
489 }
490};
491
492struct dsiescclk {
493 u32 en;
494 u32 div_mask;
495 u32 div_shift;
496};
497
498static struct dsiescclk dsiescclk[3] = {
499 {
500 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
501 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
502 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
503 },
504 {
505 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
506 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
507 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
508 },
509 {
510 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
511 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
512 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
513 }
3df57bcf
MN
514};
515
0837bb72
MN
516static struct regulator *hwacc_regulator[NUM_HW_ACC];
517static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
518
519static bool hwacc_enabled[NUM_HW_ACC];
520static bool hwacc_ret_enabled[NUM_HW_ACC];
521
522static const char *hwacc_regulator_name[NUM_HW_ACC] = {
523 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
524 [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
525 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
526 [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
527 [HW_ACC_SGA] = "hwacc-sga",
528 [HW_ACC_B2R2] = "hwacc-b2r2",
529 [HW_ACC_MCDE] = "hwacc-mcde",
530 [HW_ACC_ESRAM1] = "hwacc-esram1",
531 [HW_ACC_ESRAM2] = "hwacc-esram2",
532 [HW_ACC_ESRAM3] = "hwacc-esram3",
533 [HW_ACC_ESRAM4] = "hwacc-esram4",
534};
535
536static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
537 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
538 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
539 [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
540 [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
541 [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
542 [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
543};
544
3df57bcf
MN
545/*
546* Used by MCDE to setup all necessary PRCMU registers
547*/
548#define PRCMU_RESET_DSIPLL 0x00004000
549#define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551#define PRCMU_CLK_PLL_DIV_SHIFT 0
552#define PRCMU_CLK_PLL_SW_SHIFT 5
553#define PRCMU_CLK_38 (1 << 9)
554#define PRCMU_CLK_38_SRC (1 << 10)
555#define PRCMU_CLK_38_DIV (1 << 11)
556
557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
558#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
3df57bcf
MN
560/* DPI 50000000 Hz */
561#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565/* D=101, N=1, R=4, SELDIV2=0 */
566#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
3df57bcf
MN
568#define PRCMU_ENABLE_PLLDSI 0x00000001
569#define PRCMU_DISABLE_PLLDSI 0x00000000
570#define PRCMU_RELEASE_RESET_DSS 0x0000400C
571#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572/* ESC clk, div0=1, div1=1, div2=3 */
573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575#define PRCMU_DSI_RESET_SW 0x00000007
576
577#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
73180f85 579int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
580{
581 int i;
3df57bcf
MN
582
583 /* Clear DSIPLL_RESETN */
c553b3ca 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 585 /* Unclamp DSIPLL in/out */
c553b3ca 586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 587
3df57bcf 588 /* Set DSI PLL FREQ */
c72fe851 589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 591 /* Enable Escape clocks */
c553b3ca 592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
593
594 /* Start DSI PLL */
c553b3ca 595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 596 /* Reset DSI PLL */
c553b3ca 597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 598 for (i = 0; i < 10; i++) {
c553b3ca 599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
c553b3ca 605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
606 return 0;
607}
608
73180f85 609int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
610{
611 /* Disable dsi pll */
c553b3ca 612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 613 /* Disable escapeclock */
c553b3ca 614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
615 return 0;
616}
617
73180f85 618int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
619{
620 unsigned long flags;
3df57bcf
MN
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
c553b3ca 625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
626 cpu_relax();
627
c72fe851 628 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
c553b3ca
MN
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
3df57bcf
MN
631
632 /* Release the HW semaphore. */
c553b3ca 633 writel(0, PRCM_SEM);
3df57bcf
MN
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638}
639
640/**
641 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
642 */
643void prcmu_enable_spi2(void)
644{
645 u32 reg;
646 unsigned long flags;
647
648 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
649 reg = readl(PRCM_GPIOCR);
650 writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
651 spin_unlock_irqrestore(&gpiocr_lock, flags);
652}
653
654/**
655 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
656 */
657void prcmu_disable_spi2(void)
658{
659 u32 reg;
660 unsigned long flags;
661
662 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
663 reg = readl(PRCM_GPIOCR);
664 writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
665 spin_unlock_irqrestore(&gpiocr_lock, flags);
666}
667
b58d12fe
MN
668struct prcmu_fw_version *prcmu_get_fw_version(void)
669{
670 return fw_info.valid ? &fw_info.version : NULL;
671}
672
3df57bcf
MN
673bool prcmu_has_arm_maxopp(void)
674{
675 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
676 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
677}
678
3df57bcf
MN
679/**
680 * prcmu_get_boot_status - PRCMU boot status checking
681 * Returns: the current PRCMU boot status
682 */
683int prcmu_get_boot_status(void)
684{
685 return readb(tcdm_base + PRCM_BOOT_STATUS);
686}
687
688/**
689 * prcmu_set_rc_a2p - This function is used to run few power state sequences
690 * @val: Value to be set, i.e. transition requested
691 * Returns: 0 on success, -EINVAL on invalid argument
692 *
693 * This function is used to run the following power state sequences -
694 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
695 */
696int prcmu_set_rc_a2p(enum romcode_write val)
697{
698 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
699 return -EINVAL;
700 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
701 return 0;
702}
703
704/**
705 * prcmu_get_rc_p2a - This function is used to get power state sequences
706 * Returns: the power transition that has last happened
707 *
708 * This function can return the following transitions-
709 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
710 */
711enum romcode_read prcmu_get_rc_p2a(void)
712{
713 return readb(tcdm_base + PRCM_ROMCODE_P2A);
714}
715
716/**
717 * prcmu_get_current_mode - Return the current XP70 power mode
718 * Returns: Returns the current AP(ARM) power mode: init,
719 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
720 */
721enum ap_pwrst prcmu_get_xp70_current_state(void)
722{
723 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
724}
725
726/**
727 * prcmu_config_clkout - Configure one of the programmable clock outputs.
728 * @clkout: The CLKOUT number (0 or 1).
729 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
730 * @div: The divider to be applied.
731 *
732 * Configures one of the programmable clock outputs (CLKOUTs).
733 * @div should be in the range [1,63] to request a configuration, or 0 to
734 * inform that the configuration is no longer requested.
735 */
736int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
737{
738 static int requests[2];
739 int r = 0;
740 unsigned long flags;
741 u32 val;
742 u32 bits;
743 u32 mask;
744 u32 div_mask;
745
746 BUG_ON(clkout > 1);
747 BUG_ON(div > 63);
748 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
749
750 if (!div && !requests[clkout])
751 return -EINVAL;
752
753 switch (clkout) {
754 case 0:
755 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
756 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
757 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
758 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
759 break;
760 case 1:
761 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
762 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
763 PRCM_CLKOCR_CLK1TYPE);
764 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
765 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
766 break;
767 }
768 bits &= mask;
769
770 spin_lock_irqsave(&clkout_lock, flags);
771
c553b3ca 772 val = readl(PRCM_CLKOCR);
3df57bcf
MN
773 if (val & div_mask) {
774 if (div) {
775 if ((val & mask) != bits) {
776 r = -EBUSY;
777 goto unlock_and_return;
778 }
779 } else {
780 if ((val & mask & ~div_mask) != bits) {
781 r = -EINVAL;
782 goto unlock_and_return;
783 }
784 }
785 }
c553b3ca 786 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
787 requests[clkout] += (div ? 1 : -1);
788
789unlock_and_return:
790 spin_unlock_irqrestore(&clkout_lock, flags);
791
792 return r;
793}
794
73180f85 795int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
796{
797 unsigned long flags;
798
799 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
800
801 spin_lock_irqsave(&mb0_transfer.lock, flags);
802
c553b3ca 803 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
804 cpu_relax();
805
806 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
807 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
808 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
809 writeb((keep_ulp_clk ? 1 : 0),
810 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
811 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 812 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
813
814 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
815
816 return 0;
817}
818
819/* This function should only be called while mb0_transfer.lock is held. */
820static void config_wakeups(void)
821{
822 const u8 header[2] = {
823 MB0H_CONFIG_WAKEUPS_EXE,
824 MB0H_CONFIG_WAKEUPS_SLEEP
825 };
826 static u32 last_dbb_events;
827 static u32 last_abb_events;
828 u32 dbb_events;
829 u32 abb_events;
830 unsigned int i;
831
832 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
833 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
834
835 abb_events = mb0_transfer.req.abb_events;
836
837 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
838 return;
839
840 for (i = 0; i < 2; i++) {
c553b3ca 841 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
842 cpu_relax();
843 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
844 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
845 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 846 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
847 }
848 last_dbb_events = dbb_events;
849 last_abb_events = abb_events;
850}
851
73180f85 852void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
853{
854 unsigned long flags;
855 u32 bits;
856 int i;
857
858 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
859
860 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
861 if (wakeups & BIT(i))
862 bits |= prcmu_wakeup_bit[i];
863 }
864
865 spin_lock_irqsave(&mb0_transfer.lock, flags);
866
867 mb0_transfer.req.dbb_wakeups = bits;
868 config_wakeups();
869
870 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
871}
872
73180f85 873void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
874{
875 unsigned long flags;
876
877 spin_lock_irqsave(&mb0_transfer.lock, flags);
878
879 mb0_transfer.req.abb_events = abb_events;
880 config_wakeups();
881
882 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
883}
884
73180f85 885void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
886{
887 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
888 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
889 else
890 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
891}
892
893/**
73180f85 894 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
895 * @opp: The new ARM operating point to which transition is to be made
896 * Returns: 0 on success, non-zero on failure
897 *
898 * This function sets the the operating point of the ARM.
