mfd: Fix max8907 sparse warning
[linux-2.6-block.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
73180f85 30#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 31#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
32#include <linux/regulator/db8500-prcmu.h>
33#include <linux/regulator/machine.h>
cc9a0f68 34#include <asm/hardware/gic.h>
3df57bcf
MN
35#include <mach/hardware.h>
36#include <mach/irqs.h>
37#include <mach/db8500-regs.h>
38#include <mach/id.h>
73180f85 39#include "dbx500-prcmu-regs.h"
3df57bcf
MN
40
41/* Offset for the firmware version within the TCPM */
42#define PRCMU_FW_VERSION_OFFSET 0xA4
43
3df57bcf
MN
44/* Index of different voltages to be used when accessing AVSData */
45#define PRCM_AVS_BASE 0x2FC
46#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
47#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
48#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
49#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
50#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
51#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
52#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
53#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
54#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
55#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
56#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
57#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
58#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
59
60#define PRCM_AVS_VOLTAGE 0
61#define PRCM_AVS_VOLTAGE_MASK 0x3f
62#define PRCM_AVS_ISSLOWSTARTUP 6
63#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
64#define PRCM_AVS_ISMODEENABLE 7
65#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
66
67#define PRCM_BOOT_STATUS 0xFFF
68#define PRCM_ROMCODE_A2P 0xFFE
69#define PRCM_ROMCODE_P2A 0xFFD
70#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
71
72#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73
74#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
75#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
76#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
77#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
78#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
79#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
80#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
81#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
82
83/* Req Mailboxes */
84#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
85#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
86#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
87#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
88#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
89#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
90
91/* Ack Mailboxes */
92#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
93#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98
99/* Mailbox 0 headers */
100#define MB0H_POWER_STATE_TRANS 0
101#define MB0H_CONFIG_WAKEUPS_EXE 1
102#define MB0H_READ_WAKEUP_ACK 3
103#define MB0H_CONFIG_WAKEUPS_SLEEP 4
104
105#define MB0H_WAKEUP_EXE 2
106#define MB0H_WAKEUP_SLEEP 5
107
108/* Mailbox 0 REQs */
109#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
110#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
111#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
112#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
113#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
114#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
115
116/* Mailbox 0 ACKs */
117#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
118#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
119#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
120#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
121#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
122#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
123#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
124
125/* Mailbox 1 headers */
126#define MB1H_ARM_APE_OPP 0x0
127#define MB1H_RESET_MODEM 0x2
128#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 131#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
132
133/* Mailbox 1 Requests */
134#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
135#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 136#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
137#define PLL_SOC0_OFF 0x1
138#define PLL_SOC0_ON 0x2
a592c2e2
MN
139#define PLL_SOC1_OFF 0x4
140#define PLL_SOC1_ON 0x8
3df57bcf
MN
141
142/* Mailbox 1 ACKs */
143#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
144#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
145#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
147
148/* Mailbox 2 headers */
149#define MB2H_DPS 0x0
150#define MB2H_AUTO_PWR 0x1
151
152/* Mailbox 2 REQs */
153#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
154#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
155#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
156#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
157#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
158#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
159#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
160#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
161#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
162#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
163
164/* Mailbox 2 ACKs */
165#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166#define HWACC_PWR_ST_OK 0xFE
167
168/* Mailbox 3 headers */
169#define MB3H_ANC 0x0
170#define MB3H_SIDETONE 0x1
171#define MB3H_SYSCLK 0xE
172
173/* Mailbox 3 Requests */
174#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
175#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
176#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
177#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
178#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
179#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
181
182/* Mailbox 4 headers */
183#define MB4H_DDR_INIT 0x0
184#define MB4H_MEM_ST 0x1
185#define MB4H_HOTDOG 0x12
186#define MB4H_HOTMON 0x13
187#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
188#define MB4H_A9WDOG_CONF 0x16
189#define MB4H_A9WDOG_EN 0x17
190#define MB4H_A9WDOG_DIS 0x18
191#define MB4H_A9WDOG_LOAD 0x19
192#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
193
194/* Mailbox 4 Requests */
195#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
197#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
198#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
199#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
200#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
201#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
202#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
203#define HOTMON_CONFIG_LOW BIT(0)
204#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
205#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
206#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
207#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
208#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
209#define A9WDOG_AUTO_OFF_EN BIT(7)
210#define A9WDOG_AUTO_OFF_DIS 0
211#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
212
213/* Mailbox 5 Requests */
214#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
215#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
216#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
217#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
218#define PRCMU_I2C_WRITE(slave) \
219 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220#define PRCMU_I2C_READ(slave) \
221 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222#define PRCMU_I2C_STOP_EN BIT(3)
223
224/* Mailbox 5 ACKs */
225#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
227#define I2C_WR_OK 0x1
228#define I2C_RD_OK 0x2
229
230#define NUM_MB 8
231#define MBOX_BIT BIT
232#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233
234/*
235 * Wakeups/IRQs
236 */
237
238#define WAKEUP_BIT_RTC BIT(0)
239#define WAKEUP_BIT_RTT0 BIT(1)
240#define WAKEUP_BIT_RTT1 BIT(2)
241#define WAKEUP_BIT_HSI0 BIT(3)
242#define WAKEUP_BIT_HSI1 BIT(4)
243#define WAKEUP_BIT_CA_WAKE BIT(5)
244#define WAKEUP_BIT_USB BIT(6)
245#define WAKEUP_BIT_ABB BIT(7)
246#define WAKEUP_BIT_ABB_FIFO BIT(8)
247#define WAKEUP_BIT_SYSCLK_OK BIT(9)
248#define WAKEUP_BIT_CA_SLEEP BIT(10)
249#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251#define WAKEUP_BIT_ANC_OK BIT(13)
252#define WAKEUP_BIT_SW_ERROR BIT(14)
253#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254#define WAKEUP_BIT_ARM BIT(17)
255#define WAKEUP_BIT_HOTMON_LOW BIT(18)
256#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258#define WAKEUP_BIT_GPIO0 BIT(23)
259#define WAKEUP_BIT_GPIO1 BIT(24)
260#define WAKEUP_BIT_GPIO2 BIT(25)
261#define WAKEUP_BIT_GPIO3 BIT(26)
262#define WAKEUP_BIT_GPIO4 BIT(27)
263#define WAKEUP_BIT_GPIO5 BIT(28)
264#define WAKEUP_BIT_GPIO6 BIT(29)
265#define WAKEUP_BIT_GPIO7 BIT(30)
266#define WAKEUP_BIT_GPIO8 BIT(31)
267
b58d12fe
MN
268static struct {
269 bool valid;
270 struct prcmu_fw_version version;
271} fw_info;
272
3df57bcf
MN
273/*
274 * This vector maps irq numbers to the bits in the bit field used in
275 * communication with the PRCMU firmware.
276 *
277 * The reason for having this is to keep the irq numbers contiguous even though
278 * the bits in the bit field are not. (The bits also have a tendency to move
279 * around, to further complicate matters.)
280 */
281#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
282#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
283static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
284 IRQ_ENTRY(RTC),
285 IRQ_ENTRY(RTT0),
286 IRQ_ENTRY(RTT1),
287 IRQ_ENTRY(HSI0),
288 IRQ_ENTRY(HSI1),
289 IRQ_ENTRY(CA_WAKE),
290 IRQ_ENTRY(USB),
291 IRQ_ENTRY(ABB),
292 IRQ_ENTRY(ABB_FIFO),
293 IRQ_ENTRY(CA_SLEEP),
294 IRQ_ENTRY(ARM),
295 IRQ_ENTRY(HOTMON_LOW),
296 IRQ_ENTRY(HOTMON_HIGH),
297 IRQ_ENTRY(MODEM_SW_RESET_REQ),
298 IRQ_ENTRY(GPIO0),
299 IRQ_ENTRY(GPIO1),
300 IRQ_ENTRY(GPIO2),
301 IRQ_ENTRY(GPIO3),
302 IRQ_ENTRY(GPIO4),
303 IRQ_ENTRY(GPIO5),
304 IRQ_ENTRY(GPIO6),
305 IRQ_ENTRY(GPIO7),
306 IRQ_ENTRY(GPIO8)
307};
308
309#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
310#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
311static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
312 WAKEUP_ENTRY(RTC),
313 WAKEUP_ENTRY(RTT0),
314 WAKEUP_ENTRY(RTT1),
315 WAKEUP_ENTRY(HSI0),
316 WAKEUP_ENTRY(HSI1),
317 WAKEUP_ENTRY(USB),
318 WAKEUP_ENTRY(ABB),
319 WAKEUP_ENTRY(ABB_FIFO),
320 WAKEUP_ENTRY(ARM)
321};
322
323/*
324 * mb0_transfer - state needed for mailbox 0 communication.
325 * @lock: The transaction lock.
326 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
327 * the request data.
328 * @mask_work: Work structure used for (un)masking wakeup interrupts.
329 * @req: Request data that need to persist between requests.
330 */
331static struct {
332 spinlock_t lock;
333 spinlock_t dbb_irqs_lock;
334 struct work_struct mask_work;
335 struct mutex ac_wake_lock;
336 struct completion ac_wake_work;
337 struct {
338 u32 dbb_irqs;
339 u32 dbb_wakeups;
340 u32 abb_events;
341 } req;
342} mb0_transfer;
343
344/*
345 * mb1_transfer - state needed for mailbox 1 communication.
346 * @lock: The transaction lock.
347 * @work: The transaction completion structure.
4d64d2e3 348 * @ape_opp: The current APE OPP.
3df57bcf
MN
349 * @ack: Reply ("acknowledge") data.
350 */
351static struct {
352 struct mutex lock;
353 struct completion work;
4d64d2e3 354 u8 ape_opp;
3df57bcf
MN
355 struct {
356 u8 header;
357 u8 arm_opp;
358 u8 ape_opp;
359 u8 ape_voltage_status;
360 } ack;
361} mb1_transfer;
362
363/*
364 * mb2_transfer - state needed for mailbox 2 communication.
365 * @lock: The transaction lock.
366 * @work: The transaction completion structure.
367 * @auto_pm_lock: The autonomous power management configuration lock.
368 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
369 * @req: Request data that need to persist between requests.
370 * @ack: Reply ("acknowledge") data.
371 */
372static struct {
373 struct mutex lock;
374 struct completion work;
375 spinlock_t auto_pm_lock;
376 bool auto_pm_enabled;
377 struct {
378 u8 status;
379 } ack;
380} mb2_transfer;
381
382/*
383 * mb3_transfer - state needed for mailbox 3 communication.
384 * @lock: The request lock.
385 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
386 * @sysclk_work: Work structure used for sysclk requests.
387 */
388static struct {
389 spinlock_t lock;
390 struct mutex sysclk_lock;
391 struct completion sysclk_work;
392} mb3_transfer;
393
394/*
395 * mb4_transfer - state needed for mailbox 4 communication.
396 * @lock: The transaction lock.
397 * @work: The transaction completion structure.
398 */
399static struct {
400 struct mutex lock;
401 struct completion work;
402} mb4_transfer;
403
404/*
405 * mb5_transfer - state needed for mailbox 5 communication.
406 * @lock: The transaction lock.
407 * @work: The transaction completion structure.
408 * @ack: Reply ("acknowledge") data.
409 */
410static struct {
411 struct mutex lock;
412 struct completion work;
413 struct {
414 u8 status;
415 u8 value;
416 } ack;
417} mb5_transfer;
418
419static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
420
804971ec
MJ
421/* Functions definition */
422static void compute_armss_rate(void);
423
3df57bcf 424/* Spinlocks */
b4a6dbd5 425static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 426static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
427
428/* Global var to runtime determine TCDM base for v2 or v1 */
429static __iomem void *tcdm_base;
430
431struct clk_mgt {
6b6fae2b 432 void __iomem *reg;
3df57bcf 433 u32 pllsw;
6b6fae2b
MN
434 int branch;
435 bool clk38div;
436};
437
438enum {
439 PLL_RAW,
440 PLL_FIX,
441 PLL_DIV
3df57bcf
MN
442};
443
444static DEFINE_SPINLOCK(clk_mgt_lock);
445
6b6fae2b
MN
446#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
3df57bcf 448struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
449 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
478};
479
480struct dsiclk {
481 u32 divsel_mask;
482 u32 divsel_shift;
483 u32 divsel;
484};
485
486static struct dsiclk dsiclk[2] = {
487 {
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 },
492 {
493 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496 }
497};
498
499struct dsiescclk {
500 u32 en;
501 u32 div_mask;
502 u32 div_shift;
503};
504
505static struct dsiescclk dsiescclk[3] = {
506 {
507 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510 },
511 {
512 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515 },
516 {
517 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520 }
3df57bcf
MN
521};
522
523/*
524* Used by MCDE to setup all necessary PRCMU registers
525*/
526#define PRCMU_RESET_DSIPLL 0x00004000
527#define PRCMU_UNCLAMP_DSIPLL 0x00400800
528
529#define PRCMU_CLK_PLL_DIV_SHIFT 0
530#define PRCMU_CLK_PLL_SW_SHIFT 5
531#define PRCMU_CLK_38 (1 << 9)
532#define PRCMU_CLK_38_SRC (1 << 10)
533#define PRCMU_CLK_38_DIV (1 << 11)
534
535/* PLLDIV=12, PLLSW=4 (PLLDDR) */
536#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
537
3df57bcf
MN
538/* DPI 50000000 Hz */
539#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
540 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
541#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
542
543/* D=101, N=1, R=4, SELDIV2=0 */
544#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
545
3df57bcf
MN
546#define PRCMU_ENABLE_PLLDSI 0x00000001
547#define PRCMU_DISABLE_PLLDSI 0x00000000
548#define PRCMU_RELEASE_RESET_DSS 0x0000400C
549#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
550/* ESC clk, div0=1, div1=1, div2=3 */
551#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
552#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
553#define PRCMU_DSI_RESET_SW 0x00000007
554
555#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
556
73180f85 557int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
558{
559 int i;
3df57bcf
MN
560
561 /* Clear DSIPLL_RESETN */
c553b3ca 562 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 563 /* Unclamp DSIPLL in/out */
c553b3ca 564 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 565
3df57bcf 566 /* Set DSI PLL FREQ */
c72fe851 567 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 568 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 569 /* Enable Escape clocks */
c553b3ca 570 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
571
572 /* Start DSI PLL */
c553b3ca 573 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 574 /* Reset DSI PLL */
c553b3ca 575 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 576 for (i = 0; i < 10; i++) {
c553b3ca 577 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
578 == PRCMU_PLLDSI_LOCKP_LOCKED)
579 break;
580 udelay(100);
581 }
582 /* Set DSIPLL_RESETN */
c553b3ca 583 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
584 return 0;
585}
586
73180f85 587int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
588{
589 /* Disable dsi pll */
c553b3ca 590 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 591 /* Disable escapeclock */
c553b3ca 592 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
593 return 0;
594}
595
73180f85 596int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
597{
598 unsigned long flags;
3df57bcf
MN
599
600 spin_lock_irqsave(&clk_mgt_lock, flags);
601
602 /* Grab the HW semaphore. */
c553b3ca 603 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
604 cpu_relax();
605
c72fe851 606 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
c553b3ca
MN
607 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
608 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
3df57bcf
MN
609
610 /* Release the HW semaphore. */
c553b3ca 611 writel(0, PRCM_SEM);
3df57bcf
MN
612
613 spin_unlock_irqrestore(&clk_mgt_lock, flags);
614
615 return 0;
616}
617
b4a6dbd5
MN
618u32 db8500_prcmu_read(unsigned int reg)
619{
620 return readl(_PRCMU_BASE + reg);
621}
622
623void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 624{
3df57bcf
MN
625 unsigned long flags;
626
b4a6dbd5
MN
627 spin_lock_irqsave(&prcmu_lock, flags);
628 writel(value, (_PRCMU_BASE + reg));
629 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
630}
631
b4a6dbd5 632void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 633{
b4a6dbd5 634 u32 val;
3df57bcf
MN
635 unsigned long flags;
636
b4a6dbd5
MN
637 spin_lock_irqsave(&prcmu_lock, flags);
638 val = readl(_PRCMU_BASE + reg);
639 val = ((val & ~mask) | (value & mask));
640 writel(val, (_PRCMU_BASE + reg));
641 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
642}
643
b58d12fe
MN
644struct prcmu_fw_version *prcmu_get_fw_version(void)
645{
646 return fw_info.valid ? &fw_info.version : NULL;
647}
648
3df57bcf
MN
649bool prcmu_has_arm_maxopp(void)
650{
651 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
652 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
653}
654
3df57bcf
MN
655/**
656 * prcmu_get_boot_status - PRCMU boot status checking
657 * Returns: the current PRCMU boot status
658 */
659int prcmu_get_boot_status(void)
660{
661 return readb(tcdm_base + PRCM_BOOT_STATUS);
662}
663
664/**
665 * prcmu_set_rc_a2p - This function is used to run few power state sequences
666 * @val: Value to be set, i.e. transition requested
667 * Returns: 0 on success, -EINVAL on invalid argument
668 *
669 * This function is used to run the following power state sequences -
670 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
671 */
672int prcmu_set_rc_a2p(enum romcode_write val)
673{
674 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
675 return -EINVAL;
676 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
677 return 0;
678}
679
680/**
681 * prcmu_get_rc_p2a - This function is used to get power state sequences
682 * Returns: the power transition that has last happened
683 *
684 * This function can return the following transitions-
685 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
686 */
687enum romcode_read prcmu_get_rc_p2a(void)
688{
689 return readb(tcdm_base + PRCM_ROMCODE_P2A);
690}
691
692/**
693 * prcmu_get_current_mode - Return the current XP70 power mode
694 * Returns: Returns the current AP(ARM) power mode: init,
695 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
696 */
697enum ap_pwrst prcmu_get_xp70_current_state(void)
698{
699 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
700}
701
702/**
703 * prcmu_config_clkout - Configure one of the programmable clock outputs.
704 * @clkout: The CLKOUT number (0 or 1).
705 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
706 * @div: The divider to be applied.
707 *
708 * Configures one of the programmable clock outputs (CLKOUTs).
709 * @div should be in the range [1,63] to request a configuration, or 0 to
710 * inform that the configuration is no longer requested.
711 */
712int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
713{
714 static int requests[2];
715 int r = 0;
716 unsigned long flags;
717 u32 val;
718 u32 bits;
719 u32 mask;
720 u32 div_mask;
721
722 BUG_ON(clkout > 1);
723 BUG_ON(div > 63);
724 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
725
726 if (!div && !requests[clkout])
727 return -EINVAL;
728
729 switch (clkout) {
730 case 0:
731 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
732 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
733 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
734 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
735 break;
736 case 1:
737 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
738 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
739 PRCM_CLKOCR_CLK1TYPE);
740 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
741 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
742 break;
743 }
744 bits &= mask;
745
746 spin_lock_irqsave(&clkout_lock, flags);
747
c553b3ca 748 val = readl(PRCM_CLKOCR);
3df57bcf
MN
749 if (val & div_mask) {
750 if (div) {
751 if ((val & mask) != bits) {
752 r = -EBUSY;
753 goto unlock_and_return;
754 }
755 } else {
756 if ((val & mask & ~div_mask) != bits) {
757 r = -EINVAL;
758 goto unlock_and_return;
759 }
760 }
761 }
c553b3ca 762 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
763 requests[clkout] += (div ? 1 : -1);
764
765unlock_and_return:
766 spin_unlock_irqrestore(&clkout_lock, flags);
767
768 return r;
769}
770
73180f85 771int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
772{
773 unsigned long flags;
774
775 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
776
777 spin_lock_irqsave(&mb0_transfer.lock, flags);
778
c553b3ca 779 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
780 cpu_relax();
781
782 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
783 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
784 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
785 writeb((keep_ulp_clk ? 1 : 0),
786 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
787 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 788 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
789
790 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
791
792 return 0;
793}
794
4d64d2e3
MN
795u8 db8500_prcmu_get_power_state_result(void)
796{
797 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
798}
799
485540dc
DL
800/* This function decouple the gic from the prcmu */
801int db8500_prcmu_gic_decouple(void)
802{
801448e0 803 u32 val = readl(PRCM_A9_MASK_REQ);
485540dc
DL
804
805 /* Set bit 0 register value to 1 */
801448e0
DL
806 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
807 PRCM_A9_MASK_REQ);
485540dc
DL
808
809 /* Make sure the register is updated */
801448e0 810 readl(PRCM_A9_MASK_REQ);
485540dc
DL
811
812 /* Wait a few cycles for the gic mask completion */
801448e0 813 udelay(1);
485540dc
DL
814
815 return 0;
816}
817
818/* This function recouple the gic with the prcmu */
819int db8500_prcmu_gic_recouple(void)
820{
801448e0 821 u32 val = readl(PRCM_A9_MASK_REQ);
485540dc
DL
822
823 /* Set bit 0 register value to 0 */
801448e0 824 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
485540dc
DL
825
826 return 0;
827}
828
cc9a0f68
DL
829#define PRCMU_GIC_NUMBER_REGS 5
830
831/*
832 * This function checks if there are pending irq on the gic. It only
833 * makes sense if the gic has been decoupled before with the
834 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
835 * disables the forwarding of the interrupt to any CPU interface. It
836 * does not prevent the interrupt from changing state, for example
837 * becoming pending, or active and pending if it is already
838 * active. Hence, we have to check the interrupt is pending *and* is
839 * active.