899 */
73180f85 900int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
901{
902 int r;
903
904 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
905 return -EINVAL;
906
907 r = 0;
908
909 mutex_lock(&mb1_transfer.lock);
910
c553b3ca 911 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
912 cpu_relax();
913
914 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
915 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
916 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
917
c553b3ca 918 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
919 wait_for_completion(&mb1_transfer.work);
920
921 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
922 (mb1_transfer.ack.arm_opp != opp))
923 r = -EIO;
924
925 mutex_unlock(&mb1_transfer.lock);
926
927 return r;
928}
929
930/**
73180f85 931 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
932 *
933 * Returns: the current ARM OPP
934 */
73180f85 935int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
936{
937 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
938}
939
940/**
0508901c 941 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
942 *
943 * Returns: the current DDR OPP
944 */
0508901c 945int db8500_prcmu_get_ddr_opp(void)
3df57bcf 946{
c553b3ca 947 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
948}
949
950/**
0508901c 951 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
952 * @opp: The new DDR operating point to which transition is to be made
953 * Returns: 0 on success, non-zero on failure
954 *
955 * This function sets the operating point of the DDR.
956 */
0508901c 957int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
958{
959 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
960 return -EINVAL;
961 /* Changing the DDR OPP can hang the hardware pre-v21 */
962 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
c553b3ca 963 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
964
965 return 0;
966}
6b6fae2b 967
3df57bcf 968/**
0508901c 969 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
970 * @opp: The new APE operating point to which transition is to be made
971 * Returns: 0 on success, non-zero on failure
972 *
973 * This function sets the operating point of the APE.
974 */
0508901c 975int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
976{
977 int r = 0;
978
979 mutex_lock(&mb1_transfer.lock);
980
c553b3ca 981 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
982 cpu_relax();
983
984 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
985 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
986 writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
987
c553b3ca 988 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
989 wait_for_completion(&mb1_transfer.work);
990
991 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
992 (mb1_transfer.ack.ape_opp != opp))
993 r = -EIO;
994
995 mutex_unlock(&mb1_transfer.lock);
996
997 return r;
998}
999
1000/**
0508901c 1001 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1002 *
1003 * Returns: the current APE OPP
1004 */
0508901c 1005int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1006{
1007 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1008}
1009
1010/**
1011 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1012 * @enable: true to request the higher voltage, false to drop a request.
1013 *
1014 * Calls to this function to enable and disable requests must be balanced.
1015 */
1016int prcmu_request_ape_opp_100_voltage(bool enable)
1017{
1018 int r = 0;
1019 u8 header;
1020 static unsigned int requests;
1021
1022 mutex_lock(&mb1_transfer.lock);
1023
1024 if (enable) {
1025 if (0 != requests++)
1026 goto unlock_and_return;
1027 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1028 } else {
1029 if (requests == 0) {
1030 r = -EIO;
1031 goto unlock_and_return;
1032 } else if (1 != requests--) {
1033 goto unlock_and_return;
1034 }
1035 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1036 }
1037
c553b3ca 1038 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1039 cpu_relax();
1040
1041 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1042
c553b3ca 1043 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1044 wait_for_completion(&mb1_transfer.work);
1045
1046 if ((mb1_transfer.ack.header != header) ||
1047 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1048 r = -EIO;
1049
1050unlock_and_return:
1051 mutex_unlock(&mb1_transfer.lock);
1052
1053 return r;
1054}
1055
1056/**
1057 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1058 *
1059 * This function releases the power state requirements of a USB wakeup.
1060 */
1061int prcmu_release_usb_wakeup_state(void)
1062{
1063 int r = 0;
1064
1065 mutex_lock(&mb1_transfer.lock);
1066
c553b3ca 1067 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1068 cpu_relax();
1069
1070 writeb(MB1H_RELEASE_USB_WAKEUP,
1071 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1072
c553b3ca 1073 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1074 wait_for_completion(&mb1_transfer.work);
1075
1076 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1077 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1078 r = -EIO;
1079
1080 mutex_unlock(&mb1_transfer.lock);
1081
1082 return r;
1083}
1084
0837bb72
MN
1085static int request_pll(u8 clock, bool enable)
1086{
1087 int r = 0;
1088
6b6fae2b
MN
1089 if (clock == PRCMU_PLLSOC0)
1090 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1091 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1092 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1093 else
1094 return -EINVAL;
1095
1096 mutex_lock(&mb1_transfer.lock);
1097
1098 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1099 cpu_relax();
1100
1101 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1102 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1103
1104 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1105 wait_for_completion(&mb1_transfer.work);
1106
1107 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1108 r = -EIO;
1109
1110 mutex_unlock(&mb1_transfer.lock);
1111
1112 return r;
1113}
1114
0b9199e3
BJ
1115/**
1116 * prcmu_set_hwacc - set the power state of a h/w accelerator
1117 * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
1118 * @state: The new power state (enum hw_acc_state).
1119 *
1120 * This function sets the power state of a hardware accelerator.
1121 * This function should not be called from interrupt context.
1122 *
1123 * NOTE! Deprecated, to be removed when all users switched over to use the
1124 * regulator framework API.