840 */
841bool db8500_prcmu_gic_pending_irq(void)
842{
843 u32 pr; /* Pending register */
844 u32 er; /* Enable register */
845 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
846 int i;
847
848 /* 5 registers. STI & PPI not skipped */
849 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
850
851 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
852 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
853
854 if (pr & er)
855 return true; /* There is a pending interrupt */
856 }
857
858 return false;
859}
860
9ab492e1
DL
861/*
862 * This function checks if there are pending interrupt on the
863 * prcmu which has been delegated to monitor the irqs with the
864 * db8500_prcmu_copy_gic_settings function.
865 */
866bool db8500_prcmu_pending_irq(void)
867{
868 u32 it, im;
869 int i;
870
871 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
872 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
873 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
874 if (it & im)
875 return true; /* There is a pending interrupt */
876 }
877
878 return false;
879}
880
34fe6f10
DL
881/*
882 * This function checks if the specified cpu is in in WFI. It's usage
883 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
884 * function. Of course passing smp_processor_id() to this function will
885 * always return false...
886 */
887bool db8500_prcmu_is_cpu_in_wfi(int cpu)
888{
889 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
890 PRCM_ARM_WFI_STANDBY_WFI0;
891}
892
9f60d33e
DL
893/*
894 * This function copies the gic SPI settings to the prcmu in order to
895 * monitor them and abort/finish the retention/off sequence or state.
896 */
897int db8500_prcmu_copy_gic_settings(void)
898{
899 u32 er; /* Enable register */
900 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
901 int i;
902
903 /* We skip the STI and PPI */
904 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
905 er = readl_relaxed(dist_base +
906 GIC_DIST_ENABLE_SET + (i + 1) * 4);
907 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
908 }
909
910 return 0;
911}
912
3df57bcf
MN
913/* This function should only be called while mb0_transfer.lock is held. */
914static void config_wakeups(void)
915{
916 const u8 header[2] = {
917 MB0H_CONFIG_WAKEUPS_EXE,
918 MB0H_CONFIG_WAKEUPS_SLEEP
919 };
920 static u32 last_dbb_events;
921 static u32 last_abb_events;
922 u32 dbb_events;
923 u32 abb_events;
924 unsigned int i;
925
926 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
927 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
928
929 abb_events = mb0_transfer.req.abb_events;
930
931 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
932 return;
933
934 for (i = 0; i < 2; i++) {
c553b3ca 935 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
936 cpu_relax();
937 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
938 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
939 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 940 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
941 }
942 last_dbb_events = dbb_events;
943 last_abb_events = abb_events;
944}
945
73180f85 946void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
947{
948 unsigned long flags;
949 u32 bits;
950 int i;
951
952 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
953
954 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
955 if (wakeups & BIT(i))
956 bits |= prcmu_wakeup_bit[i];
957 }
958
959 spin_lock_irqsave(&mb0_transfer.lock, flags);
960
961 mb0_transfer.req.dbb_wakeups = bits;
962 config_wakeups();
963
964 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
965}
966
73180f85 967void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
968{
969 unsigned long flags;
970
971 spin_lock_irqsave(&mb0_transfer.lock, flags);
972
973 mb0_transfer.req.abb_events = abb_events;
974 config_wakeups();
975
976 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
977}
978
73180f85 979void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
980{
981 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
982 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
983 else
984 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
985}
986
987/**
73180f85 988 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
989 * @opp: The new ARM operating point to which transition is to be made
990 * Returns: 0 on success, non-zero on failure
991 *
992 * This function sets the the operating point of the ARM.
993 */
73180f85 994int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
995{
996 int r;
997
998 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
999 return -EINVAL;
1000
1001 r = 0;
1002
1003 mutex_lock(&mb1_transfer.lock);
1004
c553b3ca 1005 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1006 cpu_relax();
1007
1008 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1009 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1010 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1011
c553b3ca 1012 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1013 wait_for_completion(&mb1_transfer.work);
1014
1015 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1016 (mb1_transfer.ack.arm_opp != opp))
1017 r = -EIO;
1018
804971ec 1019 compute_armss_rate();
3df57bcf
MN
1020 mutex_unlock(&mb1_transfer.lock);
1021
1022 return r;
1023}
1024
1025/**
73180f85 1026 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
1027 *
1028 * Returns: the current ARM OPP
1029 */
73180f85 1030int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
1031{
1032 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1033}
1034
1035/**
0508901c 1036 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
1037 *
1038 * Returns: the current DDR OPP
1039 */
0508901c 1040int db8500_prcmu_get_ddr_opp(void)
3df57bcf 1041{
c553b3ca 1042 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
1043}
1044
1045/**
0508901c 1046 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
1047 * @opp: The new DDR operating point to which transition is to be made
1048 * Returns: 0 on success, non-zero on failure
1049 *
1050 * This function sets the operating point of the DDR.
1051 */
0508901c 1052int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
1053{
1054 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1055 return -EINVAL;
1056 /* Changing the DDR OPP can hang the hardware pre-v21 */
1057 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
c553b3ca 1058 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
1059
1060 return 0;
1061}
6b6fae2b 1062
4d64d2e3
MN
1063/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1064static void request_even_slower_clocks(bool enable)
1065{
1066 void __iomem *clock_reg[] = {
1067 PRCM_ACLK_MGT,
1068 PRCM_DMACLK_MGT
1069 };
1070 unsigned long flags;
1071 unsigned int i;
1072
1073 spin_lock_irqsave(&clk_mgt_lock, flags);
1074
1075 /* Grab the HW semaphore. */
1076 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1077 cpu_relax();
1078
1079 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1080 u32 val;
1081 u32 div;
1082
1083 val = readl(clock_reg[i]);
1084 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1085 if (enable) {
1086 if ((div <= 1) || (div > 15)) {
1087 pr_err("prcmu: Bad clock divider %d in %s\n",
1088 div, __func__);
1089 goto unlock_and_return;
1090 }
1091 div <<= 1;
1092 } else {
1093 if (div <= 2)
1094 goto unlock_and_return;
1095 div >>= 1;
1096 }
1097 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1098 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1099 writel(val, clock_reg[i]);
1100 }
1101
1102unlock_and_return:
1103 /* Release the HW semaphore. */
1104 writel(0, PRCM_SEM);
1105
1106 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1107}
1108
3df57bcf 1109/**
0508901c 1110 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1111 * @opp: The new APE operating point to which transition is to be made
1112 * Returns: 0 on success, non-zero on failure
1113 *
1114 * This function sets the operating point of the APE.
1115 */
0508901c 1116int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1117{
1118 int r = 0;
1119
4d64d2e3
MN
1120 if (opp == mb1_transfer.ape_opp)
1121 return 0;
1122
3df57bcf
MN
1123 mutex_lock(&mb1_transfer.lock);
1124
4d64d2e3
MN
1125 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1126 request_even_slower_clocks(false);
1127
1128 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1129 goto skip_message;
1130
c553b3ca 1131 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1132 cpu_relax();
1133
1134 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1135 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1136 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1137 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1138
c553b3ca 1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1140 wait_for_completion(&mb1_transfer.work);
1141
1142 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1143 (mb1_transfer.ack.ape_opp != opp))
1144 r = -EIO;
1145
4d64d2e3
MN
1146skip_message:
1147 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1148 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1149 request_even_slower_clocks(true);
1150 if (!r)
1151 mb1_transfer.ape_opp = opp;
1152
3df57bcf
MN
1153 mutex_unlock(&mb1_transfer.lock);
1154
1155 return r;
1156}
1157
1158/**
0508901c 1159 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1160 *
1161 * Returns: the current APE OPP
1162 */
0508901c 1163int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1164{
1165 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1166}
1167
1168/**
1169 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1170 * @enable: true to request the higher voltage, false to drop a request.
1171 *
1172 * Calls to this function to enable and disable requests must be balanced.
1173 */
1174int prcmu_request_ape_opp_100_voltage(bool enable)
1175{
1176 int r = 0;
1177 u8 header;
1178 static unsigned int requests;
1179
1180 mutex_lock(&mb1_transfer.lock);
1181
1182 if (enable) {
1183 if (0 != requests++)
1184 goto unlock_and_return;
1185 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1186 } else {
1187 if (requests == 0) {
1188 r = -EIO;
1189 goto unlock_and_return;
1190 } else if (1 != requests--) {
1191 goto unlock_and_return;
1192 }
1193 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1194 }
1195
c553b3ca 1196 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1197 cpu_relax();
1198
1199 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1200
c553b3ca 1201 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1202 wait_for_completion(&mb1_transfer.work);
1203
1204 if ((mb1_transfer.ack.header != header) ||
1205 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1206 r = -EIO;
1207
1208unlock_and_return:
1209 mutex_unlock(&mb1_transfer.lock);
1210
1211 return r;
1212}
1213
1214/**
1215 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1216 *
1217 * This function releases the power state requirements of a USB wakeup.
1218 */
1219int prcmu_release_usb_wakeup_state(void)
1220{
1221 int r = 0;
1222
1223 mutex_lock(&mb1_transfer.lock);
1224
c553b3ca 1225 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1226 cpu_relax();
1227
1228 writeb(MB1H_RELEASE_USB_WAKEUP,
1229 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1230
c553b3ca 1231 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1232 wait_for_completion(&mb1_transfer.work);
1233
1234 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1235 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1236 r = -EIO;
1237
1238 mutex_unlock(&mb1_transfer.lock);
1239
1240 return r;
1241}
1242
0837bb72
MN
1243static int request_pll(u8 clock, bool enable)
1244{
1245 int r = 0;
1246
6b6fae2b
MN
1247 if (clock == PRCMU_PLLSOC0)
1248 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1249 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1250 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1251 else
1252 return -EINVAL;
1253
1254 mutex_lock(&mb1_transfer.lock);
1255
1256 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1257 cpu_relax();
1258
1259 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1260 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1261
1262 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1263 wait_for_completion(&mb1_transfer.work);
1264
1265 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1266 r = -EIO;
1267
1268 mutex_unlock(&mb1_transfer.lock);
1269
1270 return r;
1271}
1272
3df57bcf 1273/**
73180f85 1274 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1275 * @epod_id: The EPOD to set
1276 * @epod_state: The new EPOD state
1277 *
1278 * This function sets the state of a EPOD (power domain). It may not be called
1279 * from interrupt context.
1280 */
73180f85 1281int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1282{
1283 int r = 0;
1284 bool ram_retention = false;
1285 int i;
1286
1287 /* check argument */
1288 BUG_ON(epod_id >= NUM_EPOD_ID);
1289
1290 /* set flag if retention is possible */
1291 switch (epod_id) {
1292 case EPOD_ID_SVAMMDSP:
1293 case EPOD_ID_SIAMMDSP:
1294 case EPOD_ID_ESRAM12:
1295 case EPOD_ID_ESRAM34:
1296 ram_retention = true;
1297 break;
1298 }
1299
1300 /* check argument */
1301 BUG_ON(epod_state > EPOD_STATE_ON);
1302 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1303
1304 /* get lock */
1305 mutex_lock(&mb2_transfer.lock);
1306
1307 /* wait for mailbox */
c553b3ca 1308 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1309 cpu_relax();
1310
1311 /* fill in mailbox */
1312 for (i = 0; i < NUM_EPOD_ID; i++)
1313 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1314 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1315
1316 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1317
c553b3ca 1318 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1319
1320 /*
1321 * The current firmware version does not handle errors correctly,
1322 * and we cannot recover if there is an error.
1323 * This is expected to change when the firmware is updated.
1324 */
1325 if (!wait_for_completion_timeout(&mb2_transfer.work,
1326 msecs_to_jiffies(20000))) {
1327 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1328 __func__);
1329 r = -EIO;
1330 goto unlock_and_return;
1331 }
1332
1333 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1334 r = -EIO;
1335
1336unlock_and_return:
1337 mutex_unlock(&mb2_transfer.lock);
1338 return r;
1339}
1340
1341/**
1342 * prcmu_configure_auto_pm - Configure autonomous power management.
1343 * @sleep: Configuration for ApSleep.
1344 * @idle: Configuration for ApIdle.
1345 */
1346void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1347 struct prcmu_auto_pm_config *idle)
1348{
1349 u32 sleep_cfg;
1350 u32 idle_cfg;
1351 unsigned long flags;
e3726fcf 1352
3df57bcf 1353 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1354
3df57bcf
MN
1355 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1357 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1358 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1359 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1360 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1361
3df57bcf
MN
1362 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1364 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1365 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1366 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1367 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1368
3df57bcf 1369 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1370
3df57bcf
MN
1371 /*
1372 * The autonomous power management configuration is done through
1373 * fields in mailbox 2, but these fields are only used as shared
1374 * variables - i.e. there is no need to send a message.
1375 */
1376 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1377 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1378
3df57bcf
MN
1379 mb2_transfer.auto_pm_enabled =
1380 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1381 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1384
3df57bcf
MN
1385 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1386}
1387EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1388
3df57bcf
MN
1389bool prcmu_is_auto_pm_enabled(void)
1390{
1391 return mb2_transfer.auto_pm_enabled;
1392}
e0befb23 1393
3df57bcf
MN
1394static int request_sysclk(bool enable)
1395{
1396 int r;
1397 unsigned long flags;
e3726fcf 1398
3df57bcf 1399 r = 0;
e3726fcf 1400
3df57bcf 1401 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1402
3df57bcf 1403 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1404
c553b3ca 1405 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1406 cpu_relax();
e0befb23 1407
3df57bcf 1408 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1409
3df57bcf 1410 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1411 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1412
3df57bcf
MN
1413 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1414
1415 /*
1416 * The firmware only sends an ACK if we want to enable the
1417 * SysClk, and it succeeds.
1418 */
1419 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1420 msecs_to_jiffies(20000))) {
1421 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1422 __func__);
1423 r = -EIO;
1424 }
1425
1426 mutex_unlock(&mb3_transfer.sysclk_lock);
1427
1428 return r;
1429}
1430
1431static int request_timclk(bool enable)
1432{
1433 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1434
1435 if (!enable)
1436 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1437 writel(val, PRCM_TCR);
3df57bcf
MN
1438
1439 return 0;
1440}
1441
6b6fae2b 1442static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1443{
1444 u32 val;
1445 unsigned long flags;
1446
1447 spin_lock_irqsave(&clk_mgt_lock, flags);
1448
1449 /* Grab the HW semaphore. */
c553b3ca 1450 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1451 cpu_relax();
1452
6b6fae2b 1453 val = readl(clk_mgt[clock].reg);
3df57bcf
MN
1454 if (enable) {
1455 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1456 } else {
1457 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1458 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1459 }
6b6fae2b 1460 writel(val, clk_mgt[clock].reg);
3df57bcf
MN
1461
1462 /* Release the HW semaphore. */
c553b3ca 1463 writel(0, PRCM_SEM);
3df57bcf
MN
1464
1465 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1466
1467 return 0;
1468}
1469
0837bb72
MN
1470static int request_sga_clock(u8 clock, bool enable)
1471{
1472 u32 val;
1473 int ret;
1474
1475 if (enable) {
1476 val = readl(PRCM_CGATING_BYPASS);
1477 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1478 }
1479
6b6fae2b 1480 ret = request_clock(clock, enable);
0837bb72
MN
1481
1482 if (!ret && !enable) {
1483 val = readl(PRCM_CGATING_BYPASS);
1484 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1485 }
1486
1487 return ret;
1488}
1489
6b6fae2b
MN
1490static inline bool plldsi_locked(void)
1491{
1492 return (readl(PRCM_PLLDSI_LOCKP) &
1493 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1494 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1495 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1496 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1497}
1498
1499static int request_plldsi(bool enable)
1500{
1501 int r = 0;
1502 u32 val;
1503
1504 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1505 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1506 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1507
1508 val = readl(PRCM_PLLDSI_ENABLE);
1509 if (enable)
1510 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1511 else
1512 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1513 writel(val, PRCM_PLLDSI_ENABLE);
1514
1515 if (enable) {
1516 unsigned int i;
1517 bool locked = plldsi_locked();
1518
1519 for (i = 10; !locked && (i > 0); --i) {
1520 udelay(100);
1521 locked = plldsi_locked();
1522 }
1523 if (locked) {
1524 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1525 PRCM_APE_RESETN_SET);
1526 } else {
1527 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1528 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1529 PRCM_MMIP_LS_CLAMP_SET);
1530 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1531 writel(val, PRCM_PLLDSI_ENABLE);
1532 r = -EAGAIN;
1533 }
1534 } else {
1535 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1536 }
1537 return r;
1538}
1539
1540static int request_dsiclk(u8 n, bool enable)
1541{
1542 u32 val;
1543
1544 val = readl(PRCM_DSI_PLLOUT_SEL);
1545 val &= ~dsiclk[n].divsel_mask;
1546 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1547 dsiclk[n].divsel_shift);
1548 writel(val, PRCM_DSI_PLLOUT_SEL);
1549 return 0;
1550}
1551
1552static int request_dsiescclk(u8 n, bool enable)
1553{
1554 u32 val;
1555
1556 val = readl(PRCM_DSITVCLK_DIV);
1557 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1558 writel(val, PRCM_DSITVCLK_DIV);
1559 return 0;
1560}
1561
3df57bcf 1562/**
73180f85 1563 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1564 * @clock: The clock for which the request is made.
1565 * @enable: Whether the clock should be enabled (true) or disabled (false).
1566 *
1567 * This function should only be used by the clock implementation.
1568 * Do not use it from any other place!