1125 */
1126int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
1127{
1128 int r = 0;
1129 bool ram_retention = false;
1130 bool enable, enable_ret;
1131
1132 /* check argument */
1133 BUG_ON(hwacc_dev >= NUM_HW_ACC);
1134
1135 /* get state of switches */
1136 enable = hwacc_enabled[hwacc_dev];
1137 enable_ret = hwacc_ret_enabled[hwacc_dev];
1138
1139 /* set flag if retention is possible */
1140 switch (hwacc_dev) {
1141 case HW_ACC_SVAMMDSP:
1142 case HW_ACC_SIAMMDSP:
1143 case HW_ACC_ESRAM1:
1144 case HW_ACC_ESRAM2:
1145 case HW_ACC_ESRAM3:
1146 case HW_ACC_ESRAM4:
1147 ram_retention = true;
1148 break;
1149 }
1150
1151 /* check argument */
1152 BUG_ON(state > HW_ON);
1153 BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
1154
1155 /* modify enable flags */
1156 switch (state) {
1157 case HW_OFF:
1158 enable_ret = false;
1159 enable = false;
1160 break;
1161 case HW_ON:
1162 enable = true;
1163 break;
1164 case HW_OFF_RAMRET:
1165 enable_ret = true;
1166 enable = false;
1167 break;
1168 }
1169
1170 /* get regulator (lazy) */
1171 if (hwacc_regulator[hwacc_dev] == NULL) {
1172 hwacc_regulator[hwacc_dev] = regulator_get(NULL,
1173 hwacc_regulator_name[hwacc_dev]);
1174 if (IS_ERR(hwacc_regulator[hwacc_dev])) {
1175 pr_err("prcmu: failed to get supply %s\n",
1176 hwacc_regulator_name[hwacc_dev]);
1177 r = PTR_ERR(hwacc_regulator[hwacc_dev]);
1178 goto out;
1179 }
1180 }
1181
1182 if (ram_retention) {
1183 if (hwacc_ret_regulator[hwacc_dev] == NULL) {
1184 hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
1185 hwacc_ret_regulator_name[hwacc_dev]);
1186 if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
1187 pr_err("prcmu: failed to get supply %s\n",
1188 hwacc_ret_regulator_name[hwacc_dev]);
1189 r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
1190 goto out;
1191 }
1192 }
1193 }
1194
1195 /* set regulators */
1196 if (ram_retention) {
1197 if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
1198 r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
1199 if (r < 0) {
1200 pr_err("prcmu_set_hwacc: ret enable failed\n");
1201 goto out;
1202 }
1203 hwacc_ret_enabled[hwacc_dev] = true;
1204 }
1205 }
1206
1207 if (enable && !hwacc_enabled[hwacc_dev]) {
1208 r = regulator_enable(hwacc_regulator[hwacc_dev]);
1209 if (r < 0) {
1210 pr_err("prcmu_set_hwacc: enable failed\n");
1211 goto out;
1212 }
1213 hwacc_enabled[hwacc_dev] = true;
1214 }
1215
1216 if (!enable && hwacc_enabled[hwacc_dev]) {
1217 r = regulator_disable(hwacc_regulator[hwacc_dev]);
1218 if (r < 0) {
1219 pr_err("prcmu_set_hwacc: disable failed\n");
1220 goto out;
1221 }
1222 hwacc_enabled[hwacc_dev] = false;
1223 }
1224
1225 if (ram_retention) {
1226 if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
1227 r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
1228 if (r < 0) {
1229 pr_err("prcmu_set_hwacc: ret disable failed\n");
1230 goto out;
1231 }
1232 hwacc_ret_enabled[hwacc_dev] = false;
1233 }
1234 }
1235
1236out:
1237 return r;
1238}
1239EXPORT_SYMBOL(prcmu_set_hwacc);
1240
3df57bcf 1241/**
73180f85 1242 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1243 * @epod_id: The EPOD to set
1244 * @epod_state: The new EPOD state
1245 *
1246 * This function sets the state of a EPOD (power domain). It may not be called
1247 * from interrupt context.
1248 */
73180f85 1249int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1250{
1251 int r = 0;
1252 bool ram_retention = false;
1253 int i;
1254
1255 /* check argument */
1256 BUG_ON(epod_id >= NUM_EPOD_ID);
1257
1258 /* set flag if retention is possible */
1259 switch (epod_id) {
1260 case EPOD_ID_SVAMMDSP:
1261 case EPOD_ID_SIAMMDSP:
1262 case EPOD_ID_ESRAM12:
1263 case EPOD_ID_ESRAM34:
1264 ram_retention = true;
1265 break;
1266 }
1267
1268 /* check argument */
1269 BUG_ON(epod_state > EPOD_STATE_ON);
1270 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1271
1272 /* get lock */
1273 mutex_lock(&mb2_transfer.lock);
1274
1275 /* wait for mailbox */
c553b3ca 1276 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1277 cpu_relax();
1278
1279 /* fill in mailbox */
1280 for (i = 0; i < NUM_EPOD_ID; i++)
1281 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1282 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1283
1284 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1285
c553b3ca 1286 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1287
1288 /*
1289 * The current firmware version does not handle errors correctly,
1290 * and we cannot recover if there is an error.
1291 * This is expected to change when the firmware is updated.
1292 */
1293 if (!wait_for_completion_timeout(&mb2_transfer.work,
1294 msecs_to_jiffies(20000))) {
1295 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1296 __func__);
1297 r = -EIO;
1298 goto unlock_and_return;
1299 }
1300
1301 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1302 r = -EIO;
1303
1304unlock_and_return:
1305 mutex_unlock(&mb2_transfer.lock);
1306 return r;
1307}
1308
1309/**
1310 * prcmu_configure_auto_pm - Configure autonomous power management.
1311 * @sleep: Configuration for ApSleep.
1312 * @idle: Configuration for ApIdle.
1313 */
1314void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1315 struct prcmu_auto_pm_config *idle)
1316{
1317 u32 sleep_cfg;
1318 u32 idle_cfg;
1319 unsigned long flags;
e3726fcf 1320
3df57bcf 1321 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1322
3df57bcf
MN
1323 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1324 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1325 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1326 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1327 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1328 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1329
3df57bcf
MN
1330 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1331 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1332 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1333 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1334 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1335 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1336
3df57bcf 1337 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1338
3df57bcf
MN
1339 /*
1340 * The autonomous power management configuration is done through
1341 * fields in mailbox 2, but these fields are only used as shared
1342 * variables - i.e. there is no need to send a message.
1343 */
1344 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1345 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1346
3df57bcf
MN
1347 mb2_transfer.auto_pm_enabled =
1348 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1349 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1350 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1351 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1352
3df57bcf
MN
1353 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1354}
1355EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1356
3df57bcf
MN
1357bool prcmu_is_auto_pm_enabled(void)
1358{
1359 return mb2_transfer.auto_pm_enabled;
1360}
e0befb23 1361
3df57bcf
MN
1362static int request_sysclk(bool enable)
1363{
1364 int r;
1365 unsigned long flags;
e3726fcf 1366
3df57bcf 1367 r = 0;
e3726fcf 1368
3df57bcf 1369 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1370
3df57bcf 1371 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1372
c553b3ca 1373 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1374 cpu_relax();
e0befb23 1375
3df57bcf 1376 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1377
3df57bcf 1378 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1379 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1380
3df57bcf
MN
1381 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1382
1383 /*
1384 * The firmware only sends an ACK if we want to enable the
1385 * SysClk, and it succeeds.
1386 */
1387 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1388 msecs_to_jiffies(20000))) {
1389 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1390 __func__);
1391 r = -EIO;
1392 }
1393
1394 mutex_unlock(&mb3_transfer.sysclk_lock);
1395
1396 return r;
1397}
1398
1399static int request_timclk(bool enable)
1400{
1401 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1402
1403 if (!enable)
1404 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1405 writel(val, PRCM_TCR);
3df57bcf
MN
1406
1407 return 0;
1408}
1409
6b6fae2b 1410static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1411{
1412 u32 val;
1413 unsigned long flags;
1414
1415 spin_lock_irqsave(&clk_mgt_lock, flags);
1416
1417 /* Grab the HW semaphore. */
c553b3ca 1418 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1419 cpu_relax();
1420
6b6fae2b 1421 val = readl(clk_mgt[clock].reg);
3df57bcf
MN
1422 if (enable) {
1423 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1424 } else {
1425 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1426 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1427 }
6b6fae2b 1428 writel(val, clk_mgt[clock].reg);
3df57bcf
MN
1429
1430 /* Release the HW semaphore. */
c553b3ca 1431 writel(0, PRCM_SEM);
3df57bcf
MN
1432
1433 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1434
1435 return 0;
1436}
1437
0837bb72
MN
1438static int request_sga_clock(u8 clock, bool enable)
1439{
1440 u32 val;
1441 int ret;
1442
1443 if (enable) {
1444 val = readl(PRCM_CGATING_BYPASS);
1445 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1446 }
1447
6b6fae2b 1448 ret = request_clock(clock, enable);
0837bb72
MN
1449
1450 if (!ret && !enable) {
1451 val = readl(PRCM_CGATING_BYPASS);
1452 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1453 }
1454
1455 return ret;
1456}
1457
6b6fae2b
MN
1458static inline bool plldsi_locked(void)
1459{
1460 return (readl(PRCM_PLLDSI_LOCKP) &
1461 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1462 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1463 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1464 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1465}
1466
1467static int request_plldsi(bool enable)
1468{
1469 int r = 0;
1470 u32 val;
1471
1472 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1473 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1474 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1475
1476 val = readl(PRCM_PLLDSI_ENABLE);
1477 if (enable)
1478 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1479 else
1480 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1481 writel(val, PRCM_PLLDSI_ENABLE);
1482
1483 if (enable) {
1484 unsigned int i;
1485 bool locked = plldsi_locked();
1486
1487 for (i = 10; !locked && (i > 0); --i) {
1488 udelay(100);
1489 locked = plldsi_locked();
1490 }
1491 if (locked) {
1492 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1493 PRCM_APE_RESETN_SET);
1494 } else {
1495 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1496 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1497 PRCM_MMIP_LS_CLAMP_SET);
1498 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1499 writel(val, PRCM_PLLDSI_ENABLE);
1500 r = -EAGAIN;
1501 }
1502 } else {
1503 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1504 }
1505 return r;
1506}
1507
1508static int request_dsiclk(u8 n, bool enable)
1509{
1510 u32 val;
1511
1512 val = readl(PRCM_DSI_PLLOUT_SEL);
1513 val &= ~dsiclk[n].divsel_mask;
1514 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1515 dsiclk[n].divsel_shift);
1516 writel(val, PRCM_DSI_PLLOUT_SEL);
1517 return 0;
1518}
1519
1520static int request_dsiescclk(u8 n, bool enable)
1521{
1522 u32 val;
1523
1524 val = readl(PRCM_DSITVCLK_DIV);
1525 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1526 writel(val, PRCM_DSITVCLK_DIV);
1527 return 0;
1528}
1529
3df57bcf 1530/**
73180f85 1531 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1532 * @clock: The clock for which the request is made.
1533 * @enable: Whether the clock should be enabled (true) or disabled (false).
1534 *
1535 * This function should only be used by the clock implementation.
1536 * Do not use it from any other place!
1537 */
73180f85 1538int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1539{
6b6fae2b 1540 if (clock == PRCMU_SGACLK)
0837bb72 1541 return request_sga_clock(clock, enable);
6b6fae2b
MN
1542 else if (clock < PRCMU_NUM_REG_CLOCKS)
1543 return request_clock(clock, enable);
1544 else if (clock == PRCMU_TIMCLK)
3df57bcf 1545 return request_timclk(enable);
6b6fae2b
MN
1546 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1547 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1548 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1549 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1550 else if (clock == PRCMU_PLLDSI)
1551 return request_plldsi(enable);
1552 else if (clock == PRCMU_SYSCLK)
3df57bcf 1553 return request_sysclk(enable);
6b6fae2b 1554 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1555 return request_pll(clock, enable);
6b6fae2b
MN
1556 else
1557 return -EINVAL;
1558}
1559
1560static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1561 int branch)
1562{
1563 u64 rate;
1564 u32 val;
1565 u32 d;
1566 u32 div = 1;
1567
1568 val = readl(reg);
1569
1570 rate = src_rate;
1571 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1572
1573 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1574 if (d > 1)
1575 div *= d;
1576
1577 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1578 if (d > 1)
1579 div *= d;
1580
1581 if (val & PRCM_PLL_FREQ_SELDIV2)
1582 div *= 2;
1583
1584 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1585 (val & PRCM_PLL_FREQ_DIV2EN) &&
1586 ((reg == PRCM_PLLSOC0_FREQ) ||
1587 (reg == PRCM_PLLDDR_FREQ))))
1588 div *= 2;
1589
1590 (void)do_div(rate, div);
1591
1592 return (unsigned long)rate;
1593}
1594
1595#define ROOT_CLOCK_RATE 38400000
1596
1597static unsigned long clock_rate(u8 clock)
1598{
1599 u32 val;
1600 u32 pllsw;
1601 unsigned long rate = ROOT_CLOCK_RATE;
1602
1603 val = readl(clk_mgt[clock].reg);
1604
1605 if (val & PRCM_CLK_MGT_CLK38) {
1606 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1607 rate /= 2;
1608 return rate;
1609 }
1610
1611 val |= clk_mgt[clock].pllsw;
1612 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1613
1614 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1615 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1616 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1617 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1618 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1619 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1620 else
1621 return 0;
1622
1623 if ((clock == PRCMU_SGACLK) &&
1624 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1625 u64 r = (rate * 10);
1626
1627 (void)do_div(r, 25);
1628 return (unsigned long)r;
1629 }
1630 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1631 if (val)
1632 return rate / val;
1633 else
1634 return 0;
1635}
1636
1637static unsigned long dsiclk_rate(u8 n)
1638{
1639 u32 divsel;
1640 u32 div = 1;
1641
1642 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1643 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1644
1645 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1646 divsel = dsiclk[n].divsel;
1647
1648 switch (divsel) {
1649 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1650 div *= 2;
1651 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1652 div *= 2;
1653 case PRCM_DSI_PLLOUT_SEL_PHI:
1654 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1655 PLL_RAW) / div;
e62ccf3a 1656 default:
6b6fae2b 1657 return 0;
e62ccf3a 1658 }
6b6fae2b
MN
1659}
1660
1661static unsigned long dsiescclk_rate(u8 n)
1662{
1663 u32 div;
1664
1665 div = readl(PRCM_DSITVCLK_DIV);
1666 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1667 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1668}
1669
1670unsigned long prcmu_clock_rate(u8 clock)
1671{
e62ccf3a 1672 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1673 return clock_rate(clock);
1674 else if (clock == PRCMU_TIMCLK)
1675 return ROOT_CLOCK_RATE / 16;
1676 else if (clock == PRCMU_SYSCLK)
1677 return ROOT_CLOCK_RATE;
1678 else if (clock == PRCMU_PLLSOC0)
1679 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1680 else if (clock == PRCMU_PLLSOC1)
1681 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1682 else if (clock == PRCMU_PLLDDR)
1683 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1684 else if (clock == PRCMU_PLLDSI)
1685 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1686 PLL_RAW);
1687 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1688 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1689 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1690 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1691 else
1692 return 0;
1693}
1694
1695static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1696{
1697 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1698 return ROOT_CLOCK_RATE;
1699 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1700 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1701 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1702 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1703 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1704 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1705 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1706 else
1707 return 0;
1708}
1709
1710static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1711{
1712 u32 div;
1713
1714 div = (src_rate / rate);
1715 if (div == 0)
1716 return 1;
1717 if (rate < (src_rate / div))
1718 div++;
1719 return div;
1720}
1721
1722static long round_clock_rate(u8 clock, unsigned long rate)
1723{
1724 u32 val;
1725 u32 div;
1726 unsigned long src_rate;
1727 long rounded_rate;
1728
1729 val = readl(clk_mgt[clock].reg);
1730 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1731 clk_mgt[clock].branch);
1732 div = clock_divider(src_rate, rate);
1733 if (val & PRCM_CLK_MGT_CLK38) {
1734 if (clk_mgt[clock].clk38div) {
1735 if (div > 2)
1736 div = 2;
1737 } else {
1738 div = 1;
1739 }
1740 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1741 u64 r = (src_rate * 10);
1742
1743 (void)do_div(r, 25);
1744 if (r <= rate)
1745 return (unsigned long)r;
1746 }
1747 rounded_rate = (src_rate / min(div, (u32)31));
1748
1749 return rounded_rate;
1750}
1751
1752#define MIN_PLL_VCO_RATE 600000000ULL
1753#define MAX_PLL_VCO_RATE 1680640000ULL
1754
1755static long round_plldsi_rate(unsigned long rate)
1756{
1757 long rounded_rate = 0;
1758 unsigned long src_rate;
1759 unsigned long rem;
1760 u32 r;
1761
1762 src_rate = clock_rate(PRCMU_HDMICLK);
1763 rem = rate;
1764
1765 for (r = 7; (rem > 0) && (r > 0); r--) {
1766 u64 d;
1767
1768 d = (r * rate);
1769 (void)do_div(d, src_rate);
1770 if (d < 6)
1771 d = 6;
1772 else if (d > 255)
1773 d = 255;
1774 d *= src_rate;
1775 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1776 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1777 continue;
1778 (void)do_div(d, r);
1779 if (rate < d) {
1780 if (rounded_rate == 0)
1781 rounded_rate = (long)d;
1782 break;
1783 }
1784 if ((rate - d) < rem) {
1785 rem = (rate - d);
1786 rounded_rate = (long)d;
1787 }
1788 }
1789 return rounded_rate;
1790}
1791
1792static long round_dsiclk_rate(unsigned long rate)
1793{
1794 u32 div;
1795 unsigned long src_rate;
1796 long rounded_rate;
1797
1798 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1799 PLL_RAW);
1800 div = clock_divider(src_rate, rate);
1801 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1802
1803 return rounded_rate;
1804}
1805
1806static long round_dsiescclk_rate(unsigned long rate)
1807{
1808 u32 div;
1809 unsigned long src_rate;
1810 long rounded_rate;
1811
1812 src_rate = clock_rate(PRCMU_TVCLK);
1813 div = clock_divider(src_rate, rate);
1814 rounded_rate = (src_rate / min(div, (u32)255));
1815
1816 return rounded_rate;
1817}
1818
1819long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1820{
1821 if (clock < PRCMU_NUM_REG_CLOCKS)
1822 return round_clock_rate(clock, rate);
1823 else if (clock == PRCMU_PLLDSI)
1824 return round_plldsi_rate(rate);
1825 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1826 return round_dsiclk_rate(rate);