1569 */
73180f85 1570int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1571{
6b6fae2b 1572 if (clock == PRCMU_SGACLK)
0837bb72 1573 return request_sga_clock(clock, enable);
6b6fae2b
MN
1574 else if (clock < PRCMU_NUM_REG_CLOCKS)
1575 return request_clock(clock, enable);
1576 else if (clock == PRCMU_TIMCLK)
3df57bcf 1577 return request_timclk(enable);
6b6fae2b
MN
1578 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1579 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1580 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1581 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1582 else if (clock == PRCMU_PLLDSI)
1583 return request_plldsi(enable);
1584 else if (clock == PRCMU_SYSCLK)
3df57bcf 1585 return request_sysclk(enable);
6b6fae2b 1586 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1587 return request_pll(clock, enable);
6b6fae2b
MN
1588 else
1589 return -EINVAL;
1590}
1591
1592static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1593 int branch)
1594{
1595 u64 rate;
1596 u32 val;
1597 u32 d;
1598 u32 div = 1;
1599
1600 val = readl(reg);
1601
1602 rate = src_rate;
1603 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1604
1605 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1606 if (d > 1)
1607 div *= d;
1608
1609 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1610 if (d > 1)
1611 div *= d;
1612
1613 if (val & PRCM_PLL_FREQ_SELDIV2)
1614 div *= 2;
1615
1616 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1617 (val & PRCM_PLL_FREQ_DIV2EN) &&
1618 ((reg == PRCM_PLLSOC0_FREQ) ||
804971ec 1619 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1620 (reg == PRCM_PLLDDR_FREQ))))
1621 div *= 2;
1622
1623 (void)do_div(rate, div);
1624
1625 return (unsigned long)rate;
1626}
1627
1628#define ROOT_CLOCK_RATE 38400000
1629
1630static unsigned long clock_rate(u8 clock)
1631{
1632 u32 val;
1633 u32 pllsw;
1634 unsigned long rate = ROOT_CLOCK_RATE;
1635
1636 val = readl(clk_mgt[clock].reg);
1637
1638 if (val & PRCM_CLK_MGT_CLK38) {
1639 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1640 rate /= 2;
1641 return rate;
1642 }
1643
1644 val |= clk_mgt[clock].pllsw;
1645 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1646
1647 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1648 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1649 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1650 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1651 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1652 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1653 else
1654 return 0;
1655
1656 if ((clock == PRCMU_SGACLK) &&
1657 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1658 u64 r = (rate * 10);
1659
1660 (void)do_div(r, 25);
1661 return (unsigned long)r;
1662 }
1663 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1664 if (val)
1665 return rate / val;
1666 else
1667 return 0;
1668}
804971ec
MJ
1669static unsigned long latest_armss_rate;
1670static unsigned long armss_rate(void)
1671{
1672 return latest_armss_rate;
1673}
1674
1675static void compute_armss_rate(void)
1676{
1677 u32 r;
1678 unsigned long rate;
1679
1680 r = readl(PRCM_ARM_CHGCLKREQ);
1681
1682 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1683 /* External ARMCLKFIX clock */
1684
1685 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1686
1687 /* Check PRCM_ARM_CHGCLKREQ divider */
1688 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1689 rate /= 2;
1690
1691 /* Check PRCM_ARMCLKFIX_MGT divider */
1692 r = readl(PRCM_ARMCLKFIX_MGT);
1693 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1694 rate /= r;
1695
1696 } else {/* ARM PLL */
1697 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1698 }
1699
1700 latest_armss_rate = rate;
1701}
6b6fae2b
MN
1702
1703static unsigned long dsiclk_rate(u8 n)
1704{
1705 u32 divsel;
1706 u32 div = 1;
1707
1708 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1709 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1710
1711 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1712 divsel = dsiclk[n].divsel;
1713
1714 switch (divsel) {
1715 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1716 div *= 2;
1717 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1718 div *= 2;
1719 case PRCM_DSI_PLLOUT_SEL_PHI:
1720 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1721 PLL_RAW) / div;
e62ccf3a 1722 default:
6b6fae2b 1723 return 0;
e62ccf3a 1724 }
6b6fae2b
MN
1725}
1726
1727static unsigned long dsiescclk_rate(u8 n)
1728{
1729 u32 div;
1730
1731 div = readl(PRCM_DSITVCLK_DIV);
1732 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1733 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1734}
1735
1736unsigned long prcmu_clock_rate(u8 clock)
1737{
e62ccf3a 1738 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1739 return clock_rate(clock);
1740 else if (clock == PRCMU_TIMCLK)
1741 return ROOT_CLOCK_RATE / 16;
1742 else if (clock == PRCMU_SYSCLK)
1743 return ROOT_CLOCK_RATE;
1744 else if (clock == PRCMU_PLLSOC0)
1745 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1746 else if (clock == PRCMU_PLLSOC1)
1747 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
804971ec
MJ
1748 else if (clock == PRCMU_ARMSS)
1749 return armss_rate();
6b6fae2b
MN
1750 else if (clock == PRCMU_PLLDDR)
1751 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1752 else if (clock == PRCMU_PLLDSI)
1753 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1754 PLL_RAW);
1755 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1756 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1757 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1758 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1759 else
1760 return 0;
1761}
1762
1763static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1764{
1765 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1766 return ROOT_CLOCK_RATE;
1767 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1768 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1769 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1770 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1771 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1772 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1773 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1774 else
1775 return 0;
1776}
1777
1778static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1779{
1780 u32 div;
1781
1782 div = (src_rate / rate);
1783 if (div == 0)
1784 return 1;
1785 if (rate < (src_rate / div))
1786 div++;
1787 return div;
1788}
1789
1790static long round_clock_rate(u8 clock, unsigned long rate)
1791{
1792 u32 val;
1793 u32 div;
1794 unsigned long src_rate;
1795 long rounded_rate;
1796
1797 val = readl(clk_mgt[clock].reg);
1798 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1799 clk_mgt[clock].branch);
1800 div = clock_divider(src_rate, rate);
1801 if (val & PRCM_CLK_MGT_CLK38) {
1802 if (clk_mgt[clock].clk38div) {
1803 if (div > 2)
1804 div = 2;
1805 } else {
1806 div = 1;
1807 }
1808 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1809 u64 r = (src_rate * 10);
1810
1811 (void)do_div(r, 25);
1812 if (r <= rate)
1813 return (unsigned long)r;
1814 }
1815 rounded_rate = (src_rate / min(div, (u32)31));
1816
1817 return rounded_rate;
1818}
1819
1820#define MIN_PLL_VCO_RATE 600000000ULL
1821#define MAX_PLL_VCO_RATE 1680640000ULL
1822
1823static long round_plldsi_rate(unsigned long rate)
1824{
1825 long rounded_rate = 0;
1826 unsigned long src_rate;
1827 unsigned long rem;
1828 u32 r;
1829
1830 src_rate = clock_rate(PRCMU_HDMICLK);
1831 rem = rate;
1832
1833 for (r = 7; (rem > 0) && (r > 0); r--) {
1834 u64 d;
1835
1836 d = (r * rate);
1837 (void)do_div(d, src_rate);
1838 if (d < 6)
1839 d = 6;
1840 else if (d > 255)
1841 d = 255;
1842 d *= src_rate;
1843 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1844 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1845 continue;
1846 (void)do_div(d, r);
1847 if (rate < d) {
1848 if (rounded_rate == 0)
1849 rounded_rate = (long)d;
1850 break;
1851 }
1852 if ((rate - d) < rem) {
1853 rem = (rate - d);
1854 rounded_rate = (long)d;
1855 }
1856 }
1857 return rounded_rate;
1858}
1859
1860static long round_dsiclk_rate(unsigned long rate)
1861{
1862 u32 div;
1863 unsigned long src_rate;
1864 long rounded_rate;
1865
1866 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1867 PLL_RAW);
1868 div = clock_divider(src_rate, rate);
1869 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1870
1871 return rounded_rate;
1872}
1873
1874static long round_dsiescclk_rate(unsigned long rate)
1875{
1876 u32 div;
1877 unsigned long src_rate;
1878 long rounded_rate;
1879
1880 src_rate = clock_rate(PRCMU_TVCLK);
1881 div = clock_divider(src_rate, rate);
1882 rounded_rate = (src_rate / min(div, (u32)255));
1883
1884 return rounded_rate;
1885}
1886
1887long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1888{
1889 if (clock < PRCMU_NUM_REG_CLOCKS)
1890 return round_clock_rate(clock, rate);
1891 else if (clock == PRCMU_PLLDSI)
1892 return round_plldsi_rate(rate);
1893 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1894 return round_dsiclk_rate(rate);
1895 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1896 return round_dsiescclk_rate(rate);
1897 else
1898 return (long)prcmu_clock_rate(clock);
1899}
1900
1901static void set_clock_rate(u8 clock, unsigned long rate)
1902{
1903 u32 val;
1904 u32 div;
1905 unsigned long src_rate;
1906 unsigned long flags;
1907
1908 spin_lock_irqsave(&clk_mgt_lock, flags);
1909
1910 /* Grab the HW semaphore. */
1911 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1912 cpu_relax();
1913
1914 val = readl(clk_mgt[clock].reg);
1915 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1916 clk_mgt[clock].branch);
1917 div = clock_divider(src_rate, rate);
1918 if (val & PRCM_CLK_MGT_CLK38) {
1919 if (clk_mgt[clock].clk38div) {
1920 if (div > 1)
1921 val |= PRCM_CLK_MGT_CLK38DIV;
1922 else
1923 val &= ~PRCM_CLK_MGT_CLK38DIV;
1924 }
1925 } else if (clock == PRCMU_SGACLK) {
1926 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1927 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1928 if (div == 3) {
1929 u64 r = (src_rate * 10);
1930
1931 (void)do_div(r, 25);
1932 if (r <= rate) {
1933 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1934 div = 0;
1935 }
1936 }
1937 val |= min(div, (u32)31);
1938 } else {
1939 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1940 val |= min(div, (u32)31);
1941 }
1942 writel(val, clk_mgt[clock].reg);
1943
1944 /* Release the HW semaphore. */
1945 writel(0, PRCM_SEM);
1946
1947 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1948}
1949
1950static int set_plldsi_rate(unsigned long rate)
1951{
1952 unsigned long src_rate;
1953 unsigned long rem;
1954 u32 pll_freq = 0;
1955 u32 r;
1956
1957 src_rate = clock_rate(PRCMU_HDMICLK);
1958 rem = rate;
1959
1960 for (r = 7; (rem > 0) && (r > 0); r--) {
1961 u64 d;
1962 u64 hwrate;
1963
1964 d = (r * rate);
1965 (void)do_div(d, src_rate);
1966 if (d < 6)
1967 d = 6;
1968 else if (d > 255)
1969 d = 255;
1970 hwrate = (d * src_rate);
1971 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1972 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1973 continue;
1974 (void)do_div(hwrate, r);
1975 if (rate < hwrate) {
1976 if (pll_freq == 0)
1977 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1978 (r << PRCM_PLL_FREQ_R_SHIFT));
1979 break;
1980 }
1981 if ((rate - hwrate) < rem) {
1982 rem = (rate - hwrate);
1983 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1984 (r << PRCM_PLL_FREQ_R_SHIFT));
1985 }
1986 }
1987 if (pll_freq == 0)
1988 return -EINVAL;
1989
1990 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1991 writel(pll_freq, PRCM_PLLDSI_FREQ);
1992
1993 return 0;
1994}
1995
1996static void set_dsiclk_rate(u8 n, unsigned long rate)
1997{
1998 u32 val;
1999 u32 div;
2000
2001 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2002 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2003
2004 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2005 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2006 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2007
2008 val = readl(PRCM_DSI_PLLOUT_SEL);
2009 val &= ~dsiclk[n].divsel_mask;
2010 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2011 writel(val, PRCM_DSI_PLLOUT_SEL);