1827 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1828 return round_dsiescclk_rate(rate);
1829 else
1830 return (long)prcmu_clock_rate(clock);
1831}
1832
1833static void set_clock_rate(u8 clock, unsigned long rate)
1834{
1835 u32 val;
1836 u32 div;
1837 unsigned long src_rate;
1838 unsigned long flags;
1839
1840 spin_lock_irqsave(&clk_mgt_lock, flags);
1841
1842 /* Grab the HW semaphore. */
1843 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1844 cpu_relax();
1845
1846 val = readl(clk_mgt[clock].reg);
1847 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1848 clk_mgt[clock].branch);
1849 div = clock_divider(src_rate, rate);
1850 if (val & PRCM_CLK_MGT_CLK38) {
1851 if (clk_mgt[clock].clk38div) {
1852 if (div > 1)
1853 val |= PRCM_CLK_MGT_CLK38DIV;
1854 else
1855 val &= ~PRCM_CLK_MGT_CLK38DIV;
1856 }
1857 } else if (clock == PRCMU_SGACLK) {
1858 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1859 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1860 if (div == 3) {
1861 u64 r = (src_rate * 10);
1862
1863 (void)do_div(r, 25);
1864 if (r <= rate) {
1865 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1866 div = 0;
1867 }
1868 }
1869 val |= min(div, (u32)31);
1870 } else {
1871 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1872 val |= min(div, (u32)31);
1873 }
1874 writel(val, clk_mgt[clock].reg);
1875
1876 /* Release the HW semaphore. */
1877 writel(0, PRCM_SEM);
1878
1879 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1880}
1881
1882static int set_plldsi_rate(unsigned long rate)
1883{
1884 unsigned long src_rate;
1885 unsigned long rem;
1886 u32 pll_freq = 0;
1887 u32 r;
1888
1889 src_rate = clock_rate(PRCMU_HDMICLK);
1890 rem = rate;
1891
1892 for (r = 7; (rem > 0) && (r > 0); r--) {
1893 u64 d;
1894 u64 hwrate;
1895
1896 d = (r * rate);
1897 (void)do_div(d, src_rate);
1898 if (d < 6)
1899 d = 6;
1900 else if (d > 255)
1901 d = 255;
1902 hwrate = (d * src_rate);
1903 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1904 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1905 continue;
1906 (void)do_div(hwrate, r);
1907 if (rate < hwrate) {
1908 if (pll_freq == 0)
1909 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1910 (r << PRCM_PLL_FREQ_R_SHIFT));
1911 break;
1912 }
1913 if ((rate - hwrate) < rem) {
1914 rem = (rate - hwrate);
1915 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1916 (r << PRCM_PLL_FREQ_R_SHIFT));
1917 }
1918 }
1919 if (pll_freq == 0)
1920 return -EINVAL;
1921
1922 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1923 writel(pll_freq, PRCM_PLLDSI_FREQ);
1924
1925 return 0;
1926}
1927
1928static void set_dsiclk_rate(u8 n, unsigned long rate)
1929{
1930 u32 val;
1931 u32 div;
1932
1933 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1934 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1935
1936 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1937 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1938 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1939
1940 val = readl(PRCM_DSI_PLLOUT_SEL);
1941 val &= ~dsiclk[n].divsel_mask;
1942 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1943 writel(val, PRCM_DSI_PLLOUT_SEL);
1944}
1945
1946static void set_dsiescclk_rate(u8 n, unsigned long rate)
1947{
1948 u32 val;
1949 u32 div;
1950
1951 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1952 val = readl(PRCM_DSITVCLK_DIV);
1953 val &= ~dsiescclk[n].div_mask;
1954 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1955 writel(val, PRCM_DSITVCLK_DIV);
1956}
1957
1958int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1959{
1960 if (clock < PRCMU_NUM_REG_CLOCKS)
1961 set_clock_rate(clock, rate);
1962 else if (clock == PRCMU_PLLDSI)
1963 return set_plldsi_rate(rate);
1964 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1965 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1966 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1967 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1968 return 0;
3df57bcf
MN
1969}
1970
73180f85 1971int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
1972{
1973 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1974 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1975 return -EINVAL;
1976
1977 mutex_lock(&mb4_transfer.lock);
1978
c553b3ca 1979 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1980 cpu_relax();
1981
1982 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1983 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1984 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1985 writeb(DDR_PWR_STATE_ON,
1986 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1987 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1988
c553b3ca 1989 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1990 wait_for_completion(&mb4_transfer.work);
1991
1992 mutex_unlock(&mb4_transfer.lock);
1993
1994 return 0;
1995}
1996
0508901c 1997int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
1998{
1999 mutex_lock(&mb4_transfer.lock);
2000
c553b3ca 2001 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2002 cpu_relax();
2003
2004 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2005 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2006
c553b3ca 2007 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2008 wait_for_completion(&mb4_transfer.work);
2009
2010 mutex_unlock(&mb4_transfer.lock);
2011
2012 return 0;
2013}
2014
0508901c 2015int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2016{
2017 mutex_lock(&mb4_transfer.lock);
2018
c553b3ca 2019 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2020 cpu_relax();
2021
2022 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2023 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2024 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2025 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2026 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2027
c553b3ca 2028 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2029 wait_for_completion(&mb4_transfer.work);
2030
2031 mutex_unlock(&mb4_transfer.lock);
2032
2033 return 0;
2034}
2035
2036static int config_hot_period(u16 val)
2037{
2038 mutex_lock(&mb4_transfer.lock);
2039
c553b3ca 2040 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2041 cpu_relax();
2042
2043 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2044 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2045
c553b3ca 2046 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2047 wait_for_completion(&mb4_transfer.work);
2048
2049 mutex_unlock(&mb4_transfer.lock);
2050
2051 return 0;
2052}
2053
0508901c 2054int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2055{
2056 if (cycles32k == 0xFFFF)
2057 return -EINVAL;
2058
2059 return config_hot_period(cycles32k);
2060}
2061
0508901c 2062int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2063{
2064 return config_hot_period(0xFFFF);
2065}
2066
84165b80
JA
2067static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2068{
2069
2070 mutex_lock(&mb4_transfer.lock);
2071
2072 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2073 cpu_relax();
2074
2075 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2076 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2077 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2078 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2079
2080 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2081
2082 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2083 wait_for_completion(&mb4_transfer.work);
2084
2085 mutex_unlock(&mb4_transfer.lock);
2086
2087 return 0;
2088
2089}
2090
0508901c 2091int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2092{
2093 BUG_ON(num == 0 || num > 0xf);
2094 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2095 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2096 A9WDOG_AUTO_OFF_DIS);
2097}
2098
0508901c 2099int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2100{
2101 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2102}
2103
0508901c 2104int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2105{
2106 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2107}
2108
0508901c 2109int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2110{
2111 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112}
2113
2114/*
2115 * timeout is 28 bit, in ms.