2012}
2013
2014static void set_dsiescclk_rate(u8 n, unsigned long rate)
2015{
2016 u32 val;
2017 u32 div;
2018
2019 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2020 val = readl(PRCM_DSITVCLK_DIV);
2021 val &= ~dsiescclk[n].div_mask;
2022 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2023 writel(val, PRCM_DSITVCLK_DIV);
2024}
2025
2026int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2027{
2028 if (clock < PRCMU_NUM_REG_CLOCKS)
2029 set_clock_rate(clock, rate);
2030 else if (clock == PRCMU_PLLDSI)
2031 return set_plldsi_rate(rate);
2032 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2033 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2034 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2035 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2036 return 0;
3df57bcf
MN
2037}
2038
73180f85 2039int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
2040{
2041 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2042 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2043 return -EINVAL;
2044
2045 mutex_lock(&mb4_transfer.lock);
2046
c553b3ca 2047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2048 cpu_relax();
2049
2050 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2051 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2052 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2053 writeb(DDR_PWR_STATE_ON,
2054 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2055 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2056
c553b3ca 2057 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2058 wait_for_completion(&mb4_transfer.work);
2059
2060 mutex_unlock(&mb4_transfer.lock);
2061
2062 return 0;
2063}
2064
0508901c 2065int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2066{
2067 mutex_lock(&mb4_transfer.lock);
2068
c553b3ca 2069 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2070 cpu_relax();
2071
2072 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2073 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2074
c553b3ca 2075 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2076 wait_for_completion(&mb4_transfer.work);
2077
2078 mutex_unlock(&mb4_transfer.lock);
2079
2080 return 0;
2081}
2082
0508901c 2083int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2084{
2085 mutex_lock(&mb4_transfer.lock);
2086
c553b3ca 2087 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2088 cpu_relax();
2089
2090 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2091 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2092 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2093 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2094 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2095
c553b3ca 2096 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2097 wait_for_completion(&mb4_transfer.work);
2098
2099 mutex_unlock(&mb4_transfer.lock);
2100
2101 return 0;
2102}
2103
2104static int config_hot_period(u16 val)
2105{
2106 mutex_lock(&mb4_transfer.lock);
2107
c553b3ca 2108 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2109 cpu_relax();
2110
2111 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2112 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2113
c553b3ca 2114 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2115 wait_for_completion(&mb4_transfer.work);
2116
2117 mutex_unlock(&mb4_transfer.lock);
2118
2119 return 0;
2120}
2121
0508901c 2122int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2123{
2124 if (cycles32k == 0xFFFF)
2125 return -EINVAL;
2126
2127 return config_hot_period(cycles32k);
2128}
2129
0508901c 2130int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2131{
2132 return config_hot_period(0xFFFF);
2133}
2134
84165b80
JA
2135static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2136{
2137
2138 mutex_lock(&mb4_transfer.lock);
2139
2140 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2141 cpu_relax();
2142
2143 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2144 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2145 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2146 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2147
2148 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2149
2150 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2151 wait_for_completion(&mb4_transfer.work);
2152
2153 mutex_unlock(&mb4_transfer.lock);
2154
2155 return 0;
2156
2157}
2158
0508901c 2159int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2160{
2161 BUG_ON(num == 0 || num > 0xf);
2162 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2163 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2164 A9WDOG_AUTO_OFF_DIS);
2165}
2166
0508901c 2167int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2168{
2169 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2170}
2171
0508901c 2172int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2173{
2174 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2175}
2176
0508901c 2177int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2178{
2179 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2180}
2181
2182/*
2183 * timeout is 28 bit, in ms.
2184 */
0508901c 2185int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2186{
84165b80
JA
2187 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2188 (id & A9WDOG_ID_MASK) |
2189 /*
2190 * Put the lowest 28 bits of timeout at
2191 * offset 4. Four first bits are used for id.
2192 */
2193 (u8)((timeout << 4) & 0xf0),
2194 (u8)((timeout >> 4) & 0xff),
2195 (u8)((timeout >> 12) & 0xff),
2196 (u8)((timeout >> 20) & 0xff));
2197}
2198
e3726fcf
LW
2199/**
2200 * prcmu_abb_read() - Read register value(s) from the ABB.
2201 * @slave: The I2C slave address.
2202 * @reg: The (start) register address.
2203 * @value: The read out value(s).
2204 * @size: The number of registers to read.
2205 *
2206 * Reads register value(s) from the ABB.
2207 * @size has to be 1 for the current firmware version.
2208 */
2209int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2210{
2211 int r;
2212
2213 if (size != 1)
2214 return -EINVAL;
2215
3df57bcf 2216 mutex_lock(&mb5_transfer.lock);
e3726fcf 2217
c553b3ca 2218 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2219 cpu_relax();
2220
3c3e4898 2221 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2222 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2223 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2224 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2225 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2226
c553b3ca 2227 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2228
e3726fcf 2229 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2230 msecs_to_jiffies(20000))) {
2231 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2232 __func__);
e3726fcf 2233 r = -EIO;
3df57bcf
MN
2234 } else {
2235 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2236 }
3df57bcf 2237
e3726fcf
LW
2238 if (!r)
2239 *value = mb5_transfer.ack.value;
2240
e3726fcf 2241 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2242
e3726fcf
LW
2243 return r;
2244}
e3726fcf
LW
2245
2246/**
3c3e4898 2247 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2248 * @slave: The I2C slave address.
2249 * @reg: The (start) register address.
2250 * @value: The value(s) to write.
3c3e4898 2251 * @mask: The mask(s) to use.
e3726fcf
LW
2252 * @size: The number of registers to write.
2253 *
3c3e4898
MN
2254 * Writes masked register value(s) to the ABB.
2255 * For each @value, only the bits set to 1 in the corresponding @mask
2256 * will be written. The other bits are not changed.
e3726fcf
LW
2257 * @size has to be 1 for the current firmware version.
2258 */
3c3e4898 2259int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2260{
2261 int r;
2262
2263 if (size != 1)
2264 return -EINVAL;
2265
3df57bcf 2266 mutex_lock(&mb5_transfer.lock);
e3726fcf 2267
c553b3ca 2268 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2269 cpu_relax();
2270
3c3e4898 2271 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2272 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2273 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2274 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2275 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2276
c553b3ca 2277 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2278
e3726fcf 2279 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2280 msecs_to_jiffies(20000))) {
2281 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2282 __func__);
e3726fcf 2283 r = -EIO;
3df57bcf
MN
2284 } else {
2285 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2286 }
e3726fcf 2287
e3726fcf 2288 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2289
e3726fcf
LW
2290 return r;
2291}
e3726fcf 2292
3c3e4898
MN
2293/**
2294 * prcmu_abb_write() - Write register value(s) to the ABB.
2295 * @slave: The I2C slave address.
2296 * @reg: The (start) register address.
2297 * @value: The value(s) to write.
2298 * @size: The number of registers to write.
2299 *
2300 * Writes register value(s) to the ABB.
2301 * @size has to be 1 for the current firmware version.
2302 */
2303int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2304{
2305 u8 mask = ~0;
2306
2307 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2308}
2309
3df57bcf
MN
2310/**
2311 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2312 */
5261e101 2313int prcmu_ac_wake_req(void)
e0befb23 2314{
3df57bcf 2315 u32 val;
5261e101 2316 int ret = 0;
e0befb23 2317
3df57bcf 2318 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2319
c553b3ca 2320 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2321 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2322 goto unlock_and_return;
e0befb23 2323
3df57bcf 2324 atomic_set(&ac_wake_req_state, 1);
e0befb23 2325
5261e101
AM
2326 /*
2327 * Force Modem Wake-up before hostaccess_req ping-pong.
2328 * It prevents Modem to enter in Sleep while acking the hostaccess
2329 * request. The 31us delay has been calculated by HWI.
2330 */
2331 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2332 writel(val, PRCM_HOSTACCESS_REQ);
2333
2334 udelay(31);
2335
2336 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2337 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2338
3df57bcf 2339 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2340 msecs_to_jiffies(5000))) {
5261e101
AM
2341#if defined(CONFIG_DBX500_PRCMU_DEBUG)
2342 db8500_prcmu_debug_dump(__func__, true, true);
2343#endif
57265bc1 2344 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2345 __func__);
5261e101 2346 ret = -EFAULT;
3df57bcf 2347 }
e0befb23 2348
3df57bcf
MN
2349unlock_and_return:
2350 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2351 return ret;
e0befb23
MP
2352}
2353
2354/**
3df57bcf 2355 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2356 */
3df57bcf 2357void prcmu_ac_sleep_req()
e0befb23 2358{
3df57bcf
MN
2359 u32 val;
2360
2361 mutex_lock(&mb0_transfer.ac_wake_lock);
2362
c553b3ca 2363 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2364 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2365 goto unlock_and_return;
2366
2367 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2368 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2369
2370 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2371 msecs_to_jiffies(5000))) {
57265bc1 2372 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2373 __func__);
2374 }
2375
2376 atomic_set(&ac_wake_req_state, 0);
2377
2378unlock_and_return:
2379 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2380}
e0befb23 2381
73180f85 2382bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2383{
3df57bcf 2384 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2385}
e0befb23
MP
2386
2387/**
73180f85 2388 * db8500_prcmu_system_reset - System reset
e0befb23 2389 *
73180f85 2390 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2391 * fires interrupt to fw
e0befb23 2392 */
73180f85 2393void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2394{
3df57bcf 2395 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2396 writel(1, PRCM_APE_SOFTRST);
e0befb23 2397}
e0befb23 2398
597045de
SR
2399/**
2400 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2401 *
2402 * Retrieves the reset reason code stored by prcmu_system_reset() before
2403 * last restart.