2116 */
2117#define MAX_WATCHDOG_TIMEOUT 131000
0508901c 2118int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80
JA
2119{
2120 if (timeout > MAX_WATCHDOG_TIMEOUT)
2121 /*
2122 * Due to calculation bug in prcmu fw, timeouts
2123 * can't be bigger than 131 seconds.
2124 */
2125 return -EINVAL;
2126
2127 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2128 (id & A9WDOG_ID_MASK) |
2129 /*
2130 * Put the lowest 28 bits of timeout at
2131 * offset 4. Four first bits are used for id.
2132 */
2133 (u8)((timeout << 4) & 0xf0),
2134 (u8)((timeout >> 4) & 0xff),
2135 (u8)((timeout >> 12) & 0xff),
2136 (u8)((timeout >> 20) & 0xff));
2137}
2138
e3726fcf
LW
2139/**
2140 * prcmu_abb_read() - Read register value(s) from the ABB.
2141 * @slave: The I2C slave address.
2142 * @reg: The (start) register address.
2143 * @value: The read out value(s).
2144 * @size: The number of registers to read.
2145 *
2146 * Reads register value(s) from the ABB.
2147 * @size has to be 1 for the current firmware version.
2148 */
2149int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2150{
2151 int r;
2152
2153 if (size != 1)
2154 return -EINVAL;
2155
3df57bcf 2156 mutex_lock(&mb5_transfer.lock);
e3726fcf 2157
c553b3ca 2158 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2159 cpu_relax();
2160
3df57bcf
MN
2161 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2162 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2163 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2164 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2165
c553b3ca 2166 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2167
e3726fcf 2168 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2169 msecs_to_jiffies(20000))) {
2170 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2171 __func__);
e3726fcf 2172 r = -EIO;
3df57bcf
MN
2173 } else {
2174 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2175 }
3df57bcf 2176
e3726fcf
LW
2177 if (!r)
2178 *value = mb5_transfer.ack.value;
2179
e3726fcf 2180 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2181
e3726fcf
LW
2182 return r;
2183}
e3726fcf
LW
2184
2185/**
2186 * prcmu_abb_write() - Write register value(s) to the ABB.
2187 * @slave: The I2C slave address.
2188 * @reg: The (start) register address.
2189 * @value: The value(s) to write.
2190 * @size: The number of registers to write.
2191 *
2192 * Reads register value(s) from the ABB.
2193 * @size has to be 1 for the current firmware version.
2194 */
2195int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2196{
2197 int r;
2198
2199 if (size != 1)
2200 return -EINVAL;
2201
3df57bcf 2202 mutex_lock(&mb5_transfer.lock);
e3726fcf 2203
c553b3ca 2204 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2205 cpu_relax();
2206
3df57bcf
MN
2207 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2208 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2209 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2210 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2211
c553b3ca 2212 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2213
e3726fcf 2214 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2215 msecs_to_jiffies(20000))) {
2216 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2217 __func__);
e3726fcf 2218 r = -EIO;
3df57bcf
MN
2219 } else {
2220 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2221 }
e3726fcf 2222
e3726fcf 2223 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2224
e3726fcf
LW
2225 return r;
2226}
e3726fcf 2227
3df57bcf
MN
2228/**
2229 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2230 */
2231void prcmu_ac_wake_req(void)
e0befb23 2232{
3df57bcf 2233 u32 val;
d6e3002e 2234 u32 status;
e0befb23 2235
3df57bcf 2236 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2237
c553b3ca 2238 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2239 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2240 goto unlock_and_return;
e0befb23 2241
3df57bcf 2242 atomic_set(&ac_wake_req_state, 1);
e0befb23 2243
d6e3002e 2244retry:
c553b3ca 2245 writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
e0befb23 2246
3df57bcf 2247 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2248 msecs_to_jiffies(5000))) {
57265bc1 2249 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e
MN
2250 __func__);
2251 goto unlock_and_return;
2252 }
2253
2254 /*
2255 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
2256 * As a workaround, we wait, and then check that the modem is indeed
2257 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
2258 * register, which may not be the whole truth).
2259 */
2260 udelay(400);
2261 status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
2262 if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
2263 PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
2264 pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
2265 __func__, status);
2266 udelay(1200);
2267 writel(val, PRCM_HOSTACCESS_REQ);
2268 if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2269 msecs_to_jiffies(5000)))
2270 goto retry;
57265bc1 2271 pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
3df57bcf
MN
2272 __func__);
2273 }
e0befb23 2274
3df57bcf
MN
2275unlock_and_return:
2276 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23
MP
2277}
2278
2279/**
3df57bcf 2280 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2281 */
3df57bcf 2282void prcmu_ac_sleep_req()
e0befb23 2283{
3df57bcf
MN
2284 u32 val;
2285
2286 mutex_lock(&mb0_transfer.ac_wake_lock);
2287
c553b3ca 2288 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2289 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2290 goto unlock_and_return;
2291
2292 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2293 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2294
2295 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2296 msecs_to_jiffies(5000))) {
57265bc1 2297 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2298 __func__);
2299 }
2300
2301 atomic_set(&ac_wake_req_state, 0);
2302
2303unlock_and_return:
2304 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2305}
e0befb23 2306
73180f85 2307bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2308{
3df57bcf 2309 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2310}
e0befb23
MP
2311
2312/**
73180f85 2313 * db8500_prcmu_system_reset - System reset
e0befb23 2314 *
73180f85 2315 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2316 * fires interrupt to fw
e0befb23 2317 */
73180f85 2318void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2319{
3df57bcf 2320 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2321 writel(1, PRCM_APE_SOFTRST);
e0befb23 2322}
e0befb23 2323
597045de
SR
2324/**
2325 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2326 *
2327 * Retrieves the reset reason code stored by prcmu_system_reset() before
2328 * last restart.
2329 */
2330u16 db8500_prcmu_get_reset_code(void)
2331{
2332 return readw(tcdm_base + PRCM_SW_RST_REASON);
2333}
2334
e0befb23 2335/**
0508901c 2336 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2337 */
0508901c 2338void db8500_prcmu_modem_reset(void)
e0befb23 2339{
3df57bcf
MN
2340 mutex_lock(&mb1_transfer.lock);
2341
c553b3ca 2342 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2343 cpu_relax();
2344
2345 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2346 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2347 wait_for_completion(&mb1_transfer.work);
2348
2349 /*
2350 * No need to check return from PRCMU as modem should go in reset state
2351 * This state is already managed by upper layer
2352 */
2353
2354 mutex_unlock(&mb1_transfer.lock);
e0befb23 2355}
e0befb23 2356
3df57bcf 2357static void ack_dbb_wakeup(void)
e0befb23 2358{
3df57bcf
MN
2359 unsigned long flags;
2360
2361 spin_lock_irqsave(&mb0_transfer.lock, flags);
2362
c553b3ca 2363 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2364 cpu_relax();
2365
2366 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2367 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2368
2369 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2370}
e0befb23 2371
3df57bcf 2372static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2373{
3df57bcf
MN
2374 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2375 header, n);
e0befb23
MP
2376}
2377
3df57bcf 2378static bool read_mailbox_0(void)
e3726fcf 2379{
3df57bcf
MN
2380 bool r;
2381 u32 ev;
2382 unsigned int n;
2383 u8 header;
2384
2385 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2386 switch (header) {
2387 case MB0H_WAKEUP_EXE:
2388 case MB0H_WAKEUP_SLEEP:
2389 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2390 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2391 else
2392 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2393
2394 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2395 complete(&mb0_transfer.ac_wake_work);
2396 if (ev & WAKEUP_BIT_SYSCLK_OK)
2397 complete(&mb3_transfer.sysclk_work);
2398
2399 ev &= mb0_transfer.req.dbb_irqs;
2400
2401 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2402 if (ev & prcmu_irq_bit[n])
2403 generic_handle_irq(IRQ_PRCMU_BASE + n);
2404 }
2405 r = true;
2406 break;
2407 default:
2408 print_unknown_header_warning(0, header);
2409 r = false;
2410 break;
2411 }
c553b3ca 2412 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2413 return r;
e3726fcf
LW
2414}
2415
3df57bcf 2416static bool read_mailbox_1(void)
e3726fcf 2417{
3df57bcf
MN
2418 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2419 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2420 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2421 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2422 PRCM_ACK_MB1_CURRENT_APE_OPP);
2423 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2424 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2425 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2426 complete(&mb1_transfer.work);
3df57bcf 2427 return false;
e3726fcf
LW
2428}
2429
3df57bcf 2430static bool read_mailbox_2(void)
e3726fcf 2431{
3df57bcf 2432 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2433 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2434 complete(&mb2_transfer.work);
2435 return false;
e3726fcf
LW
2436}
2437
3df57bcf 2438static bool read_mailbox_3(void)
e3726fcf 2439{
c553b3ca 2440 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2441 return false;
e3726fcf
LW
2442}
2443
3df57bcf 2444static bool read_mailbox_4(void)
e3726fcf 2445{
3df57bcf
MN
2446 u8 header;
2447 bool do_complete = true;
2448
2449 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2450 switch (header) {
2451 case MB4H_MEM_ST:
2452 case MB4H_HOTDOG:
2453 case MB4H_HOTMON:
2454 case MB4H_HOT_PERIOD:
a592c2e2
MN
2455 case MB4H_A9WDOG_CONF:
2456 case MB4H_A9WDOG_EN:
2457 case MB4H_A9WDOG_DIS:
2458 case MB4H_A9WDOG_LOAD:
2459 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2460 break;
2461 default:
2462 print_unknown_header_warning(4, header);
2463 do_complete = false;
2464 break;
2465 }
2466
c553b3ca 2467 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2468
2469 if (do_complete)
2470 complete(&mb4_transfer.work);
2471
2472 return false;
e3726fcf
LW
2473}
2474
3df57bcf 2475static bool read_mailbox_5(void)
e3726fcf 2476{
3df57bcf
MN
2477 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2478 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2479 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2480 complete(&mb5_transfer.work);
3df57bcf 2481 return false;
e3726fcf
LW
2482}
2483
3df57bcf 2484static bool read_mailbox_6(void)
e3726fcf 2485{
c553b3ca 2486 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2487 return false;
e3726fcf
LW
2488}
2489
3df57bcf 2490static bool read_mailbox_7(void)
e3726fcf 2491{
c553b3ca 2492 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2493 return false;
e3726fcf
LW
2494}
2495
3df57bcf 2496static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2497 read_mailbox_0,
2498 read_mailbox_1,
2499 read_mailbox_2,
2500 read_mailbox_3,
2501 read_mailbox_4,
2502 read_mailbox_5,
2503 read_mailbox_6,
2504 read_mailbox_7
2505};
2506
2507static irqreturn_t prcmu_irq_handler(int irq, void *data)
2508{
2509 u32 bits;
2510 u8 n;
3df57bcf 2511 irqreturn_t r;
e3726fcf 2512
c553b3ca 2513 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2514 if (unlikely(!bits))
2515 return IRQ_NONE;
2516
3df57bcf 2517 r = IRQ_HANDLED;
e3726fcf
LW
2518 for (n = 0; bits; n++) {
2519 if (bits & MBOX_BIT(n)) {
2520 bits -= MBOX_BIT(n);
3df57bcf
MN
2521 if (read_mailbox[n]())
2522 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2523 }
2524 }
3df57bcf
MN
2525 return r;
2526}
2527
2528static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2529{
2530 ack_dbb_wakeup();
e3726fcf
LW
2531 return IRQ_HANDLED;
2532}
2533
3df57bcf
MN
2534static void prcmu_mask_work(struct work_struct *work)
2535{
2536 unsigned long flags;
2537
2538 spin_lock_irqsave(&mb0_transfer.lock, flags);
2539
2540 config_wakeups();
2541
2542 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2543}
2544
2545static void prcmu_irq_mask(struct irq_data *d)
2546{
2547 unsigned long flags;
2548
2549 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2550
2551 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2552
2553 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2554
2555 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2556 schedule_work(&mb0_transfer.mask_work);
2557}
2558
2559static void prcmu_irq_unmask(struct irq_data *d)
2560{
2561 unsigned long flags;
2562
2563 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2564
2565 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2566
2567 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2568
2569 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2570 schedule_work(&mb0_transfer.mask_work);
2571}
2572
2573static void noop(struct irq_data *d)
2574{
2575}
2576
2577static struct irq_chip prcmu_irq_chip = {
2578 .name = "prcmu",
2579 .irq_disable = prcmu_irq_mask,
2580 .irq_ack = noop,
2581 .irq_mask = prcmu_irq_mask,
2582 .irq_unmask = prcmu_irq_unmask,
2583};
2584
b58d12fe
MN
2585static char *fw_project_name(u8 project)
2586{
2587 switch (project) {
2588 case PRCMU_FW_PROJECT_U8500:
2589 return "U8500";
2590 case PRCMU_FW_PROJECT_U8500_C2:
2591 return "U8500 C2";
2592 case PRCMU_FW_PROJECT_U9500:
2593 return "U9500";
2594 case PRCMU_FW_PROJECT_U9500_C2:
2595 return "U9500 C2";
2596 default:
2597 return "Unknown";
2598 }
2599}
2600
73180f85 2601void __init db8500_prcmu_early_init(void)
fcbd458e 2602{
3df57bcf 2603 unsigned int i;
3e2762c8 2604 if (cpu_is_u8500v2()) {
3df57bcf
MN
2605 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2606
2607 if (tcpm_base != NULL) {
3e2762c8 2608 u32 version;
3df57bcf 2609 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
b58d12fe
MN
2610 fw_info.version.project = version & 0xFF;
2611 fw_info.version.api_version = (version >> 8) & 0xFF;
2612 fw_info.version.func_version = (version >> 16) & 0xFF;
2613 fw_info.version.errata = (version >> 24) & 0xFF;
2614 fw_info.valid = true;
2615 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2616 fw_project_name(fw_info.version.project),
3df57bcf
MN
2617 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2618 (version >> 24) & 0xFF);
2619 iounmap(tcpm_base);
2620 }
2621
fcbd458e
MW
2622 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2623 } else {
2624 pr_err("prcmu: Unsupported chip version\n");
2625 BUG();
2626 }
e0befb23 2627
3df57bcf
MN
2628 spin_lock_init(&mb0_transfer.lock);
2629 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2630 mutex_init(&mb0_transfer.ac_wake_lock);
2631 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2632 mutex_init(&mb1_transfer.lock);
2633 init_completion(&mb1_transfer.work);
3df57bcf
MN
2634 mutex_init(&mb2_transfer.lock);
2635 init_completion(&mb2_transfer.work);
2636 spin_lock_init(&mb2_transfer.auto_pm_lock);
2637 spin_lock_init(&mb3_transfer.lock);
2638 mutex_init(&mb3_transfer.sysclk_lock);
2639 init_completion(&mb3_transfer.sysclk_work);
2640 mutex_init(&mb4_transfer.lock);
2641 init_completion(&mb4_transfer.work);
e3726fcf
LW
2642 mutex_init(&mb5_transfer.lock);
2643 init_completion(&mb5_transfer.work);
2644
3df57bcf
MN
2645 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2646
2647 /* Initalize irqs. */
2648 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2649 unsigned int irq;
2650
2651 irq = IRQ_PRCMU_BASE + i;
2652 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2653 handle_simple_irq);
2654 set_irq_flags(irq, IRQF_VALID);
2655 }
2656}
2657
0508901c 2658static void __init init_prcm_registers(void)
d65e12d7
MN
2659{
2660 u32 val;
2661
2662 val = readl(PRCM_A9PL_FORCE_CLKEN);