2404 */
2405u16 db8500_prcmu_get_reset_code(void)
2406{
2407 return readw(tcdm_base + PRCM_SW_RST_REASON);
2408}
2409
e0befb23 2410/**
0508901c 2411 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2412 */
0508901c 2413void db8500_prcmu_modem_reset(void)
e0befb23 2414{
3df57bcf
MN
2415 mutex_lock(&mb1_transfer.lock);
2416
c553b3ca 2417 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2418 cpu_relax();
2419
2420 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2421 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2422 wait_for_completion(&mb1_transfer.work);
2423
2424 /*
2425 * No need to check return from PRCMU as modem should go in reset state
2426 * This state is already managed by upper layer
2427 */
2428
2429 mutex_unlock(&mb1_transfer.lock);
e0befb23 2430}
e0befb23 2431
3df57bcf 2432static void ack_dbb_wakeup(void)
e0befb23 2433{
3df57bcf
MN
2434 unsigned long flags;
2435
2436 spin_lock_irqsave(&mb0_transfer.lock, flags);
2437
c553b3ca 2438 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2439 cpu_relax();
2440
2441 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2442 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2443
2444 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2445}
e0befb23 2446
3df57bcf 2447static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2448{
3df57bcf
MN
2449 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2450 header, n);
e0befb23
MP
2451}
2452
3df57bcf 2453static bool read_mailbox_0(void)
e3726fcf 2454{
3df57bcf
MN
2455 bool r;
2456 u32 ev;
2457 unsigned int n;
2458 u8 header;
2459
2460 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2461 switch (header) {
2462 case MB0H_WAKEUP_EXE:
2463 case MB0H_WAKEUP_SLEEP:
2464 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2465 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2466 else
2467 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2468
2469 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2470 complete(&mb0_transfer.ac_wake_work);
2471 if (ev & WAKEUP_BIT_SYSCLK_OK)
2472 complete(&mb3_transfer.sysclk_work);
2473
2474 ev &= mb0_transfer.req.dbb_irqs;
2475
2476 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2477 if (ev & prcmu_irq_bit[n])
2478 generic_handle_irq(IRQ_PRCMU_BASE + n);
2479 }
2480 r = true;
2481 break;
2482 default:
2483 print_unknown_header_warning(0, header);
2484 r = false;
2485 break;
2486 }
c553b3ca 2487 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2488 return r;
e3726fcf
LW
2489}
2490
3df57bcf 2491static bool read_mailbox_1(void)
e3726fcf 2492{
3df57bcf
MN
2493 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2494 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2495 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2496 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2497 PRCM_ACK_MB1_CURRENT_APE_OPP);
2498 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2499 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2500 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2501 complete(&mb1_transfer.work);
3df57bcf 2502 return false;
e3726fcf
LW
2503}
2504
3df57bcf 2505static bool read_mailbox_2(void)
e3726fcf 2506{
3df57bcf 2507 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2508 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2509 complete(&mb2_transfer.work);
2510 return false;
e3726fcf
LW
2511}
2512
3df57bcf 2513static bool read_mailbox_3(void)
e3726fcf 2514{
c553b3ca 2515 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2516 return false;
e3726fcf
LW
2517}
2518
3df57bcf 2519static bool read_mailbox_4(void)
e3726fcf 2520{
3df57bcf
MN
2521 u8 header;
2522 bool do_complete = true;
2523
2524 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2525 switch (header) {
2526 case MB4H_MEM_ST:
2527 case MB4H_HOTDOG:
2528 case MB4H_HOTMON:
2529 case MB4H_HOT_PERIOD:
a592c2e2
MN
2530 case MB4H_A9WDOG_CONF:
2531 case MB4H_A9WDOG_EN:
2532 case MB4H_A9WDOG_DIS:
2533 case MB4H_A9WDOG_LOAD:
2534 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2535 break;
2536 default:
2537 print_unknown_header_warning(4, header);
2538 do_complete = false;
2539 break;
2540 }
2541
c553b3ca 2542 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2543
2544 if (do_complete)
2545 complete(&mb4_transfer.work);
2546
2547 return false;
e3726fcf
LW
2548}
2549
3df57bcf 2550static bool read_mailbox_5(void)
e3726fcf 2551{
3df57bcf
MN
2552 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2553 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2554 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2555 complete(&mb5_transfer.work);
3df57bcf 2556 return false;
e3726fcf
LW
2557}
2558
3df57bcf 2559static bool read_mailbox_6(void)
e3726fcf 2560{
c553b3ca 2561 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2562 return false;
e3726fcf
LW
2563}
2564
3df57bcf 2565static bool read_mailbox_7(void)
e3726fcf 2566{
c553b3ca 2567 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2568 return false;
e3726fcf
LW
2569}
2570
3df57bcf 2571static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2572 read_mailbox_0,
2573 read_mailbox_1,
2574 read_mailbox_2,
2575 read_mailbox_3,
2576 read_mailbox_4,
2577 read_mailbox_5,
2578 read_mailbox_6,
2579 read_mailbox_7
2580};
2581
2582static irqreturn_t prcmu_irq_handler(int irq, void *data)
2583{
2584 u32 bits;
2585 u8 n;
3df57bcf 2586 irqreturn_t r;
e3726fcf 2587
c553b3ca 2588 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2589 if (unlikely(!bits))
2590 return IRQ_NONE;
2591
3df57bcf 2592 r = IRQ_HANDLED;
e3726fcf
LW
2593 for (n = 0; bits; n++) {
2594 if (bits & MBOX_BIT(n)) {
2595 bits -= MBOX_BIT(n);
3df57bcf
MN
2596 if (read_mailbox[n]())
2597 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2598 }
2599 }
3df57bcf
MN
2600 return r;
2601}
2602
2603static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2604{
2605 ack_dbb_wakeup();
e3726fcf
LW
2606 return IRQ_HANDLED;
2607}
2608
3df57bcf
MN
2609static void prcmu_mask_work(struct work_struct *work)
2610{
2611 unsigned long flags;
2612
2613 spin_lock_irqsave(&mb0_transfer.lock, flags);
2614
2615 config_wakeups();
2616
2617 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2618}
2619
2620static void prcmu_irq_mask(struct irq_data *d)
2621{
2622 unsigned long flags;
2623
2624 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2625
2626 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2627
2628 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2629
2630 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2631 schedule_work(&mb0_transfer.mask_work);
2632}
2633
2634static void prcmu_irq_unmask(struct irq_data *d)
2635{
2636 unsigned long flags;
2637
2638 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2639
2640 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2641
2642 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2643
2644 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2645 schedule_work(&mb0_transfer.mask_work);
2646}
2647
2648static void noop(struct irq_data *d)
2649{
2650}
2651
2652static struct irq_chip prcmu_irq_chip = {
2653 .name = "prcmu",
2654 .irq_disable = prcmu_irq_mask,
2655 .irq_ack = noop,
2656 .irq_mask = prcmu_irq_mask,
2657 .irq_unmask = prcmu_irq_unmask,
2658};
2659
b58d12fe
MN
2660static char *fw_project_name(u8 project)
2661{
2662 switch (project) {
2663 case PRCMU_FW_PROJECT_U8500:
2664 return "U8500";
2665 case PRCMU_FW_PROJECT_U8500_C2:
2666 return "U8500 C2";
2667 case PRCMU_FW_PROJECT_U9500:
2668 return "U9500";
2669 case PRCMU_FW_PROJECT_U9500_C2:
2670 return "U9500 C2";
5f96a1a6
BJ
2671 case PRCMU_FW_PROJECT_U8520:
2672 return "U8520";
1927ddf6
BJ
2673 case PRCMU_FW_PROJECT_U8420:
2674 return "U8420";
b58d12fe
MN
2675 default:
2676 return "Unknown";
2677 }
2678}
2679
73180f85 2680void __init db8500_prcmu_early_init(void)
fcbd458e 2681{
3df57bcf 2682 unsigned int i;
3e2762c8 2683 if (cpu_is_u8500v2()) {
3df57bcf
MN
2684 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2685
2686 if (tcpm_base != NULL) {
3e2762c8 2687 u32 version;
3df57bcf 2688 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
b58d12fe
MN
2689 fw_info.version.project = version & 0xFF;
2690 fw_info.version.api_version = (version >> 8) & 0xFF;
2691 fw_info.version.func_version = (version >> 16) & 0xFF;
2692 fw_info.version.errata = (version >> 24) & 0xFF;
2693 fw_info.valid = true;
2694 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2695 fw_project_name(fw_info.version.project),
3df57bcf
MN
2696 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2697 (version >> 24) & 0xFF);
2698 iounmap(tcpm_base);
2699 }
2700
fcbd458e
MW
2701 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2702 } else {
2703 pr_err("prcmu: Unsupported chip version\n");
2704 BUG();
2705 }
e0befb23 2706
3df57bcf
MN
2707 spin_lock_init(&mb0_transfer.lock);
2708 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2709 mutex_init(&mb0_transfer.ac_wake_lock);
2710 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2711 mutex_init(&mb1_transfer.lock);
2712 init_completion(&mb1_transfer.work);
4d64d2e3 2713 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2714 mutex_init(&mb2_transfer.lock);
2715 init_completion(&mb2_transfer.work);
2716 spin_lock_init(&mb2_transfer.auto_pm_lock);
2717 spin_lock_init(&mb3_transfer.lock);
2718 mutex_init(&mb3_transfer.sysclk_lock);
2719 init_completion(&mb3_transfer.sysclk_work);
2720 mutex_init(&mb4_transfer.lock);
2721 init_completion(&mb4_transfer.work);
e3726fcf
LW
2722 mutex_init(&mb5_transfer.lock);
2723 init_completion(&mb5_transfer.work);
2724
3df57bcf
MN
2725 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2726
2727 /* Initalize irqs. */
2728 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2729 unsigned int irq;
2730
2731 irq = IRQ_PRCMU_BASE + i;
2732 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2733 handle_simple_irq);
2734 set_irq_flags(irq, IRQF_VALID);
2735 }
804971ec 2736 compute_armss_rate();
3df57bcf
MN
2737}
2738
0508901c 2739static void __init init_prcm_registers(void)
d65e12d7
MN
2740{
2741 u32 val;
2742
2743 val = readl(PRCM_A9PL_FORCE_CLKEN);
2744 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2745 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2746 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2747}
2748
1032fbfd
BJ
2749/*
2750 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2751 */
2752static struct regulator_consumer_supply db8500_vape_consumers[] = {
2753 REGULATOR_SUPPLY("v-ape", NULL),
2754 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2755 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2756 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2757 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2758 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2759 /* "v-mmc" changed to "vcore" in the mainline kernel */
2760 REGULATOR_SUPPLY("vcore", "sdi0"),