2663 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2664 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2665 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2666}
2667
1032fbfd
BJ
2668/*
2669 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2670 */
2671static struct regulator_consumer_supply db8500_vape_consumers[] = {
2672 REGULATOR_SUPPLY("v-ape", NULL),
2673 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2674 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2675 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2676 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2677 /* "v-mmc" changed to "vcore" in the mainline kernel */
2678 REGULATOR_SUPPLY("vcore", "sdi0"),
2679 REGULATOR_SUPPLY("vcore", "sdi1"),
2680 REGULATOR_SUPPLY("vcore", "sdi2"),
2681 REGULATOR_SUPPLY("vcore", "sdi3"),
2682 REGULATOR_SUPPLY("vcore", "sdi4"),
2683 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2684 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2685 /* "v-uart" changed to "vcore" in the mainline kernel */
2686 REGULATOR_SUPPLY("vcore", "uart0"),
2687 REGULATOR_SUPPLY("vcore", "uart1"),
2688 REGULATOR_SUPPLY("vcore", "uart2"),
2689 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2690};
2691
2692static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2693 /* CG2900 and CW1200 power to off-chip peripherals */
2694 REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
2695 REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
2696 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2697 /* AV8100 regulator */
2698 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2699};
2700
2701static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2702 REGULATOR_SUPPLY("vsupply", "b2r2.0"),
624e87c2
BJ
2703 REGULATOR_SUPPLY("vsupply", "mcde"),
2704};
2705
2706/* SVA MMDSP regulator switch */
2707static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2708 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2709};
2710
2711/* SVA pipe regulator switch */
2712static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2713 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2714};
2715
2716/* SIA MMDSP regulator switch */
2717static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2718 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2719};
2720
2721/* SIA pipe regulator switch */
2722static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2723 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2724};
2725
2726static struct regulator_consumer_supply db8500_sga_consumers[] = {
2727 REGULATOR_SUPPLY("v-mali", NULL),
2728};
2729
2730/* ESRAM1 and 2 regulator switch */
2731static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2732 REGULATOR_SUPPLY("esram12", "cm_control"),
2733};
2734
2735/* ESRAM3 and 4 regulator switch */
2736static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2737 REGULATOR_SUPPLY("v-esram34", "mcde"),
2738 REGULATOR_SUPPLY("esram34", "cm_control"),
1032fbfd
BJ
2739};
2740
2741static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2742 [DB8500_REGULATOR_VAPE] = {
2743 .constraints = {
2744 .name = "db8500-vape",
2745 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2746 },
2747 .consumer_supplies = db8500_vape_consumers,
2748 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2749 },
2750 [DB8500_REGULATOR_VARM] = {
2751 .constraints = {
2752 .name = "db8500-varm",
2753 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2754 },
2755 },
2756 [DB8500_REGULATOR_VMODEM] = {
2757 .constraints = {
2758 .name = "db8500-vmodem",
2759 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2760 },
2761 },
2762 [DB8500_REGULATOR_VPLL] = {
2763 .constraints = {
2764 .name = "db8500-vpll",
2765 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2766 },
2767 },
2768 [DB8500_REGULATOR_VSMPS1] = {
2769 .constraints = {
2770 .name = "db8500-vsmps1",
2771 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2772 },
2773 },
2774 [DB8500_REGULATOR_VSMPS2] = {
2775 .constraints = {
2776 .name = "db8500-vsmps2",
2777 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2778 },
2779 .consumer_supplies = db8500_vsmps2_consumers,
2780 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2781 },
2782 [DB8500_REGULATOR_VSMPS3] = {
2783 .constraints = {
2784 .name = "db8500-vsmps3",
2785 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786 },
2787 },
2788 [DB8500_REGULATOR_VRF1] = {
2789 .constraints = {
2790 .name = "db8500-vrf1",
2791 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2792 },
2793 },
2794 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2795 .supply_regulator = "db8500-vape",
2796 .constraints = {
2797 .name = "db8500-sva-mmdsp",
2798 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2799 },
624e87c2
BJ
2800 .consumer_supplies = db8500_svammdsp_consumers,
2801 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2802 },
2803 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2804 .constraints = {
2805 /* "ret" means "retention" */
2806 .name = "db8500-sva-mmdsp-ret",
2807 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808 },
2809 },
2810 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2811 .supply_regulator = "db8500-vape",
2812 .constraints = {
2813 .name = "db8500-sva-pipe",
2814 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2815 },
624e87c2
BJ
2816 .consumer_supplies = db8500_svapipe_consumers,
2817 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2818 },
2819 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2820 .supply_regulator = "db8500-vape",
2821 .constraints = {
2822 .name = "db8500-sia-mmdsp",
2823 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2824 },
624e87c2
BJ
2825 .consumer_supplies = db8500_siammdsp_consumers,
2826 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2827 },
2828 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2829 .constraints = {
2830 .name = "db8500-sia-mmdsp-ret",
2831 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2832 },
2833 },
2834 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2835 .supply_regulator = "db8500-vape",
2836 .constraints = {
2837 .name = "db8500-sia-pipe",
2838 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2839 },
624e87c2
BJ
2840 .consumer_supplies = db8500_siapipe_consumers,
2841 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2842 },
2843 [DB8500_REGULATOR_SWITCH_SGA] = {
2844 .supply_regulator = "db8500-vape",
2845 .constraints = {
2846 .name = "db8500-sga",
2847 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2848 },
624e87c2
BJ
2849 .consumer_supplies = db8500_sga_consumers,
2850 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2851
1032fbfd
BJ
2852 },
2853 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2854 .supply_regulator = "db8500-vape",
2855 .constraints = {
2856 .name = "db8500-b2r2-mcde",
2857 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2858 },
2859 .consumer_supplies = db8500_b2r2_mcde_consumers,
2860 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2861 },
2862 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2863 .supply_regulator = "db8500-vape",
2864 .constraints = {
2865 .name = "db8500-esram12",
2866 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2867 },
624e87c2
BJ
2868 .consumer_supplies = db8500_esram12_consumers,
2869 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2870 },
2871 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2872 .constraints = {
2873 .name = "db8500-esram12-ret",
2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875 },
2876 },
2877 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2878 .supply_regulator = "db8500-vape",
2879 .constraints = {
2880 .name = "db8500-esram34",
2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 },
624e87c2
BJ
2883 .consumer_supplies = db8500_esram34_consumers,
2884 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2885 },
2886 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2887 .constraints = {
2888 .name = "db8500-esram34-ret",
2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 },
2891 },
2892};
2893
3df57bcf
MN
2894static struct mfd_cell db8500_prcmu_devs[] = {
2895 {
2896 .name = "db8500-prcmu-regulators",
1ed7891f
MW
2897 .platform_data = &db8500_regulators,
2898 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
2899 },
2900 {
2901 .name = "cpufreq-u8500",
2902 },
2903};
2904
2905/**
2906 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2907 *
2908 */
2909static int __init db8500_prcmu_probe(struct platform_device *pdev)
2910{
2911 int err = 0;
2912
2913 if (ux500_is_svp())
2914 return -ENODEV;
2915
0508901c 2916 init_prcm_registers();
d65e12d7 2917
e3726fcf 2918 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 2919 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf
MN
2920
2921 err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2922 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2923 if (err < 0) {
2924 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2925 err = -EBUSY;
2926 goto no_irq_return;
2927 }
2928
2929 if (cpu_is_u8500v20_or_later())
2930 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2931
2932 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2933 ARRAY_SIZE(db8500_prcmu_devs), NULL,
2934 0);
e3726fcf 2935
3df57bcf
MN
2936 if (err)
2937 pr_err("prcmu: Failed to add subdevices\n");
2938 else
2939 pr_info("DB8500 PRCMU initialized\n");
2940
2941no_irq_return:
2942 return err;
2943}
2944
2945static struct platform_driver db8500_prcmu_driver = {
2946 .driver = {
2947 .name = "db8500-prcmu",
2948 .owner = THIS_MODULE,
2949 },
2950};
2951
2952static int __init db8500_prcmu_init(void)
2953{
2954 return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
e3726fcf
LW
2955}
2956
3df57bcf
MN
2957arch_initcall(db8500_prcmu_init);
2958
2959MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2960MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2961MODULE_LICENSE("GPL v2");