2761 REGULATOR_SUPPLY("vcore", "sdi1"),
2762 REGULATOR_SUPPLY("vcore", "sdi2"),
2763 REGULATOR_SUPPLY("vcore", "sdi3"),
2764 REGULATOR_SUPPLY("vcore", "sdi4"),
2765 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2766 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2767 /* "v-uart" changed to "vcore" in the mainline kernel */
2768 REGULATOR_SUPPLY("vcore", "uart0"),
2769 REGULATOR_SUPPLY("vcore", "uart1"),
2770 REGULATOR_SUPPLY("vcore", "uart2"),
2771 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2772 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2773 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2774};
2775
2776static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2777 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2778 /* AV8100 regulator */
2779 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2780};
2781
2782static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2783 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2784 REGULATOR_SUPPLY("vsupply", "mcde"),
2785};
2786
2787/* SVA MMDSP regulator switch */
2788static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2789 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2790};
2791
2792/* SVA pipe regulator switch */
2793static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2794 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2795};
2796
2797/* SIA MMDSP regulator switch */
2798static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2799 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2800};
2801
2802/* SIA pipe regulator switch */
2803static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2804 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2805};
2806
2807static struct regulator_consumer_supply db8500_sga_consumers[] = {
2808 REGULATOR_SUPPLY("v-mali", NULL),
2809};
2810
2811/* ESRAM1 and 2 regulator switch */
2812static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2813 REGULATOR_SUPPLY("esram12", "cm_control"),
2814};
2815
2816/* ESRAM3 and 4 regulator switch */
2817static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2818 REGULATOR_SUPPLY("v-esram34", "mcde"),
2819 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2820 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2821};
2822
2823static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2824 [DB8500_REGULATOR_VAPE] = {
2825 .constraints = {
2826 .name = "db8500-vape",
2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2828 .always_on = true,
1032fbfd
BJ
2829 },
2830 .consumer_supplies = db8500_vape_consumers,
2831 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2832 },
2833 [DB8500_REGULATOR_VARM] = {
2834 .constraints = {
2835 .name = "db8500-varm",
2836 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2837 },
2838 },
2839 [DB8500_REGULATOR_VMODEM] = {
2840 .constraints = {
2841 .name = "db8500-vmodem",
2842 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2843 },
2844 },
2845 [DB8500_REGULATOR_VPLL] = {
2846 .constraints = {
2847 .name = "db8500-vpll",
2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 },
2850 },
2851 [DB8500_REGULATOR_VSMPS1] = {
2852 .constraints = {
2853 .name = "db8500-vsmps1",
2854 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855 },
2856 },
2857 [DB8500_REGULATOR_VSMPS2] = {
2858 .constraints = {
2859 .name = "db8500-vsmps2",
2860 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861 },
2862 .consumer_supplies = db8500_vsmps2_consumers,
2863 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2864 },
2865 [DB8500_REGULATOR_VSMPS3] = {
2866 .constraints = {
2867 .name = "db8500-vsmps3",
2868 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869 },
2870 },
2871 [DB8500_REGULATOR_VRF1] = {
2872 .constraints = {
2873 .name = "db8500-vrf1",
2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875 },
2876 },
2877 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2878 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2879 .constraints = {
2880 .name = "db8500-sva-mmdsp",
2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 },
624e87c2
BJ
2883 .consumer_supplies = db8500_svammdsp_consumers,
2884 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2885 },
2886 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2887 .constraints = {
2888 /* "ret" means "retention" */
2889 .name = "db8500-sva-mmdsp-ret",
2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 },
2892 },
2893 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2894 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2895 .constraints = {
2896 .name = "db8500-sva-pipe",
2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 },
624e87c2
BJ
2899 .consumer_supplies = db8500_svapipe_consumers,
2900 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2901 },
2902 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2903 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2904 .constraints = {
2905 .name = "db8500-sia-mmdsp",
2906 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907 },
624e87c2
BJ
2908 .consumer_supplies = db8500_siammdsp_consumers,
2909 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2910 },
2911 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2912 .constraints = {
2913 .name = "db8500-sia-mmdsp-ret",
2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 },
2916 },
2917 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2918 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2919 .constraints = {
2920 .name = "db8500-sia-pipe",
2921 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922 },
624e87c2
BJ
2923 .consumer_supplies = db8500_siapipe_consumers,
2924 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2925 },
2926 [DB8500_REGULATOR_SWITCH_SGA] = {
2927 .supply_regulator = "db8500-vape",
2928 .constraints = {
2929 .name = "db8500-sga",
2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 },
624e87c2
BJ
2932 .consumer_supplies = db8500_sga_consumers,
2933 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2934
1032fbfd
BJ
2935 },
2936 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2937 .supply_regulator = "db8500-vape",
2938 .constraints = {
2939 .name = "db8500-b2r2-mcde",
2940 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941 },
2942 .consumer_supplies = db8500_b2r2_mcde_consumers,
2943 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2944 },
2945 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2946 /*
2947 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2948 * no need to hold Vape
2949 */
1032fbfd
BJ
2950 .constraints = {
2951 .name = "db8500-esram12",
2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 },
624e87c2
BJ
2954 .consumer_supplies = db8500_esram12_consumers,
2955 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2956 },
2957 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2958 .constraints = {
2959 .name = "db8500-esram12-ret",
2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 },
2962 },
2963 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2964 /*
2965 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2966 * no need to hold Vape
2967 */
1032fbfd
BJ
2968 .constraints = {
2969 .name = "db8500-esram34",
2970 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2971 },
624e87c2
BJ
2972 .consumer_supplies = db8500_esram34_consumers,
2973 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2974 },
2975 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2976 .constraints = {
2977 .name = "db8500-esram34-ret",
2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979 },
2980 },
2981};
2982
6d11d135
LJ
2983static struct resource ab8500_resources[] = {
2984 [0] = {
2985 .start = IRQ_DB8500_AB8500,
2986 .end = IRQ_DB8500_AB8500,
2987 .flags = IORESOURCE_IRQ
2988 }
2989};
2990
3df57bcf
MN
2991static struct mfd_cell db8500_prcmu_devs[] = {
2992 {
2993 .name = "db8500-prcmu-regulators",
5d90322b 2994 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
2995 .platform_data = &db8500_regulators,
2996 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
2997 },
2998 {
2999 .name = "cpufreq-u8500",
5d90322b 3000 .of_compatible = "stericsson,cpufreq-u8500",
3df57bcf 3001 },
6d11d135
LJ
3002 {
3003 .name = "ab8500-core",
3004 .of_compatible = "stericsson,ab8500",
3005 .num_resources = ARRAY_SIZE(ab8500_resources),
3006 .resources = ab8500_resources,
3007 .id = AB8500_VERSION_AB8500,
3008 },
3df57bcf
MN
3009};
3010
3011/**
3012 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3013 *
3014 */
9fc63f67 3015static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3016{
3a8e39c9 3017 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
ca7edd16 3018 struct device_node *np = pdev->dev.of_node;
3a8e39c9 3019 int irq = 0, err = 0, i;
3df57bcf
MN
3020
3021 if (ux500_is_svp())
3022 return -ENODEV;
3023
0508901c 3024 init_prcm_registers();
d65e12d7 3025
e3726fcf 3026 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3027 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3028
ca7edd16
LJ
3029 if (np)
3030 irq = platform_get_irq(pdev, 0);
3031
3032 if (!np || irq <= 0)
3033 irq = IRQ_DB8500_PRCMU1;
3034
3035 err = request_threaded_irq(irq, prcmu_irq_handler,
3036 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3037 if (err < 0) {
3038 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039 err = -EBUSY;
3040 goto no_irq_return;
3041 }
3042
3a8e39c9
LJ
3043 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3044 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3045 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3c1534c7 3046 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3a8e39c9
LJ
3047 }
3048 }
3049
3df57bcf
MN
3050 if (cpu_is_u8500v20_or_later())
3051 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3052
5d90322b 3053 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
55692af5 3054 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
5d90322b
LJ
3055 if (err) {
3056 pr_err("prcmu: Failed to add subdevices\n");
3057 return err;
ca7edd16 3058 }
e3726fcf 3059
ca7edd16 3060 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3061
3062no_irq_return:
3063 return err;
3064}
3c144762
LJ
3065static const struct of_device_id db8500_prcmu_match[] = {
3066 { .compatible = "stericsson,db8500-prcmu"},
3067 { },
3068};
3df57bcf
MN
3069
3070static struct platform_driver db8500_prcmu_driver = {
3071 .driver = {
3072 .name = "db8500-prcmu",
3073 .owner = THIS_MODULE,
3c144762 3074 .of_match_table = db8500_prcmu_match,
3df57bcf 3075 },
9fc63f67 3076 .probe = db8500_prcmu_probe,
3df57bcf
MN
3077};
3078
3079static int __init db8500_prcmu_init(void)
3080{
9fc63f67 3081 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3082}
3083
a661aca4 3084core_initcall(db8500_prcmu_init);
3df57bcf
MN
3085
3086MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3087MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3088MODULE_LICENSE("GPL v2");